1
|
Tong SH, Liu DL, Liao P, Zhang SY, Zhou J, Zong Y, Zhang CQ, Huang YG, Gao JJ. Emerging role of macrophages in neuropathic pain. J Orthop Translat 2025; 51:227-241. [PMID: 40177638 PMCID: PMC11964759 DOI: 10.1016/j.jot.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 04/05/2025] Open
Abstract
Neuropathic pain is a complex syndrome caused by injury to the neurons, which causes persistent hypersensitivity and considerable inconvenience to the patient's whole life. Over the past two decades, the interaction between immune cells and neurons has been proven to play a crucial role in the development of neuropathic pain. Increasing studies have indicated the important role of macrophages for neuroinflammation and have shed light on the underlying molecular and cellular mechanisms. In addition, novel therapeutic methods targeting macrophages are springing up, which provide more options in our clinical treatment. Herein, we reviewed the characteristics of peripheral macrophages and their function in neuropathic pain, with the aim of better understanding how these cells contribute to pathological processes and paving the way for therapeutic approaches. Translational potential statement This review provides a comprehensive overview of the mechanisms underlying the interplay between the macrophages and nervous system during the progression of nerve injury. Additionally, it compiles existing intervention strategies targeting macrophages for the treatment of neuropathic pain. This information offers valuable insights for researchers seeking to address the challenge of this intractable pain.
Collapse
Affiliation(s)
- Si-Han Tong
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - De-Lin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Sen-Yao Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jian Zhou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, 6009, Australia
| | - Chang-Qing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yi-Gang Huang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jun-Jie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
2
|
Amodeo G, Franchi S, Galimberti G, Riboldi B, Sacerdote P. The Prokineticin System in Inflammatory Bowel Diseases: A Clinical and Preclinical Overview. Biomedicines 2023; 11:2985. [PMID: 38001985 PMCID: PMC10669895 DOI: 10.3390/biomedicines11112985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC), which are characterized by chronic inflammation of the gastrointestinal (GI) tract. IBDs clinical manifestations are heterogeneous and characterized by a chronic relapsing-remitting course. Typical gastrointestinal signs and symptoms include diarrhea, GI bleeding, weight loss, and abdominal pain. Moreover, the presence of pain often manifests in the remitting disease phase. As a result, patients report a further reduction in life quality. Despite the scientific advances implemented in the last two decades and the therapies aimed at inducing or maintaining IBDs in a remissive condition, to date, their pathophysiology still remains unknown. In this scenario, the importance of identifying a common and effective therapeutic target for both digestive symptoms and pain remains a priority. Recent clinical and preclinical studies have reported the prokineticin system (PKS) as an emerging therapeutic target for IBDs. PKS alterations are likely to play a role in IBDs at multiple levels, such as in intestinal motility, local inflammation, ulceration processes, localized abdominal and visceral pain, as well as central nervous system sensitization, leading to the development of chronic and widespread pain. This narrative review summarized the evidence about the involvement of the PKS in IBD and discussed its potential as a druggable target.
Collapse
Affiliation(s)
- Giada Amodeo
- Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti”, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy; (S.F.); (G.G.); (B.R.); (P.S.)
| | | | | | | | | |
Collapse
|
3
|
Vincenzi M, Kremić A, Jouve A, Lattanzi R, Miele R, Benharouga M, Alfaidy N, Migrenne-Li S, Kanthasamy AG, Porcionatto M, Ferrara N, Tetko IV, Désaubry L, Nebigil CG. Therapeutic Potential of Targeting Prokineticin Receptors in Diseases. Pharmacol Rev 2023; 75:1167-1199. [PMID: 37684054 PMCID: PMC10595023 DOI: 10.1124/pharmrev.122.000801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 09/10/2023] Open
Abstract
The prokineticins (PKs) were discovered approximately 20 years ago as small peptides inducing gut contractility. Today, they are established as angiogenic, anorectic, and proinflammatory cytokines, chemokines, hormones, and neuropeptides involved in variety of physiologic and pathophysiological pathways. Their altered expression or mutations implicated in several diseases make them a potential biomarker. Their G-protein coupled receptors, PKR1 and PKR2, have divergent roles that can be therapeutic target for treatment of cardiovascular, metabolic, and neural diseases as well as pain and cancer. This article reviews and summarizes our current knowledge of PK family functions from development of heart and brain to regulation of homeostasis in health and diseases. Finally, the review summarizes the established roles of the endogenous peptides, synthetic peptides and the selective ligands of PKR1 and PKR2, and nonpeptide orthostatic and allosteric modulator of the receptors in preclinical disease models. The present review emphasizes the ambiguous aspects and gaps in our knowledge of functions of PKR ligands and elucidates future perspectives for PK research. SIGNIFICANCE STATEMENT: This review provides an in-depth view of the prokineticin family and PK receptors that can be active without their endogenous ligand and exhibits "constitutive" activity in diseases. Their non- peptide ligands display promising effects in several preclinical disease models. PKs can be the diagnostic biomarker of several diseases. A thorough understanding of the role of prokineticin family and their receptor types in health and diseases is critical to develop novel therapeutic strategies with safety concerns.
Collapse
Affiliation(s)
- Martina Vincenzi
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Amin Kremić
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Appoline Jouve
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Roberta Lattanzi
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Rossella Miele
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Mohamed Benharouga
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Nadia Alfaidy
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Stephanie Migrenne-Li
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Anumantha G Kanthasamy
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Marimelia Porcionatto
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Napoleone Ferrara
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Igor V Tetko
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Laurent Désaubry
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Canan G Nebigil
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| |
Collapse
|
4
|
Galimberti G, Amodeo G, Magni G, Riboldi B, Balboni G, Onnis V, Ceruti S, Sacerdote P, Franchi S. Prokineticin System Is a Pharmacological Target to Counteract Pain and Its Comorbid Mood Alterations in an Osteoarthritis Murine Model. Cells 2023; 12:2255. [PMID: 37759478 PMCID: PMC10526764 DOI: 10.3390/cells12182255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease associated with chronic pain. OA pain is often accompanied by mood disorders. We addressed the role of the Prokineticin (PK) system in pain and mood alterations in a mice OA model induced with monosodium iodoacetate (MIA). The effect of a PK antagonist (PC1) was compared to that of diclofenac. C57BL/6J male mice injected with MIA in the knee joint were characterized by allodynia, motor deficits, and fatigue. Twenty-eight days after MIA, in the knee joint, we measured high mRNA of PK2 and its receptor PKR1, pro-inflammatory cytokines, and MMP13. At the same time, in the sciatic nerve and spinal cord, we found increased levels of PK2, PKR1, IL-1β, and IL-6. These changes were in the presence of high GFAP and CD11b mRNA in the sciatic nerve and GFAP in the spinal cord. OA mice were also characterized by anxiety, depression, and neuroinflammation in the prefrontal cortex and hippocampus. In both stations, we found increased pro-inflammatory cytokines. In addition, PK upregulation and reactive astrogliosis in the hippocampus and microglia reactivity in the prefrontal cortex were detected. PC1 reduced joint inflammation and neuroinflammation in PNS and CNS and counteracted OA pain and emotional disturbances.
