1
|
Ali A, Zhao XT, Lin JS, Zhao TT, Feng CL, Li L, Wu RJ, Huang QX, Liu HB, Wang JG. Genome-wide identification and unveiling the role of MAP kinase cascade genes involved in sugarcane response to abiotic stressors. BMC PLANT BIOLOGY 2025; 25:484. [PMID: 40240958 PMCID: PMC12001561 DOI: 10.1186/s12870-025-06490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND The MAP Kinase cascade system is a conserved signaling mechanism essential for plant development, growth, and stress tolerance. Thus far, genes from the MAPK cascade have been identified in several plant species but remain uncharacterized in the polyploid Saccharum spp. Hybrid R570 genome. RESULTS This study identified 89 ScMAPK, 24 ScMAPKK, and 107 ScMAPKKK genes through genome-wide analysis. Phylogenetic classification revealed that four subgroups were present in each ScMAPK and ScMAPKK family, and three sub-families (ZIK-like, RAF-like, and MEKK-like) presented in the ScMAPKKK family. Conserved motif and gene structure analysis supported the evolutionary relationships of the three families inferred from the phylogenetic analysis. All of the ScMAPK, ScMAPKK and ScMAPKKK genes were mapped on four scaffolds (Scaffold_88/89/91/92) and nine chromosomes (1-8, 10). Collinearity and gene duplication analysis identified 169 pairs of allelic and non-allelic segmentally duplicated MAPK cascade genes, contributing to their expansion. Additionally, 13 putative 'ss-miRNAs' were predicted to target 87 MAPK cascade genes, with 'ssp-miR168a' alone regulating 45 genes. qRT-PCR analysis revealed differential gene expression under abiotic stressors. ScMAPK07, ScMAPK66, and ScRAF43 were down-regulated and acted as negative regulators. Conversely, ScMAPKK13, ScRAF10, and ScZIK18 were up-regulated at specific time points under drought, with ScZIK18 exhibiting strong defense. Under NaCl stress, most genes were down-regulated, except for slight increases in ScZIK18 and ScMAPKK13, suggesting a positive role in salt stress response. Under CaCl2 stress, five genes were significantly down-regulated, while ScRAF43 remained unchanged, reflecting their negative roles in stress adaptation and resource conservation. CONCLUSION This study provides insights into MAPK cascade gene evolution and function in sugarcane, highlighting distinct regulatory roles in abiotic stress responses. Interestingly, some genes acted as negative regulators, serving as a mechanism to balance stress responses and prevent overactivation. In contrast, others contributed to defense mechanisms, offering potential targets for stress resilience improvement. CLINICAL TRAIL NUMBER This study contains no clinical trials. Not applicable.
Collapse
Affiliation(s)
- Ahmad Ali
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Xue-Ting Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Ji-Shan Lin
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Ting-Ting Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Cui-Lian Feng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Ling Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Rui-Jie Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Qi-Xing Huang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Hong-Bo Liu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China.
| | - Jun-Gang Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China.
| |
Collapse
|
2
|
Park GR, Bae SH, Kang BK, Seo JH, Oh JH. Identification of candidate genes for drought tolerance in soybean through QTL mapping and gene expression analysis. Front Genet 2025; 16:1564160. [PMID: 40206503 PMCID: PMC11980780 DOI: 10.3389/fgene.2025.1564160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Drought stress significantly reduces soybean yield, underscoring the need to develop drought-resistant varieties and identify the underlying genetic mechanisms. However, the specific genes and pathways contributing to drought tolerance remain poorly understood. This study aimed to identify candidate genes associated with drought tolerance in soybean using a recombinant inbred line (RIL) population derived from PI416937 and Cheongsang. Methods A quantitative trait loci (QTL) mapping study using a 180K high-quality SNP array and composite interval mapping on 140 recombinant inbred lines, coupled with RNA sequencing of treated and control groups, was conducted to identify candidate genes for drought tolerance in soybean. Results and Discussion Through QTL mapping and differential gene expression profiling, five candidate genes were identified, with two (Glyma.06G076100 and Glyma.10G029600) highlighted as putative candidates based on functional annotations. These genes appear to play critical roles in stress tolerance, including ion homeostasis and the regulation of plasma membrane ATPase, as well as the synthesis of heat shock proteins (HSPs) that mitigate dehydration and thermal stress. These findings advance our understanding of the genetic basis of drought tolerance in soybean and provide valuable targets for breeding programs aimed at developing resilient cultivars.
Collapse
Affiliation(s)
- Gi-Rim Park
- Upland Crop Breeding Research Division, National Institute of Crop Science, Rural Development Administration, Miryang-si, Gyeongnam, Republic of Korea
| | - Seon-Hwa Bae
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Iseo-myeon, Wanju-gun, Republic of Korea
| | - Beom-Kyu Kang
- Upland Crop Breeding Research Division, National Institute of Crop Science, Rural Development Administration, Miryang-si, Gyeongnam, Republic of Korea
| | - Jeong-Hyun Seo
- Upland Crop Breeding Research Division, National Institute of Crop Science, Rural Development Administration, Miryang-si, Gyeongnam, Republic of Korea
| | - Jae-Hyeon Oh
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
3
|
Hein K, Girma D, McKay J. Genetic diversity and environmental adaptation in Ethiopian tef. G3 (BETHESDA, MD.) 2025; 15:jkae303. [PMID: 39853275 PMCID: PMC11917483 DOI: 10.1093/g3journal/jkae303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/13/2024] [Indexed: 01/26/2025]
Abstract
Orphan crops serve as essential resources for both nutrition and income in local communities and offer potential solutions to the challenges of food security and climate vulnerability. Tef [Eragrostis tef (Zucc.)], a small-grained allotetraploid, C4 cereal mainly cultivated in Ethiopia, stands out for its adaptability to marginal conditions and high nutritional value, which holds both local and global promise. Despite its significance, tef is considered an orphan crop due to limited genetic improvement efforts, reliance on subsistence farming, and its nutritional, economic, and cultural importance. Although pre-Semitic inhabitants of Ethiopia have cultivated tef for millennia (4000-1000 BCE), the genetic and environmental drivers of local adaptation remain poorly understood. To address this, we resequenced a diverse collection of traditional tef varieties to investigate their genetic structure and identify genomic regions under environmental selection using redundancy analysis, complemented by differentiation-based methods. We identified 145 loci associated with abiotic environmental factors, with minimal geographic influence observed in the genetic structure of the sample population. Overall, this work contributes to the broader understanding of local adaptation and its genetic basis in tef, providing insights that support efforts to develop elite germplasms with improved environmental resilience.
Collapse
Affiliation(s)
- Kirsten Hein
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
| | - Dejene Girma
- Ethiopian Institute of Agricultural Research, Addis Ababa 1000, Ethiopia
| | - John McKay
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Eltaher S, Li J, Freeman B, Singh S, Ali GS. A genome-wide association study identified SNP markers and candidate genes associated with morphometric fruit quality traits in mangoes. BMC Genomics 2025; 26:120. [PMID: 39920570 PMCID: PMC11806778 DOI: 10.1186/s12864-025-11278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Mangoes (Mangifera indica L.) are a widely grown fruit tree crop across the world, but breeding new varieties can take 15-20 years due to its long juvenile period and high heterozygosity. Marker-assisted selection can accelerate breeding new mango cultivars with desirable traits for fruit quality, storage, horticulture, pest and disease resistance, and nutrition. RESULTS To achieve this, a genome-wide association study (GWAS) was conducted to discover molecular markers for 14 morphometric and economically important fruit traits of 161 mango accessions with diverse genetic backgrounds. These traits included pulp and brix; fruit weight, length, thickness, and width; stone weight, length, thickness, and width; and seed weight, length, thickness, and width. In this report, we employed the fixed and random model circulating probability unification (FarmCPU) model for conducting GWAS using 135,079 high-quality SNP markers. These analyses revealed 103 SNPs that were significantly associated with these traits. Of these markers, 7 were commonly associated with different traits, while 96 markers were uniquely associated with specific traits. CONCLUSIONS To choose the most promising mango accessions for future breeding and for closing genetic gaps among the accessions and increasing genetic diversity, a new selection method is suggested based on phenotypic traits such as high-yielding mango fruit cultivars, number of reference alleles, and genetic distance among the selected genotypes. Based on these criteria, 20 accessions were identified as the most promising parents for crossing to produce high mango yield. Gene annotation of the significant markers revealed candidate genes coding for important proteins, enzymes, and transcription factors associated with fruit development traits.
