1
|
Xu C, He Z, Kang X, Zhao Y, Peng Q, Wen M, Yan J. Characterization and expression of the wall-associated kinase/wall-associated kinase-like (WAK/WAKL) family in response to Botrytis cinerea infection in strawberry (Fragaria×ananassa). BMC PLANT BIOLOGY 2025; 25:638. [PMID: 40375121 PMCID: PMC12079969 DOI: 10.1186/s12870-025-06405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/13/2025] [Indexed: 05/18/2025]
Abstract
BACKGROUND Gray mold caused by Botrytis cinerea is a major threat to the production of strawberry. An increasing number of studies have reported that wall-associated kinase/wall-associated kinase-like (WAK/WAKL) played an important role in the recognition of oligogalacturonic acids (OGs) and the induction of plant defense, but there have been no systematic studies of FaWAK/FaWAKL in strawberry. RESULTS In this study, we identified 167 FaWAK/FaWAKL gene family members within the strawberry (Fragaria×ananassa) genome. The phylogenetic analysis showed the FaWAK/FaWAKL gene family has been divided into five groups, and they were unevenly distributed on 46 chromosomes. An analysis of the cis-regulatory elements suggested the FaWAK/FaWAKL gene family was more sensitive to abscisic acid and methyl jasmonate. A total of 36 FaWAK/FaWAKL genes were activated by B. cinerea according to an RNA-seq analysis, and 8 of them strongly responded to B. cinerea and exogenous treatment with OGs, particularly FaWAK35. Transient overexpression of FaWAK35 increased the strawberry resistance to B. cinerea. CONCLUSION This study conducted a comprehensive analysis of FaWAK/FaWAKL and provides foundational insights for further exploration of FaWAK/FaWAKL genes in strawberry resistance to B. cinerea.
Collapse
Affiliation(s)
- Chenyang Xu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Zhimin He
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Xiaoru Kang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Yanwei Zhao
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Qingqing Peng
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Min Wen
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Jiaqi Yan
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China.
| |
Collapse
|
2
|
Chen H, Liu L, Zhou Q, Zhu Y, Gao Z, Zhu T, Huang J, Du M, Song Y, Meng L. Lesion Mimic Mutant: An Ideal Genetic Material for Deciphering the Balance Between Plant Immunity and Growth. RICE (NEW YORK, N.Y.) 2025; 18:34. [PMID: 40355767 PMCID: PMC12069192 DOI: 10.1186/s12284-025-00789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025]
Abstract
Lesion mimic mutants (LMMs) form hypersensitive response (HR)-like lesions, a form of programmed cell death (PCD), in the absence of pathogens, that often confer durable and broad-spectrum disease resistance, representing a potential source for breeding resistance. However, most LMM plants have significant growth retardation including cell death, leaf senescence, damaged chloroplast structure, decreased chlorophyll contents, and undesirable agronomic traits. Therefore, LMMs represent ideal genetic materials to decipher interactions between defense signaling and programmed cell death, and growth. Many LMMs have been identified in rice, and at least 61 genes have been cloned and functionally confirmed. LMM genes are reported to participate in various regulation pathways, including gene transcription and protein translation, ubiquitin-proteasome pathway, protein phosphorylation, vesicle trafficking, metabolic pathways, and phytohormone signaling, highlighting the complexity of regulatory mechanisms. This review discusses recent progress on characteristics of rice LMM and mechanisms of LMM gene regulation, and suggests directions for future theoretical research and the potential use of LMMs in rice breeding.
Collapse
Affiliation(s)
- Huilin Chen
- College of Agriculture and Biology of Liaocheng University, Liaocheng, 252000, China
| | - Letong Liu
- College of Agriculture and Biology of Liaocheng University, Liaocheng, 252000, China
| | - Qiguang Zhou
- College of Agriculture and Biology of Liaocheng University, Liaocheng, 252000, China
| | - Yulin Zhu
- College of Agriculture and Biology of Liaocheng University, Liaocheng, 252000, China
| | - Ziwen Gao
- College of Agriculture and Biology of Liaocheng University, Liaocheng, 252000, China
| | - Taotao Zhu
- College of Agriculture and Biology of Liaocheng University, Liaocheng, 252000, China
| | - Jie Huang
- Liaocheng Academy of Agricultural Sciences, Liaocheng, 252000, China
| | - Mengxue Du
- College of Agriculture and Biology of Liaocheng University, Liaocheng, 252000, China.
| | - Yong Song
- College of Agriculture and Biology of Liaocheng University, Liaocheng, 252000, China.
| | - Lingzhi Meng
- College of Agriculture and Biology of Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
3
|
Iqbal O, Yang X, Wang Z, Li D, Wen J, Ding J, Wang C, Li C, Wang Y. Comparative transcriptome and genome analysis between susceptible Zhefang rice variety Diantun 502 and its resistance variety Diantun 506 upon Magnaporthe oryzae infection. BMC PLANT BIOLOGY 2025; 25:341. [PMID: 40091040 PMCID: PMC11912658 DOI: 10.1186/s12870-025-06357-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Rice blast caused by Magnaporthe oryzae is the most severe and devastating disease in rice results in serious losses worldwide. Based on this, the interaction between rice and M. oryzae has been studied extensively for decades, but the pathogen always has a negative effect on the new and emerging rice varieties. RESULTS The present study employed comparative transcriptome strand-specific RNA sequencing and genome approaches of Diantun rice susceptible (D502) and resistance (D506) lines (leaves) in the presence of blast fungus, M. oryzae. Overall differential expression genes (DEGs) displayed 5838 and 3719 DEGs in D502 and D506, respectively 24hpi, however, the expression of DEGs in the former line was 5113, and in later line it was 4794 after 48hpi. Interestingly, only 2493 and 2418 DEGs were similar at both time hour points in both lines, respectively. Among DEGs, mostly exhibited down-regulated expression only in D502 major pathways, including plant hormones signal transduction and starch and sucrose metabolism at both time hours, suggesting susceptibility D502 on upon pathogen infection. Additionally, protein-protein interaction network analysis based on DEGs was performed between both varieties to find possible connections and increase interaction network complexity at 24h to 48h in D506, that might result in resistance to M. oryzae. We found many up and down-regulated DEGs only in D506 after pathogen infection, which might have a significant role in PTI and ETI immunity response. Next, through genomic analysis, different non-synonymous single nucleotide polymorphisms (nsSNPs) were identified between both D502 and D506 rice varieties. Here, four up-regulated genes, including WAK1, WAK4, WAK5, and OsDja9 harboring nsSNPs were found only in resistant D506 variety. Following alignment of open reading frame (ORF) region sequences revealed that the exonic SNPs lead the amino acid variation. CONCLUSION Our study proved that SNPs in these four genes were related to providing resistance in D506 line upon pathogen infection. In summary, we conclude that above-targeted rice defense and resistance genes identified through gene transcripts and modern genomic approaches could help us provide robust rice breeding and agricultural practices in future.
Collapse
Affiliation(s)
- Owais Iqbal
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xinyun Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ziyi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dandan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jiancheng Wen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jiasheng Ding
- Dehong Plant Protection Plant Inspection Station, Yunnan, China
| | - Chun Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China.
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, Yunnan, China.
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China.
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, Yunnan, China.
| |
Collapse
|
4
|
Xie W, Xue X, Wang Y, Zhang G, Zhao J, Zhang H, Wang G, Li L, Wang Y, Shan W, Zhang Y, Chen Z, Chen X, Feng Z, Hu K, Sun M, Chu C, Zuo S. Natural mutation in Stay-Green (OsSGR) confers enhanced resistance to rice sheath blight through elevating cytokinin content. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:807-823. [PMID: 39630094 PMCID: PMC11869175 DOI: 10.1111/pbi.14540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/16/2024] [Accepted: 11/22/2024] [Indexed: 03/01/2025]
Abstract
Sheath blight (ShB), caused by Rhizoctonia solani, is a highly destructive disease in many crops worldwide and no major resistance genes are available. Here, we identified a sbr1 (sheath blight resistance 1) rice mutant, which shows enhanced ShB resistance and maintains wildtype agronomic traits including yield, but carries an undesired stay-green phenotype. Through map-based cloning and transgenic validation, we found that an insertion disrupting the Stay-Green (OsSGR) gene is responsible for sbr1 phenotypes. Mechanistically, the sbr1/Ossgr mutants reduce the expression of most OsCKX genes, which function in cytokinin (CK) degradation, to accumulate CK leading to ShB resistance. Importantly, knockout of OsCKX7, predominantly expressed in the leaf sheath and highly induced by R. solani, significantly enhances ShB resistance without stay-green phenotype nor yield penalty, showing high application potential. Thus, our study reveals novel insights that OsSGR and cytokinin play key roles in rice-R. solani interaction and generates a valuable ShB-resistant germplasm.
Collapse
Affiliation(s)
- Wenya Xie
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Xiang Xue
- Yangzhou Polytechnic CollegeYangzhouChina
| | - Yu Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
| | - Guiyun Zhang
- Institute of Agricultural Sciences in Coastal Region of Jiangsu ProvinceYanchengChina
| | - Jianhua Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
| | - Huimin Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
| | - Guangda Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
| | - Lei Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Yiqin Wang
- State Key Laboratory of Plant Genomics, the Innovative Academy of Seed Design, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Wenfeng Shan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
| | - Yafang Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Zongxiang Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Xijun Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Zhiming Feng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Keming Hu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Mingfa Sun
- Institute of Agricultural Sciences in Coastal Region of Jiangsu ProvinceYanchengChina
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Shimin Zuo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety, Ministry of Education of China/Institutes of Agricultural Science and Technology DevelopmentYangzhou UniversityYangzhouChina
| |
Collapse
|
5
|
Cao FY, Zeng Y, Lee AR, Kim B, Lee D, Kim ST, Kwon SW. OsFBN6 Enhances Brown Spot Disease Resistance in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:3302. [PMID: 39683095 DOI: 10.3390/plants13233302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Brown spot (BS) is caused by necrotrophs fungi Cochliobolus miyabeanus (C. miyabeanus) which affects rainfed and upland production in rice, resulting in significant losses in yield and grain quality. Here, we explored the meJA treatment that leads to rice resistance to BS. Fibrillins (FBNs) family are constituents of plastoglobules in chloroplast response to biotic and abiotic stress, many research revealed that OsFBN1 and OsFBN5 are not only associated with the rice against disease but also with the JA pathway. The function of FBN6 was only researched in the Arabidopsis. We revealed gene expression levels of OsFBN1, OsFBN5, OsFBN6 and the JA pathway synthesis first specific enzyme OsAOS2 following infection with C. miyabeanus, OsAOS2 gene expression showed great regulation after C. miyabeanus and meJA treatment, indicating JA pathway response to BS resistance in rice. Three FBN gene expressions showed different significantly regulated modes in C. miyabeanus and meJA treatment. The haplotype analysis results showed OsFBN1 and OsFBN5 the diverse Haps significant with BS infection score, and the OsFBN6 showed stronger significance (**** p < 0.0001). Hence, we constructed OsFBN6 overexpression lines, which showed more resistance to BS compared to the wild type, revealing OsFBN6 positively regulated rice resistance to BS. We developed OsFBN6 genetic markers by haplotype analysis from 130 rice varieties according to whole-genome sequencing results, haplotype analysis, and marker development to facilitate the screening of BS-resistant varieties in rice breeding. The Caps marker developed by Chr4_30690229 can be directly applied to the breeding application of screening rice BS-resistant varieties.
Collapse
Affiliation(s)
- Fang-Yuan Cao
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yuting Zeng
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ah-Rim Lee
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Backki Kim
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Dongryung Lee
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Sun-Tae Kim
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Soon-Wook Kwon
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
6
|
Ma Z, Miao J, Yu J, Pan Y, Li D, Xu P, Sun X, Li J, Zhang H, Li Z, Zhang Z. The wall-associated kinase GWN1 controls grain weight and grain number in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:150. [PMID: 38847846 DOI: 10.1007/s00122-024-04658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/25/2024] [Indexed: 07/16/2024]
Abstract
Grain size is a crucial agronomic trait that determines grain weight and final yield. Although several genes have been reported to regulate grain size in rice (Oryza sativa), the function of Wall-Associated Kinase family genes affecting grain size is still largely unknown. In this study, we identified GRAIN WEIGHT AND NUMBER 1 (GWN1) using map-based cloning. GWN1 encodes the OsWAK74 protein kinase, which is conserved in plants. GWN1 negatively regulates grain length and weight by regulating cell proliferation in spikelet hulls. We also found that GWN1 negatively influenced grain number by influencing secondary branch numbers and finally increased plant grain yield. The GWN1 gene was highly expressed in inflorescences and its encoded protein is located at the cell membrane and cell wall. Moreover, we identified three haplotypes of GWN1 in the germplasm. GWN1hap1 showing longer grain, has not been widely utilized in modern rice varieties. In summary, GWN1 played a very important role in regulating grain length, weight and number, thereby exhibiting application potential in molecular breeding for longer grain and higher yield.
