1
|
Picard F, Nonaka T, Belotti E, Osseni A, Errazuriz-Cerda E, Jost-Mousseau C, Bernard E, Conjard-Duplany A, Bohl D, Hasegawa M, Raoul C, Galli T, Schaeffer L, Leblanc P. Enhanced secretion of the amyotrophic lateral sclerosis ALS-associated misfolded TDP-43 mediated by the ER-ubiquitin specific peptidase USP19. Cell Mol Life Sci 2025; 82:76. [PMID: 39948244 PMCID: PMC11825969 DOI: 10.1007/s00018-025-05589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 02/16/2025]
Abstract
Proteinopathies, such as amyotrophic lateral sclerosis (ALS), are marked by the accumulation of misfolded proteins that disrupt cellular processes. Eukaryotic cells have developed protein quality control systems to eliminate these aberrant proteins, but these systems often fail to differentiate between normal and misfolded proteins. In ALS, pathological inclusions primarily composed of misfolded TDP-43 are a hallmark of the disease. Recently, a novel unconventional secretion process called misfolding-associated protein secretion (MAPS) has been discovered to selectively export misfolded proteins. USP19, an Endoplasmic Reticulum-associated ubiquitin peptidase, plays a crucial role in this process. In this study, we investigated the impact of ER-anchored USP19 on the secretion of misfolded TDP-43. Here we found that USP19 overexpression significantly promotes the secretion of soluble and aggregated misfolded TDP-43, requiring both ER anchoring and ubiquitin peptidase activity. Characterization of the cellular and molecular mechanisms involved in this process highlighted the importance of early autophagosomal and late endosomal/amphisomal compartments, while lysosomes did not play a key role. By using dominant-negative mutants and small interfering RNAs, we identified that USP19-mediated secretion of misfolded TDP-43 is modulated by key factors involved in cellular trafficking and secretion pathways, such as ATG7, the ESCRT-O HGS/HRS, the Rab GTPases RAB11A, RAB8A, and RAB27A, and the v-SNARE VAMP7. We also confirmed the crucial role of the DNAJC5/CSPα cochaperone. Overall, this study provides new insights into how cells manage the secretion of misfolded TDP-43 proteins and potentially opens new avenues for therapeutic interventions in ALS and related disorders.
Collapse
Affiliation(s)
- Flavien Picard
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
| | - Takashi Nonaka
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Tokyo, 156-8506, Japan
| | - Edwige Belotti
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
| | - Alexis Osseni
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
| | | | - Coline Jost-Mousseau
- Sorbonne Université, Institut du Cerveau-ICM, INSERM, CNRS, AP-HP, Hôpital de La Pitié-Salpêtrière, Paris, France
| | - Emilien Bernard
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
- Lyon ALS Reference Center, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Université de Lyon, 59 Boulevard Pinel, 69677, Bron, France
| | - Agnès Conjard-Duplany
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau-ICM, INSERM, CNRS, AP-HP, Hôpital de La Pitié-Salpêtrière, Paris, France
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Tokyo, 156-8506, Japan
| | - Cédric Raoul
- INM, Univ Montpellier, INSERM, Montpellier, France, 34095, Montpellier, France
- ALS reference center, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, 75014, Paris, France
- GHU Paris Psychiatrie & Neurosciences, Paris, France
| | - Laurent Schaeffer
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
- Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Pascal Leblanc
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France.
| |
Collapse
|
2
|
Prifti MV, Nuga O, Dulay RO, Patel NC, Kula T, Libohova K, Jackson-Butler A, Tsou WL, Richardson K, Todi SV. Insights into Dentatorubral-Pallidoluysian Atrophy from a new Drosophila model of disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627083. [PMID: 39713465 PMCID: PMC11661066 DOI: 10.1101/2024.12.05.627083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Dentatorubral-pallidoluysian atrophy (DRPLA) is a neurodegenerative disorder that presents with ataxia, dementia and epilepsy. As a member of the polyglutamine family of diseases, DRPLA is caused by abnormal CAG triplet expansion beyond 48 repeats in the protein-coding region of ATROPHIN 1 (ATN1), a transcriptional co-repressor. To better understand DRPLA, we generated new Drosophila lines that express full-length, human ATN1 with a normal (Q7) or pathogenic (Q88) repeat. Expression of ATN1 is toxic, with the polyglutamine-expanded version being consistently more problematic than wild-type ATN1. Fly motility, longevity and internal structures are negatively impacted by pathogenic ATN1. RNA-seq identified altered protein quality control and immune pathways in the presence of pathogenic ATN1. Based on these data, we conducted genetic experiments that confirmed the role of protein quality control components that ameliorate or exacerbate ATN1 toxicity. Hsc70-3, a chaperone, arose as a likely suppressor of toxicity. VCP (a proteasome-related AAA ATPase), Rpn11 (a proteasome-related deubiquitinase) and select DnaJ proteins (co-chaperones) were inconsistently protective, depending on the tissues where they were expressed. Lastly, informed by RNA-seq data that exercise-related genes may also be involved in this model of DRPLA, we conducted short-term exercise, which improved overall fly motility. This new model of DRPLA will prove important to understanding this understudied disease and will help to identify therapeutic targets for it.
Collapse
|
3
|
Zhang H, Wang X. The Role of Protein Quantity Control in Polyglutamine Spinocerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2575-2592. [PMID: 39052145 DOI: 10.1007/s12311-024-01722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Polyglutamine spinocerebellar ataxias (polyQ SCAs) represent the most prevalent subtype of SCAs. The primary pathogenic mechanism is believed to be the gain-of-function neurotoxicity of polyQ proteins. Strategies such as enhancing the degradation or inhibiting the accumulation of these mutant proteins are pivotal for reducing their toxicity and slowing disease progression. The protein quality control (PQC) system, comprising primarily molecular chaperones and the ubiquitin‒proteasome system (UPS), is essential for maintaining protein homeostasis by regulating protein folding, trafficking, and degradation. Notably, polyQ proteins can disrupt the PQC system by sequestering its critical components and impairing its proteasomal functions. Therefore, restoring the PQC system through genetic or pharmacological interventions could potentially offer beneficial effects and alleviate the symptoms of the disease. Here, we will provide a review on the distribution, expression, and genetic or pharmacological intervention of protein quality control system in cellular or animal models of PolyQ SCAs.
Collapse
Affiliation(s)
- Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361005, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361005, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
4
|
Sap KA, Geijtenbeek KW, Schipper-Krom S, Guler AT, Reits EA. Ubiquitin-modifying enzymes in Huntington's disease. Front Mol Biosci 2023; 10:1107323. [PMID: 36926679 PMCID: PMC10013475 DOI: 10.3389/fmolb.2023.1107323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the N-terminus of the HTT gene. The CAG repeat expansion translates into a polyglutamine expansion in the mutant HTT (mHTT) protein, resulting in intracellular aggregation and neurotoxicity. Lowering the mHTT protein by reducing synthesis or improving degradation would delay or prevent the onset of HD, and the ubiquitin-proteasome system (UPS) could be an important pathway to clear the mHTT proteins prior to aggregation. The UPS is not impaired in HD, and proteasomes can degrade mHTT entirely when HTT is targeted for degradation. However, the mHTT protein is differently ubiquitinated when compared to wild-type HTT (wtHTT), suggesting that the polyQ expansion affects interaction with (de) ubiquitinating enzymes and subsequent targeting for degradation. The soluble mHTT protein is associated with several ubiquitin-modifying enzymes, and various ubiquitin-modifying enzymes have been identified that are linked to Huntington's disease, either by improving mHTT turnover or affecting overall homeostasis. Here we describe their potential mechanism of action toward improved mHTT targeting towards the proteostasis machinery.
