1
|
Hutchinson GJ, Blakey A, Jones N, Leach L, Dellschaft N, Houston P, Hubbard M, O'Dea R, Gowland PA. The effects of maternal flow on placental diffusion-weighted MRI and intravoxel incoherent motion parameters. Magn Reson Med 2025; 93:1629-1641. [PMID: 39607948 PMCID: PMC11782734 DOI: 10.1002/mrm.30379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/08/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE To investigate and explain observed features of the placental DWI signal in healthy and compromised pregnancies using a mathematical model of maternal blood flow. METHODS Thirteen healthy and nine compromised third trimester pregnancies underwent pulse gradient spin echo DWI MRI, with the results compared to MRI data simulated from a 2D mathematical model of maternal blood flow through the placenta. Both sets of data were fitted to an intravoxel incoherent motion (IVIM) model, and a rebound model (defined within text), which described voxels that did not decay monotonically. Both the in vivo and simulated placentas were split into regions of interest (ROIs) to analyze how the signal varies and how IVIM and rebounding parameters change across the placental width. RESULTS There was good agreement between the in vivo MRI data, and the data simulated from the mathematical model. Both sets of data included voxels showing a rebounding signal and voxels showing fast signal decay focused near the maternal side of the placenta. In vivo we found higherf IVIM $$ {f}_{IVIM} $$ in the uterine wall and near the maternal side of the placenta, with the slow diffusion coefficientD $$ D $$ reduced in all ROIs in compromised pregnancy. CONCLUSION A simulation based entirely on maternal blood explains key features observed in placental DWI, indicating the importance of maternal blood flow in interpreting placental MRI data, and providing potential new metrics for understanding changes in compromised placentas.
Collapse
Affiliation(s)
- George Jack Hutchinson
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyThe University of Nottingham
NottinghamUK
| | - Adam Blakey
- School of Mathematical SciencesThe University of NottinghamNottinghamUK
| | - Nia Jones
- School of MedicineThe University of NottinghamNottinghamUK
| | - Lopa Leach
- School of Life SciencesThe University of NottinghamNottinghamUK
| | - Neele Dellschaft
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyThe University of Nottingham
NottinghamUK
| | - Paul Houston
- School of Mathematical SciencesThe University of NottinghamNottinghamUK
| | - Matthew Hubbard
- School of Mathematical SciencesThe University of NottinghamNottinghamUK
| | - Reuben O'Dea
- School of Mathematical SciencesThe University of NottinghamNottinghamUK
| | - Penny Anne Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyThe University of Nottingham
NottinghamUK
| |
Collapse
|
2
|
Cheng CK, Wang N, Wang L, Huang Y. Biophysical and Biochemical Roles of Shear Stress on Endothelium: A Revisit and New Insights. Circ Res 2025; 136:752-772. [PMID: 40146803 PMCID: PMC11949231 DOI: 10.1161/circresaha.124.325685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Hemodynamic shear stress, the frictional force exerted by blood flow on the endothelium, mediates vascular homeostasis. This review examines the biophysical nature and biochemical effects of shear stress on endothelial cells, with a particular focus on its impact on cardiovascular pathophysiology. Atherosclerosis develops preferentially at arterial branches and curvatures, where disturbed flow patterns are most prevalent. The review also highlights the range of shear stress across diverse human arteries and its temporal variations, including aging-related alterations. This review presents a summary of the critical mechanosensors and flow-sensitive effectors that respond to shear stress, along with the downstream cellular events that they regulate. The review evaluates experimental models for studying shear stress in vitro and in vivo, as well as their potential limitations. The review discusses strategies targeting shear stress, including pharmacological approaches, physiological means, surgical interventions, and gene therapies. Furthermore, the review addresses emerging perspectives in hemodynamic research, including single-cell sequencing, spatial omics, metabolomics, and multiomics technologies. By integrating the biophysical and biochemical aspects of shear stress, this review offers insights into the complex interplay between hemodynamics and endothelial homeostasis at the preclinical and clinical levels.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, China (C.K.C., L.W., Y.H.)
| | - Nanping Wang
- Laboratory for Molecular Vascular Biology and Bioengineering, and Wuhu Hospital, Health Science Center, East China Normal University, Shanghai (N.W.)
| | - Li Wang
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, China (C.K.C., L.W., Y.H.)
| | - Yu Huang
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, China (C.K.C., L.W., Y.H.)
| |
Collapse
|
3
|
Masserdotti A, Gasik M, Grillari-Voglauer R, Grillari J, Cargnoni A, Chiodelli P, Papait A, Magatti M, Romoli J, Ficai S, Di Pietro L, Lattanzi W, Silini AR, Parolini O. Unveiling the human fetal-maternal interface during the first trimester: biophysical knowledge and gaps. Front Cell Dev Biol 2024; 12:1411582. [PMID: 39144254 PMCID: PMC11322133 DOI: 10.3389/fcell.2024.1411582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/11/2024] [Indexed: 08/16/2024] Open
Abstract
The intricate interplay between the developing placenta and fetal-maternal interactions is critical for pregnancy outcomes. Despite advancements, gaps persist in understanding biomechanics, transport processes, and blood circulation parameters, all of which are crucial for safe pregnancies. Moreover, the complexity of fetal-maternal interactions led to conflicting data and methodological variations. This review presents a comprehensive overview of current knowledge on fetal-maternal interface structures, with a particular focus on the first trimester. More in detail, the embryological development, structural characteristics, and physiological functions of placental chorionic plate and villi, fetal membranes and umbilical cord are discussed. Furthermore, a description of the main structures and features of maternal and fetal fluid dynamic exchanges is provided. However, ethical constraints and technological limitations pose still challenges to studying early placental development directly, which calls for sophisticated in vitro, microfluidic organotypic models for advancing our understanding. For this, knowledge about key in vivo parameters are necessary for their design. In this scenario, the integration of data from later gestational stages and mathematical/computational simulations have proven to be useful tools. Notwithstanding, further research into cellular and molecular mechanisms at the fetal-maternal interface is essential for enhancing prenatal care and improving maternal and fetal health outcomes.
Collapse
Affiliation(s)
- Alice Masserdotti
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU University, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Paola Chiodelli
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Papait
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Jacopo Romoli
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sara Ficai
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorena Di Pietro
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Wanda Lattanzi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| |
Collapse
|
4
|
Shaikh S, Saleem AN, Ymele-Leki P. Simulation and Modeling of the Adhesion of Staphylococcus aureus onto Inert Surfaces under Fluid Shear Stress. Pathogens 2024; 13:551. [PMID: 39057778 PMCID: PMC11280353 DOI: 10.3390/pathogens13070551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Bacterial adhesion to biotic and abiotic surfaces under fluid shear stress plays a major role in the pathogenesis of infections linked to medical implants and tissues. This study employed an automated BioFlux 200 microfluidic system and video microscopy to conduct real-time adhesion assays, examining the influence of shear stress on adhesion kinetics and spatial distribution of Staphylococcus aureus on glass surfaces. The adhesion rate exhibited a non-linear relationship with shear stress, with notable variations at intermediate levels. Empirical adhesion events were simulated with COMSOL Multiphysics® and Python. Overall, COMSOL accurately predicted the experimental trend of higher rates of bacterial adhesion with decreasing shear stress but poorly characterized the plateauing phenomena observed over time. Python provided a robust mathematical representation of the non-linear relationship between cell concentration, shear stress, and time but its polynomial regression approach was not grounded on theoretical physical concepts. These insights, combined with advancements in AI and machine learning, underscore the potential for synergistic computational techniques to enhance our understanding of bacterial adhesion to surfaces, offering a promising avenue for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Sarees Shaikh
- Department of Chemical Engineering, Howard University, Washington, DC 20059, USA;
| | - Abdul Nafay Saleem
- Department of Electrical Engineering and Computer Science, Howard University, Washington, DC 20059, USA;
| | - Patrick Ymele-Leki
- Department of Chemical Engineering, Howard University, Washington, DC 20059, USA;
| |
Collapse
|
5
|
Inohaya A, Chigusa Y, Takakura M, Io S, Kim MA, Matsuzaka Y, Yasuda E, Ueda Y, Kawamura Y, Takamatsu S, Mogami H, Takashima Y, Mandai M, Kondoh E. Shear stress in the intervillous space promotes syncytial formation of iPS cells-derived trophoblasts†. Biol Reprod 2024; 110:300-309. [PMID: 37930227 DOI: 10.1093/biolre/ioad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
The intervillous space of human placenta is filled with maternal blood, and villous trophoblasts are constantly exposed to the shear stress generated by maternal blood pressure and flow throughout the entire gestation period. However, the effects of shear stress on villous trophoblasts and their biological significance remain unknown. Here, using our recently established naïve human pluripotent stem cells-derived cytotrophoblast stem cells (nCTs) and a device that can apply arbitrary shear stress to cells, we investigated the impact of shear stress on early-stage trophoblasts. After 72 h of exposure to 10 dyn/cm2 shear stress, nCTs became fused and multinuclear, and mRNA expression of the syncytiotrophoblast (ST) markers, such as glial cell missing 1, endogenous retrovirus group W member 1 envelope, chorionic gonadotropin subunit beta 3, syndecan 1, pregnancy specific beta-1-glycoprotein 3, placental growth factor, and solute carrier family 2 member 1 were significantly upregulated compared to static conditions. Immunohistochemistry showed that shear stress increased fusion index, human chorionic gonadotropin secretion, and human placental lactogen secretion. Increased microvilli formation on the surface of nCTs under flow conditions was detected using scanning electron microscopy. Intracellular cyclic adenosine monophosphate significantly increased under flow conditions. Moreover, transcriptome analysis of nCTs subjected to shear stress revealed that shear stress upregulated ST-specific genes and downregulated CT-specific genes. Collectively, these findings indicate that shear stress promotes the differentiation of nCTs into ST.