Collapse
Affiliation(s)
- Zhiqi Ma
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinli Miao
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jianping Yu
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Xingming Sun
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinjie Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hongliang Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
- Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya, Hainan, China.
| | - Zhanying Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Giovannetti M, Genre A. Walking on a tightrope: cell wall-associated kinases act as sensors and regulators of immunity and symbiosis. THE NEW PHYTOLOGIST 2024; 242:1851-1853. [PMID: 38415795 DOI: 10.1111/nph.19634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
This article is a Commentary on Zhang et al. (2024), 242: 2180–2194.
Collapse
Affiliation(s)
- Marco Giovannetti
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
| |
Collapse
|
8
|
Qiao L, Gao X, Jia Z, Liu X, Wang H, Kong Y, Qin P, Yang B. Identification of adult resistant genes to stripe rust in wheat from southwestern China based on GWAS and WGCNA analysis. PLANT CELL REPORTS 2024; 43:67. [PMID: 38341832 DOI: 10.1007/s00299-024-03148-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 02/13/2024]
Abstract
KEY MESSAGE In this study, genome-wide association studies combined with transcriptome data analysis were utilized to reveal potential candidate genes for stripe rust resistance in wheat, providing a basis for screening wheat varieties for stripe rust resistance. Wheat stripe rust, which is caused by the wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, Pst) is one of the world's most devastating diseases of wheat. Genetic resistance is the most effective strategy for controlling diseases. Although wheat stripe rust resistance genes have been identified to date, only a few of them confer strong and broad-spectrum resistance. Here, the resistance of 335 wheat germplasm resources (mainly wheat landraces) from southwestern China to wheat stripe rust was evaluated at the adult stage. Combined genome-wide association study (GWAS) and weighted gene co-expression network analysis (WGCNA) based on RNA sequencing from stripe rust resistant accession Y0337 and susceptible accession Y0402, five candidate resistance genes to wheat stripe rust (TraesCS1B02G170200, TraesCS2D02G181000, TraesCS4B02G117200, TraesCS6A02G189300, and TraesCS3A02G122300) were identified. The transcription level analyses showed that these five genes were significantly differentially expressed between resistant and susceptible accessions post inoculation with Pst at different times. These candidate genes could be experimentally transformed to validate and manipulate fungal resistance, which is beneficial for the development of the wheat cultivars resistant to stripe rust.
Collapse
Affiliation(s)
- Liang Qiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xue Gao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhiqiang Jia
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xingchen Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huiyutang Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yixi Kong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Baoju Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
9
|
Zhong T, Zhu M, Zhang Q, Zhang Y, Deng S, Guo C, Xu L, Liu T, Li Y, Bi Y, Fan X, Balint-Kurti P, Xu M. The ZmWAKL-ZmWIK-ZmBLK1-ZmRBOH4 module provides quantitative resistance to gray leaf spot in maize. Nat Genet 2024; 56:315-326. [PMID: 38238629 PMCID: PMC10864183 DOI: 10.1038/s41588-023-01644-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 12/08/2023] [Indexed: 02/09/2024]
Abstract
Gray leaf spot (GLS), caused by the fungal pathogens Cercospora zeae-maydis and Cercospora zeina, is a major foliar disease of maize worldwide (Zea mays L.). Here we demonstrate that ZmWAKL encoding cell-wall-associated receptor kinase-like protein is the causative gene at the major quantitative disease resistance locus against GLS. The ZmWAKLY protein, encoded by the resistance allele, can self-associate and interact with a leucine-rich repeat immune-related kinase ZmWIK on the plasma membrane. The ZmWAKLY/ZmWIK receptor complex interacts with and phosphorylates the receptor-like cytoplasmic kinase (RLCK) ZmBLK1, which in turn phosphorylates its downstream NADPH oxidase ZmRBOH4. Upon pathogen infection, ZmWAKLY phosphorylation activity is transiently increased, initiating immune signaling from ZmWAKLY, ZmWIK, ZmBLK1 to ZmRBOH4, ultimately triggering a reactive oxygen species burst. Our study thus uncovers the role of the maize ZmWAKL-ZmWIK-ZmBLK1-ZmRBOH4 receptor/signaling/executor module in perceiving the pathogen invasion, transducing immune signals, activating defense responses and conferring increased resistance to GLS.
Collapse
Affiliation(s)
- Tao Zhong
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P.R. China
| | - Mang Zhu
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P.R. China
| | - Qianqian Zhang
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P.R. China
| | - Yan Zhang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, P.R. China
| | - Suining Deng
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P.R. China
| | - Chenyu Guo
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P.R. China
| | - Ling Xu
- State Key Laboratory of Plant Environmental Resilience/College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Tingting Liu
- Baoshan Institute of Agricultural Science, Baoshan, P.R. China
| | - Yancong Li
- Baoshan Institute of Agricultural Science, Baoshan, P.R. China
| | - Yaqi Bi
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, P.R. China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, P.R. China
| | - Peter Balint-Kurti
- USDA-ARS Plant Science Research Unit, Raleigh NC and Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Mingliang Xu
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P.R. China.
| |
Collapse
|
10
|
Fan Y, Ma L, Pan X, Tian P, Wang W, Liu K, Xiong Z, Li C, Wang Z, Wang J, Zhang H, Bao Y. Genome-Wide Association Study Identifies Rice Panicle Blast-Resistant Gene Pb4 Encoding a Wall-Associated Kinase. Int J Mol Sci 2024; 25:830. [PMID: 38255904 PMCID: PMC10815793 DOI: 10.3390/ijms25020830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Rice blast is one of the most devastating diseases, causing a significant reduction in global rice production. Developing and utilizing resistant varieties has proven to be the most efficient and cost-effective approach to control blasts. However, due to environmental pressure and intense pathogenic selection, resistance has rapidly broken down, and more durable resistance genes are being discovered. In this paper, a novel wall-associated kinase (WAK) gene, Pb4, which confers resistance to rice blast, was identified through a genome-wide association study (GWAS) utilizing 249 rice accessions. Pb4 comprises an N-terminal signal peptide, extracellular GUB domain, EGF domain, EGF-Ca2+ domain, and intracellular Ser/Thr protein kinase domain. The extracellular domain (GUB domain, EGF domain, and EGF-Ca2+ domain) of Pb4 can interact with the extracellular domain of CEBiP. Additionally, its expression is induced by chitin and polygalacturonic acid. Furthermore, transgenic plants overexpressing Pb4 enhance resistance to rice blast. In summary, this study identified a novel rice blast-resistant gene, Pb4, and provides a theoretical basis for understanding the role of WAKs in mediating rice resistance against rice blast disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yongmei Bao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China (X.P.); (P.T.); (C.L.); (H.Z.)
| |
Collapse
|
11
|
Ahmed J, Sajjad Y, Latif A, Lodhi MS, Huzafa M, Situ C, Ahmad R, Shah MM, Hassan A. Genome-wide identification and characterization of wall-associated kinases, molecular docking and polysaccharide elicitation of monoterpenoid indole alkaloids in micro-propagated Catharanthus roseus. JOURNAL OF PLANT RESEARCH 2024; 137:125-142. [PMID: 37962734 DOI: 10.1007/s10265-023-01504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023]
Abstract
Wall-associated kinases (WAKs) are a unique family of proteins that are predominantly localized on the plasma membrane and simultaneously bound to the cell wall. WAKs play a pivotal role in signal transduction to regulate growth, defense, and response to environmental stimuli in plants. These kinases have been identified and characterized in various plant species, however, similar information for Catharanthus roseus is scarce. C. roseus is an evergreen ornamental plant that produces a repertoire of biologically active compounds. The plant is best characterized for the production of antineoplastic monoterpenoid indole alkaloids (MIAs) namely vinblastine and vincristine. Owing to the diverse composition of phytochemicals, C. roseus is known as a "model non-model" plant for secondary metabolite research. Genome analyses showed 37 putative CrWAK genes present in C. roseus, largely localized on the plasma membrane. Phylogenetic analysis revealed six clusters of CrWAKs. Diverse cis-acting elements, including those involved in defense responses, were identified on the promotor regions of CrWAK genes. The highest binding affinity (- 12.6 kcal/mol) was noted for CrWAK-22 against tri-galacturonic acid. Tri-galacturonic acid stimulated 2.5-fold higher production of vinblastine, sixfold upregulation of the expression of ORCA3 transcription factor, and 6.14-fold upregulation of CrWAK-22 expression. Based on these results it was concluded that the expression of CrWAK genes induced by biotic elicitors may have an important role in the production of MIAs. The current findings may serve as a basis for functional characterization and mechanistic explanation of the role of CrWAK genes in the biosynthesis of MIAs upon elicitation.
Collapse
Affiliation(s)
- Jawad Ahmed
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, BT9 5DL, UK
| | - Yasar Sajjad
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Aasia Latif
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Mohammad Saeed Lodhi
- Department of Management Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Muhammad Huzafa
- Department of Plant Sciences, Quaid-e-Azam University Islamabad, Islamabad, Pakistan
| | - Chen Situ
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, BT9 5DL, UK
| | - Raza Ahmad
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Muhammad Maroof Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Amjad Hassan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|
12
|
Yan W, Hu P, Ni Y, Zhao H, Liu X, Cao H, Jia M, Tian B, Miao H, Liu H. Genome-wide characterization of the wall-associated kinase-like (WAKL) family in sesame (Sesamum indicum) identifies a SiWAKL6 gene involved in resistance to Macrophomina Phaseolina. BMC PLANT BIOLOGY 2023; 23:624. [PMID: 38057720 DOI: 10.1186/s12870-023-04658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Sesame charcoal rot caused by Macrophomina phaseolina is one of the most serious fungal diseases in sesame production, and threatens the yield and quality of sesame. WAKL genes are important in the plant response to biotic stresses by sensing and transmitting external signals to the intracellular receptor. However, there is still a lack about the WAKL gene family and its function in sesame resistance to M. phaseolina. The aim of this study was to interpret the roles of WAKL genes in sesame resistance to M. phaseolina. RESULTS In this study, a comprehensive study of the WAKL gene family was conducted and 31 WAKL genes were identified in the sesame genome. Tandem duplication events were the main factor in expansion of the SiWAKL gene family. Phylogenetic analysis showed that the sesame SiWAKL gene family was divided into 4 groups. SiWAKL genes exhibited different expression patterns in diverse tissues. Under M. phaseolina stress, most SiWAKL genes were significantly induced. Notably, SiWAKL6 was strongly induced in the resistant variety "Zhengzhi 13". Functional analysis showed that SiWAKL6 was induced by salicylic acid but not methyl jasmonate in sesame. Overexpression of SiWAKL6 in transgenic Arabidopsis thaliana plants enhanced their resistance to M. phaseolina by inducing the expression of genes involved in the salicylic acid signaling pathway and reconstructing reactive oxygen species homeostasis. CONCLUSIONS Taken together, the results provide a better understanding of functions about SiWAKL gene family and suggest that manipulation of these SiWAKL genes can improve plant resistance to M. phaseolina. The findings contributed to further understanding of functions of SiWAKL genes in plant immunity.
Collapse
Affiliation(s)
- Wenqing Yan
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Peilin Hu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Yunxia Ni
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Hui Zhao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Xintao Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Hengchun Cao
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Zhengzhou, Henan, 450002, China
| | - Min Jia
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Baoming Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, 450002, China.
| | - Hongmei Miao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Zhengzhou, Henan, 450002, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, 450002, China.
- The Shennong Laboratory, Zhengzhou, Henan, 450002, China.
| | - Hongyan Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, 450002, China.