Collapse
Affiliation(s)
- Karen A Sap
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Karlijne W Geijtenbeek
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sabine Schipper-Krom
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Arzu Tugce Guler
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eric A Reits
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Opposing USP19 splice variants in TGF-β signaling and TGF-β-induced epithelial-mesenchymal transition of breast cancer cells. Cell Mol Life Sci 2023; 80:43. [PMID: 36646950 PMCID: PMC9842591 DOI: 10.1007/s00018-022-04672-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 01/18/2023]
Abstract
Ubiquitin-specific protease (USP)19 is a deubiquitinating enzyme that regulates the stability and function of multiple proteins, thereby controlling various biological responses. The alternative splicing of USP19 results in the expression of two major encoded variants that are localized to the endoplasmic reticulum (ER) (USP19-ER) and cytoplasm (USP19-CY). The importance of alternative splicing for the function of USP19 remains unclear. Here, we demonstrated that USP19-CY promotes TGF-β signaling by directly interacting with TGF-β type I receptor (TβRI) and protecting it from degradation at the plasma membrane. In contrast, USP19-ER binds to and sequesters TβRI in the ER. By decreasing cell surface TβRI levels, USP19-ER inhibits TGF-β/SMAD signaling in a deubiquitination-independent manner. Moreover, USP19-ER inhibits TGF-β-induced epithelial-mesenchymal transition (EMT), whereas USP19-CY enhances EMT, as well as the migration and extravasation of breast cancer cells. Furthermore, USP19-CY expression is correlated with poor prognosis and is higher in breast cancer tissues than in adjacent normal tissues. Notably, the splicing modulator herboxidiene inhibits USP19-CY, increases USP19-ER expression and suppresses breast cancer cell migration. Targeting USP19 splicing or its deubiquitinating activity may have potential therapeutic effects on breast cancer.
Collapse
|
6
|
Brás IC, Khani MH, Vasili E, Möbius W, Riedel D, Parfentev I, Gerhardt E, Fahlbusch C, Urlaub H, Zweckstetter M, Gollisch T, Outeiro TF. Molecular Mechanisms Mediating the Transfer of Disease-Associated Proteins and Effects on Neuronal Activity. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2397-2422. [PMID: 36278361 DOI: 10.3233/jpd-223516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Various cellular pathways have been implicated in the transfer of disease-related proteins between cells, contributing to disease progression and neurodegeneration. However, the overall effects of protein transfer are still unclear. OBJECTIVE Here, we performed a systematic comparison of basic molecular mechanisms involved in the release of alpha-synuclein, Tau, and huntingtin, and evaluated functional effects upon internalization by receiving cells. METHODS Evaluation of protein release to the extracellular space in a free form and in extracellular vesicles using an optimized ultracentrifugation protocol. The extracellular effects of the proteins and extracellular vesicles in primary neuronal cultures were assessed using multi-channel electrophysiological recordings combined with a customized spike sorting framework. RESULTS We demonstrate cells differentially release free-forms of each protein to the extracellular space. Importantly, neuronal activity is distinctly modulated upon protein internalization in primary cortical cultures. In addition, these disease-related proteins also occur in extracellular vesicles, and are enriched in ectosomes. Internalization of ectosomes and exosomes by primary microglial or astrocytic cells elicits the production of pro-inflammatory cytokines, and modifies spontaneous electrical activity in neurons. OBJECTIVE Overall, our study demonstrates that released proteins can have detrimental effects for surrounding cells, and suggests protein release pathways may be exploited as therapeutic targets in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Inês C Brás
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Mohammad H Khani
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Iwan Parfentev
- Research Group Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Christiane Fahlbusch
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Research Group Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom.,Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
7
|
Latoszek E, Wiweger M, Ludwiczak J, Dunin-Horkawicz S, Kuznicki J, Czeredys M. Siah-1-interacting protein regulates mutated huntingtin protein aggregation in Huntington’s disease models. Cell Biosci 2022; 12:34. [PMID: 35305696 PMCID: PMC8934500 DOI: 10.1186/s13578-022-00755-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background Huntington’s disease (HD) is a neurodegenerative disorder whereby mutated huntingtin protein (mHTT) aggregates when polyglutamine repeats in the N-terminal of mHTT exceeds 36 glutamines (Q). However, the mechanism of this pathology is unknown. Siah1-interacting protein (SIP) acts as an adaptor protein in the ubiquitination complex and mediates degradation of other proteins. We hypothesized that mHTT aggregation depends on the dysregulation of SIP activity in this pathway in HD. Results A higher SIP dimer/monomer ratio was observed in the striatum in young YAC128 mice, which overexpress mHTT. We found that SIP interacted with HTT. In a cellular HD model, we found that wildtype SIP increased mHTT ubiquitination, attenuated mHTT protein levels, and decreased HTT aggregation. We predicted mutations that should stabilize SIP dimerization and found that SIP mutant-overexpressing cells formed more stable dimers and had lower activity in facilitating mHTT ubiquitination and preventing exon 1 mHTT aggregation compared with wildtype SIP. Conclusions Our data suggest that an increase in SIP dimerization in HD medium spiny neurons leads to a decrease in SIP function in the degradation of mHTT through a ubiquitin–proteasome pathway and consequently an increase in mHTT aggregation. Therefore, SIP could be considered a potential target for anti-HD therapy during the early stage of HD pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00755-0.
Collapse
|
8
|
Deubiquitinase USP19 extends the residual enzymatic activity of phenylalanine hydroxylase variants. Sci Rep 2022; 12:14243. [PMID: 35987969 PMCID: PMC9392723 DOI: 10.1038/s41598-022-18656-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
Phenylalanine hydroxylase (PAH) is a key enzyme in mammals that maintains the phenylalanine (Phe) concentration at an appropriate physiological level. Some genetic mutations in the PAH gene lead to destabilization of the PAH enzyme, leading to phenylketonuria (PKU). Destabilized PAH variants can have a certain amount of residual enzymatic activity that is sufficient for metabolism of Phe. However, accelerated degradation of those variants can lead to insufficient amounts of cellular PAH protein. The optimal protein level of PAH in cells is regulated by a balancing act between E3 ligases and deubiquitinating enzymes (DUBs). In this work, we analyzed the protein expression and stability of two PKU-linked PAH protein variants, R241C and R243Q, prevalent in the Asian population. We found that the tested PAH variants were highly ubiquitinated and thus targeted for rapid protein degradation. We demonstrated that USP19, a DUB that interacts with both PAH variants, plays a regulatory role by extending their half-lives. The deubiquitinating activity of USP19 prevents protein degradation and increases the abundance of both PAH protein variants. Thus, our study reveals a novel mechanism by which deubiquitinating activity of USP19 extends the residual enzymatic activity of PAH variants.
Collapse
|
9
|
Liu X, Balaraman K, Lynch CC, Hebron M, Shah PK, Hu S, Stevenson M, Wolf C, Moussa C. Inhibition of Ubiquitin-Specific Protease-13 Improves Behavioral Performance in Alpha-Synuclein Expressing Mice. Int J Mol Sci 2022; 23:ijms23158131. [PMID: 35897705 PMCID: PMC9330474 DOI: 10.3390/ijms23158131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 01/21/2023] Open
Abstract
Ubiquitin-Specific Protease-13 (USP13) promotes protein de-ubiquitination. USP13 levels are upregulated in post-mortem Parkinson's disease, whereas USP13 knockdown via shRNA reduces alpha-synuclein levels in animal models. We studied the role of USP13 in knockout mice expressing lentiviral human alpha-synuclein and investigated the impact of a small molecule inhibitor of USP13, BK50118-C, on alpha-synuclein pathology and animal behavior. Alpha-synuclein was expressed unilaterally in substantia nigra (SN) of USP13 deficient mice that were treated with a daily intraperitoneal injection of 100 mg/kg BK50118-C or DMSO for four consecutive weeks, and behavioral and functional assays were performed. Wild-type USP13+/+ mice expressing lentiviral human alpha-synuclein showed motor and behavioral defects that were not seen in partially (USP13+/-) or completely (USP13-/-) deficient USP13 mice. BK50118-C displayed a wide and favorable therapeutic dose range in vivo. Treatment with BK50118-C significantly reduced ubiquitinated alpha-synuclein, increased dopamine levels, and improved motor and behavioral symptoms in wild-type (USP13+/+), but not USP13 deficient, mice. These data suggest that USP13 is critical to the neuropathology of alpha-synuclein, whereas a novel small molecule inhibitor of USP13 is a potential therapeutic agent of alpha-synucleinopathies.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA; (M.H.); (P.K.S.); (S.H.); (M.S.)