Collapse
Affiliation(s)
- Asako Inohaya
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahito Takakura
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shingo Io
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Min-A Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Matsuzaka
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eriko Yasuda
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Ueda
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosuke Kawamura
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shiro Takamatsu
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruta Mogami
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhiro Takashima
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiji Kondoh
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Brugger BA, Neuper L, Guettler J, Forstner D, Wernitznig S, Kummer D, Lyssy F, Feichtinger J, Krappinger J, El-Heliebi A, Bonstingl L, Moser G, Rodriguez-Blanco G, Bachkönig OA, Gottschalk B, Gruber M, Nonn O, Herse F, Verlohren S, Frank HG, Barapatre N, Kampfer C, Fluhr H, Desoye G, Gauster M. Fluid shear stress induces a shift from glycolytic to amino acid pathway in human trophoblasts. Cell Biosci 2023; 13:163. [PMID: 37684702 PMCID: PMC10492287 DOI: 10.1186/s13578-023-01114-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND The human placenta, a tissue with a lifespan limited to the period of pregnancy, is exposed to varying shear rates by maternal blood perfusion depending on the stage of development. In this study, we aimed to investigate the effects of fluidic shear stress on the human trophoblast transcriptome and metabolism. RESULTS Based on a trophoblast cell line cultured in a fluidic flow system, changes caused by shear stress were analyzed and compared to static conditions. RNA sequencing and bioinformatics analysis revealed an altered transcriptome and enriched gene ontology terms associated with amino acid and mitochondrial metabolism. A decreased GLUT1 expression and reduced glucose uptake, together with downregulated expression of key glycolytic rate-limiting enzymes, hexokinase 2 and phosphofructokinase 1 was observed. Altered mitochondrial ATP levels and mass spectrometry data, suggested a shift in energy production from glycolysis towards mitochondrial oxidative phosphorylation. This shift in energy production could be supported by increased expression of glutamic-oxaloacetic transaminase variants in response to shear stress as well as under low glucose availability or after silencing of GLUT1. The shift towards amino acid metabolic pathways could be supported by significantly altered amino acid levels, like glutamic acid, cysteine and serine. Downregulation of GLUT1 and glycolytic rate-limiting enzymes, with concomitant upregulation of glutamic-oxaloacetic transaminase 2 was confirmed in first trimester placental explants cultured under fluidic flow. In contrast, high fluid shear stress decreased glutamic-oxaloacetic transaminase 2 expression in term placental explants when compared to low flow rates. Placental tissue from pregnancies with intrauterine growth restriction are exposed to high shear rates and showed also decreased glutamic-oxaloacetic transaminase 2, while GLUT1 was unchanged and glycolytic rate-limiting enzymes showed a trend to be upregulated. The results were generated by using qPCR, immunoblots, quantification of immunofluorescent pictures, padlock probe hybridization, mass spectrometry and FRET-based measurement. CONCLUSION Our study suggests that onset of uteroplacental blood flow is accompanied by a shift from a predominant glycolytic- to an alternative amino acid converting metabolism in the villous trophoblast. Rheological changes with excessive fluidic shear stress at the placental surface, may disrupt this alternative amino acid pathway in the syncytiotrophoblast and could contribute to intrauterine growth restriction.
Collapse
Affiliation(s)
- Beatrice Anna Brugger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Lena Neuper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Stefan Wernitznig
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Daniel Kummer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Freya Lyssy
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Julian Krappinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Amin El-Heliebi
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Lilli Bonstingl
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Giovanny Rodriguez-Blanco
- Clinical Institute for Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Graz, Austria
| | - Olaf A Bachkönig
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Benjamin Gottschalk
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Michael Gruber
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Herse
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Verlohren
- Department of Obstetrics and Gynaecology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Clinic for Obstetrics, Charité Berlin, Berlin, Germany
| | | | | | | | - Herbert Fluhr
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria.
| |
Collapse
|
7
|
May RW, Maso Talou GD, Clark AR, Mynard JP, Smolich JJ, Blanco PJ, Müller LO, Gentles TL, Bloomfield FH, Safaei S. From fetus to neonate: A review of cardiovascular modeling in early life. WIREs Mech Dis 2023:e1608. [DOI: 10.1002/wsbm.1608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/31/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
|
8
|
Multi-scale Modelling of Shear Stress on the Syncytiotrophoblast: Could Maternal Blood Flow Impact Placental Function Across Gestation? Ann Biomed Eng 2023; 51:1256-1269. [PMID: 36745293 PMCID: PMC10172261 DOI: 10.1007/s10439-022-03129-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/25/2022] [Indexed: 02/07/2023]
Abstract
The placenta is a critical fetal exchange organ, with a complex branching tree-like structure. Its surface is covered by a single multinucleated cell, the syncytiotrophoblast, which bathes in maternal blood for most of pregnancy. Mechanosensing protein expression by the syncytiotrophoblast at term suggests that shear stress exerted by maternal blood flow may modulate placental development and function. However, it is not known how the mechanosensitive capacity of the syncytiotrophoblast, or the shear stress it experiences, change across gestation. Here, we show that the syncytiotrophoblast expresses both mechanosensitive ion channels (Piezo 1, Polycystin 2, TRPV6) and motor proteins associated with primary cilia (Dynein 1, IFT88, Kinesin 2), with higher staining for all these proteins seen in late first trimester placentae than at term. MicroCT imaging of placental tissue was then used to inform computational models of blood flow at the placentone scale (using a porous media model), and at the villous scale (using explicit flow simulations). These two models are then linked to produce a combined model that allows the variation of shear stress across both these scales simultaneously. This combined model predicts that the range of shear stress on the syncytiotrophoblast is higher in the first-trimester than at term (0.8 dyne/cm2 median stress compared to 0.04 dyne/cm2) when considering both these scales. Together, this suggests that the nature of blood flow through the intervillous space, and the resulting shear stress on the syncytiotrophoblast have important influences on placental morphogenesis and function from early in pregnancy.
Collapse
|
9
|
Abdelkarim M, Perez-Davalos L, Abdelkader Y, Abostait A, Labouta HI. Critical design parameters to develop biomimetic organ-on-a-chip models for the evaluation of the safety and efficacy of nanoparticles. Expert Opin Drug Deliv 2023; 20:13-30. [PMID: 36440475 DOI: 10.1080/17425247.2023.2152000] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Organ-on-a-chip (OOC) models are based on microfluidics and can recapitulate the healthy and diseased microstructure of organs1 and tissues and the dynamic microenvironment inside the human body. However, the use of OOC models to evaluate the safety and efficacy of nanoparticles (NPs) is still in the early stages. AREAS COVERED The different design parameters of the microfluidic chip and the mechanical forces generated by fluid flow play a pivotal role in simulating the human environment. This review discusses the role of different key parameters on the performance of OOC models. These include the flow pattern, flow rate, shear stress (magnitude, rate, and distribution), viscosity of the media, and the microchannel dimensions and shape. We also discuss how the shear stress and other mechanical forces affect the transport of NPs across biological barriers, cell uptake, and their biocompatibility. EXPERT OPINION We describe several good practices and design parameters to consider for future OOC research. We submit that following these recommendations will help realize the full potential of the OOC models in the preclinical evaluation of novel therapies, including NPs.