Collapse
Affiliation(s)
- Giulia Galimberti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (G.G.); (G.A.); (G.M.); (B.R.); (S.C.); (P.S.)
| | - Giada Amodeo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (G.G.); (G.A.); (G.M.); (B.R.); (S.C.); (P.S.)
| | - Giulia Magni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (G.G.); (G.A.); (G.M.); (B.R.); (S.C.); (P.S.)
| | - Benedetta Riboldi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (G.G.); (G.A.); (G.M.); (B.R.); (S.C.); (P.S.)
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (G.B.); (V.O.)
| | - Valentina Onnis
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (G.B.); (V.O.)
| | - Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (G.G.); (G.A.); (G.M.); (B.R.); (S.C.); (P.S.)
| | - Paola Sacerdote
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (G.G.); (G.A.); (G.M.); (B.R.); (S.C.); (P.S.)
| | - Silvia Franchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (G.G.); (G.A.); (G.M.); (B.R.); (S.C.); (P.S.)
| |
Collapse
|
5
|
Giada A, Giulia G, Paola S, Silvia F. Characterization of prokineticin system in Crohn's disease pathophysiology and pain, and its modulation by alcohol abuse: A preclinical study. Biochim Biophys Acta Mol Basis Dis 2023:166791. [PMID: 37336367 DOI: 10.1016/j.bbadis.2023.166791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/21/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Crohn's disease-(CD) pathogenesis is still unknown and chronic pain is a frequent symptom in CD-patients. Identifying novel therapeutic targets and predisposing factors is a primary goal. In this regard, prokineticin system-(PKS) appears a promising target. AIMS AND METHODS TNBS-model was used. DAI, abdominal and visceral pain, and muscle strength were monitored. CD-mice were sacrificed at two times (day 7 and 14 after TNBS) in order to identify PKS involvement in CD pathophysiology and pain. PKS characterization was performed in mesenteric lymph nodes-(MLN), colon, myenteric plexus-(MP), dorsal root ganglia-(DRGs) and spinal cord-(SC). Inflammation/neuroinflammation was also assessed in the same tissues. In order to evaluate alcohol abuse as a possible trigger for CD and its effect on PKS activation, naïve mice were administered (oral-gavage) with ethanol for 10 consecutive days. PKS as well as inflammation/neuroinflammation were evaluated in MLN, colon and MP. RESULTS TNBS treated-mice showed a rapid increase in DAI, abdominal/visceral hypersensitivity and a progressive strength loss. In all tissue analysed of CD-mice, a quick and significant increase of mRNA of PKs and PKRs was observed, associated with an increase of pro-inflammatory cytokines (IL-1β, IL-6 and TNFα) and macrophage/glia markers (iba1, CD11b and GFAP) levels. In alcohol abuse model, ethanol induced in colon and MP a significant PKS activation accompanied by inflammation/neuroinflammation. CONCLUSIONS We can assume that PKS may be involved in CD development and pain. Furthermore, alcohol appears to activate PKS and may be a trigger factor for CD.
Collapse
Affiliation(s)
- Amodeo Giada
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", University of Milan, Milan, Via Vanvitelli 32, 20129 Milano, Italy.
| | - Galimberti Giulia
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", University of Milan, Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Sacerdote Paola
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", University of Milan, Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Franchi Silvia
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", University of Milan, Milan, Via Vanvitelli 32, 20129 Milano, Italy
| |
Collapse
|
6
|
Lattanzi R, Miele R. Non-Peptide Agonists and Antagonists of the Prokineticin Receptors. Curr Issues Mol Biol 2022; 44:6323-6332. [PMID: 36547092 PMCID: PMC9776816 DOI: 10.3390/cimb44120431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The prokineticin family comprises a group of secreted peptides that can be classified as chemokines based on their structural features and chemotactic and immunomodulatory functions. Prokineticins (PKs) bind with high affinity to two G protein-coupled receptors (GPCRs). Prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2) are involved in a variety of physiological functions such as angiogenesis and neurogenesis, hematopoiesis, the control of hypothalamic hormone secretion, the regulation of circadian rhythm and the modulation of complex behaviors such as feeding and drinking. Dysregulation of the system leads to an inflammatory process that is the substrate for many pathological conditions such as cancer, pain, neuroinflammation and neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The use of PKR's antagonists reduces PK2/PKRs upregulation triggered by various inflammatory processes, suggesting that a pharmacological blockade of PKRs may be a successful strategy to treat inflammatory/neuroinflammatory diseases, at least in rodents. Under certain circumstances, the PK system exhibits protective/neuroprotective effects, so PKR agonists have also been developed to modulate the prokineticin system.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Rossella Miele
- Department of Biochemical Sciences “A. Rossi Fanelli”, CNR-Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
7
|
Amodeo G, Franchi S, Galimberti G, Comi L, D’Agnelli S, Baciarello M, Bignami EG, Sacerdote P. Osteoarthritis Pain in Old Mice Aggravates Neuroinflammation and Frailty: The Positive Effect of Morphine Treatment. Biomedicines 2022; 10:2847. [PMID: 36359375 PMCID: PMC9687902 DOI: 10.3390/biomedicines10112847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/13/2022] [Accepted: 11/03/2022] [Indexed: 08/03/2023] Open
Abstract
Knee osteoarthritis is a common cause of pain and disability in old subjects. Pain may predispose to the development of frailty. Studies on mechanisms underlying pain in osteoarthritis models during aging are lacking. In this work, we used the monosodium iodoacetate model of osteoarthritis in adult (11-week-old) and old (20-month-old) C57BL/6J mice to compare hypersensitivity, locomotion, neuroinflammation, and the effects of morphine treatment. After osteoarthritis induction in adult and old mice, weight-bearing asymmetry, mechanical allodynia, and thermal hyperalgesia similarly developed, while locomotion and frailty were more affected in old than in adult animals. When behavioral deficits were present, the animals were treated for 7 days with morphine. This opioid counteracts the behavioral alterations and the frailty index worsening both in adult and old mice. To address the mechanisms that underlie pain, we evaluated neuroinflammatory markers and proinflammatory cytokine expression in the sciatic nerve, DRGs, and spinal cord. Overexpression of cytokines and glia markers were present in osteoarthritis adult and old mice, but the activation was qualitatively and quantitatively more evident in aged mice. Morphine was able to counteract neuroinflammation in both age groups. We demonstrate that old mice are more vulnerable to pain's detrimental effects, but prompt treatment is successful at mitigating these effects.