- The Shennong Laboratory, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
13
|
Zhou D, Chen X, Chen X, Xia Y, Liu J, Zhou G. Plant immune receptors interact with hemibiotrophic pathogens to activate plant immunity. Front Microbiol 2023; 14:1252039. [PMID: 37876778 PMCID: PMC10591190 DOI: 10.3389/fmicb.2023.1252039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
Phytopathogens pose a devastating threat to the productivity and yield of crops by causing destructive plant diseases in natural and agricultural environments. Hemibiotrophic pathogens have a variable-length biotrophic phase before turning to necrosis and are among the most invasive plant pathogens. Plant resistance to hemibiotrophic pathogens relies mainly on the activation of innate immune responses. These responses are typically initiated after the plant plasma membrane and various plant immune receptors detect immunogenic signals associated with pathogen infection. Hemibiotrophic pathogens evade pathogen-triggered immunity by masking themselves in an arms race while also enhancing or manipulating other receptors to promote virulence. However, our understanding of plant immune defenses against hemibiotrophic pathogens is highly limited due to the intricate infection mechanisms. In this review, we summarize the strategies that different hemibiotrophic pathogens interact with host immune receptors to activate plant immunity. We also discuss the significant role of the plasma membrane in plant immune responses, as well as the current obstacles and potential future research directions in this field. This will enable a more comprehensive understanding of the pathogenicity of hemibiotrophic pathogens and how distinct plant immune receptors oppose them, delivering valuable data for the prevention and management of plant diseases.
Collapse
Affiliation(s)
- Diao Zhou
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Xingzhou Chen
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Xinggang Chen
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Yandong Xia
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Junang Liu
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Guoying Zhou
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
14
|
Zheng S, Xu C, Lv G, Shuai H, Zhang Q, Zhu Q, Zhu H, Huang D. Foliar zinc reduced Cd accumulation in grains by inhibiting Cd mobility in the xylem and increasing Cd retention ability in roots 1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122046. [PMID: 37339732 DOI: 10.1016/j.envpol.2023.122046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023]
Abstract
Cadmium (Cd) pollution endangers the safe utilization of paddy soils, and foliar zinc (Zn) can reduce the toxic effects of Cd. However, little is known about the effects of foliar Zn application on the transport and immobilization of Cd in key rice tissues and the physiological state of rice plants. A pot experiment was conducted to explore the effects of spraying 0.2% and 0.4% Zn (ZnSO4) during the early grain-filling stage on Cd transport in rice, photosynthesis, glutathione (GSH) levels, Cd concentrations in xylem sap, and the expression of Zn transporter genes. The results showed that grain Cd concentrations in the 0.2% Zn and 0.4% Zn treatments were 24% and 31% lower, respectively, than those of the control treatments at maturity. Compared with the control treatments, the 0.4% Zn treatment increased Cd by 60%, 69%, 23%, and 22% in husks, rachises, first internodes, and roots, respectively. Application of Zn reduced xylem Cd content by up to 26% and downregulated transporter genes (OSZIP12, OSZIP4, and OSZIP7a) in flag leaves. Foliar Zn increased Cd bioaccumulation in roots while decreasing Cd bioaccumulation in grains. Zn reduced GSH concentration in flag leaves and stems, inhibiting photosynthesis (intercellular CO2 concentration, transpiration rate). Taken together, foliar Zn can reduce the expression of Zn transporter genes and the mobility of Cd in the xylem, promoting the fixation of Cd in husks, rachises, first internodes, and roots, ultimately reducing Cd concentration in rice grains.
Collapse
Affiliation(s)
- Shen Zheng
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Chao Xu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Guanghui Lv
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; College of Resources and Environmental Sciences, Hunan Normal University, Changsha, 410081, China
| | - Hong Shuai
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha, 410081, China
| | - Quan Zhang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qihong Zhu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Hanhua Zhu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Daoyou Huang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| |
Collapse
|
15
|
Al-Bader N, Meier A, Geniza M, Gongora YS, Oard J, Jaiswal P. Loss of a Premature Stop Codon in the Rice Wall-Associated Kinase 91 ( WAK91) Gene Is a Candidate for Improving Leaf Sheath Blight Disease Resistance. Genes (Basel) 2023; 14:1673. [PMID: 37761813 PMCID: PMC10530950 DOI: 10.3390/genes14091673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Leaf sheath blight disease (SB) of rice caused by the soil-borne fungus Rhizoctonia solani results in 10-30% global yield loss annually and can reach 50% under severe outbreaks. Many disease resistance genes and receptor-like kinases (RLKs) are recruited early on by the host plant to respond to pathogens. Wall-associated receptor kinases (WAKs), a subfamily of receptor-like kinases, have been shown to play a role in fungal defense. The rice gene WAK91 (OsWAK91), co-located in the major SB resistance QTL region on chromosome 9, was identified by us as a candidate in defense against rice sheath blight. An SNP mutation T/C in the WAK91 gene was identified in the susceptible rice variety Cocodrie (CCDR) and the resistant line MCR010277 (MCR). The consequence of the resistant allele C is a stop codon loss, resulting in an open reading frame with extra 62 amino acid carrying a longer protein kinase domain and additional phosphorylation sites. Our genotype and phenotype analysis of the parents CCDR and MCR and the top 20 individuals of the double haploid SB population strongly correlate with the SNP. The susceptible allele T is present in the japonica subspecies and most tropical and temperate japonica lines. Multiple US commercial rice varieties with a japonica background carry the susceptible allele and are known for SB susceptibility. This discovery opens the possibility of introducing resistance alleles into high-yielding commercial varieties to reduce yield losses incurred by the sheath blight disease.
Collapse
Affiliation(s)
- Noor Al-Bader
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (N.A.-B.); (A.M.); (M.G.)
- Molecular and Cellular Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA
| | - Austin Meier
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (N.A.-B.); (A.M.); (M.G.)
| | - Matthew Geniza
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (N.A.-B.); (A.M.); (M.G.)
- Molecular and Cellular Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA
| | - Yamid Sanabria Gongora
- Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (Y.S.G.); (J.O.)
| | - James Oard
- Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (Y.S.G.); (J.O.)
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (N.A.-B.); (A.M.); (M.G.)
| |
Collapse
|
16
|
Lopes NDS, Santos AS, de Novais DPS, Pirovani CP, Micheli F. Pathogenesis-related protein 10 in resistance to biotic stress: progress in elucidating functions, regulation and modes of action. FRONTIERS IN PLANT SCIENCE 2023; 14:1193873. [PMID: 37469770 PMCID: PMC10352611 DOI: 10.3389/fpls.2023.1193873] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/08/2023] [Indexed: 07/21/2023]
Abstract
Introduction The Family of pathogenesis-related proteins 10 (PR-10) is widely distributed in the plant kingdom. PR-10 are multifunctional proteins, constitutively expressed in all plant tissues, playing a role in growth and development or being induced in stress situations. Several studies have investigated the preponderant role of PR-10 in plant defense against biotic stresses; however, little is known about the mechanisms of action of these proteins. This is the first systematic review conducted to gather information on the subject and to reveal the possible mechanisms of action that PR-10 perform. Methods Therefore, three databases were used for the article search: PubMed, Web of Science, and Scopus. To avoid bias, a protocol with inclusion and exclusion criteria was prepared. In total, 216 articles related to the proposed objective of this study were selected. Results The participation of PR-10 was revealed in the plant's defense against several stressor agents such as viruses, bacteria, fungi, oomycetes, nematodes and insects, and studies involving fungi and bacteria were predominant in the selected articles. Studies with combined techniques showed a compilation of relevant information about PR-10 in biotic stress that collaborate with the understanding of the mechanisms of action of these molecules. The up-regulation of PR-10 was predominant under different conditions of biotic stress, in addition to being more expressive in resistant varieties both at the transcriptional and translational level. Discussion Biological models that have been proposed reveal an intrinsic network of molecular interactions involving the modes of action of PR-10. These include hormonal pathways, transcription factors, physical interactions with effector proteins or pattern recognition receptors and other molecules involved with the plant's defense system. Conclusion The molecular networks involving PR-10 reveal how the plant's defense response is mediated, either to trigger susceptibility or, based on data systematized in this review, more frequently, to have plant resistance to the disease.
Collapse
Affiliation(s)
- Natasha dos Santos Lopes
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Ariana Silva Santos
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Diogo Pereira Silva de Novais
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Carlos Priminho Pirovani
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Fabienne Micheli
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes Meditérranéennes et Tropicales (UMR AGAP Institut), Montpellier, France
| |
Collapse
|
17
|
Wang Z, Ma Y, Chen M, Da L, Su Z, Zhang Z, Liu X. Comparative genomics analysis of WAK/WAKL family in Rosaceae identify candidate WAKs involved in the resistance to Botrytis cinerea. BMC Genomics 2023; 24:337. [PMID: 37337162 DOI: 10.1186/s12864-023-09371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Wall associated kinase (WAK) and WAK-like (WAKL) are typical pattern recognition receptors act as the first sentry of plant defense. But little of WAK/WAKL family is known in Rosaceae. RESULTS In this study, 131 WAK/WAKL genes from apple, peach and strawberry were identified using a bioinformatics approach. Together with 68 RcWAK/RcWAKL in rose, we performed a comparative analysis of 199 WAK/WAKL in four Rosaceae crops. The phylogenetic analysis divided all the WAK/WAKL into five clades. Among them, the cis-elements of Clade II and Clade V promoters were enriched in jasmonic acid (JA) signaling and abiotic stress, respectively. And this can also be verified by the rose transcriptome responding to different hormone treatments. WAK/WAKL families have experienced a considerable proportion of purifying selection during evolution, but still 26 amino acid sites evolved under positive selection, which focused on extracellular conserved domains. WAK/WAKL genes presented collinearity relationship within and between crops, throughout four crops we mined four orthologous groups (OGs). The WAK/WAKL genes in OG1 and OG4 were speculated to involve in plant-Botrytis cinerea interaction, which were validated in rose via VIGS as well as strawberry by qRT-PCR. CONCLUSIONS These results not only provide genetic resources and valuable information for the evolutionary relationship of WAK/WAKL gene family, but also offer a reference for future in-depth studies of Rosaceae WAK/WAKL genes.
Collapse
Affiliation(s)
- Zicheng Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yuan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Meng Chen
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lingling Da
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China.
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Kong W, Shi J, Yang B, Yu S, Zhao P, Guo Z, Zhu H. Genome-Wide Analysis of the Wall-Associated Kinase ( WAK) Genes in Medicago truncatula and Functional Characterization of MtWAK24 in Response to Pathogen Infection. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091849. [PMID: 37176907 PMCID: PMC10180995 DOI: 10.3390/plants12091849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
The wall-associated kinases (WAKs) can perceive and transmit extracellular signals as one kind of unique receptor-like kinases (RLKs) involved in the regulation of cell expansion, pathogen resistance and abiotic stress tolerance. To understand their potential roles and screen some key candidates in Medicago truncatula (M. truncatula), genome-wide identification and characterization of MtWAKs were conducted in this study. A total of 54 MtWAK genes were identified and classified into four groups based on their protein domains. They were distributed on all chromosomes, while most of them were clustered on chromosome 1 and 3. The synteny analysis showed that 11 orthologous pairs were identified between M. truncatula and Arabidopsis thaliana (A. thaliana) and 31 pairs between M. truncatula and Glycine max (G. max). The phylogenetic analysis showed that WAK-RLKs were classified into five clades, and they exhibited a species-specific expansion. Most MtWAK-RLKs had similar exon-intron organization and motif distribution. Multiple cis-acting elements responsive to phytohormones, stresses, growth and development were observed in the promoter regions of MtWAK-RLKs. In addition, the expression patterns of MtWAK-RLKs varied with different plant tissues, developmental stages and biotic and abiotic stresses. Interestingly, plasm membrane localized MtWAK24 significantly inhibited Phytophthora infection in tobacco. The study provides valuable information for characterizing the molecular functions of MtWAKs in regulation of plant growth, development and stress tolerance in legume plants.