Collapse
Affiliation(s)
- Mahmoud Abdelkarim
- Biomedical Engineering, University of Manitoba, R3T 5V6, Winnipeg, Manitoba, Canada.,College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada
| | - Luis Perez-Davalos
- College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada
| | - Yasmin Abdelkader
- College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada.,Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 12622, Cairo, Egypt
| | - Amr Abostait
- College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada
| | - Hagar I Labouta
- Biomedical Engineering, University of Manitoba, R3T 5V6, Winnipeg, Manitoba, Canada.,College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba, R3E 3P4, Winnipeg, Manitoba, Canada.,Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt
| |
Collapse
|
10
|
Mekler T, Plitman Mayo R, Weissmann J, Marom G. Impact of tissue porosity and asymmetry on the oxygen uptake of the human placenta: A numerical study. Placenta 2022; 129:15-22. [PMID: 36183458 DOI: 10.1016/j.placenta.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/17/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION This study proposes a computational fluid dynamics model of a human placenta's independent exchange unit (placentome) to assess the effect that the inner villi distribution and decidual veins (DVs) location and number, have on the oxygen uptake. METHODS The internal placentome porosity distribution was altered in symmetric morphology, while asymmetry was introduced by varying the location and number of DVs. The DV asymmetry was introduced by either displacing them circumferentially, thereby changing the angle between them, or by adding DVs in the inlet cross-section. The results were analyzed by the changes in the normalized oxygen mass fraction and the oxygen uptake. RESULTS Oxygenated blood was shown to be delivered deeper into the placentome when the area of non-homogeneous porosity was larger. The largest oxygen uptake was achieved in the asymmetric model with the smallest angle distance between the DVs, where a 10% decrease relative to the farthest case was obtained. Placing DVs adjacent to the spiral artery opening enhanced the drainage of oxygenated blood. DISCUSSION This study demonstrates the importance of the local porosity distribution for the proper perfusion of the intervillous space and proposes a novel approach to improve our understanding of the role of the DVs in placental oxygen uptake.
Collapse
Affiliation(s)
- Tirosh Mekler
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Romina Plitman Mayo
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| | - Jonathan Weissmann
- Department of Biomedical Engineering, The Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Gil Marom
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
11
|
Mosavati B, Oleinikov A, Du E. 3D microfluidics-assisted modeling of glucose transport in placental malaria. Sci Rep 2022; 12:15278. [PMID: 36088464 PMCID: PMC9464215 DOI: 10.1038/s41598-022-19422-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
The human placenta is a critical organ, mediating the exchange of nutrients, oxygen, and waste products between fetus and mother. Placental malaria (PM) resulted from Plasmodium falciparum infections causes up to 200 thousand newborn deaths annually, mainly due to low birth weight, as well as 10 thousand mother deaths. In this work, a placenta-on-a-chip model is developed to mimic the nutrient exchange between the fetus and mother under the influence of PM. In this model, trophoblasts cells (facing infected or uninfected blood simulating maternal blood and termed “trophoblast side”) and human umbilical vein endothelial cells (facing uninfected blood simulating fetal blood and termed “endothelial” side) are cultured on the opposite sides of an extracellular matrix gel in a compartmental microfluidic system, forming a physiological barrier between the co-flow tubular structure to mimic a simplified maternal–fetal interface in placental villi. The influences of infected erythrocytes (IEs) sequestration through cytoadhesion to chondroitin sulfate A (CSA) expressed on the surface of trophoblast cells, a critical feature of PM, on glucose transfer efficiency across the placental barrier was studied. To create glucose gradients across the barrier, uninfected erythrocyte or IE suspension with a higher glucose concentration was introduced into the “trophoblast side” and a culture medium with lower glucose concentration was introduced into the “endothelial side”. The glucose levels in the endothelial channel in response to CSA-adherent erythrocytes infected with CS2 line of parasites in trophoblast channel under flow conditions was monitored. Uninfected erythrocytes served as a negative control. The results demonstrated that CSA-binding IEs added resistance to the simulated placental barrier for glucose perfusion and decreased the glucose transfer across this barrier. The results of this study can be used for better understanding of PM pathology and development of models useful in studying potential treatment of PM.
Collapse
|
12
|
James JL, Lissaman A, Nursalim YNS, Chamley LW. Modelling human placental villous development: designing cultures that reflect anatomy. Cell Mol Life Sci 2022; 79:384. [PMID: 35753002 PMCID: PMC9234034 DOI: 10.1007/s00018-022-04407-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 11/03/2022]
Abstract
The use of in vitro tools to study trophoblast differentiation and function is essential to improve understanding of normal and abnormal placental development. The relative accessibility of human placentae enables the use of primary trophoblasts and placental explants in a range of in vitro systems. Recent advances in stem cell models, three-dimensional organoid cultures, and organ-on-a-chip systems have further shed light on the complex microenvironment and cell-cell crosstalk involved in placental development. However, understanding each model's strengths and limitations, and which in vivo aspects of human placentation in vitro data acquired does, or does not, accurately reflect, is key to interpret findings appropriately. To help researchers use and design anatomically accurate culture models, this review both outlines our current understanding of placental development, and critically considers the range of established and emerging culture models used to study this, with a focus on those derived from primary tissue.
Collapse
Affiliation(s)
- Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Abbey Lissaman
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yohanes N S Nursalim
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Li Y, Wang J, Zhong W. Regulation and mechanism of YAP/TAZ in the mechanical microenvironment of stem cells (Review). Mol Med Rep 2021; 24:506. [PMID: 33982785 PMCID: PMC8134874 DOI: 10.3892/mmr.2021.12145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Stem cells receive cues from their physical and mechanical microenvironment via mechanosensing and mechanotransduction. These cues affect proliferation, self‑renewal and differentiation into specific cell fates. A growing body of evidence suggests that yes‑associated protein (YAP) and transcriptional coactivator with PDZ‑binding motif (TAZ) mechanotransduction is key for driving stem cell behavior and regeneration via the Hippo and other signaling pathways. YAP/TAZ receive a range of physical cues, including extracellular matrix stiffness, cell geometry, flow shear stress and mechanical forces in the cytoskeleton, and translate them into cell‑specific transcriptional programs. However, the mechanism by which mechanical signals regulate YAP/TAZ activity in stem cells is not fully understand. The present review summarizes the current knowledge of the mechanisms involved in YAP/TAZ regulation on the physical and mechanical microenvironment, as well as its potential effects on stem cell differentiation.
Collapse
Affiliation(s)
- Ying Li
- Department of Orthopaedics Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jinming Wang
- Department of Orthopaedics Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Weiliang Zhong
- Department of Orthopaedics Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
14
|
Winter M, Jankovic-Karasoulos T, Roberts CT, Bianco-Miotto T, Thierry B. Bioengineered Microphysiological Placental Models: Towards Improving Understanding of Pregnancy Health and Disease. Trends Biotechnol 2021; 39:1221-1235. [PMID: 33965246 DOI: 10.1016/j.tibtech.2021.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
Driven by a lack of appropriate human placenta models, recent years have seen the introduction of bioengineered in vitro models to better understand placental health and disease. Thus far, the focus has been on the maternal-foetal barrier. However, there are many other physiologically and pathologically significant aspects of the placenta that would benefit from state-of-the-art bioengineered models, in particular, integrating advanced culture systems with contemporary biological concepts such as organoids. This critical review defines and discusses the key parameters required for the development of physiologically relevant in vitro models of the placenta. Specifically, it highlights the importance of cell type, mechanical forces, and culture microenvironment towards the use of physiologically relevant models to improve the understanding of human placental function and dysfunction.
Collapse
Affiliation(s)
- Marnie Winter
- ARC Centre of Excellence in Convergent BioNano Science and Technology and Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, 5095, Australia.
| | - Tanja Jankovic-Karasoulos
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Claire T Roberts
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, South Australia, 5005, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia; Waite Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Benjamin Thierry
- ARC Centre of Excellence in Convergent BioNano Science and Technology and Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, 5095, Australia
| |
Collapse
|
15
|
Bioengineered 3D Microvessels for Investigating Plasmodium falciparum Pathogenesis. Trends Parasitol 2021; 37:401-413. [PMID: 33485788 DOI: 10.1016/j.pt.2020.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/15/2020] [Accepted: 12/25/2020] [Indexed: 12/18/2022]
Abstract
Plasmodium falciparum pathogenesis is complex and intimately connected to vascular physiology. This is exemplified by cerebral malaria (CM), a neurovascular complication that accounts for most of the malaria deaths worldwide. P. falciparum sequestration in the brain microvasculature is a hallmark of CM and is not replicated in animal models. Numerous aspects of the disease are challenging to fully understand from clinical studies, such as parasite binding tropism or causal pathways in blood-brain barrier breakdown. Recent bioengineering approaches allow for the generation of 3D microvessels and organ-specific vasculature that provide precise control of vessel architecture and flow dynamics, and hold great promise for malaria research. Here, we discuss recent and future applications of bioengineered microvessels in malaria pathogenesis research.