Collapse
Affiliation(s)
- Giada Amodeo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Silvia Franchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Giulia Galimberti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Laura Comi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Simona D’Agnelli
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Marco Baciarello
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Elena Giovanna Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Paola Sacerdote
- Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| |
Collapse
|
8
|
González-Cubero E, González-Fernández ML, Rodríguez-Díaz M, Palomo-Irigoyen M, Woodhoo A, Villar-Suárez V. Application of adipose-derived mesenchymal stem cells in an in vivo model of peripheral nerve damage. Front Cell Neurosci 2022; 16:992221. [PMID: 36159399 PMCID: PMC9493127 DOI: 10.3389/fncel.2022.992221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neuropathic pain is one of the most difficult to treat chronic pain syndromes. It has significant effects on patients’ quality of life and substantially adds to the burden of direct and indirect medical costs. There is a critical need to improve therapies for peripheral nerve regeneration. The aim of this study is to address this issue by performing a detailed analysis of the therapeutic benefits of two treatment options: adipose tissue derived-mesenchymal stem cells (ASCs) and ASC-conditioned medium (CM). Methods To this end, we used an in vivo rat sciatic nerve damage model to investigate the molecular mechanisms involved in the myelinating capacity of ASCs and CM. Furthermore, effect of TNF and CM on Schwann cells (SCs) was evaluated. For our in vivo model, biomaterial surgical implants containing TNF were used to induce peripheral neuropathy in rats. Damaged nerves were also treated with either ASCs or CM and molecular methods were used to collect evidence of nerve regeneration. Post-operatively, rats were subjected to walking track analysis and their sciatic functional index was evaluated. Morphological data was gathered through transmission electron microscopy (TEM) of sciatic nerves harvested from the experimental rats. We also evaluated the effect of TNF on Schwann cells (SCs) in vitro. Genes and their correspondent proteins associated with nerve regeneration were analyzed by qPCR, western blot, and confocal microscopy. Results Our data suggests that both ASCs and CM are potentially beneficial treatments for promoting myelination and axonal regeneration. After TNF-induced nerve damage we observed an upregulation of c-Jun along with a downregulation of Krox-20 myelin-associated transcription factor. However, when CM was added to TNF-treated nerves the opposite effect occurred and also resulted in increased expression of myelin-related genes and their corresponding proteins. Conclusion Findings from our in vivo model showed that both ASCs and CM aided the regeneration of axonal myelin sheaths and the remodeling of peripheral nerve morphology.
Collapse
Affiliation(s)
- Elsa González-Cubero
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
| | | | - María Rodríguez-Díaz
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
| | - Marta Palomo-Irigoyen
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Genes and Disease Group, Department of Dermatology, Medical University of Vienna, Anna Spiegel Center of Translational Research, Vienna, Austria
| | - Ashwin Woodhoo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Gene Regulatory Control in Disease Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Vega Villar-Suárez
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
- Institute of Biomedicine (IBIOMED), University of León-Universidad de León, León, Spain
- *Correspondence: Vega Villar-Suárez,
| |
Collapse
|
9
|
Vincenzi M, Milella MS, D’Ottavio G, Caprioli D, Reverte I, Maftei D. Targeting Chemokines and Chemokine GPCRs to Enhance Strong Opioid Efficacy in Neuropathic Pain. Life (Basel) 2022; 12:life12030398. [PMID: 35330149 PMCID: PMC8955776 DOI: 10.3390/life12030398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Neuropathic pain (NP) originates from an injury or disease of the somatosensory nervous system. This heterogeneous origin and the possible association with other pathologies make the management of NP a real challenge. To date, there are no satisfactory treatments for this type of chronic pain. Even strong opioids, the gold-standard analgesics for nociceptive and cancer pain, display low efficacy and the paradoxical ability to exacerbate pain sensitivity in NP patients. Mounting evidence suggests that chemokine upregulation may be a common mechanism driving NP pathophysiology and chronic opioid use-related consequences (analgesic tolerance and hyperalgesia). Here, we first review preclinical studies on the role of chemokines and chemokine receptors in the development and maintenance of NP. Second, we examine the change in chemokine expression following chronic opioid use and the crosstalk between chemokine and opioid receptors. Then, we examine the effects of inhibiting specific chemokines or chemokine receptors as a strategy to increase opioid efficacy in NP. We conclude that strong opioids, along with drugs that block specific chemokine/chemokine receptor axis, might be the right compromise for a favorable risk/benefit ratio in NP management.