- Correspondence: (X.L.); (C.M.); Tel.: +1-202-687-7328 (C.M.); Fax: +1-202-687-7378 (C.M.)
| | - Kaluvu Balaraman
- Department of Chemistry, Georgetown University & Medicinal Chemistry Shared Resource, Georgetown University Medical Center, Washington, DC 20057, USA; (K.B.); (C.C.L.); (C.W.)
| | - Ciarán C. Lynch
- Department of Chemistry, Georgetown University & Medicinal Chemistry Shared Resource, Georgetown University Medical Center, Washington, DC 20057, USA; (K.B.); (C.C.L.); (C.W.)
| | - Michaeline Hebron
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA; (M.H.); (P.K.S.); (S.H.); (M.S.)
| | - Priya Ketankumar Shah
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA; (M.H.); (P.K.S.); (S.H.); (M.S.)
| | - Shicheng Hu
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA; (M.H.); (P.K.S.); (S.H.); (M.S.)
| | - Max Stevenson
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA; (M.H.); (P.K.S.); (S.H.); (M.S.)
| | - Christian Wolf
- Department of Chemistry, Georgetown University & Medicinal Chemistry Shared Resource, Georgetown University Medical Center, Washington, DC 20057, USA; (K.B.); (C.C.L.); (C.W.)
| | - Charbel Moussa
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA; (M.H.); (P.K.S.); (S.H.); (M.S.)
- Correspondence: (X.L.); (C.M.); Tel.: +1-202-687-7328 (C.M.); Fax: +1-202-687-7378 (C.M.)
| |
Collapse
|
10
|
Rossi FA, Rossi M. Emerging Role of Ubiquitin-Specific Protease 19 in Oncogenesis and Cancer Development. Front Cell Dev Biol 2022; 10:889166. [PMID: 35646888 PMCID: PMC9133600 DOI: 10.3389/fcell.2022.889166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Ubiquitination and ubiquitin-like post-translational modifications control the activity and stability of different tumor suppressors and oncoproteins. Hence, regulation of this enzymatic cascade offers an appealing scenario for novel antineoplastic targets discovery. Among the different families of enzymes that participate in the conjugation of Ubiquitin, deubiquitinating enzymes (DUBs), responsible for removing ubiquitin or ubiquitin-like peptides from substrate proteins, have attracted increasing attention. In this regard, increasing evidence is accumulating suggesting that the modulation of the catalytic activity of DUBs represents an attractive point of therapeutic intervention in cancer treatment. In particular, different lines of research indicate that USP19, a member of the DUBs, plays a role in the control of tumorigenesis and cancer dissemination. This review aims at summarizing the current knowledge of USP19 wide association with the control of several cellular processes in different neoplasms, which highlights the emerging role of USP19 as a previously unrecognized prognosis factor that possesses both positive and negative regulation activities in tumor biology. These observations indicate that USP19 might represent a novel putative pharmacologic target in oncology and underscores the potential of identifying specific modulators to test in clinical settings.
Collapse
|
11
|
Deubiquitinating enzymes (DUBs): decipher underlying basis of neurodegenerative diseases. Mol Psychiatry 2022; 27:259-268. [PMID: 34285347 DOI: 10.1038/s41380-021-01233-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by the aggregation of neurotoxic proteins in the central nervous system. Aberrant protein accumulation in NDs is largely caused by the dysfunction of the two principal protein catabolism pathways, the ubiquitin-proteasome system (UPS), and the autophagy-lysosomal pathway (ALP). The two protein quality control pathways are bridged by ubiquitination, a post-translational modification that can induce protein degradation via both the UPS and the ALP. Perturbed ubiquitination leads to the formation of toxic aggregates and inclusion bodies that are deleterious to neurons. Ubiquitination is promoted by a cascade of ubiquitinating enzymes and counter-regulated by deubiquitinating enzymes (DUBs). As fine-tuning regulators of ubiquitination and protein degradation, DUBs modulate the stability of ND-associated pathogenic proteins including amyloid β protein, Tau, and α-synuclein. Besides, DUBs also influence ND-associated mitophagy, protein secretion, and neuroinflammation. Given the various and critical functions of DUBs in NDs, DUBs may become potential therapeutic targets for NDs.
Collapse
|
12
|
Novel Ubiquitin Specific Protease-13 Inhibitors Alleviate Neurodegenerative Pathology. Metabolites 2021; 11:metabo11090622. [PMID: 34564439 PMCID: PMC8467576 DOI: 10.3390/metabo11090622] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/03/2021] [Accepted: 09/11/2021] [Indexed: 11/24/2022] Open
Abstract
Ubiquitin Specific Protease-13 (USP13) promotes protein de-ubiquitination and is poorly understood in neurodegeneration. USP13 is upregulated in Alzheimer’s disease (AD) and Parkinson’s disease (PD), and USP13 knockdown via shRNA reduces neurotoxic proteins and increases proteasome activity in models of neurodegeneration. We synthesized novel analogues of spautin-1 which is a non-specific USP13 inhibitor but unable to penetrate the brain. Our synthesized small molecule compounds are able to enter the brain, more potently inhibit USP13, and significantly reduce alpha-synuclein levels in vivo and in vitro. USP13 inhibition in transgenic mutant alpha-synuclein (A53T) mice increased the ubiquitination of alpha-synuclein and reduced its protein levels. The data suggest that novel USP13 inhibitors improve neurodegenerative pathology via antagonism of de-ubiquitination, thus alleviating neurotoxic protein burden in neurodegenerative diseases.
Collapse
|
13
|
Kang H, Choi MC, Kim S, Jeong JY, Kwon AY, Kim TH, Kim G, Joo WD, Park H, Lee C, Song SH, Jung SG, Hwang S, An HJ. USP19 and RPL23 as Candidate Prognostic Markers for Advanced-Stage High-Grade Serous Ovarian Carcinoma. Cancers (Basel) 2021; 13:cancers13163976. [PMID: 34439131 PMCID: PMC8391231 DOI: 10.3390/cancers13163976] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer is one of the leading causes of deaths among patients with gynecological malignancies worldwide. In order to identify prognostic markers for ovarian cancer, we performed RNA-sequencing and analyzed the transcriptome data from 51 patients who received conventional therapies for high-grade serous ovarian carcinoma (HGSC). Patients with early-stage (I or II) HGSC exhibited higher immune gene expression than patients with advanced stage (III or IV) HGSC. In order to predict the prognosis of patients with HGSC, we created machine learning-based models and identified USP19 and RPL23 as candidate prognostic markers. Specifically, patients with lower USP19 mRNA levels and those with higher RPL23 mRNA levels had worse prognoses. This model was then used to analyze the data of patients with HGSC hosted on The Cancer Genome Atlas; this analysis validated the prognostic abilities of these two genes with respect to patient survival. Taken together, the transcriptome profiles of USP19 and RPL23 determined using a machine-learning model could serve as prognostic markers for patients with HGSC receiving conventional therapy.
Collapse
Affiliation(s)
- Haeyoun Kang
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Gyeonggi-do, Korea; (H.K.); (S.K.); (A.-Y.K.); (T.-H.K.); (G.K.)