Collapse
|
16
|
Wheeler ML, Oyen ML. Bioengineering Approaches for Placental Research. Ann Biomed Eng 2021; 49:1805-1818. [PMID: 33420547 DOI: 10.1007/s10439-020-02714-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Research into the human placenta's complex functioning is complicated by a lack of suitable physiological in vivo models. Two complementary approaches have emerged recently to address these gaps in understanding, computational in silico techniques, including multi-scale modeling of placental blood flow and oxygen transport, and cellular in vitro approaches, including organoids, tissue engineering, and organ-on-a-chip models. Following a brief introduction to the placenta's structure and function and its influence on the substantial clinical problem of preterm birth, these different bioengineering approaches are reviewed. The cellular techniques allow for investigation of early first-trimester implantation and placental development, including critical biological processes such as trophoblast invasion and trophoblast fusion, that are otherwise very difficult to study. Similarly, computational models of the placenta and the pregnant pelvis at later-term gestation allow for investigations relevant to complications that occur when the placenta has fully developed. To fully understand clinical conditions associated with the placenta, including those with roots in early processes but that only manifest clinically at full-term, a holistic approach to the study of this fascinating, temporary but critical organ is required.
Collapse
Affiliation(s)
- Mackenzie L Wheeler
- Department of Engineering, East Carolina University, Greenville, NC, 27834, USA
| | - Michelle L Oyen
- Department of Engineering, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
17
|
Advances in imaging feto-placental vasculature: new tools to elucidate the early life origins of health and disease. J Dev Orig Health Dis 2020; 12:168-178. [PMID: 32746961 DOI: 10.1017/s2040174420000720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Optimal placental function is critical for fetal development, and therefore a crucial consideration for understanding the developmental origins of health and disease (DOHaD). The structure of the fetal side of the placental vasculature is an important determinant of fetal growth and cardiovascular development. There are several imaging modalities for assessing feto-placental structure including stereology, electron microscopy, confocal microscopy, micro-computed tomography, light-sheet microscopy, ultrasonography and magnetic resonance imaging. In this review, we present current methodologies for imaging feto-placental vasculature morphology ex vivo and in vivo in human and experimental models, their advantages and limitations and how these provide insight into placental function and fetal outcomes. These imaging approaches add important perspective to our understanding of placental biology and have potential to be new tools to elucidate a deeper understanding of DOHaD.
Collapse
|
18
|
Clark AR, Lee TC, James JL. Computational modeling of the interactions between the maternal and fetal circulations in human pregnancy. WIREs Mech Dis 2020; 13:e1502. [PMID: 32744412 DOI: 10.1002/wsbm.1502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
In pregnancy, fetal growth is supported by its placenta. In turn, the placenta is nourished by maternal blood, delivered from the uterus, in which the vasculature is dramatically transformed to deliver this blood an ever increasing volume throughout gestation. A healthy pregnancy is thus dependent on the development of both the placental and maternal circulations, but also the interface where these physically separate circulations come in close proximity to exchange gases and nutrients between mum and baby. As the system continually evolves during pregnancy, our understanding of normal vascular anatomy, and how this impacts placental exchange function is limited. Understanding this is key to improve our ability to understand, predict, and detect pregnancy pathologies, but presents a number of challenges, due to the inaccessibility of the pregnant uterus to invasive measurements, and limitations in the resolution of imaging modalities safe for use in pregnancy. Computational approaches provide an opportunity to gain new insights into normal and abnormal pregnancy, by connecting observed anatomical changes from high-resolution imaging to function, and providing metrics that can be observed by routine clinical ultrasound. Such advanced modeling brings with it challenges to scale detailed anatomical models to reflect organ level function. This suggests pathways for future research to provide models that provide both physiological insights into pregnancy health, but also are simple enough to guide clinical focus. We the review evolution of computational approaches to understanding the physiology and pathophysiology of pregnancy in the uterus, placenta, and beyond focusing on both opportunities and challenges. This article is categorized under: Reproductive System Diseases >Computational Models.
Collapse
Affiliation(s)
- Alys R Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Tet Chuan Lee
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Brugger BA, Guettler J, Gauster M. Go with the Flow-Trophoblasts in Flow Culture. Int J Mol Sci 2020; 21:ijms21134666. [PMID: 32630006 PMCID: PMC7369846 DOI: 10.3390/ijms21134666] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 01/20/2023] Open
Abstract
With establishment of uteroplacental blood flow, the perfused fetal chorionic tissue has to deal with fluid shear stress that is produced by hemodynamic forces across different trophoblast subtypes. Amongst many other cell types, trophoblasts are able to sense fluid shear stress through mechanotransduction. Failure in the adaption of trophoblasts to fluid shear stress is suggested to contribute to pregnancy disorders. Thus, in the past twenty years, a significant body of work has been devoted to human- and animal-derived trophoblast culture under microfluidic conditions, using a rather broad range of different fluid shear stress values as well as various different flow systems, ranging from commercially 2D to customized 3D flow culture systems. The great variations in the experimental setup reflect the general heterogeneity in blood flow through different segments of the uteroplacental circulation. While fluid shear stress is moderate in invaded uterine spiral arteries, it drastically declines after entrance of the maternal blood into the wide cavity of the intervillous space. Here, we provide an overview of the increasing body of evidence that substantiates an important influence of maternal blood flow on several aspects of trophoblast physiology, including cellular turnover and differentiation, trophoblast metabolism, as well as endocrine activity, and motility. Future trends in trophoblast flow culture will incorporate the physiological low oxygen conditions in human placental tissue and pulsatile blood flow in the experimental setup. Investigation of trophoblast mechanotransduction and development of mechanosome modulators will be another intriguing future direction.
Collapse
Affiliation(s)
| | | | - Martin Gauster
- Correspondence: ; Tel.: +43-316-385-71896; Fax: +43-316-385-79612
| |
Collapse
|
20
|
Dellschaft NS, Hutchinson G, Shah S, Jones NW, Bradley C, Leach L, Platt C, Bowtell R, Gowland PA. The haemodynamics of the human placenta in utero. PLoS Biol 2020; 18:e3000676. [PMID: 32463837 PMCID: PMC7255609 DOI: 10.1371/journal.pbio.3000676] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
We have used magnetic resonance imaging (MRI) to provide important new insights into the function of the human placenta in utero. We have measured slow net flow and high net oxygenation in the placenta in vivo, which are consistent with efficient delivery of oxygen from mother to fetus. Our experimental evidence substantiates previous hypotheses on the effects of spiral artery remodelling in utero and also indicates rapid venous drainage from the placenta, which is important because this outflow has been largely neglected in the past. Furthermore, beyond Braxton Hicks contractions, which involve the entire uterus, we have identified a new physiological phenomenon, the ‘utero-placental pump’, by which the placenta and underlying uterine wall contract independently of the rest of the uterus, expelling maternal blood from the intervillous space. MRI provides important new insights into the function of the human placenta, revealing slow net flow and high, uniform oxygenation in healthy pregnancies, detecting changes that will lead to compromised oxygen delivery to the fetus in preeclampsia, and identifying a new physiological phenomenon, the ‘utero-placental pump’.
Collapse
Affiliation(s)
- Neele S. Dellschaft
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - George Hutchinson
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Simon Shah
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Nia W. Jones
- Department of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Chris Bradley
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Lopa Leach
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Craig Platt
- Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Penny A. Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Sanz G, Daniel N, Aubrière MC, Archilla C, Jouneau L, Jaszczyszyn Y, Duranthon V, Chavatte-Palmer P, Jouneau A. Differentiation of derived rabbit trophoblast stem cells under fluid shear stress to mimic the trophoblastic barrier. Biochim Biophys Acta Gen Subj 2019; 1863:1608-1618. [PMID: 31278960 DOI: 10.1016/j.bbagen.2019.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/18/2019] [Accepted: 07/02/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND The placenta controls exchanges between the mother and the fetus and therefore fetal development and growth. The maternal environment can lead to disturbance of placental functions, with consequences on the health of the offspring. Since the rabbit placenta is very close to that of humans, rabbit models can provide biomedical data to study human placental function. Yet, to limit the use of animal experiments and to investigate the mechanistic aspects of placental function, we developed a new cell culture model in which rabbit trophoblast cells are differentiated from rabbit trophoblast stem cells. METHODS Rabbit trophoblast stems cells were derived from blastocysts and differentiated onto a collagen gel and in the presence of a flow of culture medium to mimic maternal blood flow. Transcriptome analysis was performed on the stem and differentiated cells. RESULTS Our culture model allows the differentiation of trophoblast stem cells. In particular, the fluid shear stress enhances microvilli formation on the differentiated cell surface, lipid droplets formation and fusion of cytotrophoblasts into syncytiotrophoblasts. In addition, the transcriptome analysis confirms the early trophoblast identity of the derived stem cells and reveals upregulation of signaling pathways involved in trophoblast differentiation. CONCLUSION Thereby, the culture model allows mimicking the in vivo conditions in which maternal blood flow exerts a shear stress on trophoblast cells that influences their phenotype. GENERAL SIGNIFICANCE Our culture model can be used to study the differentiation of trophoblast stem cells into cytotrophoblasts and syncytiotrophoblasts, as well as the trophoblast function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Guenhaël Sanz
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Nathalie Daniel
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | - Catherine Archilla
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Luc Jouneau
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Yan Jaszczyszyn
- Plateforme de Séquençage I2BC, CNRS, UMR9198, 91198 Gif-sur-Yvette, France
| | | | | | - Alice Jouneau
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
22
|
Phosphorylation of the VAR2CSA extracellular region is associated with enhanced adhesive properties to the placental receptor CSA. PLoS Biol 2019; 17:e3000308. [PMID: 31181082 PMCID: PMC6586358 DOI: 10.1371/journal.pbio.3000308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/20/2019] [Accepted: 05/16/2019] [Indexed: 12/26/2022] Open
Abstract
Plasmodium falciparum is the main cause of disease and death from malaria. P. falciparum virulence resides in the ability of infected erythrocytes (IEs) to sequester in various tissues through the interaction between members of the polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesin family to various host receptors. Here, we investigated the effect of phosphorylation of variant surface antigen 2-CSA (VAR2CSA), a member of the PfEMP1 family associated to placental sequestration, on its capacity to adhere to chondroitin sulfate A (CSA) present on the placental syncytium. We showed that phosphatase treatment of IEs impairs cytoadhesion to CSA. MS analysis of recombinant VAR2CSA phosphosites prior to and after phosphatase treatment, as well as of native VAR2CSA expressed on IEs, identified critical phosphoresidues associated with CSA binding. Site-directed mutagenesis on recombinant VAR2CSA of 3 phosphoresidues localised within the CSA-binding region confirmed in vitro their functional importance. Furthermore, using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9), we generated a parasite line in which the phosphoresidue T934 is changed to alanine and showed that this mutation strongly impairs IEs cytoadhesion to CSA. Taken together, these results demonstrate that phosphorylation of the extracellular region of VAR2CSA plays a major role in IEs cytoadhesion to CSA and provide new molecular insights for strategies aiming to reduce the morbidity and mortality of PM.