Collapse
Affiliation(s)
- Shamseldeen Eltaher
- Subtropical Horticulture Research Station (SHRS), United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Miami, FL, USA
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City, 32897, Egypt
| | - Jin Li
- Subtropical Horticulture Research Station (SHRS), United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Miami, FL, USA
| | - Barbie Freeman
- Subtropical Horticulture Research Station (SHRS), United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Miami, FL, USA
| | - Sukhwinder Singh
- Subtropical Horticulture Research Station (SHRS), United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Miami, FL, USA
| | - Gul Shad Ali
- Subtropical Horticulture Research Station (SHRS), United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Miami, FL, USA.
| |
Collapse
|
5
|
Peer LA, Bhat MY, Lone AA, Dar ZA, Mir BA. Genetic, molecular and physiological crosstalk during drought tolerance in maize (Zea mays): pathways to resilient agriculture. PLANTA 2024; 260:81. [PMID: 39196449 DOI: 10.1007/s00425-024-04517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
MAIN CONCLUSION This review comprehensively elucidates maize drought tolerance mechanisms, vital for global food security. It highlights genetic networks, key genes, CRISPR-Cas applications, and physiological responses, guiding resilient variety development. Maize, a globally significant crop, confronts the pervasive challenge of drought stress, impacting its growth and yield significantly. Drought, an important abiotic stress, triggers a spectrum of alterations encompassing maize's morphological, biochemical, and physiological dimensions. Unraveling and understanding these mechanisms assumes paramount importance for ensuring global food security. Approaches like developing drought-tolerant varieties and harnessing genomic and molecular applications emerge as effective measures to mitigate the negative effects of drought. The multifaceted nature of drought tolerance in maize has been unfolded through complex genetic networks. Additionally, quantitative trait loci mapping and genome-wide association studies pinpoint key genes associated with drought tolerance, influencing morphophysiological traits and yield. Furthermore, transcription factors like ZmHsf28, ZmNAC20, and ZmNF-YA1 play pivotal roles in drought response through hormone signaling, stomatal regulation, and gene expression. Genes, such as ZmSAG39, ZmRAFS, and ZmBSK1, have been reported to be pivotal in enhancing drought tolerance through diverse mechanisms. Integration of CRISPR-Cas9 technology, targeting genes like gl2 and ZmHDT103, emerges as crucial for precise genetic enhancement, highlighting its role in safeguarding global food security amid pervasive drought challenges. Thus, decoding the genetic and molecular underpinnings of drought tolerance in maize sheds light on its resilience and paves the way for cultivating robust and climate-smart varieties, thus safeguarding global food security amid climate challenges. This comprehensive review covers quantitative trait loci mapping, genome-wide association studies, key genes and functions, CRISPR-Cas applications, transcription factors, physiological responses, signaling pathways, offering a nuanced understanding of intricate mechanisms involved in maize drought tolerance.
Collapse
Affiliation(s)
- Latif A Peer
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Mohd Y Bhat
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Ajaz A Lone
- Dryland Agriculture Research Station, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 191121, India
| | - Zahoor A Dar
- Dryland Agriculture Research Station, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 191121, India
| | - Bilal A Mir
- Department of Botany, North Campus, University of Kashmir, Delina, Srinagar, Jammu and Kashmir, 193201, India
| |
Collapse
|
6
|
Bao L, Liu J, Mao T, Zhao L, Wang D, Zhai Y. Nanobiotechnology-mediated regulation of reactive oxygen species homeostasis under heat and drought stress in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1418515. [PMID: 39258292 PMCID: PMC11385006 DOI: 10.3389/fpls.2024.1418515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024]
Abstract
Global warming causes heat and drought stress in plants, which affects crop production. In addition to osmotic stress and protein inactivation, reactive oxygen species (ROS) overaccumulation under heat and drought stress is a secondary stress that further impairs plant performance. Chloroplasts, mitochondria, peroxisomes, and apoplasts are the main ROS generation sites in heat- and drought-stressed plants. In this review, we summarize ROS generation and scavenging in heat- and drought-stressed plants and highlight the potential applications of plant nanobiotechnology for enhancing plant tolerance to these stresses.
Collapse
Affiliation(s)
- Linfeng Bao
- College of Agriculture, Tarim University, Alar, China
| | - Jiahao Liu
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| | - Tingyong Mao
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| | - Linbo Zhao
- College of Agriculture, Tarim University, Alar, China
| | - Desheng Wang
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| | - Yunlong Zhai
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| |
Collapse
|
7
|
Zhang C, Chen B, Zhang P, Han Q, Zhao G, Zhao F. Comparative Transcriptome Analysis Reveals the Underlying Response Mechanism to Salt Stress in Maize Seedling Roots. Metabolites 2023; 13:1155. [PMID: 37999251 PMCID: PMC10673138 DOI: 10.3390/metabo13111155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Crop growth and development can be impeded by salt stress, leading to a significant decline in crop yield and quality. This investigation performed a comparative analysis of the physiological responses of two maize inbred lines, namely L318 (CML115) and L323 (GEMS58), under salt-stress conditions. The results elucidated that CML115 exhibited higher salt tolerance compared with GEMS58. Transcriptome analysis of the root system revealed that DEGs shared by the two inbred lines were significantly enriched in the MAPK signaling pathway-plant and plant hormone signal transduction, which wield an instrumental role in orchestrating the maize response to salt-induced stress. Furthermore, the DEGs' exclusivity to salt-tolerant genotypes was associated with sugar metabolism pathways, and these unique DEGs may account for the disparities in salt tolerance between the two genotypes. Meanwhile, we investigated the dynamic global transcriptome in the root systems of seedlings at five time points after salt treatment and compared transcriptome data from different genotypes to examine the similarities and differences in salt tolerance mechanisms of different germplasms.
Collapse
Affiliation(s)
- Chen Zhang
- College of Advanced Agricultural Science, Zhejiang Agriculture and Forestry University, Lin’an 311300, China; (C.Z.)
| | - Bin Chen
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang 322100, China; (B.C.)
| | - Ping Zhang
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang 322100, China; (B.C.)
| | - Qinghui Han
- College of Advanced Agricultural Science, Zhejiang Agriculture and Forestry University, Lin’an 311300, China; (C.Z.)
| | - Guangwu Zhao
- College of Advanced Agricultural Science, Zhejiang Agriculture and Forestry University, Lin’an 311300, China; (C.Z.)
| | - Fucheng Zhao
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang 322100, China; (B.C.)