Collapse
Affiliation(s)
- Weiyi Kong
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Jia Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Yang
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuhan Yu
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengcheng Zhao
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Zhu
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Xie S, Liu H, Ma T, Shen S, Zheng H, Yang L, Liu L, Wei Z, Xin W, Zou D, Wang J. Global Phosphoproteomic Analysis Reveals the Defense and Response Mechanisms of Japonica Rice under Low Nitrogen Stress. Int J Mol Sci 2023; 24:ijms24097699. [PMID: 37175411 PMCID: PMC10178291 DOI: 10.3390/ijms24097699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Nitrogen-based nutrients are the main factors affecting rice growth and development. As the nitrogen (N) application rate increased, the nitrogen use efficiency (NUE) of rice decreased. Therefore, it is important to understand the molecular mechanism of rice plant morphological, physiological, and yield formation under low N conditions to improve NUE. In this study, changes in the rice morphological, physiological, and yield-related traits under low N (13.33 ppm) and control N (40.00 ppm) conditions were performed. These results show that, compared with control N conditions, photosynthesis and growth were inhibited and the carbon (C)/N and photosynthetic nitrogen use efficiency (PNUE) were enhanced under low N conditions. To understand the post-translational modification mechanism underlying the rice response to low N conditions, comparative phosphoproteomic analysis was performed, and differentially modified proteins (DMPs) were further characterized. Compared with control N conditions, a total of 258 DMPs were identified under low N conditions. The modification of proteins involved in chloroplast development, chlorophyll synthesis, photosynthesis, carbon metabolism, phytohormones, and morphology-related proteins were differentially altered, which was an important reason for changes in rice morphological, physiological, and yield-related traits. Additionally, inconsistent changes in level of transcription and protein modification, indicates that the study of phosphoproteomics under low N conditions is also important for us to better understand the adaptation mechanism of rice to low N stress. These results provide insights into global changes in the response of rice to low N stress and may facilitate the development of rice cultivars with high NUE by regulating the phosphorylation level of carbon metabolism and rice morphology-related proteins.
Collapse
Affiliation(s)
- Shupeng Xie
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Suihua Branch of Heilongjiang Academy of Agricultural Science, Suihua 152052, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Tianze Ma
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Shen Shen
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Lichao Liu
- Suihua Branch of Heilongjiang Academy of Agricultural Science, Suihua 152052, China
| | - Zhonghua Wei
- Suihua Branch of Heilongjiang Academy of Agricultural Science, Suihua 152052, China
| | - Wei Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
20
|
Zhang H, Liu Y, Zhang X, Ji W, Kang Z. A necessary considering factor for breeding: growth-defense tradeoff in plants. STRESS BIOLOGY 2023; 3:6. [PMID: 37676557 PMCID: PMC10441926 DOI: 10.1007/s44154-023-00086-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/27/2023] [Indexed: 09/08/2023]
Abstract
Crop diseases cause enormous yield losses and threaten global food security. Deployment of resistant cultivars can effectively control the disease and to minimize crop losses. However, high level of genetic immunity to disease was often accompanied by an undesired reduction in crop growth and yield. Recently, literatures have been rapidly emerged in understanding the mechanism of disease resistance and development genes in crop plants. To determine how and why the costs and the likely benefit of resistance genes caused in crop varieties, we re-summarized the present knowledge about the crosstalk between plant development and disease resistance caused by those genes that function as plasma membrane residents, MAPK cassette, nuclear envelope (NE) channels components and pleiotropic regulators. Considering the growth-defense tradeoffs on the basis of current advances, finally, we try to understand and suggest that a reasonable balancing strategies based on the interplay between immunity with growth should be considered to enhance immunity capacity without yield penalty in future crop breeding.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Yuanming Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiangyu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
21
|
A Novel Wall-Associated Kinase TaWAK-5D600 Positively Participates in Defense against Sharp Eyespot and Fusarium Crown Rot in Wheat. Int J Mol Sci 2023; 24:ijms24055060. [PMID: 36902488 PMCID: PMC10003040 DOI: 10.3390/ijms24055060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Sharp eyespot and Fusarium crown rot, mainly caused by soil-borne fungi Rhizoctonia cerealis and Fusarium pseudograminearum, are destructive diseases of major cereal crops including wheat (Triticum aestivum). However, the mechanisms underlying wheat-resistant responses to the two pathogens are largely elusive. In this study, we performed a genome-wide analysis of wall-associated kinase (WAK) family in wheat. As a result, a total of 140 TaWAK (not TaWAKL) candidate genes were identified from the wheat genome, each of which contains an N-terminal signal peptide, a galacturonan binding domain, an EGF-like domain, a calcium binding EGF domain (EGF-Ca), a transmembrane domain, and an intracellular Serine/Threonine protein kinase domain. By analyzing the RNA-sequencing data of wheat inoculated with R. cerealis and F. pseudograminearum, we found that transcript abundance of TaWAK-5D600 (TraesCS5D02G268600) on chromosome 5D was significantly upregulated, and that its upregulated transcript levels in response to both pathogens were higher compared with other TaWAK genes. Importantly, knock-down of TaWAK-5D600 transcript impaired wheat resistance against the fungal pathogens R. cerealis and F. pseudograminearum, and significantly repressed expression of defense-related genes in wheat, TaSERK1, TaMPK3, TaPR1, TaChitinase3, and TaChitinase4. Thus, this study proposes TaWAK-5D600 as a promising gene for improving wheat broad resistance to sharp eyespot and Fusarium crown rot (FCR) in wheat.
Collapse
|
22
|
Chen S, Cui L, Wang X. A plant cell wall-associated kinase encoding gene is dramatically downregulated during nematode infection of potato. PLANT SIGNALING & BEHAVIOR 2022; 17:2004026. [PMID: 34965851 PMCID: PMC8928814 DOI: 10.1080/15592324.2021.2004026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plant cell wall associated kinases (WAKs) and WAK-like kinases (WAKLs) have been increasingly recognized as important regulators of plant immunity against various plant pathogens. However, the role of the WAK/WAKL family in plant-nematode interactions remains to be determined. Here, we analyzed a WAK-encoding gene (Soltu.DM.02G029720.1) from potato (Solanum tuberosum). The Soltu.DM.02G029720.1 encoded protein contains domains characteristic of WAK/WAKL proteins and shows the highest similarity to SlWAKL2 from tomato (S. lycopersicum). We thus named the gene as StWAKL2. Phylogenetic analysis of a wide range of plant WAKs/WAKLs further revealed close similarity of StWAKL2 to three WAK/WAKL proteins demonstrated to play a role in disease resistance. To gain insights into the potential regulation and function of StWAKL2, transgenic potato lines containing the StWAKL2 promoter fused to the β-glucuronidase (GUS) reporter gene were generated and used to investigate StWAKL2 expression during plant development and upon nematode infection. Histochemical analyses revealed that StWAKL2 has specific expression patterns in potato leaf and root tissues. During nematode infection, GUS activity was mostly undetected at nematode infection sites over the course of nematode parasitism, although strong GUS activity was observed in root tissues adjacent to the infection region. Furthermore, mining of the transcriptomic data derived from cyst nematode infection of Arabidopsis roots identified a few WAK/WAKL genes, including a StWAKL2 homologue, found to be significantly down-regulated in nematode-induced feeding sites. These results indicated that specific suppression of WAK/WAKL genes in nematode-induced feeding sites might be crucial for cyst nematodes to achieve successful infection of host plants. Further studies are needed to uncover the role of WAK/WAKL genes in plant defenses against nematode infection.
Collapse
Affiliation(s)
- Shiyan Chen
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Lili Cui
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Xiaohong Wang
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Robert W. Holley Center for Agriculture and Health, US Department of Agriculture, Agricultural Research Service, Ithaca, NY, USA
- CONTACT Xiaohong Wang School of Integrative Plant Science, Cornell University, USDA-ARS, Ithaca, NY14853, USA
| |
Collapse
|
23
|
Wang D, Qin L, Wu M, Zou W, Zang S, Zhao Z, Lin P, Guo J, Wang H, Que Y. Identification and characterization of WAK gene family in Saccharum and the negative roles of ScWAK1 under the pathogen stress. Int J Biol Macromol 2022; 224:1-19. [PMID: 36481328 DOI: 10.1016/j.ijbiomac.2022.11.300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Wall-associated kinase (WAK) is widely involved in signal transduction, reproductive growth, responses to pathogen infection and metal ion stress in plants. In this study, 19, 12, and 37 SsWAK genes were identified in Saccharum spontaneum, Saccharum hybrid and Sorghum bicolor, respectively. Phylogenetic tree showed that they could be divided into three groups. These WAK genes contained multiple cis-acting elements related to stress, growth and hormone response. RNA-seq analysis demonstrated that SsWAK genes were constitutively expressed in different sugarcane tissues and involved in response to smut pathogen (Sporisorium scitamineum) stress. Additionally, ScWAK1 (GenBank Accession No. OP479864), was then isolated from sugarcane cultivar ROC22. It was highly expressed in leaves and roots and its expression could be induced under SA and MeJA stress. Besides, ScWAK1 was significantly downregulated in both smut-resistant and susceptible sugarcane cultivars in response to S. scitamineum infection. ScWAK1 was a membrane protein without self-activating activity. Furthermore, transient expression of ScWAK1 in Nicotiana benthamiana enhanced the susceptibility of tobacco to the inoculation of Ralstonia solanacearum and Fusarium solani var. coeruleum, suggesting its negative role in disease resistance. The present study reveals the origin, distribution and evolution of WAK gene family and provides potential gene resources for sugarcane molecular breeding.
Collapse
Affiliation(s)
- Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Liqian Qin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Mingxing Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhennan Zhao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Peixia Lin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hengbo Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| |
Collapse
|
24
|
Liu S, Wang T, Meng G, Liu J, Lu D, Liu X, Zeng Y. Cytological observation and transcriptome analysis reveal dynamic changes of Rhizoctonia solani colonization on leaf sheath and different genes recruited between the resistant and susceptible genotypes in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1055277. [PMID: 36407598 PMCID: PMC9669801 DOI: 10.3389/fpls.2022.1055277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Sheath blight, caused by Rhizoctonia solani, is a big threat to the global rice production. To characterize the early development of R. solani on rice leaf and leaf sheath, two genotypes, GD66 (a resistant genotype) and Lemont (a susceptible genotype), were observed using four cytological techniques: the whole-mount eosin B-staining confocal laser scanning microscopy (WE-CLSM), stereoscopy, fluorescence microscopy, and plastic semi-thin sectioning after in vitro inoculation. WE-CLSM observation showed that, at 12 h post-inoculation (hpi), the amount of hyphae increased dramatically on leaf and sheath surface, the infection cushions occurred and maintained at a huge number from about 18 to 36 hpi, and then the infection cushions disappeared gradually from about 42 to 72 hpi. Interestingly, R. solani could not only colonize on the abaxial surfaces of leaf sheath but also invade the paraxial side of the leaf sheath, which shows a different behavior from that of leaf. RNA sequencing detected 6,234 differentially expressed genes (DEGs) for Lemont and 7,784 DEGs for GD66 at 24 hpi, and 2,523 DEGs for Lemont and 2,719 DEGs for GD66 at 48 hpi, suggesting that GD66 is recruiting more genes in fighting against the pathogen. Among DEGs, resistant genes, such as OsRLCK5, Xa21, and Pid2, displayed higher expression in the resistant genotype than the susceptible genotype at both 24 and 48 hpi, which were validated by quantitative reverse transcription-PCR. Our results indicated that the resistance phenotype of GD66 was the consequence of recruiting a series of resistance genes involved in different regulatory pathways. WE-CLSM is a powerful technique for uncovering the mechanism of R. solani invading rice and for detecting rice sheath blight-resistant germplasm.
Collapse
Affiliation(s)
- Sanglin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Tianya Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Guoxian Meng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jiahao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Dibai Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yuxiang Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
25
|
Wang W, Zhang J, Guo F, Di Y, Wang Y, Li W, Sun Y, Wang Y, Ni F, Fu D, Wang W, Hao Q. Role of reactive oxygen species in lesion mimic formation and conferred basal resistance to Fusarium graminearum in barley lesion mimic mutant 5386. FRONTIERS IN PLANT SCIENCE 2022; 13:1020551. [PMID: 36699849 PMCID: PMC9869871 DOI: 10.3389/fpls.2022.1020551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the barley lesion mimic mutant (LMM) 5386, evidenced by a leaf brown spot phenotype localized on the chromosome 3H, and its conferred basal resistance to Fusarium graminearum. RNA-seq analysis identified 1453 genes that were differentially expressed in LMM 5386 compared to those in the wild type. GO and KEGG functional annotations suggested that lesion mimic formation was mediated by pathways involving oxidation reduction and glutathione metabolism. Additionally, reactive oxygen species (ROS) accumulation in brown spots was substantially higher in LMM 5386 than in the wild-type plant; therefore, antioxidant competence, which is indicated by ROS accumulation, was significantly lower in LMM 5386. Furthermore, the reduction of glycine in LMM 5386 inhibited glutathione biosynthesis. These results suggest that the decrease in antioxidant competence and glutathione biosynthesis caused considerable ROS accumulation, leading to programmed cell death, which eventually reduced the yield components in LMM 5386.