Collapse
|
23
|
Morley LC, Beech DJ, Walker JJ, Simpson NAB. Emerging concepts of shear stress in placental development and function. Mol Hum Reprod 2019; 25:329-339. [PMID: 30931481 PMCID: PMC6554190 DOI: 10.1093/molehr/gaz018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/03/2019] [Indexed: 12/17/2022] Open
Abstract
Blood flow, and the force it generates, is critical to placental development and function throughout pregnancy. This mechanical stimulation of cells by the friction generated from flow is called shear stress (SS) and is a fundamental determinant of vascular homeostasis, regulating remodelling and vasomotor tone. This review describes how SS is fundamental to the establishment and regulation of the blood flow through the uteroplacental and fetoplacental circulations. Amongst the most recent findings is that alongside the endothelium, embryonic stem cells and the villous trophoblast are mechanically sensitive. A complex balance of forces is required to enable effective establishment of the uteroplacental circulation, while protecting the embryo and placental villi. SS also generates flow-mediated vasodilatation through the release of endothelial nitric oxide, a process vital for adequate placental blood flow. The identification of SS sensors and the mechanisms governing how the force is converted into biochemical signals is a fast-paced area of research, with multiple cellular components under investigation. For example, the Piezo1 ion channel is mechanosensitive in a variety of tissues including the fetoplacental endothelium. Enhanced Piezo1 activity has been demonstrated in response to the Yoda1 agonist molecule, suggesting the possibility for developing tools to manipulate these channels. Whether such agents might progress to novel therapeutics to improve blood flow through the placenta requires further consideration and research.
Collapse
Affiliation(s)
- L C Morley
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, UK
| | - D J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, UK
| | - J J Walker
- Academic department of Obstetrics and Gynaecology, Level, Worsley Building, University of Leeds, UK
| | - N A B Simpson
- Academic department of Obstetrics and Gynaecology, Level, Worsley Building, University of Leeds, UK
| |
Collapse
|
24
|
A computational framework to investigate retinal haemodynamics and tissue stress. Biomech Model Mechanobiol 2019; 18:1745-1757. [PMID: 31140054 DOI: 10.1007/s10237-019-01172-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
Abstract
The process of vision begins in the retina, yet the role of biomechanical forces in the retina is relatively unknown and only recently being explored. This contribution describes a computational framework involving 3D fluid-structure interaction simulations derived from fundus images that work towards creating unique data on retinal biomechanics. We developed methods to convert 2D fundus photographs into 3D geometries that follow the curvature of the retina. Retina arterioles are embedded into a six-layer representation of the retinal tissue with varying material properties throughout the retinal tissue. Using three different human retinas (healthy, glaucoma, diabetic retinopathy) and by varying our simulation approaches, we report the effects of transient versus steady flow, viscosity assumptions (Newtonian, non-Newtonian and Fåhræus-Lindqvist effect) and rigid versus compliant retinal tissue, on resulting wall shear stress (WSS) and von Mises stress. In the retinal arterioles, the choice of viscosity model is important and WSS obtained from models with the Fåhræus-Lindqvist effect is markedly different from Newtonian and non-Newtonian models. We found little difference in WSS between steady-state and pulsatile simulations (< 5%) and show that WSS varies by about 7% between rigid and deformable models. Comparing the three geometries, we found notably different WSS in the healthy (3.3 ± 1.3 Pa), glaucoma (5.7 ± 1.6 Pa) and diabetic retinopathy cases (4.3 ± 1.1 Pa). Conversely, von Mises stress was similar in each case. We have reported a novel biomechanical framework to explore the stresses in the retina. Despite current limitations and lack of complete subject-specific physiological inputs, we believe our framework is the first of its kind and with further improvements could be useful to better understand the biomechanics of the retina.
Collapse
|
25
|
Jensen OE, Chernyavsky IL. Blood flow and transport in the human placenta. ANNUAL REVIEW OF FLUID MECHANICS 2019; 51:25-47. [PMID: 38410641 PMCID: PMC7615669 DOI: 10.1146/annurev-fluid-010518-040219] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The placenta is a multi-functional organ that exchanges blood gases and nutrients between a mother and her developing fetus. In humans, fetal blood flows through intricate networks of vessels confined within villous trees, the branches of which are bathed in pools of maternal blood. Fluid mechanics and transport processes play a central role in understanding how these elaborate structures contribute to the function of the placenta, and how their disorganization may lead to disease. Recent advances in imaging and computation have spurred significant advances in simulations of fetal and maternal flows within the placenta, across a range of lengthscales. Models describe jets of maternal blood emerging from spiral arteries into a disordered and deformable porous medium, and solute uptake by fetal blood flowing through elaborate three-dimensional capillary networks. We survey recent developments and emerging challenges in modeling flow and transport in this complex organ.
Collapse
Affiliation(s)
| | - Igor L. Chernyavsky
- School of Mathematics, University of Manchester, UK
- Maternal and Fetal Health Research Centre, Division of Developmental
Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine
& Health, University of Manchester, UK
| |
Collapse
|
26
|
Advances in Human Placental Biomechanics. Comput Struct Biotechnol J 2018; 16:298-306. [PMID: 30181841 PMCID: PMC6120428 DOI: 10.1016/j.csbj.2018.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/06/2018] [Accepted: 08/12/2018] [Indexed: 11/21/2022] Open
Abstract
Pregnancy complications are a major clinical concern due to the related maternal and fetal morbidity. Many are caused through defective placentation, but research into placental function is difficult, principally because of the ethical limitations associated with the in-vivo organ and the difficulty of extrapolating animal models. Perfused by two separate circulations, the maternal and fetal bloodstreams, the placenta has a unique structure and performs multiple complex functions. Three-dimensional imaging and computational modelling are becoming popular tools to investigate the morphology and physiology of this organ. These techniques bear the potential for better understanding the aetiology and development of placental pathologies, however, their full potential is yet to be exploited. This review aims to summarize the recent insights into placental structure and function by employing these novel techniques.
Collapse
|
27
|
Nuñez JR, Anderton CR, Renslow RS. Optimizing colormaps with consideration for color vision deficiency to enable accurate interpretation of scientific data. PLoS One 2018; 13:e0199239. [PMID: 30067751 PMCID: PMC6070163 DOI: 10.1371/journal.pone.0199239] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 06/04/2018] [Indexed: 11/24/2022] Open
Abstract
Color vision deficiency (CVD) affects more than 4% of the population and leads to a different visual perception of colors. Though this has been known for decades, colormaps with many colors across the visual spectra are often used to represent data, leading to the potential for misinterpretation or difficulty with interpretation by someone with this deficiency. Until the creation of the module presented here, there were no colormaps mathematically optimized for CVD using modern color appearance models. While there have been some attempts to make aesthetically pleasing or subjectively tolerable colormaps for those with CVD, our goal was to make optimized colormaps for the most accurate perception of scientific data by as many viewers as possible. We developed a Python module, cmaputil, to create CVD-optimized colormaps, which imports colormaps and modifies them to be perceptually uniform in CVD-safe colorspace while linearizing and maximizing the brightness range. The module is made available to the science community to enable others to easily create their own CVD-optimized colormaps. Here, we present an example CVD-optimized colormap created with this module that is optimized for viewing by those without a CVD as well as those with red-green colorblindness. This colormap, cividis, enables nearly-identical visual-data interpretation to both groups, is perceptually uniform in hue and brightness, and increases in brightness linearly.