- Center for Cancer Precision Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Gyeonggi-do, Korea;
| | - Min Chul Choi
- Center for Cancer Precision Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Gyeonggi-do, Korea;
- Comprehensive Gynecologic Cancer Center, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Gyeonggi-do, Korea; (W.D.J.); (H.P.); (C.L.); (S.H.S.); (S.G.J.)
| | - Sewha Kim
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Gyeonggi-do, Korea; (H.K.); (S.K.); (A.-Y.K.); (T.-H.K.); (G.K.)
| | - Ju-Yeon Jeong
- CHA Advanced Research Institute, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea;
| | - Ah-Young Kwon
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Gyeonggi-do, Korea; (H.K.); (S.K.); (A.-Y.K.); (T.-H.K.); (G.K.)
| | - Tae-Hoen Kim
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Gyeonggi-do, Korea; (H.K.); (S.K.); (A.-Y.K.); (T.-H.K.); (G.K.)
| | - Gwangil Kim
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Gyeonggi-do, Korea; (H.K.); (S.K.); (A.-Y.K.); (T.-H.K.); (G.K.)
| | - Won Duk Joo
- Comprehensive Gynecologic Cancer Center, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Gyeonggi-do, Korea; (W.D.J.); (H.P.); (C.L.); (S.H.S.); (S.G.J.)
| | - Hyun Park
- Comprehensive Gynecologic Cancer Center, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Gyeonggi-do, Korea; (W.D.J.); (H.P.); (C.L.); (S.H.S.); (S.G.J.)
| | - Chan Lee
- Comprehensive Gynecologic Cancer Center, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Gyeonggi-do, Korea; (W.D.J.); (H.P.); (C.L.); (S.H.S.); (S.G.J.)
| | - Seung Hun Song
- Comprehensive Gynecologic Cancer Center, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Gyeonggi-do, Korea; (W.D.J.); (H.P.); (C.L.); (S.H.S.); (S.G.J.)
| | - Sang Geun Jung
- Comprehensive Gynecologic Cancer Center, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Gyeonggi-do, Korea; (W.D.J.); (H.P.); (C.L.); (S.H.S.); (S.G.J.)
| | - Sohyun Hwang
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Gyeonggi-do, Korea; (H.K.); (S.K.); (A.-Y.K.); (T.-H.K.); (G.K.)
- Center for Cancer Precision Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Gyeonggi-do, Korea;
- Department of Biomedical Science, CHA University, Pocheon-si 11160, Gyeonggi-do, Korea
- Correspondence: (S.H.); (H.J.A.); Tel.: +82-317804859 (S.H.); +82-317805045 (H.J.A.)
| | - Hee Jung An
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Gyeonggi-do, Korea; (H.K.); (S.K.); (A.-Y.K.); (T.-H.K.); (G.K.)
- Center for Cancer Precision Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Gyeonggi-do, Korea;
- Correspondence: (S.H.); (H.J.A.); Tel.: +82-317804859 (S.H.); +82-317805045 (H.J.A.)
| |
Collapse
|
14
|
PolyQ-expanded proteins impair cellular proteostasis of ataxin-3 through sequestering the co-chaperone HSJ1 into aggregates. Sci Rep 2021; 11:7815. [PMID: 33837238 PMCID: PMC8035147 DOI: 10.1038/s41598-021-87382-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Polyglutamine (polyQ) expansion of proteins can trigger protein misfolding and amyloid-like aggregation, which thus lead to severe cytotoxicities and even the respective neurodegenerative diseases. However, why polyQ aggregation is toxic to cells is not fully elucidated. Here, we took the fragments of polyQ-expanded (PQE) ataxin-7 (Atx7) and huntingtin (Htt) as models to investigate the effect of polyQ aggregates on the cellular proteostasis of endogenous ataxin-3 (Atx3), a protein that frequently appears in diverse inclusion bodies. We found that PQE Atx7 and Htt impair the cellular proteostasis of Atx3 by reducing its soluble as well as total Atx3 level but enhancing formation of the aggregates. Expression of these polyQ proteins promotes proteasomal degradation of endogenous Atx3 and accumulation of its aggregated form. Then we verified that the co-chaperone HSJ1 is an essential factor that orchestrates the balance of cellular proteostasis of Atx3; and further discovered that the polyQ proteins can sequester HSJ1 into aggregates or inclusions in a UIM domain-dependent manner. Thereby, the impairment of Atx3 proteostasis may be attributed to the sequestration and functional loss of cellular HSJ1. This study deciphers a potential mechanism underlying how PQE protein triggers proteinopathies, and also provides additional evidence in supporting the hijacking hypothesis that sequestration of cellular interacting partners by protein aggregates leads to cytotoxicity or neurodegeneration.
Collapse
|
15
|
Rossi FA, Enriqué Steinberg JH, Calvo Roitberg EH, Joshi MU, Pandey A, Abba MC, Dufrusine B, Buglioni S, De Laurenzi V, Sala G, Lattanzio R, Espinosa JM, Rossi M. USP19 modulates cancer cell migration and invasion and acts as a novel prognostic marker in patients with early breast cancer. Oncogenesis 2021; 10:28. [PMID: 33714979 PMCID: PMC7956144 DOI: 10.1038/s41389-021-00318-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
Tumor cell dissemination in cancer patients is associated with a significant reduction in their survival and quality of life. The ubiquitination pathway plays a fundamental role in the maintenance of protein homeostasis both in normal and stressed conditions and its dysregulation has been associated with malignant transformation and invasive potential of tumor cells, thus highlighting its value as a potential therapeutic target. In order to identify novel molecular targets of tumor cell migration and invasion we performed a genetic screen with an shRNA library against ubiquitination pathway-related genes. To this end, we set up a protocol to specifically enrich positive migration regulator candidates. We identified the deubiquitinase USP19 and demonstrated that its silencing reduces the migratory and invasive potential of highly invasive breast cancer cell lines. We extended our investigation in vivo and confirmed that mice injected with USP19 depleted cells display increased tumor-free survival, as well as a delay in the onset of the tumor formation and a significant reduction in the appearance of metastatic foci, indicating that tumor cell invasion and dissemination is impaired. In contrast, overexpression of USP19 increased cell invasiveness both in vitro and in vivo, further validating our findings. More importantly, we demonstrated that USP19 catalytic activity is important for the control of tumor cell migration and invasion, and that its molecular mechanism of action involves LRP6, a Wnt co-receptor. Finally, we showed that USP19 overexpression is a surrogate prognostic marker of distant relapse in patients with early breast cancer. Altogether, these findings demonstrate that USP19 might represent a novel therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Fabiana Alejandra Rossi
- grid.412850.a0000 0004 0489 7281Instituto de Investigaciones en Medicina Traslacional (IIMT) - CONICET, Universidad Austral, Pilar, Buenos Aires Argentina ,grid.423606.50000 0001 1945 2152Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET-MPSP), Buenos Aires, Argentina
| | - Juliana Haydeé Enriqué Steinberg
- grid.412850.a0000 0004 0489 7281Instituto de Investigaciones en Medicina Traslacional (IIMT) - CONICET, Universidad Austral, Pilar, Buenos Aires Argentina ,grid.423606.50000 0001 1945 2152Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET-MPSP), Buenos Aires, Argentina
| | - Ezequiel Hernán Calvo Roitberg
- grid.412850.a0000 0004 0489 7281Instituto de Investigaciones en Medicina Traslacional (IIMT) - CONICET, Universidad Austral, Pilar, Buenos Aires Argentina ,grid.423606.50000 0001 1945 2152Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET-MPSP), Buenos Aires, Argentina
| | - Molishree Umesh Joshi
- grid.430503.10000 0001 0703 675XFunctional Genomics Facility, University of Colorado School of Medicine, Aurora, CO USA
| | - Ahwan Pandey
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Martin Carlos Abba
- grid.9499.d0000 0001 2097 3940Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas – Universidad Nacional de La Plata, La Plata, Buenos Aires Argentina
| | - Beatrice Dufrusine
- grid.412451.70000 0001 2181 4941Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Simonetta Buglioni
- grid.417520.50000 0004 1760 5276Advanced Diagnostics and Technological Innovation Department, Regina Elena Cancer Institute, Rome, Italy
| | - Vincenzo De Laurenzi
- grid.412451.70000 0001 2181 4941Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Gianluca Sala
- grid.412451.70000 0001 2181 4941Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Rossano Lattanzio
- grid.412451.70000 0001 2181 4941Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Joaquín Maximiliano Espinosa
- grid.430503.10000 0001 0703 675XFunctional Genomics Facility, University of Colorado School of Medicine, Aurora, CO USA ,grid.430503.10000 0001 0703 675XLinda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO USA ,grid.430503.10000 0001 0703 675XDepartment of Pharmacology, University of Colorado School of Medicine, Aurora, CO USA
| | - Mario Rossi
- grid.412850.a0000 0004 0489 7281Instituto de Investigaciones en Medicina Traslacional (IIMT) - CONICET, Universidad Austral, Pilar, Buenos Aires Argentina
| |
Collapse
|
16
|
Dean ME, Johnson JL. Human Hsp90 cochaperones: perspectives on tissue-specific expression and identification of cochaperones with similar in vivo functions. Cell Stress Chaperones 2021; 26:3-13. [PMID: 33037995 PMCID: PMC7736379 DOI: 10.1007/s12192-020-01167-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The Hsp90 molecular chaperone is required for the function of hundreds of different cellular proteins. Hsp90 and a cohort of interacting proteins called cochaperones interact with clients in an ATP-dependent cycle. Cochaperone functions include targeting clients to Hsp90, regulating Hsp90 ATPase activity, and/or promoting Hsp90 conformational changes as it progresses through the cycle. Over the last 20 years, the list of cochaperones identified in human cells has grown from the initial six identified in complex with steroid hormone receptors and protein kinases to about fifty different cochaperones found in Hsp90-client complexes. These cochaperones may be placed into three groups based on shared Hsp90 interaction domains. Available evidence indicates that cochaperones vary in client specificity, abundance, and tissue distribution. Many of the cochaperones have critical roles in regulation of cancer and neurodegeneration. A more limited set of cochaperones have cellular functions that may be limited to tissues such as muscle and testis. It is likely that a small set of cochaperones are part of the core Hsp90 machinery required for the folding of a wide range of clients. The presence of more selective cochaperones may allow greater control of Hsp90 activities across different tissues or during development.