Collapse
Affiliation(s)
- Wenqiang Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- Shandong Shofine Seed Technology Co., Ltd., Jining, China
| | - Jifa Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- Spring Valley Agriscience Co., Ltd., Jinan, China
| | - Fenxia Guo
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Yindi Di
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Yuhui Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Wankun Li
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Yali Sun
- Qihe Bureau of Agriculture and Rural, Qihe, China
| | - Yuhai Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Fei Ni
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Daolin Fu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- Spring Valley Agriscience Co., Ltd., Jinan, China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Qunqun Hao
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
26
|
Ma Y, Stafford L, Ratcliffe J, Bacic A, Johnson KL. WAKL8 Regulates Arabidopsis Stem Secondary Wall Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:2297. [PMID: 36079678 PMCID: PMC9460275 DOI: 10.3390/plants11172297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Wall-associated kinases/kinase-likes (WAKs/WAKLs) are plant cell surface sensors. A variety of studies have revealed the important functions of WAKs/WAKLs in regulating cell expansion and defense in cells with primary cell walls. Less is known about their roles during the development of the secondary cell walls (SCWs) that are present in xylem vessel (XV) and interfascicular fiber (IF) cells. In this study, we used RNA-seq data to screen Arabidopsis thaliana WAKs/WAKLs members that may be involved in SCW development and identified WAKL8 as a candidate. We obtained T-DNA insertion mutants wakl8-1 (inserted at the promoter region) and wakl8-2 (inserted at the first exon) and compared the phenotypes to wild-type (WT) plants. Decreased WAKL8 transcript levels in stems were found in the wakl8-2 mutant plants, and the phenotypes observed included reduced stem length and thinner walls in XV and IFs compared with those in the WT plants. Cell wall analysis showed no significant changes in the crystalline cellulose or lignin content in mutant stems compared with those in the WT. We found that WAKL8 had alternative spliced versions predicted to have only extracellular regions, which may interfere with the function of the full-length version of WAKL8. Our results suggest WAKL8 can regulate SCW thickening in Arabidopsis stems.
Collapse
Affiliation(s)
- Yingxuan Ma
- School of BioSciences, University of Melbourne, Parkville, VIC 3052, Australia
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Luke Stafford
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Julian Ratcliffe
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou 311300, China
| | - Kim L. Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou 311300, China
| |
Collapse
|
27
|
Kumar R, Khatri A, Acharya V. Deep learning uncovers distinct behavior of rice network to pathogens response. iScience 2022; 25:104546. [PMID: 35754717 PMCID: PMC9218438 DOI: 10.1016/j.isci.2022.104546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022] Open
Abstract
Rice, apart from abiotic stress, is prone to attack from multiple pathogens. Predominantly, the two rice pathogens, bacterial Xanthomonas oryzae (Xoo) and hemibiotrophic fungus, Magnaporthe oryzae, are extensively well explored for more than the last decade. However, because of lack of holistic studies, we design a deep learning-based rice network model (DLNet) that has explored the quantitative differences resulting in the distinct rice network architecture. Validation studies on rice in response to biotic stresses show that DLNet outperforms other machine learning methods. The current finding indicates the compactness of the rice PTI network and the rise of independent modules in the rice ETI network, resulting in similar patterns of the plant immune response. The results also show more independent network modules and minimum structural disorderness in rice-M. oryzae as compared to the rice-Xoo model revealing the different adaptation strategies of the rice plant to evade pathogen effectors.
Collapse
Affiliation(s)
- Ravi Kumar
- Functional Genomics and Complex System Lab, Biotechnology Division, The Himalayan Centre for High-throughput Computational Biology (HiCHiCoB, A BIC Supported by DBT, India), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhishek Khatri
- Functional Genomics and Complex System Lab, Biotechnology Division, The Himalayan Centre for High-throughput Computational Biology (HiCHiCoB, A BIC Supported by DBT, India), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
| | - Vishal Acharya
- Functional Genomics and Complex System Lab, Biotechnology Division, The Himalayan Centre for High-throughput Computational Biology (HiCHiCoB, A BIC Supported by DBT, India), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
28
|
Xia X, Zhang X, Zhang Y, Wang L, An Q, Tu Q, Wu L, Jiang P, Zhang P, Yu L, Li G, He Y. Characterization of the WAK Gene Family Reveals Genes for FHB Resistance in Bread Wheat (Triticum aestivum L.). Int J Mol Sci 2022; 23:ijms23137157. [PMID: 35806165 PMCID: PMC9266398 DOI: 10.3390/ijms23137157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Wall-associated kinases (WAKs) are important receptor-like proteins that play major roles in plant defense against pathogens. Fusarium head blight (FHB), one of the most widespread and devastating crop diseases, reduces wheat yield and leads to quality deterioration. Although WAK gene families have been studied in many plants, systematic research on bread wheat (Triticum aestivum) and its role in FHB resistance, in particular, is lacking. In this study, we identified and characterized 320 genes of the TaWAK family in wheat distributed across all chromosomes except 4B and divided them into three phylogenetic groups. Duplication and synteny analyses provided valuable information on the evolutionary characteristics of the TaWAK genes. The gene expression pattern analysis suggested that TaWAK genes play diverse roles in plant biological processes and that at least 30 genes may be involved in the response to Fusarium infection in wheat spikes, with most of the genes contributing to pectin- and chitin-induced defense pathways. Furthermore, 45 TaWAK genes were identified within 17 hcmQTLs that are related to wheat FHB resistance. Our findings provide potential candidate genes for improving FHB resistance and insights into the future functional analysis of TaWAK genes in wheat.
Collapse
Affiliation(s)
- Xiaobo Xia
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xu Zhang
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
| | - Yicong Zhang
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lirong Wang
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qi An
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qiang Tu
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lei Wu
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
| | - Peng Jiang
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
| | - Peng Zhang
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
| | - Lixuan Yu
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
| | - Gang Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (G.L.); (Y.H.)
| | - Yi He
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
- Correspondence: (G.L.); (Y.H.)
| |
Collapse
|
29
|
Mondal KK, Kulshreshtha A, Handique PJ, Borbora D, Rajrana Y, Verma G, Bhattacharya A, Qamar A, Lakshmi A, Reddy K, Soni M, Ghoshal T, Rashmi ER, Mrutyunjaya S, Kalaivanan NS, Mani C. Rice transcriptome upon infection with Xanthomonas oryzae pv. oryzae relative to its avirulent T3SS-defective strain exposed modulation of many stress responsive genes. 3 Biotech 2022; 12:130. [PMID: 35607392 DOI: 10.1007/s13205-022-03193-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/28/2022] [Indexed: 11/01/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a destructive pathogen that causes bacterial blight disease of rice worldwide. Xoo uses T3SS (type III secretion system) effectors to subvert rice innate immunity. However, the comprehensive knowledge of rice genes involved in T3SS effectors-mediated interaction remains unclear. In this study, the transcriptome profiles of rice infected with a virulent Xoo strain from North-eastern region of India relatives to its avirulent strain (that lacks functional T3SS) were analyzed at early (2-6 hpi) and late (16-24 hpi) hours of infection. Out of total 255 differentially expressed genes (DEGs), during early infection, 62 and 70 genes were upregulated and downregulated, respectively. At late infection, 70 and 53 genes were upregulated and downregulated, respectively. The transcriptomic data identified many differentially expressed resistant genes, transposons, transcription factors, serine/threonine protein kinase, cytochrome P450 and peroxidase genes that are involved in plant defense. Pathway analysis revealed that these DEGs are involved in hormone signaling, plant defense, cellular metabolism, growth and development processes. DEGs associated with plant defense were also validated through quantitative real-time PCR. Our study brings a comprehensive picture of the rice genes that are being differentially expressed during bacterial blight infection. Nevertheless, the DEG-associated pathways would provide sensible targets for developing resistance to bacterial blight. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03193-4.
Collapse
Affiliation(s)
- Kalyan K Mondal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Aditya Kulshreshtha
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | | | | | - Yuvika Rajrana
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Geeta Verma
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | | | - Aarzoo Qamar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Amrutha Lakshmi
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - KishoreKumar Reddy
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Madhvi Soni
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Thungri Ghoshal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - E R Rashmi
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India.,Department of Biotechnology, Gauhati University, Assam, India
| | - S Mrutyunjaya
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - N S Kalaivanan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Chander Mani
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
30
|
Rice Lesion Mimic Gene Cloning and Association Analysis for Disease Resistance. Curr Issues Mol Biol 2022; 44:2350-2361. [PMID: 35678689 PMCID: PMC9164038 DOI: 10.3390/cimb44050160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Lesion mimic mutants refer to a class of mutants that naturally form necrotic lesions similar to allergic reactions on leaves in the absence of significant stress or damage and without being harmed by pathogens. Mutations in most lesion mimic genes, such as OsACL-A2 and OsSCYL2, can enhance mutants’ resistance to pathogens. Lesion mimic mutants are ideal materials for studying programmed cell death (PCD) and plant defense mechanisms. Studying the genes responsible for the rice disease-like phenotype is of great significance for understanding the disease resistance mechanism of rice. In this paper, the nomenclature, occurrence mechanism, genetic characteristics, regulatory pathways, and the research progress on the cloning and disease resistance of rice lesion mimic mutant genes were reviewed, in order to further analyze the various lesion mimic mutants of rice. The mechanism lays a theoretical foundation and provides a reference for rice breeding.
Collapse
|
31
|
Chen G, Hu K, Zhao J, Guo F, Shan W, Jiang Q, Zhang J, Guo Z, Feng Z, Chen Z, Wu X, Zhang S, Zuo S. Genome-Wide Association Analysis for Salt-Induced Phenotypic and Physiologic Responses in Rice at Seedling and Reproductive Stages. FRONTIERS IN PLANT SCIENCE 2022; 13:822618. [PMID: 35222481 PMCID: PMC8863738 DOI: 10.3389/fpls.2022.822618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Salinity is one of the main adverse environmental factors severely inhibiting rice growth and decreasing grain productivity. Developing rice varieties with salt tolerance (ST) is one of the most economical approaches to cope with salinity stress. In this study, the salt tolerance of 220 rice accessions from rice diversity panel l (RDP1), representing five subpopulations, were evaluated based on 16 ST indices at both seedling and reproductive stages under salt stress. An apparent inconsistency was found for ST between the two stages. Through a gene-based/tightly linked genome-wide association study with 201,332 single nucleotide polymorphisms (SNPs) located within genes and their flanking regions were used, a total of 214 SNPs related to 251 genes, significantly associated with 16 ST-related indices, were detected at both stages. Eighty-two SNPs with low frequency favorable (LFF) alleles in the population were proposed to hold high breeding potential in improving rice ST. Fifty-four rice accessions collectively containing all these LFF alleles were identified as donors of these alleles. Through the integration of meta-quantitative trait locus (QTL) for ST and the response patterns of differential expression genes to salt stress, thirty-eight candidate genes were suggested to be involved in the regulation of rice ST. In total, the present study provides valuable information for further characterizing ST-related genes and for breeding ST varieties across whole developmental stages through marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Gang Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Keming Hu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Jianhua Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Feifei Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Wenfeng Shan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Qiuqing Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Jinqiao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Zilong Guo
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Zongxiang Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Xiaoxia Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Shengwei Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, Yangzhou University, The Ministry of Education of China, Yangzhou, China
| |
Collapse
|
32
|
Marwein R, Singh S, Maharana J, Kumar S, Arunkumar KP, Velmurugan N, Chikkaputtaiah C. Transcriptome-wide analysis of North-East Indian rice cultivars in response to Bipolaris oryzae infection revealed the importance of early response to the pathogen in suppressing the disease progression. Gene 2022; 809:146049. [PMID: 34743920 DOI: 10.1016/j.gene.2021.146049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022]
Abstract
Brown spot disease (BSD) of rice (Oryza sativa L.) caused by Bipolaris oryzae is one of the major and neglected fungal diseases worldwide affecting rice production. Despite its significance, very limited knowledge on genetics and genomics of rice in response to B. oryzae available. Our study firstly identified moderately resistant (Gitesh) and susceptible (Shahsarang) North-East Indian rice cultivars in response to a native Bipolaris oryzae isolate BO1. Secondly, a systematic comparative RNA seq was performed for both cultivars at four different time points viz. 12, 24, 48, and 72 hours post infestation (hpi). Differential gene expression analysis revealed the importance of early response to the pathogen in suppressing disease progression. The pathogen negatively regulates the expression of photosynthetic-related genes at early stages in both cultivars. Of the cell wall modification enzymes, cellulose synthase and callose synthase are important for signal transduction and defense. Cell wall receptors OsLYP6, OsWAK80 might positively and OsWAK25 negatively regulate disease resistance. Jasmonic acid and/or abscisic acid signaling pathways are presumably involved in disease resistance, whereas salicylic acid pathway, and an ethylene response gene OsEBP-89 in promoting disease. Surprisingly, pathogenesis-related proteins showed no antimicrobial impact on the pathogen. Additionally, transcription factors OsWRKY62 and OsWRKY45 together might negatively regulate resistance to the pathogen. Taken together, our study has identified and provide key regulatory genes involved in response to B. oryzae which serve as potential resources for functional genetic analysis to develop genetic tolerance to BSD of rice.