Collapse
Affiliation(s)
- Jamie R. Nuñez
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Christopher R. Anderton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Ryan S. Renslow
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| |
Collapse
|
28
|
Nye GA, Ingram E, Johnstone ED, Jensen OE, Schneider H, Lewis RM, Chernyavsky IL, Brownbill P. Human placental oxygenation in late gestation: experimental and theoretical approaches. J Physiol 2018; 596:5523-5534. [PMID: 29377190 PMCID: PMC6265570 DOI: 10.1113/jp275633] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/18/2018] [Indexed: 01/26/2023] Open
Abstract
The placenta is crucial for life. It is an ephemeral but complex organ acting as the barrier interface between maternal and fetal circulations, providing exchange of gases, nutrients, hormones, waste products and immunoglobulins. Many gaps exist in our understanding of the detailed placental structure and function, particularly in relation to oxygen handling and transfer in healthy and pathological states in utero. Measurements to understand oxygen transfer in vivo in the human are limited, with no general agreement on the most appropriate methods. An invasive method for measuring partial pressure of oxygen in the intervillous space through needle electrode insertion at the time of Caesarean sections has been reported. This allows for direct measurements in vivo whilst maintaining near normal placental conditions; however, there are practical and ethical implications in using this method for determination of placental oxygenation. Furthermore, oxygen levels are likely to be highly heterogeneous within the placenta. Emerging non-invasive techniques, such as MRI, and ex vivo research are capable of enhancing and improving current imaging methodology for placental villous structure and increase the precision of oxygen measurement within placental compartments. These techniques, in combination with mathematical modelling, have stimulated novel cross-disciplinary approaches that could advance our understanding of placental oxygenation and its metabolism in normal and pathological pregnancies, improving clinical treatment options and ultimately outcomes for the patient.
Collapse
Affiliation(s)
- Gareth A Nye
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Emma Ingram
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Edward D Johnstone
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Oliver E Jensen
- School of Mathematics, University of Manchester, Manchester, M13 9PL, UK
| | - Henning Schneider
- Department of Obstetrics and Gynecology, Inselspital, University of Bern, CH-3010, Bern, Switzerland
| | - Rohan M Lewis
- Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Igor L Chernyavsky
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,School of Mathematics, University of Manchester, Manchester, M13 9PL, UK
| | - Paul Brownbill
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| |
Collapse
|
29
|
Duran CL, Abbey CA, Bayless KJ. Establishment of a three-dimensional model to study human uterine angiogenesis. Mol Hum Reprod 2018; 24:74-93. [PMID: 29329415 PMCID: PMC6454809 DOI: 10.1093/molehr/gax064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/25/2017] [Accepted: 12/19/2017] [Indexed: 01/29/2023] Open
Abstract
STUDY QUESTION Can primary human uterine microvascular endothelial cells (UtMVECs) be used as a model to study uterine angiogenic responses in vitro that are relevant in pregnancy? SUMMARY ANSWER UtMVECs demonstrated angiogenic responses when stimulated with proangiogenic factors, including sphingosine 1-phosphate (S1P), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), physiological levels of wall shear stress (WSS), human chorionic gonadotropin (hCG) and various combinations of estrogen and progesterone. WHAT IS KNOWN ALREADY During sprouting angiogenesis, signaling from growth factors and cytokines induces a monolayer of quiescent endothelial cells (ECs) lining the vasculature to degrade the extracellular matrix and invade the surrounding tissue to form new capillaries. During pregnancy and the female reproductive cycle, the uterine endothelium becomes activated and undergoes sprouting angiogenesis to increase the size and number of blood vessels in the endometrium. STUDY DESIGN, SIZE, DURATION The study was designed to examine the angiogenic potential of primary human UtMVECs using the well-characterized human umbilical vein EC (HUVEC) line as a control to compare angiogenic potential. ECs were seeded onto three-dimensional (3D) collagen matrices, supplemented with known proangiogenic stimuli relevant to pregnancy and allowed to invade for 24 h. Sprouting responses were analyzed using manual and automated methods for quantification. PARTICIPANTS/MATERIALS, SETTING, METHODS RT-PCR, Western blot analysis and immunostaining were used to characterize UtMVECs. Angiogenic responses were examined using 3D invasion assays. Western blotting was used to confirm signaling responses after proangiogenic lipid, pharmacological inhibitor, and recombinant lentiviral treatments. All experiments were repeated at least three times. MAIN RESULTS AND THE ROLE OF CHANCE After ensuring that UtMVECs expressed the proper endothelial markers, we found that UtMVECs invade 3D collagen matrices dose-dependently in response to known proangiogenic stimuli (e.g. S1P, VEGF, bFGF, hCG, estrogen, progesterone and WSS) present during early pregnancy. Invasion responses were positively correlated with phosphorylation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and p42/p44 mitogen-activated protein kinase (ERK). Inhibition of these second messengers significantly impaired sprouting (P < 0.01). Gene silencing of membrane type 1-matrix metalloproteinase using multiple approaches completely abrogated sprouting (P < 0.001). Finally, UtMVECs displayed a unique ability to undergo sprouting in response to hCG, and combined estrogen and progesterone treatment. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION The study of uterine angiogenesis in vitro has limitations and any findings many not fully represent the in vivo state. However, these experiments do provide evidence for the ability of UtMVECs to be used in functional sprouting assays in a 3D environment, stimulated by physiological factors that are produced locally within the uterus during early pregnancy. WIDER IMPLICATIONS OF THE FINDINGS We show that UtMVECs can be used reliably to investigate how growth factors, hormones, lipids and other factors, such as flow, affect angiogenesis in the uterus. STUDY FUNDING/COMPETING INTERESTS This work was supported by NIH award HL095786 to K.J.B. The authors have no conflicts of interest.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
- Interdisciplinary Program in Genetics, Texas A&M University, Mail Stop 2128, College Station, TX 77843, USA
| | - Colette A Abbey
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
- Interdisciplinary Program in Genetics, Texas A&M University, Mail Stop 2128, College Station, TX 77843, USA
- Interdisciplinary Faculty of Reproductive Biology, Texas A&M University, Mail Stop 2471, College Station, TX 77843, USA
| |
Collapse
|
30
|
Perazzolo S, Lewis R, Sengers B. Modelling the effect of intervillous flow on solute transfer based on 3D imaging of the human placental microstructure. Placenta 2017; 60:21-27. [DOI: 10.1016/j.placenta.2017.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/29/2017] [Accepted: 10/10/2017] [Indexed: 01/05/2023]
|
31
|
Saghian R, James JL, Tawhai MH, Collins SL, Clark AR. Association of Placental Jets and Mega-Jets With Reduced Villous Density. J Biomech Eng 2017; 139:2610237. [PMID: 28267189 DOI: 10.1115/1.4036145] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Indexed: 01/19/2023]
Abstract
Spiral arteries (SAs) lie at the interface between the uterus and placenta, and supply nutrients to the placental surface. Maternal blood circulation is separated from the fetal circulation by structures called villous trees. SAs are transformed in early pregnancy from tightly coiled vessels to large high-capacity channels, which is believed to facilitate an increased maternal blood flow throughout pregnancy with minimal increase in velocity, preventing damage to delicate villous trees. Significant maternal blood flow velocities have been theorized in the space surrounding the villi (the intervillous space, IVS), particularly when SA conversion is inadequate, but have only recently been visualized reliably using pulsed wave Doppler ultrasonography. Here, we present a computational model of blood flow from SA openings, allowing prediction of IVS properties based on jet length. We show that jets of flow observed by ultrasound are likely correlated with increased IVS porosity near the SA mouth and propose that observed mega-jets (flow penetrating more than half the placental thickness) are only possible when SAs open to regions of the placenta with very sparse villous structures. We postulate that IVS tissue density must decrease at the SA mouth through gestation, supporting the hypothesis that blood flow from SAs influences villous tree development.