| |
Collapse
|
8
|
Shi Z, Zhao B, Song W, Liu Y, Zhou M, Wang J, Zhao J, Ren W. Genome-wide identification and characterization of the MAPKKK, MKK, and MPK families in Chinese elite maize inbred line Huangzaosi. THE PLANT GENOME 2022; 15:e20216. [PMID: 35535627 DOI: 10.1002/tpg2.20216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Mitogen-activated protein kinase (MAPK or MPK) cascades consist of three protein kinase components, MAPK kinase kinases (MAPKKKs), MAPK kinases (MKKs and MPKs), which are indispensable for various plant physiological processes. The functions of MAPK families have been extensively studied in maize (Zea mays L.) and other plant species, but little is known about MAPK families in the elite Chinese maize line Huangzaosi (hzs). In this study, we observed that overall performance of Huangzaosi was substantially better than that of B73 under drought conditions at the seedling and V16 stages with a favorable root/canopy ratio. In silico analyses identified 72, 10, and 24 MAPKKKs, MKKs, and MPKs, respectively, in Huangzaosi. Examinations of phylogenetic relationships among Arabidopsis thaliana (L.) Heynh., rice (Oryza sativa L.), and maize (lines B73 and hzs), gene structures, conserved protein motifs, and chromosomal locations revealed their evolutionary relationships. The basal gene expression levels and tissue specificities of all three MAPK families in hzs reflected the diversity in the MAPK functions related to growth and development. The quantitative real-time polymerase chain reaction (qPCR) assay indicated that certain MAPK genes with high basal expression levels in the primary and crown roots responded differentially to drought between B73 and hzs, suggesting that these genes may contribute to their distinct drought tolerance at different developmental stages. The important information regarding the evolution and expression of hzs MAPK family members generated in this study provides a new avenue for the better understanding on the regulatory mechanism of MAPK cascade in the core inbred line hzs, which may be useful to guide the development of new maize cultivars with desirable traits (e.g., drought resistance).
Collapse
Affiliation(s)
- Zi Shi
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences, No. 9 Shuguang Garden Middle Road, Beijing, 100097, China
| | - Bingbing Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences, No. 9 Shuguang Garden Middle Road, Beijing, 100097, China
| | - Wei Song
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences, No. 9 Shuguang Garden Middle Road, Beijing, 100097, China
| | - Ya Liu
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences, No. 9 Shuguang Garden Middle Road, Beijing, 100097, China
| | - Miaoyi Zhou
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences, No. 9 Shuguang Garden Middle Road, Beijing, 100097, China
| | - Jiarong Wang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences, No. 9 Shuguang Garden Middle Road, Beijing, 100097, China
| | - Jiuran Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences, No. 9 Shuguang Garden Middle Road, Beijing, 100097, China
| | - Wen Ren
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences, No. 9 Shuguang Garden Middle Road, Beijing, 100097, China
| |
Collapse
|
9
|
Wang Z, Yan S, Ren W, Liu Y, Sun W, Liu M, Lu J, Mi Y, Ma W. Genome-Wide Identification of MAPK, MAPKK, and MAPKKK Gene Families in Fagopyrum tataricum and Analysis of Their Expression Patterns Under Abiotic Stress. Front Genet 2022; 13:894048. [PMID: 35899198 PMCID: PMC9313540 DOI: 10.3389/fgene.2022.894048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade is a highly conserved signal transduction pathway, ubiquitous in eukaryotes, such as animals and plants. The MAPK cascade has a dominant role in regulating plant adaptation to the environment, such as through stress responses, osmotic adjustment, and processes that modulate pathogenicity. In the present study, the MAPK cascade gene family was identified in Fagopyrum tataricum (Tartary buckwheat), based on complete genome sequence data. Using phylogenetic tree, conservative motif, and chromosome location analyses, a total of 65 FtMAPK cascade genes, distributed on five chromosomes, were classified into three families: MAPK (n = 8), MAPKK (n = 1), and MAPKKK (n = 56). Transcriptome data from Tartary buckwheat seedlings grown under different light conditions demonstrated that, under blue and red light, the expression levels of 18 and 36 FtMAPK cascade genes were up-regulated and down-regulated, respectively. Through qRT-PCR experiments, it was observed that FtMAPK5, FtMAPKK1, FtMAPKKK8, FtMAPKKK10, and FtMAPKKK24 gene expression levels in the Tartary buckwheat seedlings increased under three types of abiotic stress: drought, salt, and high temperature. A co-expression network of FtMAPK cascade genes was constructed, based on gene expression levels under different light conditions, and co-expressed genes annotated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, which identified numerous transcription factors related to plant abiotic stress. The authors conclude that FtMAPK cascade genes have important roles in the growth and development of Tartary buckwheat, as well as its responses to abiotic stress.
Collapse
Affiliation(s)
- Zhen Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Song Yan
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weichao Ren
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Liu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meiqi Liu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiaxin Lu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yaolei Mi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yaolei Mi, ; Wei Ma,
| | - Wei Ma
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
- *Correspondence: Yaolei Mi, ; Wei Ma,
| |
Collapse
|
10
|
Sun G, Xia M, Li J, Ma W, Li Q, Xie J, Bai S, Fang S, Sun T, Feng X, Guo G, Niu Y, Hou J, Ye W, Ma J, Guo S, Wang H, Long Y, Zhang X, Zhang J, Zhou H, Li B, Liu J, Zou C, Wang H, Huang J, Galbraith DW, Song CP. The maize single-nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata. THE PLANT CELL 2022; 34:1890-1911. [PMID: 35166333 PMCID: PMC9048877 DOI: 10.1093/plcell/koac047] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/28/2022] [Indexed: 05/26/2023]
Abstract
The unique morphology of grass stomata enables rapid responses to environmental changes. Deciphering the basis for these responses is critical for improving food security. We have developed a planta platform of single-nucleus RNA-sequencing by combined fluorescence-activated nuclei flow sorting, and used it to identify cell types in mature and developing stomata from 33,098 nuclei of the maize epidermis-enriched tissues. Guard cells (GCs) and subsidiary cells (SCs) displayed differential expression of genes, besides those encoding transporters, involved in the abscisic acid, CO2, Ca2+, starch metabolism, and blue light signaling pathways, implicating coordinated signal integration in speedy stomatal responses, and of genes affecting cell wall plasticity, implying a more sophisticated relationship between GCs and SCs in stomatal development and dumbbell-shaped guard cell formation. The trajectory of stomatal development identified in young tissues, and by comparison to the bulk RNA-seq data of the MUTE defective mutant in stomatal development, confirmed known features, and shed light on key participants in stomatal development. Our study provides a valuable, comprehensive, and fundamental foundation for further insights into grass stomatal function.
Collapse
Affiliation(s)
- Guiling Sun
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Mingzhang Xia
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Jieping Li
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Wen Ma
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Qingzeng Li
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Jinjin Xie
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Shenglong Bai
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Shanshan Fang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Ting Sun
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Xinlei Feng
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Guanghui Guo
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Yanli Niu
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Jingyi Hou
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Wenling Ye
- School of Medicine, Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, Henan University, Kaifeng 475004, China
| | - Jianchao Ma
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Siyi Guo
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Hongliang Wang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Yu Long
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Xuebin Zhang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Junli Zhang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Hui Zhou
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Baozhu Li
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Jiong Liu
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Changsong Zou
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Hai Wang
- National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jinling Huang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | | | | |
Collapse
|
11
|
Liao X, Shi M, Zhang W, Ye Q, Li Y, Feng X, Bhat JA, Kan G, Yu D. Association analysis of GmMAPKs and functional characterization of GmMMK1 to salt stress response in soybean. PHYSIOLOGIA PLANTARUM 2021; 173:2026-2040. [PMID: 34487378 DOI: 10.1111/ppl.13549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Salinity is one of the major abiotic constraints affecting the growth and yield of plants including soybean. In this context, the previous studies have documented the role of the mitogen-activated protein kinase (MAPK) cascade in the regulation of salt signaling in model plants. However, there is not a systematic analysis of salt-related MAPKs in soybean. Hence, in this study, we identified a total of 32 GmMAPKs via., genome-wide reanalysis of the MAPK family using the soybean genome v4.0. Based on the transcriptome datasets in the public database, we observed that GmMAPKs are induced by different abiotic stresses, especially salt stress. Furthermore, based on the candidate gene association mapping and haplotype analysis of the GmMAPKs, we identified a salt-related MAPK member, GmMMK1. GmMMK1 possesses significant sequence variations, which affect salt tolerance in soybean at the germination stage. Besides, the overexpression of the GmMMK1 in soybean hairy roots has a significant negative effect on the root growth, leading to increased sensitivity of the GmMMK1-OE plants to salt stress. Moreover, the heterologous expression of the GmMMK1 in Arabidopsis has been also observed to have a negative effect on the germination and root growth under salt stress. The transcriptome analysis and yeast two-hybrid screening showed that hormone signaling and the homeostasis of reactive oxygen species are involved in the GmMMK1 regulation network. In conclusion, the results of this work demonstrated that GmMMK1 is an important negative regulator of the salt stress response, and provides better insights for understanding the role of the MAPKs in soybean salt signaling.
