1
|
Lin Y, Shi R, Wang M, Wang Y, Han Y, Ma Y, Li L, Xia X. MCPA-Na exposure in aquatic systems: disruption of pathways and increased susceptibility to infection in fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107405. [PMID: 40354689 DOI: 10.1016/j.aquatox.2025.107405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/27/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
MCPA-Na (2-methyl-4-chlorophenoxyacetic acid) is a selective herbicide widely used in agricultural cultivation. Despite monitoring indicating risks to aquatic life, the specific organ effects and pathogen susceptibility are unclear. Therefore, we constructed a "compound-core target-signaling pathway" network using network toxicology methods, and the results showed that MCPA-Na interacted with multiple organs of loach (including intestine, liver, kidney, heart, gills, skin and blood). STRING and Cytoscape software were used to screen the core targets: PPAR (Peroxisome proliferator-activated receptor), ACE (angiotensin converting enzyme), REN (Renin), and CA9 (carbonic anhydrase). KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that the core targets of each tissue were significantly enriched in the renin-angiotensin system, NF-κB signaling pathway, adherens junctions and cholinergic synapses. The relationship between the toxicology and molecular markers of MCPA-Na was further explored by using animal experiments, and the susceptibility of Misgurnus anguillicaudatus (loach) to opportunistic pathogens after toxic exposure was simulated by using opportunistic pathogen challenge Aeromonas hydrophila (A. hydrophila). It was found that the compound induced oxidative stress and triggered intestinal inflammation and promoted apoptosis. These processes undermine the intestinal barrier and increase the susceptibility of loach to the A. hydrophila, thereby exacerbating the challenge of aquaculture food safety.
Collapse
Affiliation(s)
- Yanxia Lin
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Ran Shi
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Mengzhen Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yali Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yunfan Han
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yongcui Ma
- College of Agriculture and Life Sciences, Zhaotong University, Zhaotong 657000, PR China
| | - Liyin Li
- Lincang Meteorological Bureau, Yunnan Province, Lincang 677000, PR China
| | - Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, PR China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, Henan, PR China.
| |
Collapse
|
2
|
Abramov VM, Kosarev IV, Machulin AV, Deryusheva EI, Priputnevich TV, Panin AN, Chikileva IO, Abashina TN, Manoyan AM, Akhmetzyanova AA, Blumenkrants DA, Ivanova OE, Papazyan TT, Nikonov IN, Suzina NE, Melnikov VG, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. Anti- Salmonella Defence and Intestinal Homeostatic Maintenance In Vitro of a Consortium Containing Limosilactobacillus fermentum 3872 and Ligilactobacillus salivarius 7247 Strains in Human, Porcine, and Chicken Enterocytes. Antibiotics (Basel) 2023; 13:30. [PMID: 38247590 PMCID: PMC10812507 DOI: 10.3390/antibiotics13010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Limosilactobacillus fermentum strain 3872 (LF3872) was originally isolated from the breast milk of a healthy woman during lactation and the breastfeeding of a child. Ligilactobacillus salivarius strain 7247 (LS7247) was isolated at the same time from the intestines and reproductive system of a healthy woman. The genomes of these strains contain genes responsible for the production of peptidoglycan-degrading enzymes and factors that increase the permeability of the outer membrane of Gram-negative pathogens. In this work, the anti-Salmonella and intestinal homeostatic features of the LF3872 and LS7247 consortium were studied. A multi-drug resistant (MDR) strain of Salmonella enteritidis (SE) was used in the experiments. The consortium effectively inhibited the adhesion of SE to intact and activated human, porcine, and chicken enterocytes and reduced invasion. The consortium had a bactericidal effect on SE in 6 h of co-culturing. A gene expression analysis of SE showed that the cell-free supernatant (CFS) of the consortium inhibited the expression of virulence genes critical for the colonization of human and animal enterocytes. The CFS stimulated the production of an intestinal homeostatic factor-intestinal alkaline phosphatase (IAP)-in Caco-2 and HT-29 enterocytes. The consortium decreased the production of pro-inflammatory cytokines IL-8, TNF-α, and IL-1β, and TLR4 mRNA expression in human and animal enterocytes. It stimulated the expression of TLR9 in human and porcine enterocytes and stimulated the expression of TLR21 in chicken enterocytes. The consortium also protected the intestinal barrier functions through the increase of transepithelial electrical resistance (TEER) and the inhibition of paracellular permeability in the monolayers of human and animal enterocytes. The results obtained suggest that a LF3872 and LS7247 consortium can be used as an innovative feed additive to reduce the spread of MDR SE among the population and farm animals.