Collapse
Affiliation(s)
- Rojan Saghian
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand e-mail:
| | - Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand e-mail:
| | - Merryn H Tawhai
- Professor Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand e-mail:
| | - Sally L Collins
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford OX3 9DU, UK e-mail:
| | - Alys R Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand e-mail:
| |
Collapse
|
32
|
Pehrson C, Salanti A, Theander TG, Nielsen MA. Pre-clinical and clinical development of the first placental malaria vaccine. Expert Rev Vaccines 2017; 16:613-624. [PMID: 28434376 DOI: 10.1080/14760584.2017.1322512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Malaria during pregnancy is a massive health problem in endemic areas. Placental malaria infections caused by Plasmodium falciparum are responsible for up to one million babies being born with a low birth weight every year. Significant efforts have been invested into preventing the condition. Areas covered: Pub Med was searched using the broad terms 'malaria parasite placenta' to identify studies of interactions between parasite and host, 'prevention of placental malaria' to identify current strategies to prevent placental malaria, and 'placental malaria vaccine' to identify pre-clinical vaccine development. However, all papers from these searches were not systematically included. Expert commentary: The first phase I clinical trials of vaccines are well underway. Trials testing efficacy are more complicated to carry out as only women that are exposed to parasites during pregnancy will contribute to endpoint measurements, further it may require extensive follow-up to establish protection. Future second generation vaccines may overcome the inherent challenges in making an effective placental malaria vaccine.
Collapse
Affiliation(s)
- Caroline Pehrson
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Ali Salanti
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Thor G Theander
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Morten A Nielsen
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| |
Collapse
|
33
|
Viscosity and haemodynamics in a late gestation rat feto-placental arterial network. Biomech Model Mechanobiol 2017; 16:1361-1372. [PMID: 28258413 DOI: 10.1007/s10237-017-0892-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/21/2017] [Indexed: 12/26/2022]
Abstract
The placenta is a transient organ which develops during pregnancy to provide haemotrophic support for healthy fetal growth and development. Fundamental to its function is the healthy development of vascular trees in the feto-placental arterial network. Despite the strong association of haemodynamics with vascular remodelling mechanisms, there is a lack of computational haemodynamic data that may improve our understanding of feto-placental physiology. The aim of this work was to create a comprehensive 3D computational fluid dynamics model of a substructure of the rat feto-placental arterial network and investigate the influence of viscosity on wall shear stress (WSS). Late gestation rat feto-placental arteries were perfused with radiopaque Microfil and scanned via micro-computed tomography to capture the feto-placental arterial geometry in 3D. A detailed description of rat fetal blood viscosity parameters was developed, and three different approaches to feto-placental haemodynamics were simulated in 3D using the finite volume method: Newtonian model, non-Newtonian Carreau-Yasuda model and Fåhræus-Lindqvist effect model. Significant variability in WSS was observed between different viscosity models. The physiologically-realistic simulations using the Fåhræus-Lindqvist effect and rat fetal blood estimates of viscosity revealed detailed patterns of WSS throughout the arterial network. We found WSS gradients at bifurcation regions, which may contribute to vessel enlargement, and sprouting and pruning during angiogenesis. This simulation of feto-placental haemodynamics shows the heterogeneous WSS distribution throughout the network and demonstrates the ability to determine physiologically-relevant WSS magnitudes, patterns and gradients. This model will help advance our understanding of vascular physiology and remodelling in the feto-placental network.
Collapse
|
34
|
Pehrson C, Heno KK, Adams Y, Resende M, Mathiesen L, Soegaard M, de Jongh WA, Theander TG, Salanti A, Nielsen MA. Comparison of functional assays used in the clinical development of a placental malaria vaccine. Vaccine 2016; 35:610-618. [PMID: 28012775 DOI: 10.1016/j.vaccine.2016.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Malaria in pregnancy is associated with significant morbidity in pregnant women and their offspring. Plasmodium falciparum infected erythrocytes (IE) express VAR2CSA that mediates binding to chondroitin sulphate A (CSA) in the placenta. Two VAR2CSA-based vaccines for placental malaria are in clinical development. The purpose of this study was to evaluate the robustness and comparability of binding inhibition assays used in the clinical development of placental malaria vaccines. METHODS The ability of sera from animals immunised with different VAR2CSA constructs to inhibit IE binding to CSA was investigated in three in vitro assays using 96-well plates, petri dishes, capillary flow and an ex vivo placental perfusion assay. RESULTS The inter-assay variation was not uniform between assays and ranged from above ten-fold in the flow assay to two-fold in the perfusion assay. The intra-assay variation was highest in the petri dish assay. A positive correlation between IE binding avidity and the level of binding after antibody inhibition in the petri dish assay indicate that high avidity IE binding is more difficult to inhibit. The highest binding inhibition sensitivity was found in the 96-well and petri dish assays compared to the flow and perfusion assays where binding inhibition required higher antibody titers. CONCLUSIONS The inhibitory capacity of antibodies is not easily translated between assays and the high sensitivity of the 96-well and petri dish assays stresses the need for comparing serial dilutions of serum. Furthermore, IE binding avidity must be in the same range when comparing data from different days. There was an overall concordance in the capacity of antibody-mediated inhibition, when comparing the in vitro assays with the perfusion assay, which more closely represents in vivo conditions. Importantly the ID1-ID2a protein in a liposomal formulation, currently in a phase I trial, effectively induced antibodies that inhibited IE adhesion in placental tissue.
Collapse
Affiliation(s)
- Caroline Pehrson
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Kristine K Heno
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Mafalda Resende
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Line Mathiesen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark.
| | - Max Soegaard
- ExpreS2ion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark.
| | - Willem A de Jongh
- ExpreS2ion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark.
| | - Thor G Theander
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Morten A Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| |
Collapse
|
35
|
Shah RG, Salafia CM, Girardi T, Merz GS. Villus packing density and lacunarity: Markers of placental efficiency? Placenta 2016; 48:68-71. [PMID: 27871475 DOI: 10.1016/j.placenta.2016.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/05/2016] [Accepted: 09/28/2016] [Indexed: 11/28/2022]
Abstract
We evaluate, in routine H&E histology slides, villus quantity in a given area (villous packing density, VPD) and the pattern or "gappiness" of villous distribution (lacunarity), and test for correlations with a proxy for fetoplacental metabolic rate, β calculated as (ln (placental weight)/ln (birthweight)) from Kleiber's law [1]. Three ∼4.3 mm2 images each were obtained from 88 term placentas. Ranges of VPD and lacunarity were each correlated with β (r = 0.31, p = 0.003, r = 0.23, p = 0.03 and respectively). The relationship between β and within-placenta variation in VPD and lacunarity highlights the need to study not merely the mean but the variance of villous geometries and spatial distributions.
Collapse
Affiliation(s)
- R G Shah
- Placental Analytics, LLC, New Rochelle, NY, USA
| | - C M Salafia
- Placental Analytics, LLC, New Rochelle, NY, USA; Institute for Basic Research, Staten Island, NY, USA.
| | - T Girardi
- Placental Analytics, LLC, New Rochelle, NY, USA
| | - G S Merz
- Institute for Basic Research, Staten Island, NY, USA
| |
Collapse
|
36
|
Pearce P, Brownbill P, Janáček J, Jirkovská M, Kubínová L, Chernyavsky IL, Jensen OE. Image-Based Modeling of Blood Flow and Oxygen Transfer in Feto-Placental Capillaries. PLoS One 2016; 11:e0165369. [PMID: 27788214 PMCID: PMC5082864 DOI: 10.1371/journal.pone.0165369] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/11/2016] [Indexed: 11/29/2022] Open
Abstract
During pregnancy, oxygen diffuses from maternal to fetal blood through villous trees in the placenta. In this paper, we simulate blood flow and oxygen transfer in feto-placental capillaries by converting three-dimensional representations of villous and capillary surfaces, reconstructed from confocal laser scanning microscopy, to finite-element meshes, and calculating values of vascular flow resistance and total oxygen transfer. The relationship between the total oxygen transfer rate and the pressure drop through the capillary is shown to be captured across a wide range of pressure drops by physical scaling laws and an upper bound on the oxygen transfer rate. A regression equation is introduced that can be used to estimate the oxygen transfer in a capillary using the vascular resistance. Two techniques for quantifying the effects of statistical variability, experimental uncertainty and pathological placental structure on the calculated properties are then introduced. First, scaling arguments are used to quantify the sensitivity of the model to uncertainties in the geometry and the parameters. Second, the effects of localized dilations in fetal capillaries are investigated using an idealized axisymmetric model, to quantify the possible effect of pathological placental structure on oxygen transfer. The model predicts how, for a fixed pressure drop through a capillary, oxygen transfer is maximized by an optimal width of the dilation. The results could explain the prevalence of fetal hypoxia in cases of delayed villous maturation, a pathology characterized by a lack of the vasculo-syncytial membranes often seen in conjunction with localized capillary dilations.