Collapse
Affiliation(s)
- Xiliang Liao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Meiqi Shi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qian Ye
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yali Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Javaid Akhter Bhat
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Guizhen Kan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
12
|
Wei S, Xia R, Chen C, Shang X, Ge F, Wei H, Chen H, Wu Y, Xie Q. ZmbHLH124 identified in maize recombinant inbred lines contributes to drought tolerance in crops. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2069-2081. [PMID: 34031958 PMCID: PMC8486247 DOI: 10.1111/pbi.13637] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/28/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Due to climate change, drought has become a severe abiotic stress that affects the global production of all crops. Elucidation of the complex physiological mechanisms underlying drought tolerance in crops will support the cultivation of new drought-tolerant crop varieties. Here, two drought-tolerant lines, RIL70 and RIL73, and two drought-sensitive lines, RIL44 and RIL93, from recombinant inbred lines (RIL) generated from maize drought-tolerant line PH4CV and drought-sensitive line F9721, were selected for a comparative RNA-seq study. Through transcriptome analyses, we found that gene expression differences existed between drought-tolerant and -sensitive lines, but also differences between the drought-tolerant lines, RIL70 and RIL73. ZmbHLH124 in RIL73, named as ZmbHLH124T-ORG which origins from PH4CV and encodes a bHLH type transcription factor, was specifically up-regulated during drought stress. In addition, we identified a substitution in ZmbHLH124 that produced an early stop codon in sensitive lines (ZmbHLH124S-ORG ). Overexpression of ZmbHLH124T-ORG , but not ZmbHLH124S-ORG , in maize and rice enhanced plant drought tolerance and up-regulated the expression of drought-responsive genes. Moreover, we found that ZmbHLH124T-ORG could directly bind the cis-acting elements in ZmDREB2A promoter to enhance its expression. Taken together, this work identified a valuable genetic locus and provided a new strategy for breeding drought-tolerant crops.
Collapse
Affiliation(s)
- Shaowei Wei
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ran Xia
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Chengxuan Chen
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoling Shang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Fengyong Ge
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Huimin Wei
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Huabang Chen
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaorong Wu
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Qi Xie
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
13
|
Lin L, Wu J, Jiang M, Wang Y. Plant Mitogen-Activated Protein Kinase Cascades in Environmental Stresses. Int J Mol Sci 2021; 22:ijms22041543. [PMID: 33546499 PMCID: PMC7913722 DOI: 10.3390/ijms22041543] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Due to global warming and population growth, plants need to rescue themselves, especially in unfavorable environments, to fulfill food requirements because they are sessile organisms. Stress signal sensing is a crucial step that determines the appropriate response which, ultimately, determines the survival of plants. As important signaling modules in eukaryotes, plant mitogen-activated protein kinase (MAPK) cascades play a key role in regulating responses to the following four major environmental stresses: high salinity, drought, extreme temperature and insect and pathogen infections. MAPK cascades are involved in responses to these environmental stresses by regulating the expression of related genes, plant hormone production and crosstalk with other environmental stresses. In this review, we describe recent major studies investigating MAPK-mediated environmental stress responses. We also highlight the diverse function of MAPK cascades in environmental stress. These findings help us understand the regulatory network of MAPKs under environmental stress and provide another strategy to improve stress resistance in crops to ensure food security.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
| | - Jian Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225000, China
- Correspondence: (J.W.); (Y.W.)
| | - Mingyi Jiang
- College of Life Sciences and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China;
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225000, China
- Correspondence: (J.W.); (Y.W.)
| |
Collapse
|
14
|
Ali A, Chu N, Ma P, Javed T, Zaheer U, Huang MT, Fu HY, Gao SJ. Genome-wide analysis of mitogen-activated protein (MAP) kinase gene family expression in response to biotic and abiotic stresses in sugarcane. PHYSIOLOGIA PLANTARUM 2021; 171:86-107. [PMID: 32909626 DOI: 10.1111/ppl.13208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 05/22/2023]
Abstract
To systematically analyze mitogen-activated protein (MAP) kinase gene families and their expression profiles in sugarcane (Saccharum spp. hybrids; Sh) under diverse biotic and abiotic stresses, we identified 15 ShMAPKs, 6 ShMAPKKs and 16 ShMAPKKKs genes in the sugarcane cultivar R570 genome. These were also confirmed in one S. spontaneum genome and two transcriptome datasets of sugarcane trigged by Acidovorax avenae subsp. avenae (Aaa) and Xanthomonas albilineans (Xa) infections. Phylogenetic analysis revealed that four subgroups were present in each ShMAPK and ShMAPKK family and three sub-families (RAF, MEKK and ZIK) presented in the ShMAPKKK family. Conserved protein motif and gene structure analyses supported the evolutionary relationships of the three families inferred from the phylogenetic analysis. All of the ShMAPK, ShMAPKK and ShMAPKKK genes identified in Saccharum spp. R570 were distributed on chromosomes 1-7 and 9-10. RNA-seq and qRT-PCR analyses indicated that ShMAPK07 and ShMAPKKK02 were defense-responsive genes in sugarcane challenged by both Aaa and Xa stimuli, while some genes were upregulated specifically by Aaa and Xa infection. Additionally, ShMAPK05 acted as a negative regulator under drought and salinity stress, but served as a positive regulator under salicylic acid (SA) treatment. ShMAPK07 plays a positive role under drought stress, but a negative role under SA treatment. ShMAPKKK01 was negatively modulated by both salinity stress and SA treatment, whereas ShMAPKKK06 was positively regulated by both of the two stress stimuli. Our results suggest that members of MAPK cascade gene families regulate adverse stress responses through multiple signal transduction pathways in sugarcane.
Collapse
Affiliation(s)
- Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Na Chu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Panpan Ma
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Talha Javed
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Uroosa Zaheer
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mei-Ting Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
15
|
Cruz DF, De Meyer S, Ampe J, Sprenger H, Herman D, Van Hautegem T, De Block J, Inzé D, Nelissen H, Maere S. Using single-plant-omics in the field to link maize genes to functions and phenotypes. Mol Syst Biol 2020; 16:e9667. [PMID: 33346944 PMCID: PMC7751767 DOI: 10.15252/msb.20209667] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Most of our current knowledge on plant molecular biology is based on experiments in controlled laboratory environments. However, translating this knowledge from the laboratory to the field is often not straightforward, in part because field growth conditions are very different from laboratory conditions. Here, we test a new experimental design to unravel the molecular wiring of plants and study gene-phenotype relationships directly in the field. We molecularly profiled a set of individual maize plants of the same inbred background grown in the same field and used the resulting data to predict the phenotypes of individual plants and the function of maize genes. We show that the field transcriptomes of individual plants contain as much information on maize gene function as traditional laboratory-generated transcriptomes of pooled plant samples subject to controlled perturbations. Moreover, we show that field-generated transcriptome and metabolome data can be used to quantitatively predict individual plant phenotypes. Our results show that profiling individual plants in the field is a promising experimental design that could help narrow the lab-field gap.