Collapse
Affiliation(s)
- Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Irina O. Chikileva
- Blokhin National Research Center of Oncology, Ministry of Health RF, 115478 Moscow, Russia
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ashot M. Manoyan
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Anna A. Akhmetzyanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Dmitriy A. Blumenkrants
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Olga E. Ivanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | | | - Ilia N. Nikonov
- Federal State Educational Institution of Higher Professional Education, Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia;
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia; (V.S.K.); (V.K.S.)
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
3
|
Camargo-Herrera ÁD, Bernal-Castro C, Gutiérrez-Cortes C, Castro CN, Díaz-Moreno C. Bio-yogurt with the inclusion of phytochemicals from carrots ( Daucus carota): a strategy in the design of functional dairy beverage with probiotics. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2297-2308. [PMID: 37424571 PMCID: PMC10326216 DOI: 10.1007/s13197-022-05510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 07/11/2023]
Abstract
The development of yogurt with functional characteristics from bioactive compounds such as fiber, antioxidants, and probiotics represents a novel strategy in designing value-added dairy beverages. However, biotechnological challenges are present in these bioprocesses, such as the selection of probiotic strains, as well as the correlation with the physicochemical characteristics of the fermentative metabolism of probiotic microorganisms. Therefore, yogurt could be a vehicle for including probiotic bacteria, bioactive compounds, and phytochemicals that allow synergistic effects in the development of bioprocesses with potential benefits for the host's health. Therefore, this article aims to review the current conditions of bio-yogurt production, discuss the physicochemical and bioactive composition (sugars, fiber, vitamins), and include phytochemicals from carrots to establish synergistic relationships with probiotic microorganisms to obtain a functional dairy beverage.
Collapse
Affiliation(s)
- Ángel David Camargo-Herrera
- Facultad de Ciencias Agrarias, Maestría en Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Camila Bernal-Castro
- Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carolina Gutiérrez-Cortes
- Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente (ECAPMA), Universidad Nacional Abierta y A Distancia (UNAD), Bogotá, Colombia
| | - Carlos Novoa Castro
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Consuelo Díaz-Moreno
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
4
|
Habteweld HA, Asfaw T. Novel Dietary Approach with Probiotics, Prebiotics, and Synbiotics to Mitigate Antimicrobial Resistance and Subsequent Out Marketplace of Antimicrobial Agents: A Review. Infect Drug Resist 2023; 16:3191-3211. [PMID: 37249957 PMCID: PMC10224695 DOI: 10.2147/idr.s413416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is a significant public health concern worldwide. The continuous use and misuse of antimicrobial agents have led to the emergence and spread of resistant strains of bacteria, which can cause severe infections that are difficult to treat. One of the reasons for the constant development of new antimicrobial agents is the need to overcome the resistance that has developed against existing drugs. However, this approach is not sustainable in the long term, as bacteria can quickly develop resistance to new drugs as well. Additionally, the development of new drugs is costly and time-consuming, and there is no guarantee that new drugs will be effective or safe. An alternative approach to combat AMR is to focus on improving the body's natural defenses against infections by using probiotics, prebiotics, and synbiotics, which are helpful to restore and maintain a healthy balance of bacteria in the body. Probiotics are live microorganisms that can be consumed as food or supplements to promote gut health and improve the body's natural defenses against infections. Prebiotics are non-digestible fibers that stimulate the growth of beneficial bacteria in the gut, while synbiotics are a combination of probiotics and prebiotics that work together to improve gut health. By promoting a healthy balance of bacteria in the body, these can help to reduce the risk of infections and the need for antimicrobial agents. Additionally, these approaches are generally safe and well tolerated, and they do not contribute to the development of AMR. In conclusion, the continuous development of new antimicrobial agents is not a sustainable approach to combat AMR. Instead, alternative approaches such as probiotics, prebiotics, and synbiotics should be considered as they can help to promote a healthy balance of bacteria in the body and reduce the need for antibiotics.