Collapse
Affiliation(s)
- Martina Vincenzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.V.); (I.R.)
| | - Michele Stanislaw Milella
- Toxicology and Poison Control Center Unit, Department of Emergency, Anesthesia and Critical Care, Policlinico Umberto I Hospital-Sapienza University of Rome, 00161 Rome, Italy;
| | - Ginevra D’Ottavio
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
- Laboratory Affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| | - Daniele Caprioli
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
- Laboratory Affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| | - Ingrid Reverte
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
- Correspondence: (M.V.); (I.R.)
| | - Daniela Maftei
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
| |
Collapse
|
10
|
Lattanzi R, Miele R. Prokineticin-Receptor Network: Mechanisms of Regulation. Life (Basel) 2022; 12:172. [PMID: 35207461 PMCID: PMC8877203 DOI: 10.3390/life12020172] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Prokineticins are a new class of chemokine-like peptides that bind their G protein-coupled receptors, PKR1 and PKR2, and promote chemotaxis and the production of pro-inflammatory cytokines following tissue injury or infection. This review summarizes the major cellular and biochemical mechanisms of prokineticins pathway regulation that, like other chemokines, include: genetic polymorphisms; mRNA splice modulation; expression regulation at transcriptional and post-transcriptional levels; prokineticins interactions with cell-surface glycosaminoglycans; PKRs degradation, localization, post-translational modifications and oligomerization; alternative signaling responses; binding to pharmacological inhibitors. Understanding these mechanisms, which together exert substantial biochemical control and greatly enhance the complexity of the prokineticin-receptor network, leads to novel opportunities for therapeutic intervention. In this way, besides targeting prokineticins or their receptors directly, it could be possible to indirectly influence their activity by modulating their expression and localization or blocking the downstream signaling pathways.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Rossella Miele
- Department of Biochemical Sciences “A. Rossi Fanelli”, CNR-Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
11
|
D'Agnelli S, Amodeo G, Franchi S, Verduci B, Baciarello M, Panerai AE, Bignami EG, Sacerdote P. Frailty and pain, human studies and animal models. Ageing Res Rev 2022; 73:101515. [PMID: 34813977 DOI: 10.1016/j.arr.2021.101515] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/01/2022]
Abstract
The hypothesis that pain can predispose to frailty development has been recently investigated in several clinical studies suggesting that frailty and pain may share some mechanisms. Both pain and frailty represent important clinical and social problems and both lack a successful treatment. This circumstance is mainly due to the absence of in-depth knowledge of their pathological mechanisms. Evidence of shared pathways between frailty and pain are preliminary. Indeed, many clinical studies are observational and the impact of pain treatment, and relative pain-relief, on frailty onset and progression has never been investigated. Furthermore, preclinical research on this topic has yet to be performed. Specific researches on the pain-frailty relation are needed. In this narrative review, we will attempt to point out the most relevant findings present in both clinical and preclinical literature on the topic, with particular attention to genetics, epigenetics and inflammation, in order to underline the existing gaps and the potential future interventional strategies. The use of pain and frailty animal models discussed in this review might contribute to research in this area.
Collapse
|
12
|
Lattanzi R, Miele R. Versatile Role of Prokineticins and Prokineticin Receptors in Neuroinflammation. Biomedicines 2021; 9:1648. [PMID: 34829877 PMCID: PMC8615546 DOI: 10.3390/biomedicines9111648] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 01/15/2023] Open
Abstract
Prokineticins are a new class of chemokine-like peptides involved in a wide range of biological and pathological activities. In particular, prokineticin 2 (PK2), prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2) play a central role in modulating neuroinflammatory processes. PK2 and PKRs, which are physiologically expressed at very low levels, are strongly upregulated during inflammation and regulate neuronal-glial interaction. PKR2 is mainly overexpressed in neurons, whereas PKR1 and PK2 are mainly overexpressed in astrocytes. Once PK2 is released in inflamed tissue, it is involved in both innate and adaptive responses: it triggers macrophage recruitment, production of pro-inflammatory cytokines, and reduction of anti-inflammatory cytokines. Moreover, it modulates the function of T cells through the activation of PKR1 and directs them towards a pro-inflammatory Th1 phenotype. Since the prokineticin system appears to be upregulated following a series of pathological insults leading to neuroinflammation, we will focus here on the involvement of PK2 and PKRs in those pathologies that have a strong underlying inflammatory component, such as: inflammatory and neuropathic pain, Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, obesity, diabetes, and gastrointestinal inflammation.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Rossella Miele
- Department of Biochemical Sciences “A. Rossi Fanelli”, CNR Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
13
|
Interplay between Prokineticins and Histone Demethylase KDM6A in a Murine Model of Bortezomib-Induced Neuropathy. Int J Mol Sci 2021; 22:ijms222111913. [PMID: 34769347 PMCID: PMC8584499 DOI: 10.3390/ijms222111913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Chemotherapy-induced neuropathy (CIN) is a major adverse effect associated with many chemotherapeutics, including bortezomib (BTZ). Several mechanisms are involved in CIN, and recently a role has been proposed for prokineticins (PKs), a chemokine family that induces proinflammatory/pro-algogen mediator release and drives the epigenetic control of genes involved in cellular differentiation. The present study evaluated the relationships between epigenetic mechanisms and PKs in a mice model of BTZ-induced painful neuropathy. To this end, spinal cord alterations of histone demethylase KDM6A, nuclear receptors PPARα/PPARγ, PK2, and pro-inflammatory cytokines IL-6 and IL-1β were assessed in neuropathic mice treated with the PK receptors (PKRs) antagonist PC1. BTZ treatment promoted a precocious upregulation of KDM6A, PPARs, and IL-6, and a delayed increase of PK2 and IL-1β. PC1 counteracted allodynia and prevented the increase of PK2 and of IL-1β in BTZ neuropathic mice. The blockade of PKRs signaling also opposed to KDM6A increase and induced an upregulation of PPAR gene transcription. These data showed the involvement of epigenetic modulatory enzymes in spinal tissue phenomena associated with BTZ painful neuropathy and underline a role of PKs in sustaining the increase of proinflammatory cytokines and in exerting an inhibitory control on the expression of PPARs through the regulation of KDM6A gene expression in the spinal cord.
Collapse
|
14
|
Amodeo G, Verduci B, Sartori P, Procacci P, Conte V, Balboni G, Sacerdote P, Franchi S. The Antagonism of the Prokineticin System Counteracts Bortezomib Induced Side Effects: Focus on Mood Alterations. Int J Mol Sci 2021; 22:ijms221910256. [PMID: 34638592 PMCID: PMC8508359 DOI: 10.3390/ijms221910256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022] Open
Abstract
The development of neuropathy and of mood alterations is frequent after chemotherapy. These complications, independent from the antitumoral mechanism, are interconnected due to an overlapping in their processing pathways and a common neuroinflammatory condition. This study aims to verify whether in mice the treatment with the proteasome inhibitor bortezomib (BTZ), at a protocol capable of inducing painful neuropathy, is associated with anxiety, depression and supraspinal neuroinflammation. We also verify if the therapeutic treatment with the antagonist of the prokineticin (PK) system PC1, which is known to contrast pain and neuroinflammation, can prevent mood alterations. Mice were treated with BTZ (0.4 mg/kg three times/week for 4 weeks); mechanical allodynia and locomotor activity were evaluated over time while anxiety (dark light and marble burying test), depression (sucrose preference and swimming test) and supraspinal neuroinflammation were checked at the end of the protocol. BTZ treated neuropathic mice develop anxiety and depression. The presence of mood alterations is related to the presence of neuroinflammation and PK system activation in prefrontal cortex, hippocampus and hypothalamus with high levels of PK2 and PKR2 receptor, IL-6 and TNF-α, TLR4 and an upregulation of glial markers. PC1 treatment, counteracting pain, prevented the development of supraspinal inflammation and depression-like behavior in BTZ mice.