Collapse
Affiliation(s)
- Daniel Felipe Cruz
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Sam De Meyer
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Joke Ampe
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Heike Sprenger
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Dorota Herman
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Tom Van Hautegem
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Jolien De Block
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Dirk Inzé
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Steven Maere
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| |
Collapse
|
16
|
Dong A, Yang Y, Liu S, Zenda T, Liu X, Wang Y, Li J, Duan H. Comparative proteomics analysis of two maize hybrids revealed drought-stress tolerance mechanisms. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1805015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Anyi Dong
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Yatong Yang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Songtao Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Tinashe Zenda
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Xinyue Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Yafei Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Jiao Li
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Huijun Duan
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| |
Collapse
|
17
|
Time Series RNA-seq in Pigeonpea Revealed the Core Genes in Metabolic Pathways under Aluminum Stress. Genes (Basel) 2020; 11:genes11040380. [PMID: 32244575 PMCID: PMC7230159 DOI: 10.3390/genes11040380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/18/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
Pigeonpea is an important economic crop in the world and is mainly distributed in tropical and subtropical regions. In order to further expand the scope of planting, one of the problems that must be solved is the impact of soil acidity on plants in these areas. Based on our previous work, we constructed a time series RNA sequencing (RNA-seq) analysis under aluminum (Al) stress in pigeonpea. Through a comparison analysis, 11,425 genes were found to be differentially expressed among all the time points. After clustering these genes by their expression patterns, 12 clusters were generated. Many important functional pathways were identified by gene ontology (GO) analysis, such as biological regulation, localization, response to stimulus, metabolic process, detoxification, and so on. Further analysis showed that metabolic pathways played an important role in the response of Al stress. Thirteen out of the 23 selected genes related to flavonoids and phenols were downregulated in response to Al stress. In addition, we verified these key genes of flavonoid- and phenol-related metabolism pathways by qRT-PCR. Collectively, our findings not only revealed the regulation mechanism of pigeonpea under Al stress but also provided methodological support for further exploration of plant stress regulation mechanisms.
Collapse
|
18
|
Liu Z, Wang L, Xue C, Chu Y, Gao W, Zhao Y, Zhao J, Liu M. Genome-wide identification of MAPKKK genes and their responses to phytoplasma infection in Chinese jujube (Ziziphus jujuba Mill.). BMC Genomics 2020; 21:142. [PMID: 32041543 PMCID: PMC7011567 DOI: 10.1186/s12864-020-6548-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/31/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitogen-activated protein kinase (MAPK) cascades play vital roles in signal transduction in response to a wide range of biotic and abiotic stresses. In a previous study, we identified ten ZjMAPKs and five ZjMAPKKs in the Chinese jujube genome. We found that some members of ZjMAPKs and ZjMAPKKs may play key roles in the plant's response to phytoplasma infection. However, how these ZjMAPKKs are modulated by ZjMAPKKKs during the response process has not been elucidated. Little information is available regarding MAPKKKs in Chinese jujube. RESULTS A total of 56 ZjMAPKKKs were identified in the jujube genome. All of these kinases contain the key S-TKc (serine/threonine protein kinase) domain, which is distributed among all 12 chromosomes. Phylogenetic analyses show that these ZjMAPKKKs can be classified into two subfamilies. Specifically, 41 ZjMAPKKKs belong to the Raf subfamily, and 15 belong to the MEKK subfamily. In addition, the ZjMAPKKKs in each subfamily share the same conserved motifs and gene structures. Only one pair of ZjMAPKKKs (15/16, on chromosome 5) was found to be tandemly duplicated. Using qPCR, the expression profiles of these MAPKKKs were investigated in response to infection with phytoplasma. In the three main infected tissues (witches' broom leaves, phyllody leaves, and apparently normal leaves), ZjMAPKKK26 and - 45 were significantly upregulated, and ZjMAPKKK3, - 43 and - 50 were significantly downregulated. ZjMAPKKK4, - 10, - 25 and - 44 were significantly and highly induced in sterile cultivated tissues infected by phytoplasma, while ZjMAPKKK6, - 7, - 17, - 18, - 30, - 34, - 35, - 37, - 40, - 41, - 43, - 46, - 52 and - 53 were significantly downregulated. CONCLUSIONS For the first time, we present an identification and classification analysis of ZjMAPKKKs. Some ZjMAPKKK genes may play key roles in the response to phytoplasma infection. This study provides an initial understanding of the mechanisms through which ZjMAPKKKs are involved in the response of Chinese jujube to phytoplasma infection.
Collapse
Affiliation(s)
- Zhiguo Liu
- College of Horticulture, Hebei Agricultural University, Baoding, China.,Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, China.,Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding, China.,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yuetong Chu
- College of Horticulture, Hebei Agricultural University, Baoding, China.,Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Weilin Gao
- College of Life Science, Hebei Agricultural University, Baoding, China.,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yitong Zhao
- College of Life Science, Hebei Agricultural University, Baoding, China.,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, China. .,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China.
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, China. .,Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
19
|
Mateus ID, Masclaux FG, Aletti C, Rojas EC, Savary R, Dupuis C, Sanders IR. Dual RNA-seq reveals large-scale non-conserved genotype × genotype-specific genetic reprograming and molecular crosstalk in the mycorrhizal symbiosis. THE ISME JOURNAL 2019; 13:1226-1238. [PMID: 30647457 PMCID: PMC6474227 DOI: 10.1038/s41396-018-0342-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/05/2018] [Accepted: 12/11/2018] [Indexed: 01/19/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) impact plant growth and are a major driver of plant diversity and productivity. We quantified the contribution of intra-specific genetic variability in cassava (Manihot esculenta) and Rhizophagus irregularis to gene reprogramming in symbioses using dual RNA-sequencing. A large number of cassava genes exhibited altered transcriptional responses to the fungus but transcription of most of these plant genes (72%) responded in a different direction or magnitude depending on the plant genotype. Two AMF isolates displayed large differences in their transcription, but the direction and magnitude of the transcriptional responses for a large number of these genes was also strongly influenced by the genotype of the plant host. This indicates that unlike the highly conserved plant genes necessary for the symbiosis establishment, most of the plant and fungal gene transcriptional responses are not conserved and are greatly influenced by plant and fungal genetic differences, even at the within-species level. The transcriptional variability detected allowed us to identify an extensive gene network showing the interplay in plant-fungal reprogramming in the symbiosis. Key genes illustrated that the two organisms jointly program their cytoskeleton organization during growth of the fungus inside roots. Our study reveals that plant and fungal genetic variation has a strong role in shaping the genetic reprograming in response to symbiosis, indicating considerable genotype × genotype interactions in the mycorrhizal symbiosis. Such variation needs to be considered in order to understand the molecular mechanisms between AMF and their plant hosts in natural communities.
Collapse
Affiliation(s)
- Ivan D Mateus
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Frédéric G Masclaux
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
- Vital-IT, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Consolée Aletti
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Edward C Rojas
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Romain Savary
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Cindy Dupuis
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Ian R Sanders
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland.
| |
Collapse
|
20
|
Moreno-Villena JJ, Dunning LT, Osborne CP, Christin PA. Highly Expressed Genes Are Preferentially Co-Opted for C4 Photosynthesis. Mol Biol Evol 2019; 35:94-106. [PMID: 29040657 PMCID: PMC5850498 DOI: 10.1093/molbev/msx269] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Novel adaptations are generally assembled by co-opting pre-existing genetic components, but the factors dictating the suitability of genes for new functions remain poorly known. In this work, we used comparative transcriptomics to determine the attributes that increased the likelihood of some genes being co-opted for C4 photosynthesis, a convergent complex trait that boosts productivity in tropical conditions. We show that independent lineages of grasses repeatedly co-opted the gene lineages that were the most highly expressed in non-C4 ancestors to produce their C4 pathway. Although ancestral abundance in leaves explains which genes were used for the emergence of a C4 pathway, the tissue specificity has surprisingly no effect. Our results suggest that levels of key genes were elevated during the early diversification of grasses and subsequently repeatedly used to trigger a weak C4 cycle via relatively few mutations. The abundance of C4-suitable transcripts therefore facilitated physiological innovation, but the transition to a strong C4 pathway still involved consequent changes in expression levels, leaf specificity, and coding sequences. The direction and amount of changes required for the strong C4 pathway depended on the identity of the genes co-opted, so that ancestral gene expression both facilitates adaptive transitions and constrains subsequent evolutionary trajectories.