Collapse
Affiliation(s)
- Marissa E Dean
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3051, USA
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3051, USA.
- Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844-3051, USA.
| |
Collapse
|
17
|
Le Guerroué F, Youle RJ. Ubiquitin signaling in neurodegenerative diseases: an autophagy and proteasome perspective. Cell Death Differ 2020; 28:439-454. [PMID: 33208890 DOI: 10.1038/s41418-020-00667-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Ubiquitin signaling is a sequence of events driving the fate of a protein based on the type of ubiquitin modifications attached. In the case of neurodegenerative diseases, ubiquitin signaling is mainly associated with degradation signals to process aberrant proteins, which form aggregates often fatal for the brain cells. This signaling is often perturbed by the aggregates themselves and leads to the accumulation of toxic aggregates and inclusion bodies that are deleterious due to a toxic gain of function. Decrease in quality control pathways is often seen with age and is a critical onset for the development of neurodegeneration. Many aggregates are now thought to propagate in a prion-like manner, where mutated proteins acting like seeds are transitioning from cell to cell, converting normal proteins to toxic aggregates. Modulation of ubiquitin signaling, by stimulating ubiquitin ligase activation, is a potential therapeutic strategy to treat patients with neurodegeneration diseases.
Collapse
Affiliation(s)
- François Le Guerroué
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard J Youle
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Domain interactions reveal auto-inhibition of the deubiquitinating enzyme USP19 and its activation by HSP90 in the modulation of huntingtin aggregation. Biochem J 2020; 477:4295-4312. [PMID: 33094816 DOI: 10.1042/bcj20200536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 01/25/2023]
Abstract
Ubiquitin-specific protease 19 (USP19) is a member of the deubiquitinating (DUB) enzymes that catalyze removing the ubiquitin signals from target proteins. Our previous research has demonstrated that USP19 up-regulates the protein level and aggregation of polyQ-expanded huntingtin through the involvement of heat shock protein 90 (HSP90). Here, we present solution structures of the CS1, CS2 and UbL domains of USP19 and structural insights into their domain interactions. We found that the tandem CS domains fold back to interact with the C-terminal USP domain (USPD) intra-molecularly that leads to inhibition of the catalytic core of USP19, especially CS1 interacts with the embedded UbL domain and CS2 does with the CH2 catalytic core. Moreover, CS2 specifically interacts with the NBD domain of HSP90, which can activate the DUB enzyme. A mechanism of auto-inhibition of USP19 and activation by HSP90 is proposed, on which USP19 modulates the protein level of polyQ-expanded huntingtin in cells. This study provides structural and mechanistic insights into the modulation of protein level and aggregation by USP19 with the assistance of HSP90.
Collapse
|
19
|
Jung T, Shin B, Tamo G, Kim H, Vijayvargia R, Leitner A, Marcaida MJ, Astorga-Wells J, Jung R, Aebersold R, Peraro MD, Hebert H, Seong IS, Song JJ. The Polyglutamine Expansion at the N-Terminal of Huntingtin Protein Modulates the Dynamic Configuration and Phosphorylation of the C-Terminal HEAT Domain. Structure 2020; 28:1035-1050.e8. [PMID: 32668197 PMCID: PMC11059206 DOI: 10.1016/j.str.2020.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/01/2020] [Accepted: 06/23/2020] [Indexed: 11/15/2022]
Abstract
The polyQ expansion in huntingtin protein (HTT) is the prime cause of Huntington's disease (HD). The recent cryoelectron microscopy (cryo-EM) structure of HTT-HAP40 complex provided the structural information on its HEAT-repeat domains. Here, we present analyses of the impact of polyQ length on the structure and function of HTT via an integrative structural and biochemical approach. The cryo-EM analysis of normal (Q23) and disease (Q78) type HTTs shows that the structures of apo HTTs significantly differ from the structure of HTT in a HAP40 complex and that the polyQ expansion induces global structural changes in the relative movements among the HTT domains. In addition, we show that the polyQ expansion alters the phosphorylation pattern across HTT and that Ser2116 phosphorylation in turn affects the global structure and function of HTT. These results provide a molecular basis for the effect of the polyQ segment on HTT structure and activity, which may be important for HTT pathology.
Collapse
Affiliation(s)
- Taeyang Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KI for the BioCentury, Daejeon 34141, Korea; School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52 Huddinge, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Baehyun Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Giorgio Tamo
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Hyeongju Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KI for the BioCentury, Daejeon 34141, Korea
| | - Ravi Vijayvargia
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Maria J Marcaida
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Juan Astorga-Wells
- Department of Medical Biochemistry & Biophysics, Karolinska Institutet, 171 65 Solna, Sweden; HDxperts AB, 183 48 Täby, Sweden
| | - Roy Jung
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland; Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Hans Hebert
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52 Huddinge, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden.
| | - Ihn Sik Seong
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA 02114, USA.
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KI for the BioCentury, Daejeon 34141, Korea.
| |
Collapse
|
20
|
Sarodaya N, Suresh B, Kim KS, Ramakrishna S. Protein Degradation and the Pathologic Basis of Phenylketonuria and Hereditary Tyrosinemia. Int J Mol Sci 2020; 21:ijms21144996. [PMID: 32679806 PMCID: PMC7404301 DOI: 10.3390/ijms21144996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
A delicate intracellular balance among protein synthesis, folding, and degradation is essential to maintaining protein homeostasis or proteostasis, and it is challenged by genetic and environmental factors. Molecular chaperones and the ubiquitin proteasome system (UPS) play a vital role in proteostasis for normal cellular function. As part of protein quality control, molecular chaperones recognize misfolded proteins and assist in their refolding. Proteins that are beyond repair or refolding undergo degradation, which is largely mediated by the UPS. The importance of protein quality control is becoming ever clearer, but it can also be a disease-causing mechanism. Diseases such as phenylketonuria (PKU) and hereditary tyrosinemia-I (HT1) are caused due to mutations in PAH and FAH gene, resulting in reduced protein stability, misfolding, accelerated degradation, and deficiency in functional proteins. Misfolded or partially unfolded proteins do not necessarily lose their functional activity completely. Thus, partially functional proteins can be rescued from degradation by molecular chaperones and deubiquitinating enzymes (DUBs). Deubiquitination is an important mechanism of the UPS that can reverse the degradation of a substrate protein by covalently removing its attached ubiquitin molecule. In this review, we discuss the importance of molecular chaperones and DUBs in reducing the severity of PKU and HT1 by stabilizing and rescuing mutant proteins.
Collapse
Affiliation(s)
- Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (B.S.)
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (B.S.)