Collapse
Affiliation(s)
- Giada Amodeo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milan, Italy; (G.A.); (B.V.); (P.S.)
| | - Benedetta Verduci
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milan, Italy; (G.A.); (B.V.); (P.S.)
| | - Patrizia Sartori
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Colombo 71, 20133 Milan, Italy; (P.S.); (P.P.); (V.C.)
| | - Patrizia Procacci
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Colombo 71, 20133 Milan, Italy; (P.S.); (P.P.); (V.C.)
| | - Vincenzo Conte
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Colombo 71, 20133 Milan, Italy; (P.S.); (P.P.); (V.C.)
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy;
| | - Paola Sacerdote
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milan, Italy; (G.A.); (B.V.); (P.S.)
| | - Silvia Franchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milan, Italy; (G.A.); (B.V.); (P.S.)
- Correspondence:
| |
Collapse
|
15
|
Hagen KM, Ousman SS. Aging and the immune response in diabetic peripheral neuropathy. J Neuroimmunol 2021; 355:577574. [PMID: 33894676 DOI: 10.1016/j.jneuroim.2021.577574] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/27/2022]
Abstract
A large proportion of older individuals with diabetes go on to develop diabetic peripheral neuropathy (DPN). DPN is associated with an increase in inflammatory cells within the peripheral nerve, activation of nuclear factor kappa-light-chain-enhancer of activated B cells and receptors for advanced glycation end products/advanced glycation end products pathways, aberrant cytokine expression, oxidative stress, ischemia, as well as pro-inflammatory changes in the bone marrow; all processes that may be exacerbated with age. We review the immunological features of DPN and discuss whether age-related changes in relevant immunological areas may contribute to age being a risk factor for DPN.
Collapse
Affiliation(s)
- Kathleen M Hagen
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shalina S Ousman
- Departments of Clinical Neurosciences and Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
16
|
Shinouchi R, Shibata K, Hashimoto T, Jono S, Hasumi K, Nobe K. SMTP-44D improves diabetic neuropathy symptoms in mice through its antioxidant and anti-inflammatory activities. Pharmacol Res Perspect 2020; 8:e00648. [PMID: 33215875 PMCID: PMC7677968 DOI: 10.1002/prp2.648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 01/28/2023] Open
Abstract
Diabetic neuropathy (DN) is one of the major complications of diabetes. However, there are few approved effective therapies for painful or insensate DN. Recent studies have implicated oxidative stress and inflammation in the pathogenesis of DN, and suppressing these could be an important therapeutic strategy. We previously reported that Stachybotrys microspora triprenyl phenol-44D (SMTP-44D) exhibits both antioxidant and anti-inflammatory activities. The aim of this study was to evaluate the effects of SMTP-44D in a mouse model of streptozotocin-induced DN. SMTP-44D was administered for 3 weeks after the disease induction, and its effects were evaluated on the basis of mechanical and thermal thresholds, blood flow in the bilateral hind paw, and blood flow and conduction velocity in the sciatic nerve. Furthermore, the levels of inflammatory factors, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and malondialdehyde (MDA), in the sciatic nerve were assessed. Neurological degeneration was assessed by measuring myelin thickness and g-ratio in the sciatic nerve. SMTP-44D treatment significantly improved allodynia, hyperalgesia, blood flow, and conduction velocity in DN model mice in a dose-dependent manner. Neurological degeneration was also significantly improved, accompanied by decreased levels of inflammatory factors (TNF-α, 57.8%; IL-1β, 51.4%; IL-6, 62.8%; and MDA, 40.7% reduction rate against the diabetes mellitus + normal saline group). Thus, SMTP-44D can improve allodynia and hyperalgesia in DN without affecting the body weight and blood glucose levels, which may be due to its antioxidant and anti-inflammatory properties. In conclusion, SMTP-44D could be a potential therapeutic agent for the treatment of DN.
Collapse
Affiliation(s)
- Ryosuke Shinouchi
- Division of PharmacologyDepartment of Pharmacology, Toxicology & TherapeuticsSchool of PharmacyShowa UniversityShinagawa‐kuTokyoJapan
- Pharmacology Research CenterShowa UniversityShinagawa‐kuTokyoJapan
| | - Keita Shibata
- Division of PharmacologyDepartment of Pharmacology, Toxicology & TherapeuticsSchool of PharmacyShowa UniversityShinagawa‐kuTokyoJapan
- Pharmacology Research CenterShowa UniversityShinagawa‐kuTokyoJapan
| | - Terumasa Hashimoto
- Division of PharmacologyDepartment of Pharmacology, Toxicology & TherapeuticsSchool of PharmacyShowa UniversityShinagawa‐kuTokyoJapan
- Pharmacology Research CenterShowa UniversityShinagawa‐kuTokyoJapan
| | - Shiori Jono
- Division of PharmacologyDepartment of Pharmacology, Toxicology & TherapeuticsSchool of PharmacyShowa UniversityShinagawa‐kuTokyoJapan
- Pharmacology Research CenterShowa UniversityShinagawa‐kuTokyoJapan
| | - Keiji Hasumi
- Department of Applied Biological ScienceTokyo University of Agriculture and TechnologyFuchu‐shiTokyoJapan
- TMS Co., LtdFuchu‐shiTokyoJapan
| | - Koji Nobe
- Division of PharmacologyDepartment of Pharmacology, Toxicology & TherapeuticsSchool of PharmacyShowa UniversityShinagawa‐kuTokyoJapan
- Pharmacology Research CenterShowa UniversityShinagawa‐kuTokyoJapan
| |
Collapse
|
17
|
Moschetti G, Kalpachidou T, Amodeo G, Lattanzi R, Sacerdote P, Kress M, Franchi S. Prokineticin Receptor Inhibition With PC1 Protects Mouse Primary Sensory Neurons From Neurotoxic Effects of Chemotherapeutic Drugs in vitro. Front Immunol 2020; 11:2119. [PMID: 33072073 PMCID: PMC7541916 DOI: 10.3389/fimmu.2020.02119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Neurotoxicity is a common side effect of chemotherapeutics that often leads to the development of chemotherapy-induced peripheral neuropathy (CIPN). The peptide Prokineticin 2 (PK2) has a key role in experimental models of CIPN and can be considered an insult-inducible endangering mediator. Since primary afferent sensory neurons are highly sensitive to anticancer drugs, giving rise to dysesthesias, the aim of our study was to evaluate the alterations induced by vincristine (VCR) and bortezomib (BTZ) exposure in sensory neuron cultures and the possible preventive effect of blocking PK2 signaling. Both VCR and BTZ induced a concentration-dependent reduction of total neurite length that was prevented by the PK receptor antagonist PC1. Antagonizing the PK system also reduced the upregulation of PK2, PK-R1, TLR4, IL-6, and IL-10 expression induced by chemotherapeutic drugs. In conclusion, inhibition of PK signaling with PC1 prevented the neurotoxic effects of chemotherapeutics, suggesting a promising strategy for neuroprotective therapies against the sensory neuron damage induced by exposure to these drugs.