Collapse
Affiliation(s)
| | - Luke T Dunning
- Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Colin P Osborne
- Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
21
|
Zheng J, Zeng E, Du Y, He C, Hu Y, Jiao Z, Wang K, Li W, Ludens M, Fu J, Wang H, White FF, Wang G, Liu S. Temporal Small RNA Expression Profiling under Drought Reveals a Potential Regulatory Role of Small Nucleolar RNAs in the Drought Responses of Maize. THE PLANT GENOME 2019; 12:180058. [PMID: 30951096 DOI: 10.3835/plantgenome2018.08.0058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Small RNAs (sRNAs) are short noncoding RNAs that play roles in many biological processes, including drought responses in plants. However, how the expression of sRNAs dynamically changes with the gradual imposition of drought stress in plants is largely unknown. We generated time-series sRNA sequence data from maize ( L.) seedlings under drought stress (DS) and under well-watered (WW) conditions at the same time points. Analyses of length, functional annotation, and abundance of 736,372 nonredundant sRNAs from both DS and WW data, as well as genome copy numbers at the corresponding genomic regions, revealed distinct patterns of abundance and genome organization for different sRNA classes. The analysis identified 6646 sRNAs whose regulation was altered in response to drought stress. Among drought-responsive sRNAs, 1325 showed transient downregulation by the seventh day, coinciding with visible symptoms of drought stress. The profiles revealed drought-responsive microRNAs, as well as other sRNAs that originated from ribosomal RNAs (rRNAs), splicing small nuclear RNAs, and small nucleolar RNAs (snoRNA). Expression profiles of their sRNA derivers indicated that snoRNAs might play a regulatory role through regulating the stability of rRNAs and splicing small nuclear RNAs under drought condition.
Collapse
|
22
|
Mittal S, Banduni P, Mallikarjuna MG, Rao AR, Jain PA, Dash PK, Thirunavukkarasu N. Structural, Functional, and Evolutionary Characterization of Major Drought Transcription Factors Families in Maize. Front Chem 2018; 6:177. [PMID: 29876347 PMCID: PMC5974147 DOI: 10.3389/fchem.2018.00177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 05/03/2018] [Indexed: 01/22/2023] Open
Abstract
Drought is one of the major threats to the maize yield especially in subtropical production systems. Understanding the genes and regulatory mechanisms of drought tolerance is important to sustain the yield. Transcription factors (TFs) play a major role in gene regulation under drought stress. In the present study, a set of 15 major TF families comprising 1,436 genes was structurally and functionally characterized. The functional annotation indicated that the genes were involved in ABA signaling, ROS scavenging, photosynthesis, stomatal regulation, and sucrose metabolism. Duplication was identified as the primary force in divergence and expansion of TF families. Phylogenetic relationship was developed for individual TF and combined TF families. Phylogenetic analysis clustered the genes into specific and mixed groups. Gene structure analysis revealed that more number of genes were intron-rich as compared to intron-less. Drought-responsive cis-regulatory elements such as ABREA, ABREB, DRE1, and DRECRTCOREAT have been identified. Expression and interaction analyses identified leaf-specific bZIP TF, GRMZM2G140355, as a potential contributor toward drought tolerance in maize. Protein-protein interaction network of 269 drought-responsive genes belonging to different TFs has been provided. The information generated on structural and functional characteristics, expression, and interaction of the drought-related TF families will be useful to decipher the drought tolerance mechanisms and to breed drought-tolerant genotypes in maize.
Collapse
Affiliation(s)
- Shikha Mittal
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pooja Banduni
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Atmakuri R Rao
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Prashant A Jain
- Department of Computational Biology & Bioinformatics, J.I.B.B., Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India
| | - Prasanta K Dash
- National Research Centre on Plant Biotechnology, New Delhi, India
| | | |
Collapse
|
23
|
Drought-tolerant and drought-sensitive genotypes of maize (Zea mays L.) differ in contents of endogenous brassinosteroids and their drought-induced changes. PLoS One 2018; 13:e0197870. [PMID: 29795656 PMCID: PMC5967837 DOI: 10.1371/journal.pone.0197870] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/09/2018] [Indexed: 01/24/2023] Open
Abstract
The contents of endogenous brassinosteroids (BRs) together with various aspects of plant morphology, water management, photosynthesis and protection against cell damage were assessed in two maize genotypes that differed in their drought sensitivity. The presence of 28-norbrassinolide in rather high quantities (1-2 pg mg-1 fresh mass) in the leaves of monocot plants is reported for the first time. The intraspecific variability in the presence/content of the individual BRs in drought-stressed plants is also described for the first time. The drought-resistant genotype was characterised by a significantly higher content of total endogenous BRs (particularly typhasterol and 28-norbrassinolide) compared with the drought-sensitive genotype. On the other hand, the drought-sensitive genotype showed higher levels of 28-norcastasterone. Both genotypes also differed in the drought-induced reduction/elevation of the levels of 28-norbrassinolide, 28-norcastasterone, 28-homocastasterone and 28-homodolichosterone. The differences observed between both genotypes in the endogenous BR content are probably correlated with their different degrees of drought sensitivity, which was demonstrated at various levels of plant morphology, physiology and biochemistry.
Collapse
|
24
|
Dudhate A, Shinde H, Tsugama D, Liu S, Takano T. Transcriptomic analysis reveals the differentially expressed genes and pathways involved in drought tolerance in pearl millet [Pennisetum glaucum (L.) R. Br]. PLoS One 2018; 13:e0195908. [PMID: 29652907 PMCID: PMC5898751 DOI: 10.1371/journal.pone.0195908] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/02/2018] [Indexed: 12/17/2022] Open
Abstract
Pearl millet is a cereal crop known for its high tolerance to drought, heat and salinity stresses as well as for its nutritional quality. The molecular mechanism of drought tolerance in pearl millet is unknown. Here we attempted to unravel the molecular basis of drought tolerance in two pearl millet inbred lines, ICMB 843 and ICMB 863 using RNA sequencing. Under greenhouse condition, ICMB 843 was found to be more tolerant to drought than ICMB 863. We sequenced the root transcriptome from both lines under control and drought conditions using an Illumina Hi-Seq platform, generating 139.1 million reads. Mapping of sequenced reads against the foxtail millet genome, which has been relatively well-annotated, led to the identification of several differentially expressed genes under drought stress. Total of 6799 and 1253 differentially expressed genes were found in ICMB 843 and ICMB 863, respectively. Pathway and gene function analysis by KEGG online tool revealed that the drought response in pearl millet is mainly regulated by pathways related to photosynthesis, plant hormone signal transduction and mitogen-activated protein kinase signaling. The changes in expression of drought-responsive genes determined by RNA sequencing were confirmed by reverse-transcription PCR for 7 genes. These results are a first step to understanding the molecular mechanisms of drought tolerance in pearl millet and lay a foundation for its genetic improvement.