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (B.S.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
- Correspondence: (K.-S.K.); or (S.R.)
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (B.S.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
- Correspondence: (K.-S.K.); or (S.R.)
| |
Collapse
|
21
|
Bohush A, Bieganowski P, Filipek A. Hsp90 and Its Co-Chaperones in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20204976. [PMID: 31600883 PMCID: PMC6834326 DOI: 10.3390/ijms20204976] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Proper folding is crucial for proteins to achieve functional activity in the cell. However, it often occurs that proteins are improperly folded (misfolded) and form aggregates, which are the main hallmark of many diseases including cancers, neurodegenerative diseases and many others. Proteins that assist other proteins in proper folding into three-dimensional structures are chaperones and co-chaperones. The key role of chaperones/co-chaperones is to prevent protein aggregation, especially under stress. An imbalance between chaperone/co-chaperone levels has been documented in neurons, and suggested to contribute to protein misfolding. An essential protein and a major regulator of protein folding in all eukaryotic cells is the heat shock protein 90 (Hsp90). The function of Hsp90 is tightly regulated by many factors, including co-chaperones. In this review we summarize results regarding the role of Hsp90 and its co-chaperones in neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and prionopathies.
Collapse
Affiliation(s)
- Anastasiia Bohush
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Paweł Bieganowski
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland.
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
22
|
Gierisch ME, Pedot G, Walser F, Lopez-Garcia LA, Jaaks P, Niggli FK, Schäfer BW. USP19 deubiquitinates EWS-FLI1 to regulate Ewing sarcoma growth. Sci Rep 2019; 9:951. [PMID: 30700749 PMCID: PMC6353870 DOI: 10.1038/s41598-018-37264-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/30/2018] [Indexed: 01/24/2023] Open
Abstract
Ewing sarcoma is the second most common pediatric bone and soft tissue tumor presenting with an aggressive behavior and prevalence to metastasize. The diagnostic translocation t(22;11)(q24;12) leads to expression of the chimeric oncoprotein EWS-FLI1 which is uniquely expressed in all tumor cells and maintains their survival. Constant EWS-FLI1 protein turnover is regulated by the ubiquitin proteasome system. Here, we now identified ubiquitin specific protease 19 (USP19) as a regulator of EWS-FLI1 stability using an siRNA based screening approach. Depletion of USP19 resulted in diminished EWS-FLI1 protein levels and, vice versa, upregulation of active USP19 stabilized the fusion protein. Importantly, stabilization appears to be specific for the fusion protein as it could not be observed neither for EWSR1 nor for FLI1 wild type proteins even though USP19 binds to the N-terminal EWS region to regulate deubiquitination of both EWS-FLI1 and EWSR1. Further, stable shUSP19 depletion resulted in decreased cell growth and diminished colony forming capacity in vitro, and significantly delayed tumor growth in vivo. Our findings not only provide novel insights into the importance of the N-terminal EWSR1 domain for regulation of fusion protein stability, but also indicate that inhibition of deubiquitinating enzyme(s) might constitute a novel therapeutic strategy in treatment of Ewing sarcoma.
Collapse
Affiliation(s)
- Maria E Gierisch
- Department of Oncology and Children's Research Center, University Children´s Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Gloria Pedot
- Department of Oncology and Children's Research Center, University Children´s Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Franziska Walser
- Department of Oncology and Children's Research Center, University Children´s Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Laura A Lopez-Garcia
- Department of Oncology and Children's Research Center, University Children´s Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Patricia Jaaks
- Department of Oncology and Children's Research Center, University Children´s Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Felix K Niggli
- Department of Oncology and Children's Research Center, University Children´s Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children´s Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland.
| |
Collapse
|
23
|
Soares TR, Reis SD, Pinho BR, Duchen MR, Oliveira JMA. Targeting the proteostasis network in Huntington's disease. Ageing Res Rev 2019; 49:92-103. [PMID: 30502498 PMCID: PMC6320389 DOI: 10.1016/j.arr.2018.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion mutation in the huntingtin protein. Expansions above 40 polyglutamine repeats are invariably fatal, following a symptomatic period characterised by choreiform movements, behavioural abnormalities, and cognitive decline. While mutant huntingtin (mHtt) is widely expressed from early life, most patients with HD present in mid-adulthood, highlighting the role of ageing in disease pathogenesis. mHtt undergoes proteolytic cleavage, misfolding, accumulation, and aggregation into inclusion bodies. The emerging model of HD pathogenesis proposes that the chronic production of misfolded mHtt overwhelms the chaperone machinery, diverting other misfolded clients to the proteasome and the autophagy pathways, ultimately leading to a global collapse of the proteostasis network. Multiple converging hypotheses also implicate ageing and its impact in the dysfunction of organelles as additional contributing factors to the collapse of proteostasis in HD. In particular, mitochondrial function is required to sustain the activity of ATP-dependent chaperones and proteolytic machinery. Recent studies elucidating mitochondria-endoplasmic reticulum interactions and uncovering a dedicated proteostasis machinery in mitochondria, suggest that mitochondria play a more active role in the maintenance of cellular proteostasis than previously thought. The enhancement of cytosolic proteostasis pathways shows promise for HD treatment, protecting cells from the detrimental effects of mHtt accumulation. In this review, we consider how mHtt and its post translational modifications interfere with protein quality control pathways, and how the pharmacological and genetic modulation of components of the proteostasis network impact disease phenotypes in cellular and in vivo HD models.
Collapse
Affiliation(s)
- Tânia R Soares
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Sara D Reis
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Brígida R Pinho
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT, London, UK
| | - Jorge M A Oliveira
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT, London, UK.
| |
Collapse
|
24
|
Bernadotte A, Kumar R, Winblad B, Pavlov PF. In silico identification and biochemical characterization of the human dicarboxylate clamp TPR protein interaction network. FEBS Open Bio 2018; 8:1830-1843. [PMID: 30410862 PMCID: PMC6212638 DOI: 10.1002/2211-5463.12521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 11/16/2022] Open
Abstract
Dicarboxylate clamp tetratricopeptide repeat (dcTPR) motif‐containing proteins are well‐known partners of the heat shock protein (Hsp) 70 and Hsp90 molecular chaperones. Together, they facilitate a variety of intracellular processes, including protein folding and maturation, protein targeting, and protein degradation. An extreme C‐terminal sequence, the EEVD motif, is identical in Hsp70 and Hsp90, and is indispensable for their interaction with dcTPR proteins. However, almost no information is available on the existence of other potential dcTPR‐interacting proteins. We searched the human protein database for proteins with C‐terminal sequences similar to that of Hsp70/Hsp90 to identify potential partners of dcTPR proteins. The search identified 112 proteins containing a Hsp70/Hsp90‐like signature at their C termini. Gene Ontology enrichment analysis of identified proteins revealed enrichment of distinct protein classes, such as molecular chaperones and proteins of the ubiquitin–proteasome system, highlighting the possibility of functional specialization of proteins containing a Hsp70/Hsp90‐like signature. We confirmed interactions of selected proteins containing Hsp70/Hsp90‐like C termini with dcTPR proteins both in vitro and in situ. Analysis of interactions of 10‐amino‐acid peptides corresponding to the C termini of identified proteins with dcTPR proteins revealed significant differences in binding strength between various peptides. We propose a hierarchical mode of interaction within the dcTPR protein network. These findings describe a novel dcTPR protein interaction networks and provide a rationale for selective regulation of protein–protein interactions within this network.