Collapse
Affiliation(s)
- Riwandahun Marwein
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sanjay Singh
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
| | - Jitendra Maharana
- Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Sanjeev Kumar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kallare P Arunkumar
- Central Muga Eri Research and Training Institute (CMER&TI), Lahdoigarh, Jorhat 785700, Assam, India
| | - Natarajan Velmurugan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India; Biological Sciences Division, Branch Laboratory-Itanagar, CSIR-NEIST, Naharlagun 791110, Arunachal Pradesh, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
33
|
Stephens C, Hammond-Kosack KE, Kanyuka K. WAKsing plant immunity, waning diseases. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:22-37. [PMID: 34520537 DOI: 10.1093/jxb/erab422] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/11/2021] [Indexed: 05/02/2023]
Abstract
With the requirement to breed more productive crop plants in order to feed a growing global population, compounded by increasingly widespread resistance to pesticides exhibited by pathogens, plant immunity is becoming an increasingly important area of research. Of the genes that contribute to disease resistance, the wall-associated receptor-like kinases (WAKs) are increasingly shown to play a major role, in addition to their contribution to plant growth and development or tolerance to abiotic stresses. Being transmembrane proteins, WAKs form a central pillar of a plant cell's ability to monitor and interact with the extracellular environment. Found in both dicots and monocots, WAKs have been implicated in defence against pathogens with diverse lifestyles and contribute to plant immunity in a variety of ways. Whilst some act as cell surface-localized immune receptors recognizing either pathogen- or plant-derived invasion molecules (e.g. effectors or damage-associated molecular patterns, respectively), others promote innate immunity through cell wall modification and strengthening, thus limiting pathogen intrusion. The ability of some WAKs to provide both durable resistance against pathogens and other agronomic benefits makes this gene family important targets in the development of future crop ideotypes and important to a greater understanding of the complexity and robustness of plant immunity.
Collapse
Affiliation(s)
- Christopher Stephens
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Kim E Hammond-Kosack
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Kostya Kanyuka
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| |
Collapse
|
34
|
Liu X, Wang Z, Tian Y, Zhang S, Li D, Dong W, Zhang C, Zhang Z. Characterization of wall-associated kinase/wall-associated kinase-like (WAK/WAKL) family in rose (Rosa chinensis) reveals the role of RcWAK4 in Botrytis resistance. BMC PLANT BIOLOGY 2021; 21:526. [PMID: 34758750 PMCID: PMC8582219 DOI: 10.1186/s12870-021-03307-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Wall-associated kinase (WAK)/WAK-like (WAKL) is one of the subfamily of receptor like kinases (RLK). Although previous studies reported that WAK/WAKL played an important role in plant cell elongation, response to biotic and abiotic stresses, there are no systematic studies on RcWAK/RcWAKL in rose. RESULTS In this study, we identified a total of 68 RcWAK/RcWAKL gene family members within rose (Rosa chinensis) genome. The RcWAKs contained the extracellular galacturonan-binding domain and calcium-binding epidermal growth factor (EGF)-like domain, as well as an intracellular kinase domains. The RcWAKLs are missing either calcium-binding EGF-like domain or the galacturonan-binding domain in their extracellular region. The phylogenetic analysis showed the RcWAK/RcWAKL gene family has been divided into five groups, and these RcWAK/RcWAKL genes were unevenly distributed on the 7 chromosomes of rose. 12 of RcWAK/RcWAKL genes were significantly up-regulated by Botrytis cinerea-inoculated rose petals, where RcWAK4 was the most strongly expressed. Virus induced gene silencing of RcWAK4 increased the rose petal sensitivity to B. cinerea. The results indicated RcWAK4 is involved in the resistance of rose petal against B. cinerea. CONCLUSION Our study provides useful information to further investigate the function of the RcWAK/RcWAKL gene family and breeding research for resistance to B. cinerea in rose.
Collapse
Affiliation(s)
- Xintong Liu
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Zicheng Wang
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Yu Tian
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Shiya Zhang
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Dandan Li
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Wenqi Dong
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Changqing Zhang
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China.
| | - Zhao Zhang
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China.
| |
Collapse
|
35
|
Liu Z, Zhu Y, Shi H, Qiu J, Ding X, Kou Y. Recent Progress in Rice Broad-Spectrum Disease Resistance. Int J Mol Sci 2021; 22:11658. [PMID: 34769087 PMCID: PMC8584176 DOI: 10.3390/ijms222111658] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
Rice is one of the most important food crops in the world. However, stable rice production is constrained by various diseases, in particular rice blast, sheath blight, bacterial blight, and virus diseases. Breeding and cultivation of resistant rice varieties is the most effective method to control the infection of pathogens. Exploitation and utilization of the genetic determinants of broad-spectrum resistance represent a desired way to improve the resistance of susceptible rice varieties. Recently, researchers have focused on the identification of rice broad-spectrum disease resistance genes, which include R genes, defense-regulator genes, and quantitative trait loci (QTL) against two or more pathogen species or many isolates of the same pathogen species. The cloning of broad-spectrum disease resistance genes and understanding their underlying mechanisms not only provide new genetic resources for breeding broad-spectrum rice varieties, but also promote the development of new disease resistance breeding strategies, such as editing susceptibility and executor R genes. In this review, the most recent advances in the identification of broad-spectrum disease resistance genes in rice and their application in crop improvement through biotechnology approaches during the past 10 years are summarized.
Collapse
Affiliation(s)
- Zhiquan Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Yujun Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Huanbin Shi
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Jiehua Qiu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Yanjun Kou
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| |
Collapse
|
36
|
Gupta P, Geniza M, Naithani S, Phillips JL, Haq E, Jaiswal P. Chia ( Salvia hispanica) Gene Expression Atlas Elucidates Dynamic Spatio-Temporal Changes Associated With Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2021; 12:667678. [PMID: 34354718 PMCID: PMC8330693 DOI: 10.3389/fpls.2021.667678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Chia (Salvia hispanica L.), now a popular superfood and a pseudocereal, is one of the richest sources of dietary nutrients such as protein, fiber, and polyunsaturated fatty acids (PUFAs). At present, the genomic and genetic information available in the public domain for this crop are scanty, which hinders an understanding of its growth and development and genetic improvement. We report an RNA-sequencing (RNA-Seq)-based comprehensive transcriptome atlas of Chia sampled from 13 tissue types covering vegetative and reproductive growth stages. We used ~355 million high-quality reads of total ~394 million raw reads from transcriptome sequencing to generate de novo reference transcriptome assembly and the tissue-specific transcript assemblies. After the quality assessment of the merged assemblies and implementing redundancy reduction methods, 82,663 reference transcripts were identified. About 65,587 of 82,663 transcripts were translated into 99,307 peptides, and we were successful in assigning InterPro annotations to 45,209 peptides and gene ontology (GO) terms to 32,638 peptides. The assembled transcriptome is estimated to have the complete sequence information for ~86% of the genes found in the Chia genome. Furthermore, the analysis of 53,200 differentially expressed transcripts (DETs) revealed their distinct expression patterns in Chia's vegetative and reproductive tissues; tissue-specific networks and developmental stage-specific networks of transcription factors (TFs); and the regulation of the expression of enzyme-coding genes associated with important metabolic pathways. In addition, we identified 2,411 simple sequence repeats (SSRs) as potential genetic markers from the transcripts. Overall, this study provides a comprehensive transcriptome atlas, and SSRs, contributing to building essential genomic resources to support basic research, genome annotation, functional genomics, and molecular breeding of Chia.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Matthew Geniza
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Graduate Program, Oregon State University, Corvallis, OR, United States
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jeremy L. Phillips
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Ebaad Haq
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
37
|
Zhang H, Li H, Zhang X, Yan W, Deng P, Zhang Y, Peng S, Wang Y, Wang C, Ji W. Wall-associated Receptor Kinase and The Expression Profiles in Wheat Responding to Fungal Stress.. [PMID: 0 DOI: 10.1101/2021.07.11.451968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
AbstractCell wall-associated kinases (WAKs), which are encoded by conserved gene families in plants, are crucial for development and responses to diverse stresses. However, the wheat (Triticum aestivum L.) WAKs have not been systematically classified, especially those involved in protecting plants from disease. Here, we classified 129 WAK proteins (encoded by 232 genes) and 75 WAK-Like proteins (WAKLs; encoded by 109 genes) into four groups, via a phylogenetic analysis. An examination of protein sequence alignment revealed diversity in the GUB-domain of WAKs structural organization, but it was usually characterized by a PYPFG motif followed by CxGxGCC motifs, while the EGF-domain was usually initiated with a YAC motif, and eight cysteine residues were spliced by GNPY motif. The expression profiles of WAK-encoding homologous genes varied in response to Blumeria graminis f. sp. tritici (Bgt), Puccinia striiformis f. sp. tritici (Pst) and Puccinia triticina (Pt) stress. A quantitative real-time polymerase chain reaction (qRT-PCR) analysis proved that TaWAK75 and TaWAK76b were involved in wheat resistance to Bgt. This study revealed the structure of the WAK-encoding genes in wheat, which may be useful for future functional elucidation of wheat WAKs responses to fungal infections.
Collapse
|
38
|
Yang W, Zhao J, Zhang S, Chen L, Yang T, Dong J, Fu H, Ma Y, Zhou L, Wang J, Liu W, Liu Q, Liu B. Genome-Wide Association Mapping and Gene Expression Analysis Reveal the Negative Role of OsMYB21 in Regulating Bacterial Blight Resistance in Rice. RICE (NEW YORK, N.Y.) 2021; 14:58. [PMID: 34185169 PMCID: PMC8241976 DOI: 10.1186/s12284-021-00501-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/08/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases in rice all over the world. Due to the diversity and rapid evolution of Xoo, identification and use of the non-race specific quantitative resistance QTLs has been considered the preferred strategy for effective control of this disease. Although numerous QTLs for BB resistance have been identified, they haven't been effectively used for improvement of BB resistance in rice due to their small effects and lack of knowledge on the function of genes underlying the QTLs. RESULTS In the present study, a genome-wide association study of BB resistance was performed in a rice core collection from South China. A total of 17 QTLs were identified to be associated with BB resistance. Among them, 13 QTLs were newly identified in the present study and the other 4 QTLs were co-localized with the previously reported QTLs or Xa genes that confer qualitative resistance to Xoo strains. Particularly, the qBBR11-4 on chromosome 11 explained the largest phenotypic variation in this study and was co-localized with the previously identified QTLs for BB and bacterial leaf streak (BLS) resistance against diverse strains in three studies, suggesting its broad-spectrum resistance and potential value in rice breeding. Through combined analysis of differential expression and annotations of the predicted genes within qBBR11-4 between two sets of rice accessions selected based on haplotypes and disease phenotypes, we identified the transcription factor OsMYB21 as the candidate gene for qBBR11-4. The OsMYB21 overexpressing plants exhibited decreased resistance to bacterial blight, accompanied with down-regulation of several defense-related genes compared with the wild-type plants. CONCLUSION The results suggest that OsMYB21 negatively regulates bacterial blight resistance in rice, and this gene can be a promising target in rice breeding by using the gene editing method. In addition, the potential candidate genes for the 13 novel QTLs for BB resistance were also analyzed in this study, providing a new source for cloning of genes associated with BB resistance and molecular breeding in rice.