Collapse
Affiliation(s)
- Ambika Dudhate
- Asian Natural Environmental Science Center (ANESC), the University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| | - Harshraj Shinde
- Asian Natural Environmental Science Center (ANESC), the University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| | | | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Lin’an, Hangzhou, China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), the University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| |
Collapse
|
25
|
Nepolean T, Kaul J, Mukri G, Mittal S. Genomics-Enabled Next-Generation Breeding Approaches for Developing System-Specific Drought Tolerant Hybrids in Maize. FRONTIERS IN PLANT SCIENCE 2018; 9:361. [PMID: 29696027 PMCID: PMC5905169 DOI: 10.3389/fpls.2018.00361] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/05/2018] [Indexed: 05/28/2023]
Abstract
Breeding science has immensely contributed to the global food security. Several varieties and hybrids in different food crops including maize have been released through conventional breeding. The ever growing population, decreasing agricultural land, lowering water table, changing climate, and other variables pose tremendous challenge to the researchers to improve the production and productivity of food crops. Drought is one of the major problems to sustain and improve the productivity of food crops including maize in tropical and subtropical production systems. With advent of novel genomics and breeding tools, the way of doing breeding has been tremendously changed in the last two decades. Drought tolerance is a combination of several component traits with a quantitative mode of inheritance. Rapid DNA and RNA sequencing tools and high-throughput SNP genotyping techniques, trait mapping, functional characterization, genomic selection, rapid generation advancement, and other tools are now available to understand the genetics of drought tolerance and to accelerate the breeding cycle. Informatics play complementary role by managing the big-data generated from the large-scale genomics and breeding experiments. Genome editing is the latest technique to alter specific genes to improve the trait expression. Integration of novel genomics, next-generation breeding, and informatics tools will accelerate the stress breeding process and increase the genetic gain under different production systems.
Collapse
Affiliation(s)
- Thirunavukkarsau Nepolean
- Maize Research Lab, Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | | |
Collapse
|
26
|
McCoy RM, Utturkar SM, Crook JW, Thimmapuram J, Widhalm JR. The origin and biosynthesis of the naphthalenoid moiety of juglone in black walnut. HORTICULTURE RESEARCH 2018; 5:67. [PMID: 30393541 PMCID: PMC6210188 DOI: 10.1038/s41438-018-0067-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/14/2018] [Accepted: 06/17/2018] [Indexed: 05/20/2023]
Abstract
Several members of the Juglandaceae family produce juglone, a specialized 1,4-naphthoquinone (1,4-NQ) natural product that is responsible for the notorious allelopathic effects of black walnut (Juglans nigra). Despite its documented ecological roles and potential for being developed as a novel natural product-based herbicide, none of the genes involved in synthesizing juglone have been identified. Based on classical labeling studies, we hypothesized that biosynthesis of juglone's naphthalenoid moiety is shared with biochemical steps of the phylloquinone pathway. Here, using comparative transcriptomics in combination with targeted metabolic profiling of 1,4-NQs in various black walnut organs, we provide evidence that phylloquinone pathway genes involved in 1,4-dihydroxynaphthoic acid (DHNA) formation are expressed in roots for synthesis of a compound other than phylloquinone. Feeding experiments using axenic black walnut root cultures revealed that stable isotopically labeled l-glutamate incorporates into juglone resulting in the same mass shift as that expected for labeling of the quinone ring in phylloquinone. Taken together, these results indicate that in planta, an intermediate from the phylloquinone pathway provides the naphthalenoid moiety of juglone. Moreover, this work shows that juglone can be de novo synthesized in roots without the contribution of immediate precursors translocated from aerial tissues. The present study illuminates all genes involved in synthesizing the juglone naphthoquinone ring and provides RNA-sequencing datasets that can be used with functional screening studies to elucidate the remaining juglone pathway genes. Translation of the generated knowledge is expected to inform future metabolic engineering strategies for harnessing juglone as a novel natural product-based herbicide.
Collapse
Affiliation(s)
- Rachel M. McCoy
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| | - Sagar M. Utturkar
- Bioinformatics Core, Purdue University, 155 South Grant Street, West Lafayette, IN 47907 USA
| | - Joseph W. Crook
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, 155 South Grant Street, West Lafayette, IN 47907 USA
| | - Joshua R. Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
27
|
Moreno-Villena JJ, Dunning LT, Osborne CP, Christin PA. Highly Expressed Genes Are Preferentially Co-Opted for C4 Photosynthesis. Mol Biol Evol 2018. [PMID: 29040657 DOI: 10.1093/molbev/msx269/4457558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Novel adaptations are generally assembled by co-opting pre-existing genetic components, but the factors dictating the suitability of genes for new functions remain poorly known. In this work, we used comparative transcriptomics to determine the attributes that increased the likelihood of some genes being co-opted for C4 photosynthesis, a convergent complex trait that boosts productivity in tropical conditions. We show that independent lineages of grasses repeatedly co-opted the gene lineages that were the most highly expressed in non-C4 ancestors to produce their C4 pathway. Although ancestral abundance in leaves explains which genes were used for the emergence of a C4 pathway, the tissue specificity has surprisingly no effect. Our results suggest that levels of key genes were elevated during the early diversification of grasses and subsequently repeatedly used to trigger a weak C4 cycle via relatively few mutations. The abundance of C4-suitable transcripts therefore facilitated physiological innovation, but the transition to a strong C4 pathway still involved consequent changes in expression levels, leaf specificity, and coding sequences. The direction and amount of changes required for the strong C4 pathway depended on the identity of the genes co-opted, so that ancestral gene expression both facilitates adaptive transitions and constrains subsequent evolutionary trajectories.
Collapse
Affiliation(s)
| | - Luke T Dunning
- Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Colin P Osborne
- Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
28
|
Ye J, Yang H, Shi H, Wei Y, Tie W, Ding Z, Yan Y, Luo Y, Xia Z, Wang W, Peng M, Li K, Zhang H, Hu W. The MAPKKK gene family in cassava: Genome-wide identification and expression analysis against drought stress. Sci Rep 2017; 7:14939. [PMID: 29097722 PMCID: PMC5668296 DOI: 10.1038/s41598-017-13988-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/04/2017] [Indexed: 11/09/2022] Open
Abstract
Mitogen-activated protein kinase kinase kinases (MAPKKKs), an important unit of MAPK cascade, play crucial roles in plant development and response to various stresses. However, little is known concerning the MAPKKK family in the important subtropical and tropical crop cassava. In this study, 62 MAPKKK genes were identified in the cassava genome, and were classified into 3 subfamilies based on phylogenetic analysis. Most of MAPKKKs in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis showed that MAPKKK genes participated in tissue development and response to drought stress. Comparative expression profiles revealed that many MAPKKK genes were activated in cultivated varieties SC124 and Arg7 and the function of MeMAPKKKs in drought resistance may be different between SC124/Arg7 and W14. Expression analyses of the 7 selected MeMAPKKK genes showed that most of them were significantly upregulated by osmotic, salt and ABA treatments, whereas slightly induced by H2O2 and cold stresses. Taken together, this study identified candidate MeMAPKKK genes for genetic improvement of abiotic stress resistance and provided new insights into MAPKKK -mediated cassava resistance to drought stress.
Collapse
Affiliation(s)
- Jianqiu Ye
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropic Agricultural Sciences, Danzhou, Hainan, China
| | - Hai Yang
- College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, Hubei, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, Hainan, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, Hainan, China
| | - Weiwei Tie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Zehong Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Ying Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, Hainan, China
| | - Zhiqiang Xia
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Wenquan Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Kaimian Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropic Agricultural Sciences, Danzhou, Hainan, China. .,Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.
| | - He Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.
| |
Collapse
|
29
|
Global Identification, Classification, and Expression Analysis of MAPKKK genes: Functional Characterization of MdRaf5 Reveals Evolution and Drought-Responsive Profile in Apple. Sci Rep 2017; 7:13511. [PMID: 29044159 PMCID: PMC5647345 DOI: 10.1038/s41598-017-13627-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 09/27/2017] [Indexed: 11/08/2022] Open
Abstract
Mitogen-activated protein kinase kinase kinases (MAPKKKs) are pivotal components of Mitogen-activated protein kinase (MAPK) cascades, which play a significant role in many biological processes. Although genome-wide analysis of MAPKKKs has been conducted in many species, extant results in apple are scarce. In this study, a total of 72 putative MdMAPKKKs in Raf-like group, 11 in ZIK-like group and 37 in MEEK were identified in apple firstly. Predicted MdMAPKKKs were located in 17 chromosomes with diverse densities, and there was a high-level of conservation in and among the evolutionary groups. Encouragingly, transcripts of 12 selected MdMAPKKKs were expressed in at least one of the tested tissues, indicating that MdMAPKKKs might participate in various physiological and developmental processes in apple. Moreover, they were found to respond to drought stress in roots and leaves, which suggested a possible conserved response to drought stress in different species. Overexpression of MdRaf5 resulted in a hyposensitivity to drought stress, which was at least partially due to the regulation of stomatal closure and transpiration rates. To the best of our knowledge, this is the first genome-wide functional analysis of the MdMAPKKK genes in apple, and it provides valuable information for understanding MdMAPKKKs signals and their putative functions.