Collapse
Affiliation(s)
- Philip Pearce
- School of Mathematics, University of Manchester, Manchester, M13 9PL, United Kingdom
- * E-mail:
| | - Paul Brownbill
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Jiří Janáček
- Department of Biomathematics, Institute of Physiology, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Marie Jirkovská
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Albertov 4, CZ-12801 Prague 2, Czech Republic
| | - Lucie Kubínová
- Department of Biomathematics, Institute of Physiology, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Igor L. Chernyavsky
- School of Mathematics, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Oliver E. Jensen
- School of Mathematics, University of Manchester, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
37
|
Lecarpentier E, Atallah A, Guibourdenche J, Hebert-Schuster M, Vieillefosse S, Chissey A, Haddad B, Pidoux G, Evain-Brion D, Barakat A, Fournier T, Tsatsaris V. Fluid Shear Stress Promotes Placental Growth Factor Upregulation in Human Syncytiotrophoblast Through the cAMP-PKA Signaling Pathway. Hypertension 2016; 68:1438-1446. [PMID: 27698065 DOI: 10.1161/hypertensionaha.116.07890] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/03/2016] [Accepted: 09/11/2016] [Indexed: 12/21/2022]
Abstract
The effects of fluid shear stress (FSS) on the human syncytiotrophoblast and its biological functions have never been studied. During pregnancy, the syncytiotrophoblast is the main source of placental growth factor (PlGF), a proangiogenic factor involved in the placental angiogenesis and the vascular adaptation to pregnancy. The role of FSS in regulating PlGF expression in syncytiotrophoblasts is unknown. We investigated the impact of FSS on the production and secretion of the PlGF by the human syncytiotrophoblasts in primary cell culture. Laminar and continuous FSS (1 dyn cm-2) was applied to human syncytiotrophoblasts cultured in a parallel-plate flow chambers. Secreted levels of PlGF, sFlt-1 (soluble fms-like tyrosin kinase-1), and prostaglandin E2 were tested by immunologic assay. PlGF levels of mRNA and intracellular protein were examined by RT-PCR and Western blot, respectively. Intracellular cAMP levels were examined by time-resolved fluorescence resonance energy transfer cAMP accumulation assay. Production of cAMP and PlGF secretion was significantly increased in FSS conditions compared with static conditions. Western blot analysis of cell extracts exposed to FSS showed an increased phosphorylation of protein kinase A substrates and cAMP response element-binding protein on serine 133. FSS-induced phosphorylation of cAMP response element-binding protein and upregulation of PlGF were prevented by inhibition of protein kinase A with H89 (3 μmol/L). FSS also triggers intracellular calcium flux, which increases the synthesis and release of prostaglandin E2. The enhanced intracellular cAMP in FSS conditions was blocked by COX1/COX2 (cyclooxygenase) inhibitors, suggesting that the increase in prostaglandin E2 production could activate the cAMP/protein kinase A pathway in an autocrine/paracrine fashion. FSS activates the cAMP/protein kinase A pathway leading to upregulation of PlGF in human syncytiotrophoblast.
Collapse
Affiliation(s)
- Edouard Lecarpentier
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.).
| | - Anthony Atallah
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Jean Guibourdenche
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Marylise Hebert-Schuster
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Sarah Vieillefosse
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Audrey Chissey
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Bassam Haddad
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Guillaume Pidoux
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Daniele Evain-Brion
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Abdul Barakat
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Thierry Fournier
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Vassilis Tsatsaris
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| |
Collapse
|
38
|
Clark AR, Kruger JA. Mathematical modeling of the female reproductive system: from oocyte to delivery. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 9. [PMID: 27612162 DOI: 10.1002/wsbm.1353] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/08/2016] [Accepted: 06/28/2016] [Indexed: 12/30/2022]
Abstract
From ovulation to delivery, and through the menstrual cycle, the female reproductive system undergoes many dynamic changes to provide an optimal environment for the embryo to implant, and to develop successfully. It is difficult ethically and practically to observe the system over the timescales involved in growth and development (often hours to days). Even in carefully monitored conditions clinicians and biologists can only see snapshots of the development process. Mathematical models are emerging as a key means to supplement our knowledge of the reproductive process, and to tease apart complexity in the reproductive system. These models have been used successfully to test existing hypotheses regarding the mechanisms of female infertility and pathological fetal development, and also to provide new experimentally testable hypotheses regarding the process of development. This new knowledge has allowed for improvements in assisted reproductive technologies and is moving toward translation to clinical practice via multiscale assessments of the dynamics of ovulation, development in pregnancy, and the timing and mechanics of delivery. WIREs Syst Biol Med 2017, 9:e1353. doi: 10.1002/wsbm.1353 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Alys R Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jennifer A Kruger
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
39
|
Lin M, Mauroy B, James JL, Tawhai MH, Clark AR. A multiscale model of placental oxygen exchange: The effect of villous tree structure on exchange efficiency. J Theor Biol 2016; 408:1-12. [PMID: 27378004 DOI: 10.1016/j.jtbi.2016.06.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022]
Abstract
The placenta is critical to fetal health during pregnancy as it supplies oxygen and nutrients to maintain life. It has a complex structure, and alterations to this structure across spatial scales are associated with several pregnancy complications, including intrauterine growth restriction (IUGR). The relationship between placental structure and its efficiency as an oxygen exchanger is not well understood in normal or pathological pregnancies. Here we present a computational framework that predicts oxygen transport in the placenta which accounts for blood and oxygen transport in the space around a placental functional unit (the villous tree). The model includes the well-defined branching structure of the largest villous tree branches, as well as a smoothed representation of the small terminal villi that comprise the placenta's gas exchange interfaces. The model demonstrates that oxygen exchange is sensitive to villous tree geometry, including the villous branch length and volume, which are seen to change in IUGR. This is because, to be an efficient exchanger, the architecture of the villous tree must provide a balance between maximising the surface area available for exchange, and the opposing condition of allowing sufficient maternal blood flow to penetrate into the space surrounding the tree. The model also predicts an optimum oxygen exchange when the branch angle is 24 °, as villous branches and TBs are spread out sufficiently to channel maternal blood flow deep into the placental tissue for oxygen exchange without being shunted directly into the DVs. Without concurrent change in the branch length and angles, the model predicts that the number of branching generations has a small influence on oxygen exchange. The modelling framework is presented in 2D for simplicity but is extendible to 3D or to incorporate the high-resolution imaging data that is currently evolving to better quantify placental structure.
Collapse
Affiliation(s)
- Mabelle Lin
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | - Benjamin Mauroy
- Laboratoire J. A. Dieudonné - UMR CNRS 7351, Université de Nice-Sophia Antipolis, Nice, France.
| | - Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - Merryn H Tawhai
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | - Alys R Clark
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
40
|
Brownbill P, Chernyavsky I, Bottalico B, Desoye G, Hansson S, Kenna G, Knudsen LE, Markert UR, Powles-Glover N, Schneider H, Leach L. An international network (PlaNet) to evaluate a human placental testing platform for chemicals safety testing in pregnancy. Reprod Toxicol 2016; 64:191-202. [PMID: 27327413 DOI: 10.1016/j.reprotox.2016.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/23/2016] [Accepted: 06/07/2016] [Indexed: 12/14/2022]
Abstract
The human placenta is a critical life-support system that nourishes and protects a rapidly growing fetus; a unique organ, species specific in structure and function. We consider the pressing challenge of providing additional advice on the safety of prescription medicines and environmental exposures in pregnancy and how ex vivo and in vitro human placental models might be advanced to reproducible human placental test systems (HPTSs), refining a weight of evidence to the guidance given around compound risk assessment during pregnancy. The placental pharmacokinetics of xenobiotic transfer, dysregulated placental function in pregnancy-related pathologies and influx/efflux transporter polymorphisms are a few caveats that could be addressed by HPTSs, not the specific focus of current mammalian reproductive toxicology systems. An international consortium, "PlaNet", will bridge academia, industry and regulators to consider screen ability and standardisation issues surrounding these models, with proven reproducibility for introduction into industrial and clinical practice.
Collapse
Affiliation(s)
- Paul Brownbill
- Maternal and Fetal Health Research Centre, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Igor Chernyavsky
- School of Mathematics, University of Manchester, Manchester, UK.
| | - Barbara Bottalico
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Lund University, Lund, Sweden,.
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria.
| | - Stefan Hansson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Lund University, Lund, Sweden,.
| | | | - Lisbeth E Knudsen
- Department of Public Health, Faculty Of Health Sciences, University of Copenhagen, Denmark.
| | - Udo R Markert
- Placenta-Labor Laboratory, Department of Obstetrics, Friedrich Schiller University, D-07740, Jena, Germany.
| | - Nicola Powles-Glover
- Reproductive, Development and Paediatric Centre of Excellence, AstraZeneca, Mereside, Alderley Park, Alderley Edge SK10 4TG, UK.
| | - Henning Schneider
- Department of Obstetrics and Gynecology, Inselspital, University of Bern, Switzerland.
| | - Lopa Leach
- Molecular Cell Biology & Development, School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, UK.
| |
Collapse
|