Collapse
Affiliation(s)
- Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Luo Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Hua Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Wei Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| |
Collapse
|
39
|
Qi H, Zhu X, Guo F, Lv L, Zhang Z. The Wall-Associated Receptor-Like Kinase TaWAK7D Is Required for Defense Responses to Rhizoctonia cerealis in Wheat. Int J Mol Sci 2021; 22:ijms22115629. [PMID: 34073183 PMCID: PMC8199179 DOI: 10.3390/ijms22115629] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Sharp eyespot, caused by necrotrophic fungus Rhizoctonia cerealis, is a serious fungal disease in wheat (Triticum aestivum). Certain wall-associated receptor kinases (WAK) mediate resistance to diseases caused by biotrophic/hemibiotrophic pathogens in several plant species. Yet, none of wheat WAK genes with positive effect on the innate immune responses to R. cerealis has been reported. In this study, we identified a WAK gene TaWAK7D, located on chromosome 7D, and showed its positive regulatory role in the defense response to R. cerealis infection in wheat. RNA-seq and qRT-PCR analyses showed that TaWAK7D transcript abundance was elevated in wheat after R. cerealis inoculation and the induction in the stem was the highest among the tested organs. Additionally, TaWAK7D transcript levels were significantly elevated by pectin and chitin treatments. The knock-down of TaWAK7D transcript impaired resistance to R. cerealis and repressed the expression of five pathogenesis-related genes in wheat. The green fluorescent protein signal distribution assays indicated that TaWAK7D localized on the plasma membrane in wheat protoplasts. Thus, TaWAK7D, which is induced by R. cerealis, pectin and chitin stimuli, positively participates in defense responses to R. cerealis through modulating the expression of several pathogenesis-related genes in wheat.
Collapse
Affiliation(s)
- Haijun Qi
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Q.); (X.Z.); (F.G.)
| | - Xiuliang Zhu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Q.); (X.Z.); (F.G.)
| | - Feilong Guo
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Q.); (X.Z.); (F.G.)
| | - Liangjie Lv
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China;
| | - Zengyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Q.); (X.Z.); (F.G.)
- Correspondence: ; Tel.: +86-10-82108781
| |
Collapse
|
40
|
Yang J, Xie M, Wang X, Wang G, Zhang Y, Li Z, Ma Z. Identification of cell wall-associated kinases as important regulators involved in Gossypium hirsutum resistance to Verticillium dahliae. BMC PLANT BIOLOGY 2021; 21:220. [PMID: 33992078 PMCID: PMC8122570 DOI: 10.1186/s12870-021-02992-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/27/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Verticillium wilt, caused by the soil borne fungus Verticillium dahliae, is a major threat to cotton production worldwide. An increasing number of findings indicate that WAK genes participate in plant-pathogen interactions, but their roles in cotton resistance to V. dahliae remain largely unclear. RESULTS Here, we carried out a genome-wide analysis of WAK gene family in Gossypium hirsutum that resulted in the identification of 81 putative GhWAKs, which were all predicated to be localized on plasma membrane. In which, GhWAK77 as a representative was further located in tobacco epidermal cells using transient expression of fluorescent fusion proteins. All GhWAKs could be classified into seven groups according to their diverse protein domains, indicating that they might sense different outside signals to trigger intracellular signaling pathways that were response to various environmental stresses. A lot of cis-regulatory elements were predicted in the upstream region of GhWAKs and classified into four main groups including hormones, biotic, abiotic and light. As many as 28 GhWAKs, playing a potential role in the interaction between cotton and V. dahliae, were screened out by RNA-seq and qRT-PCR. To further study the function of GhWAKs in cotton resistance to V. dahliae, VIGS technology was used to silence GhWAKs. At 20 dpi, VIGSed plants exhibited more chlorosis and wilting than the control plants. The disease indices of VIGSed plants were also significantly higher than those of the control. Furthermore, silencing of GhWAKs significantly affected the expression of JA- and SA-related marker genes, increased the spread of V. dahliae in the cotton stems, dramatically compromised V. dahliae-induced accumulation of lignin, H2O2 and NO, but enhanced POD activity. CONCLUSION Our study presents a comprehensive analysis on cotton WAK gene family for the first time. Expression analysis and VIGS assay provided direct evidences on GhWAKs participation in the cotton resistance to V. dahliae.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Meixia Xie
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Zhikun Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
41
|
Zhao X, Qiu T, Feng H, Yin C, Zheng X, Yang J, Peng YL, Zhao W. A novel glycine-rich domain protein, GRDP1, functions as a critical feedback regulator for controlling cell death and disease resistance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:608-622. [PMID: 32995857 DOI: 10.1093/jxb/eraa450] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Lesion mimic mutants constitute a valuable genetic resource for unraveling the signaling pathways and molecular mechanisms governing the programmed cell death and defense responses of plants. Here, we identified a lesion mimic mutant, spl-D, from T-DNA insertion rice lines. The mutant exhibited higher accumulation of H2O2, spontaneous cell death, decreased chlorophyll content, up-regulation of defense-related genes, and enhanced disease resistance. The causative gene, OsGRDP1, encodes a cytosol- and membrane-associated glycine-rich domain protein. OsGRDP1 was expressed constitutively in all of the organs of the wild-type plant, but was up-regulated throughout plant development in the spl-D mutant. Both the overexpression and knockdown (RNAi) of OsGRDP1 resulted in the lesion mimic phenotype. Moreover, the intact-protein level of OsGRDP1 was reduced in the spotted leaves from both overexpression and RNAi plants, suggesting that the disruption of intact OsGRDP1 is responsible for lesion formation. OsGRDP1 interacted with an aspartic proteinase, OsAP25. In the spl-D and overexpression plants, proteinase activity was elevated, and lesion formation was partially suppressed by an aspartic proteinase inhibitor. Taken together, our results reveal that OsGRDP1 is a critical feedback regulator, thus contributing to the elucidation of the mechanism underlying cell death and disease resistance.
Collapse
Affiliation(s)
- Xiaosheng Zhao
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Tiancheng Qiu
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Huijing Feng
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Changfa Yin
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Xunmei Zheng
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Wensheng Zhao
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
42
|
Reprogramming plant specialized metabolism by manipulating protein kinases. ABIOTECH 2021; 2:226-239. [PMID: 34377580 PMCID: PMC8209778 DOI: 10.1007/s42994-021-00053-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/05/2021] [Indexed: 02/08/2023]
Abstract
Being sessile, plants have evolved sophisticated mechanisms to balance between growth and defense to survive in the harsh environment. The transition from growth to defense is commonly achieved by factors, such as protein kinases (PKs) and transcription factors, that initiate signal transduction and regulate specialized metabolism. Plants produce an array of lineage-specific specialized metabolites for chemical defense and stress tolerance. Some of these molecules are also used by humans as drugs. However, many of these defense-responsive metabolites are toxic to plant cells and inhibitory to growth and development. Plants have, thus, evolved complex regulatory networks to balance the accumulation of the toxic metabolites. Perception of external stimuli is a vital part of the regulatory network. Protein kinase-mediated signaling activates a series of defense responses by phosphorylating the target proteins and translating the stimulus into downstream cellular signaling. As biosynthesis of specialized metabolites is triggered when plants perceive stimuli, a possible connection between PKs and specialized metabolism is well recognized. However, the roles of PKs in plant specialized metabolism have not received much attention until recently. Here, we summarize the recent advances in understanding PKs in plant specialized metabolism. We aim to highlight how the stimulatory signals are transduced, leading to the biosynthesis of corresponding metabolites. We discuss the post-translational regulation of specialized metabolism and provide insights into the mechanisms by which plants respond to the external signals. In addition, we propose possible strategies to increase the production of plant specialized metabolites in biotechnological applications using PKs.
Collapse
|
43
|
Qi H, Guo F, Lv L, Zhu X, Zhang L, Yu J, Wei X, Zhang Z. The Wheat Wall-Associated Receptor-Like Kinase TaWAK-6D Mediates Broad Resistance to Two Fungal Pathogens Fusarium pseudograminearum and Rhizoctonia cerealis. FRONTIERS IN PLANT SCIENCE 2021; 12:758196. [PMID: 34777437 PMCID: PMC8579037 DOI: 10.3389/fpls.2021.758196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/23/2021] [Indexed: 05/19/2023]
Abstract
The soil-borne fungi Fusarium pseudograminearum and Rhizoctonia cerealis are the major pathogens for the economically important diseases Fusarium crown rot (FCR) and sharp eyespot of common wheat (Triticum aestivum), respectively. However, there has been no report on the broad resistance of wheat genes against both F. pseudograminearum and R. cerealis. In the current study, we identified TaWAK-6D, a wall-associated kinase (WAK) which is an encoding gene located on chromosome 6D, and demonstrated its broad resistance role in the wheat responses to both F. pseudograminearum and R. cerealis infection. TaWAK-6D transcript induction by F. pseudograminearum and R. cerealis was related to the resistance degree of wheat and the gene expression was significantly induced by exogenous pectin treatment. Silencing of TaWAK-6D compromised wheat resistance to F. pseudograminearum and R. cerealis, and repressed the expression of a serial of wheat defense-related genes. Ectopic expression of TaWAK-6D in Nicotiana benthamiana positively modulated the expression of several defense-related genes. TaWAK-6D protein was determined to localize to the plasma membrane in wheat and N. benthamiana. Collectively, the TaWAK-6D at the plasma membrane mediated the broad resistance responses to both F. pseudograminearum and R. cerealis in wheat at the seedling stage. This study, therefore, concludes that TaWAK-6D is a promising gene for improving wheat broad resistance to FCR and sharp eyespot.
Collapse
Affiliation(s)
- Haijun Qi
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feilong Guo
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liangjie Lv
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xiuliang Zhu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Jinfeng Yu
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Xuening Wei
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zengyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Zengyan Zhang
| |
Collapse
|
44
|
Sun Z, Song Y, Chen D, Zang Y, Zhang Q, Yi Y, Qu G. Genome-Wide Identification, Classification, Characterization, and Expression Analysis of the Wall-Associated Kinase Family during Fruit Development and under Wound Stress in Tomato ( Solanum lycopersicum L.). Genes (Basel) 2020; 11:E1186. [PMID: 33053790 PMCID: PMC7650724 DOI: 10.3390/genes11101186] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022] Open
Abstract
The wall-associated kinase (WAK) and wall-associated kinase like (WAKL) is a subfamily of receptor-like kinases associated with the cell wall, which have been suggested as sensors of the extracellular environment and triggers of intracellular signals. However, these proteins have not yet been comprehensively analyzed in tomato (Solanum lycopersicum L.). In this study, 11 SlWAK and 18 SlWAKL genes were identified in an uneven distribution in 9 of 12 chromosomes. GUB-WAK-bind (wall-associated receptor kinase galacturonan-binding) and epidermal growth factor (EGF) domains appear more often in SlWAK proteins. However, more SlWAKLs (wall-associated kinase like) have a WAK-assoc (wall-associated receptor kinase C-terminal) domain. Based on their phylogenetic relationships, 29 SlWAK-RLKs (wall associated kinase-receptor like kinases) were clustered into three distinct categories analogous to those in Arabidopsis thaliana. High similarities were found in conserved motifs of the genes within each group. Cis-elements in the promoter region of these 29 genes were found mainly in response to methyl jasmonate (MeJA), abscisic acid (ABA), salicylic acid (SA), anaerobic, light, wound, and MYB transcription factors. Public tomato genome RNA-seq data indicates that multiple SlWAK-RLKs showed different expression patterns under developmental and ripening stages of fruits, such as SlWAK4, SlWAKL11, SlWAKL9, SlWAKL15, SlWAKL14, and SlWAKL1, their RPKM (Reads Per Kilo bases per Million reads) value constantly increases during the fruit expansion period, and decreases as the fruit matures. In tomato leaves, our RNA-seq data showed that nine SlWAK-RLKs transcripts (SlWAK3, SlWAK4, SlWAK10,SlWAKL1, SlWAKL2, SlWAKL3, SlWAKL5, SlWAKL14, and SlWAKL18) were significantly induced (p < 0.001), and three transcripts (SlWAK2, SlWAK5, and SlWAKL15) were significantly inhibited (p < 0.001) under mechanical wounding. The qRT-PCR (Quantitative reverse transcription polymerase chain reaction) of SlWAKL1 and SlWAKL6 verify these results.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guiqin Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.S.); (Y.S.); (D.C.); (Y.Z.); (Q.Z.); (Y.Y.)