Collapse
|
30
|
Wang L, Hu W, Tie W, Ding Z, Ding X, Liu Y, Yan Y, Wu C, Peng M, Xu B, Jin Z. The MAPKKK and MAPKK gene families in banana: identification, phylogeny and expression during development, ripening and abiotic stress. Sci Rep 2017; 7:1159. [PMID: 28442729 PMCID: PMC5430750 DOI: 10.1038/s41598-017-01357-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade, which is a major signal transduction pathway widely distributed in eukaryotes, has an important function in plant development and stress responses. However, less information is known regarding the MAPKKK and MAPKK gene families in the important fruit crop banana. In this study, 10 MAPKK and 77 MAPKKK genes were identified in the banana genome, and were classified into 4 and 3 subfamilies respectively based on phylogenetic analysis. Majority of MAPKKK and MAPKK genes in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis indicated that MAPKKK-MAPKK genes is involved in tissue development, fruit development and ripening, and response to abiotic stress of drought, cold and salt in two banana genotypes. Interaction networks and co-expression assays demonstrated that MAPK signaling cascade mediated network participates in multiple stress signaling, which was strongly activated in Fen Jiao (FJ). The findings of this study advance understanding of the intricately transcriptional control of MAPKKK-MAPKK genes and provide robust candidate genes for further genetic improvement of banana.
Collapse
Affiliation(s)
- Lianzhe Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.,School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, 467044, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.
| | - Weiwei Tie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Zehong Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Xupo Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Yang Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Chunlai Wu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Biyu Xu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.
| | - Zhiqiang Jin
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China. .,Key Laboratory of Genetic Improvement of Bananas, Hainan province, Haikou Experimental Station, China Academy of Tropical Agricultural Sciences, Haikou, Hainan, 570102, China.
| |
Collapse
|
31
|
Song K, Kim HC, Shin S, Kim KH, Moon JC, Kim JY, Lee BM. Transcriptome Analysis of Flowering Time Genes under Drought Stress in Maize Leaves. FRONTIERS IN PLANT SCIENCE 2017; 8:267. [PMID: 28298916 PMCID: PMC5331056 DOI: 10.3389/fpls.2017.00267] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/14/2017] [Indexed: 05/20/2023]
Abstract
Flowering time is an important factor determining yield and seed quality in maize. A change in flowering time is a strategy used to survive abiotic stresses. Among abiotic stresses, drought can increase anthesis-silking intervals (ASI), resulting in negative effects on maize yield. We have analyzed the correlation between flowering time and drought stress using RNA-seq and bioinformatics tools. Our results identified a total of 619 genes and 126 transcripts whose expression was altered by drought stress in the maize B73 leaves under short-day condition. Among drought responsive genes, we also identified 20 genes involved in flowering times. Gene Ontology (GO) enrichment analysis was used to predict the functions of the drought-responsive genes and transcripts. GO categories related to flowering time included reproduction, flower development, pollen-pistil interaction, and post-embryonic development. Transcript levels of several genes that have previously been shown to affect flowering time, such as PRR37, transcription factor HY5, and CONSTANS, were significantly altered by drought conditions. Furthermore, we also identified several drought-responsive transcripts containing C2H2 zinc finger, CCCH, and NAC domains, which are frequently involved in transcriptional regulation and may thus have potential to alter gene expression programs to change maize flowering time. Overall, our results provide a genome-wide analysis of differentially expressed genes (DEGs), novel transcripts, and isoform variants expressed during the reproductive stage of maize plants subjected to drought stress and short-day condition. Further characterization of the drought-responsive transcripts identified in this study has the potential to advance our understanding of the mechanisms that regulate flowering time under drought stress.
Collapse
Affiliation(s)
- Kitae Song
- Department of Life Science, Dongguk University-SeoulSeoul, South Korea
| | - Hyo Chul Kim
- Department of Life Science, Dongguk University-SeoulSeoul, South Korea
| | - Seungho Shin
- Department of Life Science, Dongguk University-SeoulSeoul, South Korea
| | - Kyung-Hee Kim
- Department of Life Science, Dongguk University-SeoulSeoul, South Korea
| | - Jun-Cheol Moon
- Agriculture and Life Sciences Research Institute, Kangwon National UniversityChuncheon, South Korea
| | - Jae Yoon Kim
- Department of Plant Resources, College of Industrial Science, Kongju National UniversityYesan, South Korea
| | - Byung-Moo Lee
- Department of Life Science, Dongguk University-SeoulSeoul, South Korea
- *Correspondence: Byung-Moo Lee
| |
Collapse
|
32
|
Millet EJ, Welcker C, Kruijer W, Negro S, Coupel-Ledru A, Nicolas SD, Laborde J, Bauland C, Praud S, Ranc N, Presterl T, Tuberosa R, Bedo Z, Draye X, Usadel B, Charcosset A, Van Eeuwijk F, Tardieu F. Genome-Wide Analysis of Yield in Europe: Allelic Effects Vary with Drought and Heat Scenarios. PLANT PHYSIOLOGY 2016; 172:749-764. [PMID: 27436830 PMCID: PMC5047082 DOI: 10.1104/pp.16.00621] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/12/2016] [Indexed: 05/18/2023]
Abstract
Assessing the genetic variability of plant performance under heat and drought scenarios can contribute to reduce the negative effects of climate change. We propose here an approach that consisted of (1) clustering time courses of environmental variables simulated by a crop model in current (35 years × 55 sites) and future conditions into six scenarios of temperature and water deficit as experienced by maize (Zea mays L.) plants; (2) performing 29 field experiments in contrasting conditions across Europe with 244 maize hybrids; (3) assigning individual experiments to scenarios based on environmental conditions as measured in each field experiment; frequencies of temperature scenarios in our experiments corresponded to future heat scenarios (+5°C); (4) analyzing the genetic variation of plant performance for each environmental scenario. Forty-eight quantitative trait loci (QTLs) of yield were identified by association genetics using a multi-environment multi-locus model. Eight and twelve QTLs were associated to tolerances to heat and drought stresses because they were specific to hot and dry scenarios, respectively, with low or even negative allelic effects in favorable scenarios. Twenty-four QTLs improved yield in favorable conditions but showed nonsignificant effects under stress; they were therefore associated with higher sensitivity. Our approach showed a pattern of QTL effects expressed as functions of environmental variables and scenarios, allowing us to suggest hypotheses for mechanisms and candidate genes underlying each QTL. It can be used for assessing the performance of genotypes and the contribution of genomic regions under current and future stress situations and to accelerate breeding for drought-prone environments.
Collapse
Affiliation(s)
- Emilie J Millet
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Claude Welcker
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Willem Kruijer
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Sandra Negro
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Aude Coupel-Ledru
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Stéphane D Nicolas
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Jacques Laborde
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Cyril Bauland
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Sebastien Praud
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Nicolas Ranc
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Thomas Presterl
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Roberto Tuberosa
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Zoltan Bedo
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Xavier Draye
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Björn Usadel
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Alain Charcosset
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Fred Van Eeuwijk
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - François Tardieu
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| |
Collapse
|