Collapse
Affiliation(s)
- Giorgia Moschetti
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Theodora Kalpachidou
- Department of Physiology and Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Giada Amodeo
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Paola Sacerdote
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Michaela Kress
- Department of Physiology and Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Silvia Franchi
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
18
|
Martos SN, Campbell MR, Lozoya OA, Wang X, Bennett BD, Thompson IJB, Wan M, Pittman GS, Bell DA. Single-cell analyses identify dysfunctional CD16 + CD8 T cells in smokers. CELL REPORTS MEDICINE 2020; 1. [PMID: 33163982 PMCID: PMC7644053 DOI: 10.1016/j.xcrm.2020.100054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tobacco smoke exposure contributes to the global burden of communicable and chronic diseases. To identify the immune cells affected by smoking, we use single-cell RNA sequencing on peripheral blood from smokers and nonsmokers. Transcriptomes reveal a subpopulation of FCGR3A (CD16)-expressing natural killer (NK)-like CD8 T lymphocytes that increase in smokers. Mass cytometry confirms elevated CD16+ CD8 T cells in smokers. Inferred as highly differentiated by pseudotime analysis, NK-like CD8 T cells express markers that are characteristic of effector memory re-expressing CD45RA T (TEMRA) cells. Indicative of immune aging, smokers’ CD8 T cells are biased toward differentiated cells, and smokers have fewer naive cells than nonsmokers. DNA methylation-based models show that smoking dose is associated with accelerated aging and decreased telomere length, a biomarker of T cell senescence. Immune aging accompanies T cell senescence, which can ultimately lead to impaired immune function. This suggests a role for smoking-induced, senescence-associated immune dysregulation in smoking-mediated pathologies. Smoking shifts the composition of CD8 T cells from naive to differentiated states NK-like CD16+ CD8 TEMRA cells are elevated in smokers and express GZMB and PRF1 DNA methylation links smoking dose with age acceleration and shortened telomeres CD8 T, CD4 T, NKT, NK, and monocytes express senescence-linked genes in smokers
Collapse
Affiliation(s)
- Suzanne N Martos
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709.,These authors contributed equally
| | - Michelle R Campbell
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709.,These authors contributed equally
| | - Oswaldo A Lozoya
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Xuting Wang
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Brian D Bennett
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Isabel J B Thompson
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Ma Wan
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Gary S Pittman
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Douglas A Bell
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| |
Collapse
|
19
|
Moschetti G, Amodeo G, Paladini MS, Molteni R, Balboni G, Panerai A, Sacerdote P, Franchi S. Prokineticin 2 promotes and sustains neuroinflammation in vincristine treated mice: Focus on pain and emotional like behavior. Brain Behav Immun 2019; 82:422-431. [PMID: 31525509 DOI: 10.1016/j.bbi.2019.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
Vincristine (VCR) treatment is often associated to painful neuropathy. Its development is independent from antitumoral mechanism and involves neuroinflammation. We investigated the role of the chemokine prokineticin (PK)2 in a mouse model of VCR induced neuropathy using a PK-receptors (PK-R) antagonist to counteract its development. We also evaluated emotional like deficits in VCR mice. VCR (0,1 mg/kg) was i.p. injected in C57BL/6J male mice once a day for 14 consecutive days. Pain, anxiety and depressive like behaviors were assessed in animals. PK2, PK-Rs, cytokines, neuroinflammatory markers (CD68, CD11b, GFAP, TLR4) and ATF3 were evaluated in DRG, spinal cord, prefrontal cortex and hippocampus. The PK-Rs antagonist PC1, was s.c. injected (150 μg/kg) twice a day from day 7 (hypersensitivity state) until day 14. Its effect on pain and neuroinflammation was evaluated. VCR mice developed neuropathic pain but not mood alterations. After 7 days of VCR treatment we observed a neuroinflammatory condition in DRG with high levels of PK-Rs, TLR4, CD68, ATF3 and IL-1β without relevant alterations in spinal cord. At day 14, an upregulation of PK system and a marked neuroinflammation was evident also in spinal cord. Moreover, at the same time, we observed initial alterations in supraspinal brain areas. PC1 treatment significantly counteracted neuropathic pain and blunted neuroinflammation.