Collapse
Affiliation(s)
| | - Tsegahun Asfaw
- Department of Medical Laboratory Science, Debre Berhan University, Debre Berhan, Ethiopia
| |
Collapse
|
5
|
Characterization of Autochthonous Strains from the Cecal Content of Creole Roosters for a Potential Use as Probiotics. Animals (Basel) 2023; 13:ani13030455. [PMID: 36766343 PMCID: PMC9913217 DOI: 10.3390/ani13030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/29/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Five strains (CLP2, CLP3, CLP4, CLP5, and CLP6) were isolated from the cecal content of Creole roosters fed without antibiotic growth promoters. Biochemical and morphological tests (negative catalase and oxidase) confirmed the presence of lactic acid bacteria. Additionally, considering the 16s RNA, Lactobacillus vaginalis (CLP2, CLP3, CLP5, and CLP6) and Lactobacillus reuteri (CLP4) were identified. All strains (mainly CLP4 and CLP5) showed variable and significant growth (p < 0.001) at different levels of pH. Likewise, all bacterial cultures were quantified at 42 °C, although only strains CLP4 and CLP5 managed to grow at 30 °C. Additionally, the CLP4, CLP5, and CLP6 strains grew from 0.05 to 0.30% of biliary salts. However, only the CLP4 isolate grew at different concentrations of NaCl (2-10%), and CLP5 grew at 2% NaCl. The CLP4 strain was able to inhibit the in vitro growth of enterobacteria such as Escherichia coli ATCC® 11775TM, Salmonella Typhimurium ATCC® 14028TM, and Clostridium perfringens ATCC® 13124TM. In addition, CLP4 had lower sensitivity in the presence of amoxicillin and tetracycline compared to these pathogenic bacteria. Considering these in vitro results, it is necessary to carry out in vivo studies with the CLP4 strain to test the hypothesis of its probiotic effect in poultry.
Collapse
|
6
|
Choi YH, Kim BS, Kang SS. Inhibitory Effect of Genomic DNA Extracted from Pediococcus acidilactici on Porphyromonas gingivalis Lipopolysaccharide-Induced Inflammatory Responses. Food Sci Anim Resour 2023; 43:101-112. [PMID: 36789204 PMCID: PMC9890371 DOI: 10.5851/kosfa.2022.e62] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
This study aimed to assess whether genomic DNA (gDNA) extracted from Pediococcus acidilactici inhibits Porphyromonas gingivalis lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 cells. Pretreatment with gDNA of P. acidilactici K10 or P. acidilactici HW01 for 15 h effectively inhibited P. gingivalis LPS-induced mRNA expression of interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein (MCP)-1. Although both gDNAs did not dose-dependently inhibit P. gingivalis LPS-induced mRNA expression of IL-6 and MCP-1, they inhibited IL-1β mRNA expression in a dose-dependent manner. Moreover, pretreatment with both gDNAs inhibited the secretion of IL-1β, IL-6, and MCP-1. When RAW 264.7 cells were stimulated with P. gingivalis LPS alone, the phosphorylation of mitogen-activated protein kinases (MAPKs) was increased. However, the phosphorylation of MAPKs was reduced in the presence of gDNAs. Furthermore, both gDNAs restored IκBα degradation induced by P. gingivalis LPS, indicating that both gDNAs suppressed the activation of nuclear factor-κB (NF-κB). In summary, P. acidilactici gDNA could inhibit P. gingivalis LPS-induced inflammatory responses through the suppression of MAPKs and NF-κB, suggesting that P. acidilactici gDNA could be effective in preventing periodontitis.