| |
Collapse
|
45
|
Panthapulakkal Narayanan S, Lung SC, Liao P, Lo C, Chye ML. The overexpression of OsACBP5 protects transgenic rice against necrotrophic, hemibiotrophic and biotrophic pathogens. Sci Rep 2020; 10:14918. [PMID: 32913218 PMCID: PMC7483469 DOI: 10.1038/s41598-020-71851-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
The most devastating diseases in rice (Oryza sativa) are sheath blight caused by the fungal necrotroph Rhizoctonia solani, rice blast by hemibiotrophic fungus Magnaporthe oryzae, and leaf blight by bacterial biotroph Xanthomonas oryzae (Xoo). It has been reported that the Class III acyl-CoA-binding proteins (ACBPs) such as those from dicots (Arabidopsis and grapevine) play a role in defence against biotrophic pathogens. Of the six Arabidopsis (Arabidopsis thaliana) ACBPs, AtACBP3 conferred protection in transgenic Arabidopsis against Pseudomonas syringae, but not the necrotrophic fungus, Botrytis cinerea. Similar to Arabidopsis, rice possesses six ACBPs, designated OsACBPs. The aims of this study were to test whether OsACBP5, the homologue of AtACBP3, can confer resistance against representative necrotrophic, hemibiotrophic and biotrophic phytopathogens and to understand the mechanisms in protection. Herein, when OsACBP5 was overexpressed in rice, the OsACBP5-overexpressing (OsACBP5-OE) lines exhibited enhanced disease resistance against representative necrotrophic (R. solani & Cercospora oryzae), hemibiotrophic (M. oryzae & Fusarium graminearum) and biotrophic (Xoo) phytopathogens. Progeny from a cross between OsACBP5-OE9 and the jasmonate (JA)-signalling deficient mutant were more susceptible than the wild type to infection by the necrotroph R. solani. In contrast, progeny from a cross between OsACBP5-OE9 and the salicylic acid (SA)-signalling deficient mutant was more susceptible to infection by the hemibiotroph M. oryzae and biotroph Xoo. Hence, enhanced resistance of OsACBP5-OEs against representative necrotrophs appears to be JA-dependent whilst that to (hemi)biotrophs is SA-mediated.
Collapse
Affiliation(s)
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
46
|
Zhang N, Pombo MA, Rosli HG, Martin GB. Tomato Wall-Associated Kinase SlWak1 Depends on Fls2/Fls3 to Promote Apoplastic Immune Responses to Pseudomonas syringae. PLANT PHYSIOLOGY 2020; 183:1869-1882. [PMID: 32371523 PMCID: PMC7401122 DOI: 10.1104/pp.20.00144] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/29/2020] [Indexed: 05/09/2023]
Abstract
Wall-associated kinases (Waks) are important components of plant immunity against various pathogens, including the bacterium Pseudomonas syringae pv. tomato (Pst). However, the molecular mechanisms of their role(s) in plant immunity are largely unknown. In tomato (Solanum lycopersicum), wall-associated kinase 1 (SlWak1), has been implicated in pattern recognition receptor (PRR)-triggered immunity (PTI) because its transcript abundance increases significantly after treatment with the flagellin-derived, microbe-associated molecular patterns flg22 and flgII-28, which activate the PRRs Fls2 and Fls3, respectively. We generated two SlWak1 tomato mutants (Δwak1) using CRISPR/Cas9 gene editing technology and investigated the role of SlWak1 in tomato-Pst interactions. Late PTI responses activated in the apoplast by flg22 or flgII-28 were compromised in Δwak1 plants, but PTI at the leaf surface was unaffected. The Δwak1 plants developed fewer callose deposits than wild-type plants, but retained early PTI responses such as generation of reactive oxygen species and activation of mitogen-activated protein kinases upon exposure to flg22 and flgII-28. Induction of Wak1 gene expression by flg22 and flgII-28 was greatly reduced in a tomato mutant lacking Fls2 and Fls3, but induction of Fls3 gene expression by flgII-28 was unaffected in Δwak1 plants. After Pst inoculation, Δwak1 plants developed disease symptoms more slowly than Δfls2.1/2.2/3 mutant plants, although ultimately, both plants were similarly susceptible. SlWak1 coimmunoprecipitated with both Fls2 and Fls3, independently of flg22/flgII-28 or of BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1. These observations suggest that SlWak1 acts in a complex with Fls2/Fls3 and is important at later stages of PTI in the apoplast.
Collapse
Affiliation(s)
- Ning Zhang
- Boyce Thompson Intitute for Plant Research, Ithaca, New York 14853
| | - Marina A Pombo
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Buenos Aires, 1900 Argentina
| | - Hernan G Rosli
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Buenos Aires, 1900 Argentina
| | - Gregory B Martin
- Boyce Thompson Intitute for Plant Research, Ithaca, New York 14853
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| |
Collapse
|
47
|
Malukani KK, Ranjan A, Hota SJ, Patel HK, Sonti RV. Dual Activities of Receptor-Like Kinase OsWAKL21.2 Induce Immune Responses. PLANT PHYSIOLOGY 2020; 183:1345-1363. [PMID: 32354878 PMCID: PMC7333719 DOI: 10.1104/pp.19.01579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/14/2020] [Indexed: 05/04/2023]
Abstract
Plant pathogens secrete cell wall-degrading enzymes that degrade various components of the plant cell wall. Plants sense this cell wall damage as a mark of infection and induce immune responses. However, the plant functions that are involved in the elaboration of cell wall damage-induced immune responses remain poorly understood. Transcriptome analysis revealed that a rice (Oryza sativa) receptor-like kinase, WALL-ASSOCIATED KINASE-LIKE21 (OsWAKL21.2), is up-regulated following treatment with either Xanthomonas oryzae pv oryzae (a bacterial pathogen) or lipaseA/esterase (LipA; a cell wall-degrading enzyme of X. oryzae pv oryzae). Overexpression of OsWAKL21.2 in rice induces immune responses similar to those activated by LipA treatment. Down-regulation of OsWAKL21.2 attenuates LipA-mediated immune responses. Heterologous expression of OsWAKL21.2 in Arabidopsis (Arabidopsis thaliana) also activates plant immune responses. OsWAKL21.2 is a dual-activity kinase that has in vitro kinase and guanylate cyclase activities. Interestingly, kinase activity of OsWAKL21.2 is necessary to activate rice immune responses, whereas in Arabidopsis, OsWAKL21.2 guanylate cyclase activity activates these responses. Our study reveals a rice receptor kinase that activates immune responses in two different species via two different mechanisms.
Collapse
Affiliation(s)
- Kamal Kumar Malukani
- Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Ashish Ranjan
- Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Hyderabad 500007, India
- University of Hyderabad, Hyderabad 500046, India
| | - Shiva Jyothi Hota
- Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Hitendra Kumar Patel
- Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Ramesh V Sonti
- Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Hyderabad 500007, India
- Department of Biotechnology, National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
48
|
Silva-Sanzana C, Estevez JM, Blanco-Herrera F. Influence of cell wall polymers and their modifying enzymes during plant-aphid interactions. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3854-3864. [PMID: 31828324 PMCID: PMC7316967 DOI: 10.1093/jxb/erz550] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/11/2019] [Indexed: 05/05/2023]
Abstract
Aphids are a major issue for commercial crops. These pests drain phloem nutrients and transmit ~50% of the known insect-borne viral diseases. During aphid feeding, trophic structures called stylets advance toward the phloem intercellularly, disrupting cell wall polymers. It is thought that cell wall-modifying enzymes (CWMEs) present in aphid saliva facilitate stylet penetration through this intercellular polymer network. Additionally, different studies have demonstrated that host settling preference, feeding behavior, and colony performance of aphids are influenced by modulating the CWME expression levels in host plants. CWMEs have been described as critical defensive elements for plants, but also as a key virulence factor for plant pathogens. However, whether CWMEs are elements of the plant defense mechanisms or the aphid infestation process remains unclear. Therefore, in order to better consider the function of CWMEs and cell wall-derived damage-associated molecular patterns (DAMPs) during plant-aphid interactions, the present review integrates different hypotheses, perspectives, and experimental evidence in the field of plant-aphid interactions and discusses similarities to other well-characterized models such as the fungi-plant pathosystems from the host and the attacker perspectives.
Collapse
Affiliation(s)
- Christian Silva-Sanzana
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - José M Estevez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Francisca Blanco-Herrera
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute for Integrative Biology (IBio), Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES),Chile
| |
Collapse
|
49
|
Li W, Deng Y, Ning Y, He Z, Wang GL. Exploiting Broad-Spectrum Disease Resistance in Crops: From Molecular Dissection to Breeding. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:575-603. [PMID: 32197052 DOI: 10.1146/annurev-arplant-010720-022215] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant diseases reduce crop yields and threaten global food security, making the selection of disease-resistant cultivars a major goal of crop breeding. Broad-spectrum resistance (BSR) is a desirable trait because it confers resistance against more than one pathogen species or against the majority of races or strains of the same pathogen. Many BSR genes have been cloned in plants and have been found to encode pattern recognition receptors, nucleotide-binding and leucine-rich repeat receptors, and defense-signaling and pathogenesis-related proteins. In addition, the BSR genes that underlie quantitative trait loci, loss of susceptibility and nonhost resistance have been characterized. Here, we comprehensively review the advances made in the identification and characterization of BSR genes in various species and examine their application in crop breeding. We also discuss the challenges and their solutions for the use of BSR genes in the breeding of disease-resistant crops.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio 43210, USA;
| |
Collapse
|
50
|
Jain N, Rani S, Sharma C, Sinha N, Singh A, Sharma JB, Prasad P, Saripalli G, Sharma PK, Balyan HS, Gupta PK, Prabhu KV. Large-scale stage-specific regulation of gene expression during host-pathogen interactions in CSP44 bread wheat carrying APR gene Lr48. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:203-225. [PMID: 32007128 DOI: 10.1071/fp18336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Genome-wide transcriptome analysis was undertaken in a leaf-rust resistant bread wheat line CSP44 (selected from Australian cv. Condor) carrying the adult plant resistance (APR) gene Lr48. Two pre-adult plant (P-AP) susceptible stages (S48 and S96) and two adult plant (AP) resistant stages (R48 and R96) were used for RNA-seq. At the susceptible P-AP stage (during S48 to S96), expression increased in 2062 genes, and declined in 130 genes; 1775 of 2062 differentially expressed genes (DEGs) also exhibited high expression during early incompatible stage R48. Comparison of S96 with R96 showed that the expression of 80 genes was enhanced and that of 208 genes declined at the AP stage. At the resistant AP stage (during R48 to R96), expression of mere 25 genes increased and that of 126 genes declined. Apparently, the resistance during late adult stage (R96) is caused by regulation of the expression of relatively fewer genes, although at pre-adult stage (S48 to S96), expression of large number of genes increased; expression of majority of these genes kept on increasing during adult stage at R48 also. These and other results of the present study suggest that APR may mimic some kind of systemic acquired resistance (SAR). The host-specific DEGs belonged to 10 different classes including genes involved in defence, transport, epigenetics, photosynthesis, genes encoding some transcription factors etc. The pathogen (Puccinia triticina) specific DEGs (including three genes encoding known biotrophic effectors) seem to help the pathogen in infection/growth through large-scale stage-specific enhanced expression of host's genes. A putative candidate gene for Lr48 containing protein kinase domain (its ortholog in rice encoding OsWAK8) was also identified.
Collapse
Affiliation(s)
- Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sushma Rani
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Chanchal Sharma
- Chaudhary Charan Singh University, Meerut 250004, UP, India; and Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan City, Gyeongbook 38453, South Korea
| | - Nivedita Sinha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Anupam Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Jai Bhagwan Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Pramod Prasad
- Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla 171002, India
| | | | | | | | | | - Kumble Vinod Prabhu
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; and Protection of Plant Varieties and Farmers' Rights Authority, Govt. of India, Ministry of Agriculture & Farmers Welfare, New Delhi 110012 (India)
| |
Collapse
|