Collapse
Affiliation(s)
- Giorgia Moschetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giada Amodeo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria Serena Paladini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cagliari, Italy
| | - Alberto Panerai
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paola Sacerdote
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Silvia Franchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
20
|
Moschetti G, Amodeo G, Maftei D, Lattanzi R, Procacci P, Sartori P, Balboni G, Onnis V, Conte V, Panerai A, Sacerdote P, Franchi S. Targeting prokineticin system counteracts hypersensitivity, neuroinflammation, and tissue damage in a mouse model of bortezomib-induced peripheral neuropathy. J Neuroinflammation 2019; 16:89. [PMID: 30995914 PMCID: PMC6471808 DOI: 10.1186/s12974-019-1461-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/25/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Neuropathy is a dose-limiting side effect of many chemotherapeutics, including bortezomib. The mechanisms underlying this condition are not fully elucidated even if a contribution of neuroinflammation was suggested. Here, we investigated the role of a chemokine family, the prokineticins (PKs), in the development of bortezomib-induced peripheral neuropathy (BIPN), and we used a PK receptor antagonist to counteract the development and progression of the pathology. METHODS Neuropathy was induced in male C57BL/6J mice by using a protocol capable to induce a detectable neuropathic phenotype limiting systemic side effects. The presence of allodynia (both mechanical and thermal) and thermal hyperalgesia was monitored over time. Mice were sacrificed at two different time points: 14 and 28 days after the first bortezomib (BTZ) injection. At these times, PK system activation (PK2 and PK-Rs), macrophage and glial activation markers, and cytokine production were evaluated in the main station involved in pain transmission (sciatic nerve, DRG, and spinal cord), and the effect of a PK receptors antagonist (PC1) on the same behavioral and biochemical parameters was assessed. Structural damage of DRG during BTZ treatment and an eventual protective effect of PC1 were also evaluated. RESULTS BTZ induces in mice a dose-related allodynia and hyperalgesia and a progressive structural damage to the DRG. We observed a precocious increase of macrophage activation markers and unbalance of pro- and anti-inflammatory cytokines in sciatic nerve and DRG together with an upregulation of GFAP in the spinal cord. At higher BTZ cumulative dose PK2 and PK receptors are upregulated in the PNS and in the spinal cord. The therapeutic treatment with the PK-R antagonist PC1 counteracts the development of allodynia and hyperalgesia, ameliorates the structural damage in the PNS, decreases the levels of activated macrophage markers, and prevents full neuroimmune activation in the spinal cord. CONCLUSIONS PK system may be a strategical pharmacological target to counteract BTZ-induced peripheral neuropathy. Blocking PK2 activity reduces progressive BTZ toxicity in the DRG, reducing neuroinflammation and structural damage to DRG, and it may prevent spinal cord sensitization.
Collapse
Affiliation(s)
- Giorgia Moschetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Vanvitelli, 32, 20129, Milan, Italy
| | - Giada Amodeo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Vanvitelli, 32, 20129, Milan, Italy
| | - Daniela Maftei
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Patrizia Procacci
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Sartori
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cagliari, Italy
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cagliari, Italy
| | - Vincenzo Conte
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Alberto Panerai
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Vanvitelli, 32, 20129, Milan, Italy
| | - Paola Sacerdote
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Vanvitelli, 32, 20129, Milan, Italy
| | - Silvia Franchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Vanvitelli, 32, 20129, Milan, Italy.
| |
Collapse
|
21
|
Negri L, Ferrara N. The Prokineticins: Neuromodulators and Mediators of Inflammation and Myeloid Cell-Dependent Angiogenesis. Physiol Rev 2018. [PMID: 29537336 DOI: 10.1152/physrev.00012.2017] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mammalian prokineticins family comprises two conserved proteins, EG-VEGF/PROK1 and Bv8/PROK2, and their two highly related G protein-coupled receptors, PKR1 and PKR2. This signaling system has been linked to several important biological functions, including gastrointestinal tract motility, regulation of circadian rhythms, neurogenesis, angiogenesis and cancer progression, hematopoiesis, and nociception. Mutations in PKR2 or Bv8/PROK2 have been associated with Kallmann syndrome, a developmental disorder characterized by defective olfactory bulb neurogenesis, impaired development of gonadotropin-releasing hormone neurons, and infertility. Also, Bv8/PROK2 is strongly upregulated in neutrophils and other inflammatory cells in response to granulocyte-colony stimulating factor or other myeloid growth factors and functions as a pronociceptive mediator in inflamed tissues as well as a regulator of myeloid cell-dependent tumor angiogenesis. Bv8/PROK2 has been also implicated in neuropathic pain. Anti-Bv8/PROK2 antibodies or small molecule PKR inhibitors ameliorate pain arising from tissue injury and inhibit angiogenesis and inflammation associated with tumors or some autoimmune disorders.
Collapse
Affiliation(s)
- Lucia Negri
- Sapienza University of Rome, Rome, Italy ; and University of California, San Diego, La Jolla, California
| | - Napoleone Ferrara
- Sapienza University of Rome, Rome, Italy ; and University of California, San Diego, La Jolla, California
| |
Collapse
|
22
|
Zhao Y, Wu J, Wang X, Jia H, Chen DN, Li JD. Prokineticins and their G protein-coupled receptors in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 161:149-179. [PMID: 30711026 DOI: 10.1016/bs.pmbts.2018.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prokineticins are two conserved small proteins (~8kDa), prokineticin 1 (PROK1; also called EG-VEGF) and prokineticin 2 (PROK2; also called Bv8), with an N-terminal AVITGA sequence and 10 cysteines forming 5 disulfide bridges. PROK1 and PROK2 bind to two highly related G protein-coupled receptors (GPCRs), prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). Prokineticins and their receptors are widely expressed. PROK1 is predominantly expressed in peripheral tissues, especially steroidogenic organs, whereas PROK2 is mainly expressed in the central nervous system and nonsteroidogenic cells of the testes. Prokineticins signaling has been implicated in several important physiological functions, including gastrointestinal smooth muscle contraction, circadian rhythm regulation, neurogenesis, angiogenesis, pain perception, mood regulation, and reproduction. Dysregulation of prokineticins signaling has been observed in a variety of diseases, such as cancer, ischemia, and neurodegeneration, in which prokineticins signaling seems to be a promising therapeutic target. Based on the phenotypes of knockout mice, PROKR2 and PROK2 have recently been identified as causative genes for idiopathic hypogonadotropic hypogonadism, a developmental disorder characterized by impaired development of gonadotropin-releasing hormone neurons and infertility. In vitro functional studies with these disease-associated PROKR2 mutations uncovered some novel features for this receptor, such as biased signaling, which may be used to understand GPCR signaling regulation in general.