Collapse
Affiliation(s)
- Alexandra Bernadotte
- Department of Molecular Biochemistry and Biophysics Karolinska Institutet Solna Sweden.,Faculty of Mechanics and Mathematics Lomonosov Moscow State University Russia
| | - Rajnish Kumar
- Division of Neurogeriatrics Department of Neuroscience Care and Society Karolinska Institutet Huddinge Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics Department of Neuroscience Care and Society Karolinska Institutet Huddinge Sweden.,Memory Clinic Theme Aging Karolinska University Hospital Huddinge Sweden
| | - Pavel F Pavlov
- Division of Neurogeriatrics Department of Neuroscience Care and Society Karolinska Institutet Huddinge Sweden.,Memory Clinic Theme Aging Karolinska University Hospital Huddinge Sweden
| |
Collapse
|
25
|
Ashraf NS, Duarte-Silva S, Shaw ED, Maciel P, Paulson HL, Teixeira-Castro A, Costa MDC. Citalopram Reduces Aggregation of ATXN3 in a YAC Transgenic Mouse Model of Machado-Joseph Disease. Mol Neurobiol 2018; 56:3690-3701. [PMID: 30187384 DOI: 10.1007/s12035-018-1331-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/22/2018] [Indexed: 01/20/2023]
Abstract
Machado-Joseph disease, also known as spinocerebellar ataxia type 3, is a fatal polyglutamine disease with no disease-modifying treatment. The selective serotonin reuptake inhibitor citalopram was shown in nematode and mouse models to be a compelling repurposing candidate for Machado-Joseph disease therapeutics. We sought to confirm the efficacy of citalopram to decrease ATXN3 aggregation in an unrelated mouse model of Machado-Joseph disease. Four-week-old YACMJD84.2 mice and non-transgenic littermates were given citalopram 8 mg/kg in drinking water or water for 10 weeks. At the end of treatment, brains were collected for biochemical and pathological analyses. Brains of citalopram-treated YACMJD84.2 mice showed an approximate 50% decrease in the percentage of cells containing ATXN3-positive inclusions in the substantia nigra and three examined brainstem nuclei compared to controls. No differences in ATXN3 inclusion load were observed in deep cerebellar nuclei of mice. Citalopram effect on ATXN3 aggregate burden was corroborated by immunoblotting analysis. While lysates from the brainstem and cervical spinal cord of citalopram-treated mice showed a decrease in all soluble forms of ATXN3 and a trend toward reduction of insoluble ATXN3, no differences in ATXN3 levels were found between cerebella of citalopram-treated and vehicle-treated mice. Citalopram treatment altered levels of select components of the cellular protein homeostatic machinery that may be expected to enhance the capacity to refold and/or degrade mutant ATXN3. The results here obtained in a second independent mouse model of Machado-Joseph disease further support citalopram as a potential drug to be repurposed for this fatal disorder.
Collapse
Affiliation(s)
- Naila S Ashraf
- Department of Neurology, Michigan Medicine, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Sara Duarte-Silva
- School of Medicine, University of Minho, Campus de Gualtar, Life and Health Sciences Research Institute (ICVS), Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Emily D Shaw
- Department of Neurology, Michigan Medicine, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Patrícia Maciel
- School of Medicine, University of Minho, Campus de Gualtar, Life and Health Sciences Research Institute (ICVS), Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Henry L Paulson
- Department of Neurology, Michigan Medicine, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Andreia Teixeira-Castro
- School of Medicine, University of Minho, Campus de Gualtar, Life and Health Sciences Research Institute (ICVS), Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| | - Maria do Carmo Costa
- Department of Neurology, Michigan Medicine, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
26
|
Hsp90β promotes aggressive vasculogenic mimicry via epithelial-mesenchymal transition in hepatocellular carcinoma. Oncogene 2018; 38:228-243. [PMID: 30087438 DOI: 10.1038/s41388-018-0428-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 01/20/2023]
Abstract
Hepatocellular carcinoma (HCC) is a typical hypervascular solid tumor. Vasculogenic mimicry (VM) formed by aggressive tumor cells to mimic vasculogenic networks plays an important role in the tumor malignancy of HCC. Hsp90β promotes endothelial cell-dependent angiogenesis in HCC. However, the relationship between Hsp90β and VM formation is unclear. In this study, we found that Hsp90β is positively correlated with VM and EMT marker proteins in HCC tissues and promotes tube formation, cell migration, and invasion in vitro. Hsp90β interacts with Twist1 and promotes its deubiquitination and stabilization to nuclear translocation and enhances the VE-cadherin promoter activity. Results of in vitro analysis indicate that Hsp90β enhances the tumor VM in tumor-burdened mice, and the Hsp90 inhibitor NVP-BEP800 suppresses VM formation by releasing Hsp90β and Twist1 interaction. This study provides a potential antitumor therapy for inhibiting VM by targeting Hsp90β in HCC.
Collapse
|
27
|
Bernstein AM, Ritch R, Wolosin JM. Exfoliation Syndrome: A Disease of Autophagy and LOXL1 Proteopathy. J Glaucoma 2018; 27 Suppl 1:S44-S53. [PMID: 29547474 PMCID: PMC6028293 DOI: 10.1097/ijg.0000000000000919] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Exfoliation syndrome (XFS) is an age-related disease involving the deposition of aggregated fibrillar material (exfoliation material) at extracellular matrices in tissues that synthesize elastic fibers. Its main morbidity is in the eye, where exfoliation material accumulations form on the surface of the ciliary body, iris, and lens. Exfoliation glaucoma (XFG) occurs in a high proportion of persons with XFS and can be a rapidly progressing disease. Worldwide, XFG accounts for about 25% of open-angle glaucoma cases. XFS and XFG show a sharp age-dependence, similarly to the many age-related diseases classified as aggregopathies. Progress in understanding the cellular bases for XFS/XFG has been slowed by a lack of experimental models. Working with primary human tenon fibroblasts (TF) derived from trabeculectomies of XFG patients and age-matched primary open-glaucoma controls, we found that TF from XFG cells display many of the functional features observed in cells from other protein aggregate diseases, such as Parkinson, Alzheimer, Huntington, and age-related macular degeneration. We have documented defects in lysosomal positioning, microtubule organization, autophagy processing rate, and mitochondrial health. In regard to failure of lysosomal and autophagosome positioning in XFG cells, we have found that XFG TF are unable to establish the transnuclear microtubule organizing center that is required for efficient centripetal vesicular locomotion along microtubules. In regard to potential sources of the autophagy malfunction, we have directed our attention to a potential role of the lysyl oxidase-like 1 protein (LOXL1), the elastic fiber catalyst that displays variant-dependent association with risk for XFG. Our experiments show that (a) in XFG cells, a substantial fraction of LOXL1 is processed for degradation by the autophagic system; (b) most of the LOXL1 N-terminus domain exists in a highly disordered state, a condition known to greatly increase the frequency of polypeptide misfolding; (c) that maximum misfolding occurs at amino acid position 153, the location of the high risk variant G153D; and (d) that replacement of glycine (G) by aspartate (D) there results in a substantial decrease in disorder within the 20 amino acid surrounding domain. Finally, we show that clusterin, a protein that can be induced by the presence of intracellular, or extracellular aggregates, is uniformly overexpressed in XFG TF. The implications of our results for a theory relating XFG to cellular aggregopathy are discussed.
Collapse
Affiliation(s)
- Audrey M Bernstein
- Department of Ophthalmology, Eye and Vision Research Institute Icahn School of Medicine at Mount Sinai
- Department of Ophthalmology, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York
| | - Jose M Wolosin
- Department of Ophthalmology, Eye and Vision Research Institute Icahn School of Medicine at Mount Sinai
| |
Collapse
|
28
|
He WT, Xue W, Gao YG, Hong JY, Yue HW, Jiang LL, Hu HY. HSP90 recognizes the N-terminus of huntingtin involved in regulation of huntingtin aggregation by USP19. Sci Rep 2017; 7:14797. [PMID: 29093475 PMCID: PMC5666004 DOI: 10.1038/s41598-017-13711-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/27/2017] [Indexed: 11/09/2022] Open
Abstract
Huntington’s disease (HD) is caused by aberrant expansion of polyglutamine (polyQ) in the N-terminus of huntingtin (Htt). Our previous study has demonstrated that HSP90 is involved in the triage decision of Htt, but how HSP90 recognizes and regulates Htt remains elusive. We investigated the interaction between HSP90 and the N-terminal fragments of Htt (Htt-N), such as the N-terminal 90-residue fragment (Htt-N90). Our results showed that HSP90 binds to the N-terminal extreme of Htt-N in a sequence just ahead of the polyQ tract. Structural integration of the middle and C-terminal domains of HSP90 is essential for interacting with Htt-N90, and the dimerization mediated by the C-terminal domain facilitates this interaction. Moreover, ubiquitin-specific protease 19 (USP19), a deubiquitinating enzyme interacting with HSP90, up-regulates the protein level of Htt-N90 and consequently promotes its aggregation, whereas disruption of the interaction between Htt-N90 and HSP90 attenuates the effect of USP19 on Htt-N90. Thus, HSP90 interacts with Htt-N90 on the N-terminal amphipathic α-helix, and then recruits USP19 to modulate the protein level and aggregation of Htt-N90. This study provides mechanistic insights into the recognition between HSP90 and the N-terminus of Htt, and the triage decision for the Htt protein by the HSP90 chaperone system.