Collapse
Affiliation(s)
- Young Hyeon Choi
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| | - Bong Sun Kim
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| | - Seok-Seong Kang
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| |
Collapse
|
7
|
Inhibitory Effect of Bacterial Lysates Extracted from Pediococcus acidilactici on the Differentiation of 3T3-L1 Pre-Adipocytes. Int J Mol Sci 2022; 23:ijms231911614. [PMID: 36232912 PMCID: PMC9570163 DOI: 10.3390/ijms231911614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Postbiotics, including bacterial lysates, are considered alternatives to probiotics. The aim of the current study was to investigate the effect of bacterial lysates (BLs) extracted from Pediococcus acidilactici K10 (K10 BL) and P. acidilactici HW01 (HW01 BL) on the differentiation of 3T3-L1 pre-adipocytes. Both K10 and HW01 BLs significantly reduced the accumulation of lipid droplets and the amounts of cellular glycerides in 3T3-L1 cells (p < 0.05). However, another postbiotic molecule, peptidoglycan of P. acidilactici K10 and P. acidilactici HW01, moderately inhibited the accumulation of lipid droplets, whereas heat-killed P. acidilactici did not effectively inhibit the lipid accumulation. The mRNA and protein levels of the transcription factors, peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α, responsible for the differentiation of 3T3-L1 cells, were significantly inhibited by K10 BL and HW01 BL (p < 0.05). Both K10 and HW01 BLs decreased adipocyte-related molecules, adipocyte fatty acid-binding protein and lipoprotein lipase, at the mRNA and protein levels. Furthermore, both K10 and HW01 BLs also downregulated the mRNA expression of leptin, but not resistin. Taken together, these results suggest that P. acidilactici BLs mediate anti-adipogenic effects by inhibiting adipogenic-related transcription factors and their target molecules.
Collapse
|
8
|
El Hage R, El Hage J, Snini SP, Ammoun I, Touma J, Rachid R, Mathieu F, Sabatier JM, Abi Khattar Z, El Rayess Y. The Detection of Potential Native Probiotics Lactobacillus spp. against Salmonella Enteritidis, Salmonella Infantis and Salmonella Kentucky ST198 of Lebanese Chicken Origin. Antibiotics (Basel) 2022; 11:antibiotics11091147. [PMID: 36139927 PMCID: PMC9495222 DOI: 10.3390/antibiotics11091147] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
Salmonella continues to be a major threat to public health, especially with respect to strains from a poultry origin. In recent years, an increasing trend of antimicrobial resistance (AMR) in Salmonella spp. was observed due to the misuse of antibiotics. Among the approaches advised for overcoming AMR, probiotics from the Lactobacillus genus have increasingly been considered for use as effective prophylactic and therapeutic agents belonging to the indigenous microbiota. In this study, we isolated lactobacilli from the ilea and ceca of hens and broilers in order to evaluate their potential probiotic properties. Four species were identified as Limosilactobacillusreuteri (n = 22, 45.8%), Ligilactobacillussalivarius (n = 20, 41.6%), Limosilactobacillus fermentum (n = 2, 4.2%) and Lactobacillus crispatus (n = 1, 2%), while three other isolates (n = 3, 6.25%) were non-typable. Eight isolates, including Ligilactobacillussalivarius (n = 4), Limosilactobacillusreuteri (n = 2), L. crispatus (n = 1) and Lactobacillus spp. (n = 1) were chosen on the basis of their cell surface hydrophobicity and auto/co-aggregation ability for further adhesion assays using the adenocarcinoma cell line Caco-2. The adhesion rate of these strains varied from 0.53 to 10.78%. Ligilactobacillussalivarius A30/i26 and 16/c6 and Limosilactobacillus reuteri 1/c24 showed the highest adhesion capacity, and were assessed for their ability to compete in and exclude the adhesion of Salmonella to the Caco-2 cells. Interestingly, Ligilactobacillussalivarius 16/c6 was shown to significantly exclude the adhesion of the three Salmonella serotypes, S. Enteritidis, S. Infantis and S. Kentucky ST 198, to Caco-2 cells. The results of the liquid co-culture assays revealed a complete inhibition of the growth of Salmonella after 24 h. Consequently, the indigenous Ligilactobacillussalivarius 16/c6 strain shows promising potential for use as a preventive probiotic added directly to the diet for the control of the colonization of Salmonella spp. in poultry.
Collapse
Affiliation(s)
- Rima El Hage
- Food Microbiology Laboratory, Lebanese Agricultural Research Institute (LARI), Fanar Station, Jdeideh El-Metn P.O. Box 901965, Lebanon
- Laboratoire de Génie Chimique, UMR 5503 CNRS/INPT/UPS, INP-ENSAT, 1, Université de Toulouse, Avenue de l’Agrobiopôle, 31326 Castanet-Tolosan, France
- Correspondence: (R.E.H.); (Z.A.K.)