Collapse
Affiliation(s)
- Yaguang Zhao
- School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Jiayu Wu
- School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Xinying Wang
- School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Hong Jia
- School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Dan-Na Chen
- Department of Basic Medical Sciences, Changsha Medical University, Changsha, China.
| | - Jia-Da Li
- School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China.
| |
Collapse
|
23
|
Franchi S, Sacerdote P, Panerai A. The prokineticin system: an interface between neural inflammation and pain. Neurol Sci 2018; 38:27-30. [PMID: 28527062 DOI: 10.1007/s10072-017-2875-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Prokineticins (PK) 1 and 2 belong to a new family of chemokines capable to interact with two different G coupled receptors: Prokineticin receptor (PKR)1 and 2. Both prokineticins and their receptors are widely distributed in different tissues and regulate several biological functions. In particular, a role of the PK system in inflammation and nociception has been established. PKRs are expressed in regions of the nervous system associated with pain and in primary sensitive neurons they colocalize with transient potential receptor vanilloid-TRPV1 providing an anatomical interaction in nociceptor sensitization. Moreover, PKs are strongly upregulated in immune and glial cells and sustain a proinflammatory loop in inflamed tissues. Recent evidences indicate that the block of the PK system represents a promising strategy to contrast inflammation and pain.
Collapse
Affiliation(s)
- Silvia Franchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi Milano, Milan, Italy
| | - Paola Sacerdote
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi Milano, Milan, Italy
| | - Alberto Panerai
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi Milano, Milan, Italy.
| |
Collapse
|
24
|
Brini AT, Amodeo G, Ferreira LM, Milani A, Niada S, Moschetti G, Franchi S, Borsani E, Rodella LF, Panerai AE, Sacerdote P. Therapeutic effect of human adipose-derived stem cells and their secretome in experimental diabetic pain. Sci Rep 2017; 7:9904. [PMID: 28851944 PMCID: PMC5575274 DOI: 10.1038/s41598-017-09487-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/25/2017] [Indexed: 02/08/2023] Open
Abstract
Painful neuropathy is one of the complications of diabetes mellitus that adversely affects patients'quality of life. Pharmacological treatments are not fully satisfactory, and novel approaches needed. In a preclinical mouse model of diabetes the effect of both human mesenchymal stromal cells from adipose tissue (hASC) and their conditioned medium (hASC-CM) was evaluated. Diabetes was induced by streptozotocin. After neuropathic hypersensitivity was established, mice were intravenously injected with either 1 × 106 hASC or with CM derived from 2 × 106 hASC. Both hASC and CM (secretome) reversed mechanical, thermal allodynia and thermal hyperalgesia, with a rapid and long lasting effect, maintained up to 12 weeks after treatments. In nerves, dorsal root ganglia and spinal cord of neuropathic mice we determined high IL-1β, IL-6 and TNF-α and low IL-10 levels. Both treatments restored a correct pro/antinflammatory cytokine balance and prevented skin innervation loss. In spleens of streptozotocin-mice, both hASC and hASC-CM re-established Th1/Th2 balance that was shifted to Th1 during diabetes. Blood glucose levels were unaffected although diabetic animals regained weight, and kidney morphology was recovered by treatments. Our data show that hASC and hASC-CM treatments may be promising approaches for diabetic neuropathic pain, and suggest that cell effect is likely mediated by their secretome.
Collapse
Affiliation(s)
- Anna T Brini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, via Vanvitelli 32, 20129, Milan, Italy.,IRCCS Galeazzi Orthopaedic Institute, via Galeazzi 4, 20161, Milan, Italy
| | - Giada Amodeo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita' degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy
| | - Lorena M Ferreira
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, via Vanvitelli 32, 20129, Milan, Italy.,IRCCS Galeazzi Orthopaedic Institute, via Galeazzi 4, 20161, Milan, Italy
| | - Anna Milani
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, via Vanvitelli 32, 20129, Milan, Italy.,IRCCS Galeazzi Orthopaedic Institute, via Galeazzi 4, 20161, Milan, Italy
| | - Stefania Niada
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, via Vanvitelli 32, 20129, Milan, Italy.,IRCCS Galeazzi Orthopaedic Institute, via Galeazzi 4, 20161, Milan, Italy
| | - Giorgia Moschetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita' degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy
| | - Silvia Franchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita' degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Luigi F Rodella
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Alberto E Panerai
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita' degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy
| | - Paola Sacerdote
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita' degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy.
| |
Collapse
|
25
|
Kou ZZ, Wan FP, Bai Y, Li CY, Hu JC, Zhang GT, Zhang T, Chen T, Wang YY, Li H, Li YQ. Decreased Endomorphin-2 and μ-Opioid Receptor in the Spinal Cord Are Associated with Painful Diabetic Neuropathy. Front Mol Neurosci 2016; 9:80. [PMID: 27656127 PMCID: PMC5013037 DOI: 10.3389/fnmol.2016.00080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/24/2016] [Indexed: 12/17/2022] Open
Abstract
Painful diabetic neuropathy (PDN) is one of the most common complications in the early stage of diabetes mellitus (DM). Endomorphin-2 (EM2) selectively activates the μ-opioid receptor (MOR) and subsequently induces antinociceptive effects in the spinal dorsal horn. However, the effects of EM2-MOR in PDN have not yet been clarified in the spinal dorsal horn. Therefore, we aimed to explore the role of EM2-MOR in the pathogenesis of PDN. The main findings were the following: (1) streptozotocin (STZ)-induced diabetic rats exhibited hyperglycemia, body weight loss and mechanical allodynia; (2) in the spinal dorsal horn, the expression levels of EM2 and MOR decreased in diabetic rats; (3) EM2 protein concentrations decreased in the brain, lumbar spinal cord and cerebrospinal fluid (CSF) in diabetic rats but were unchanged in the plasma; (4) the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) was significantly higher in diabetic rats than in control rats; and (5) intrathecal injection of EM2 for 14 days in the early stage of PDN partially alleviated mechanical allodynia and reduced MOR expression in diabetic rats. Our results demonstrate that the EM2-MOR signal may be involved in the early stage of PDN.
Collapse
Affiliation(s)
- Zhen-Zhen Kou
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Fa-Ping Wan
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Yang Bai
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Chun-Yu Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Jia-Chen Hu
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Guo-Tao Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Ting Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Tao Chen
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Ya-Yun Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Hui Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Yun-Qing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China; Collaborative Innovation Center for Brain Science, Fudan UniversityShanghai, China
| |
Collapse
|