Collapse
Affiliation(s)
- Wen-Tian He
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, P. R. China
| | - Wei Xue
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, P. R. China
| | - Yong-Guang Gao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, P. R. China
| | - Jun-Ye Hong
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, P. R. China
| | - Hong-Wei Yue
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, P. R. China
| | - Lei-Lei Jiang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, P. R. China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, P. R. China.
| |
Collapse
|
29
|
Nath SR, Lieberman AP. The Ubiquitination, Disaggregation and Proteasomal Degradation Machineries in Polyglutamine Disease. Front Mol Neurosci 2017; 10:78. [PMID: 28381987 PMCID: PMC5360718 DOI: 10.3389/fnmol.2017.00078] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
Polyglutamine disorders are chronic, progressive neurodegenerative diseases caused by expansion of a glutamine tract in widely expressed genes. Despite excellent models of disease, a well-documented clinical history and progression, and established genetic causes, there are no FDA approved, disease modifying treatments for these disorders. Downstream of the mutant protein, several divergent pathways of toxicity have been identified over the last several decades, supporting the idea that targeting only one of these pathways of toxicity is unlikely to robustly alleviate disease progression. As a result, a vast body of research has focused on eliminating the mutant protein to broadly prevent downstream toxicity, either by silencing mutant protein expression or leveraging the endogenous protein quality control machinery. In the latter approach, a focus has been placed on four critical components of mutant protein degradation that are active in the nucleus, a key site of toxicity: disaggregation, ubiquitination, deubiquitination, and proteasomal activity. These machineries have unique functional components, but work together as a cellular defense system that can be successfully leveraged to alleviate disease phenotypes in several models of polyglutamine toxicity. This review will highlight recent advances in understanding both the potential and role of these components of the protein quality control machinery in polyglutamine disease pathophysiology.
Collapse
Affiliation(s)
- Samir R Nath
- Medical Scientist Training Program, University of Michigan Medical SchoolAnn Arbor, MI, USA; Cellular and Molecular Biology Graduate Program, University of Michigan Medical SchoolAnn Arbor, MI, USA; Department of Pathology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School Ann Arbor, MI, USA
| |
Collapse
|
30
|
Eldomery MK, Coban-Akdemir Z, Harel T, Rosenfeld JA, Gambin T, Stray-Pedersen A, Küry S, Mercier S, Lessel D, Denecke J, Wiszniewski W, Penney S, Liu P, Bi W, Lalani SR, Schaaf CP, Wangler MF, Bacino CA, Lewis RA, Potocki L, Graham BH, Belmont JW, Scaglia F, Orange JS, Jhangiani SN, Chiang T, Doddapaneni H, Hu J, Muzny DM, Xia F, Beaudet AL, Boerwinkle E, Eng CM, Plon SE, Sutton VR, Gibbs RA, Posey JE, Yang Y, Lupski JR. Lessons learned from additional research analyses of unsolved clinical exome cases. Genome Med 2017; 9:26. [PMID: 28327206 PMCID: PMC5361813 DOI: 10.1186/s13073-017-0412-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 02/08/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Given the rarity of most single-gene Mendelian disorders, concerted efforts of data exchange between clinical and scientific communities are critical to optimize molecular diagnosis and novel disease gene discovery. METHODS We designed and implemented protocols for the study of cases for which a plausible molecular diagnosis was not achieved in a clinical genomics diagnostic laboratory (i.e. unsolved clinical exomes). Such cases were recruited to a research laboratory for further analyses, in order to potentially: (1) accelerate novel disease gene discovery; (2) increase the molecular diagnostic yield of whole exome sequencing (WES); and (3) gain insight into the genetic mechanisms of disease. Pilot project data included 74 families, consisting mostly of parent-offspring trios. Analyses performed on a research basis employed both WES from additional family members and complementary bioinformatics approaches and protocols. RESULTS Analysis of all possible modes of Mendelian inheritance, focusing on both single nucleotide variants (SNV) and copy number variant (CNV) alleles, yielded a likely contributory variant in 36% (27/74) of cases. If one includes candidate genes with variants identified within a single family, a potential contributory variant was identified in a total of ~51% (38/74) of cases enrolled in this pilot study. The molecular diagnosis was achieved in 30/63 trios (47.6%). Besides this, the analysis workflow yielded evidence for pathogenic variants in disease-associated genes in 4/6 singleton cases (66.6%), 1/1 multiplex family involving three affected siblings, and 3/4 (75%) quartet families. Both the analytical pipeline and the collaborative efforts between the diagnostic and research laboratories provided insights that allowed recent disease gene discoveries (PURA, TANGO2, EMC1, GNB5, ATAD3A, and MIPEP) and increased the number of novel genes, defined in this study as genes identified in more than one family (DHX30 and EBF3). CONCLUSION An efficient genomics pipeline in which clinical sequencing in a diagnostic laboratory is followed by the detailed reanalysis of unsolved cases in a research environment, supplemented with WES data from additional family members, and subject to adjuvant bioinformatics analyses including relaxed variant filtering parameters in informatics pipelines, can enhance the molecular diagnostic yield and provide mechanistic insights into Mendelian disorders. Implementing these approaches requires collaborative clinical molecular diagnostic and research efforts.
Collapse
Affiliation(s)
- Mohammad K. Eldomery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Present Address: Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 350 W. 11th Street, Indianapolis, IN 46202 USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Tamar Harel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Institute of Computer Science, Warsaw University of Technology, 00-665 Warsaw, Poland
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Women and Children’s Division, Oslo University Hospital, 0424 Oslo, Norway
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093 Nantes, CEDEX 1 France
| | - Sandra Mercier
- CHU Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093 Nantes, CEDEX 1 France
- Atlantic Gene Therapies, UMR1089, Nantes, France
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wojciech Wiszniewski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Samantha Penney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Christian P. Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Michael F. Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Carlos A. Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Richard Alan Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Brett H. Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - John W. Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Jordan S. Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX USA
| | - Shalini N. Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Theodore Chiang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Jianhong Hu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Arthur L. Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Christine M. Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Sharon E. Plon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 7703 USA
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor-Hopkins Center for Mendelian Genomics, Baltimore, MD USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030 USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX 77030-3498 USA
| |
Collapse
|
31
|
Wing SS. Deubiquitinating enzymes in skeletal muscle atrophy-An essential role for USP19. Int J Biochem Cell Biol 2016; 79:462-468. [PMID: 27475983 DOI: 10.1016/j.biocel.2016.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 01/07/2023]
Abstract
The ubiquitin proteasome system is well recognized to be involved in mediating muscle atrophy in response to diverse catabolic conditions. To date, almost all of the genes that have been implicated are ubiquitin ligases. Although ubiquitination is modulated also by deubiquitinating enzymes, the roles of these enzymes in muscle wasting remains largely unexplored. In this article, the potential roles of deubiquitinating enzymes in regulating muscle size are discussed. This is followed by a review of the roles described for USP19, the deubiquitinating enzyme that has been most studied in muscle wasting. This enzyme is upregulated in muscle in many catabolic conditions and its inactivation leads to protection from muscle loss induced by stimuli that are common in many illnesses causing cachexia. It can regulate both protein synthesis and protein degradation as well as myogenesis, thereby modulating the key processes that control muscle mass. Roles for other deubiquitinating enzymes remain possible and to be explored.
Collapse
Affiliation(s)
- Simon S Wing
- Dept. of Medicine, McGill University, Experimental Therapeutics and Metabolism Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|