| | - Jeanne El Hage
- Animal Health Laboratory, Lebanese Agricultural Research Institute (LARI), Fanar Station, Jdeideh El-Metn P.O. Box 901965, Lebanon
| | - Selma P. Snini
- Laboratoire de Génie Chimique, UMR 5503 CNRS/INPT/UPS, INP-ENSAT, 1, Université de Toulouse, Avenue de l’Agrobiopôle, 31326 Castanet-Tolosan, France
| | - Imad Ammoun
- Milk and Milk Products Laboratory, Lebanese Agricultural Research Institute (LARI), Fanar Station, Jdeideh El-Metn P.O. Box 901965, Lebanon
| | - Joseph Touma
- Food Microbiology Laboratory, Lebanese Agricultural Research Institute (LARI), Fanar Station, Jdeideh El-Metn P.O. Box 901965, Lebanon
| | - Rami Rachid
- Food Microbiology Laboratory, Lebanese Agricultural Research Institute (LARI), Fanar Station, Jdeideh El-Metn P.O. Box 901965, Lebanon
| | - Florence Mathieu
- Laboratoire de Génie Chimique, UMR 5503 CNRS/INPT/UPS, INP-ENSAT, 1, Université de Toulouse, Avenue de l’Agrobiopôle, 31326 Castanet-Tolosan, France
| | - Jean-Marc Sabatier
- CNRS UMR 7051, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Abi Khattar
- Microbiology/Tox-Ecotoxicology Team, Laboratory of Georesources, Geosciences and Environment (L2GE), Faculty of Sciences 2, Lebanese University, Campus Fanar, Jdeideh El-Metn P.O. Box 90656, Lebanon
- Correspondence: (R.E.H.); (Z.A.K.)
| | - Youssef El Rayess
- Faculty of Agricultural and Food Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon
| |
Collapse
|
9
|
Peng X, Ed-Dra A, Yue M. Whole genome sequencing for the risk assessment of probiotic lactic acid bacteria. Crit Rev Food Sci Nutr 2022; 63:11244-11262. [PMID: 35694810 DOI: 10.1080/10408398.2022.2087174] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Probiotic bacteria exhibit beneficial effects on human and/or animal health, and have been widely used in foods and fermented products for decades. Most probiotics consist of lactic acid bacteria (LAB), which are used in the production of various food products but have also been shown to have the ability to prevent certain diseases. With the expansion of applications for probiotic LAB, there is an increasing concern with regard to safety, as cases with adverse effects, i.e., severe infections, transfer of antimicrobial resistance genes, etc., can occur. Currently, in vitro assays remain the primary way to assess the properties of LAB. However, such methodologies are not meeting the needs of strain risk assessment on a high-throughput scale, in the context of the evolving concept of food safety. Analyzing the complete genetic information, including potential virulence genes and other determinants with a negative impact on health, allows for assessing the safe use of the product, for which whole-genome sequencing (WGS) of individual LAB strains can be employed. Genomic data can also be used to understand subtle differences in the strain level important for beneficial effects, or protect patents. Here, we propose that WGS-based bioinformatics analyses are an ideal and cost-effective approach for the initial in silico microbial risk evaluation, while the technique may also increase our understanding of LAB strains for food safety and probiotic property evaluation.
Collapse
Affiliation(s)
- Xianqi Peng
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | | | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
10
|
Liu Y, Lv H, Xu L, Zhang K, Mei Y, Chen J, Wang M, Guan Y, Pang H, Wang Y, Tan Z. The Effect of Dietary Lactic Acid Bacteria on Intestinal Microbiota and Immune Responses of Crucian Carp (Carassius auratus) Under Water Temperature Decrease. Front Microbiol 2022; 13:847167. [PMID: 35509308 PMCID: PMC9058164 DOI: 10.3389/fmicb.2022.847167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
Temperature changes have a great impact on fish feeding, intestinal microorganisms, metabolism, and immune function. Therefore, it is necessary to develop effective methods to enhance the survival rates and growth of fish under water temperature changes. Lactic acid bacteria (LAB) are promising immunostimulatory feed additive, as demonstrated by their beneficial effects in several fish species. This study investigated the short-term effects of dietary LAB on intestinal microbiota composition and immune responses of crucian carp (Carassius auratus) when water temperature decreased from 30 ± 1°C to 18 ± 1°C. Lactococcus (L.) lactis 1,209 and L. lactis 1,242 with potential probiotics isolated from the intestine of Qinghai naked carp (Gymnocypris przewalskii) were selected as feed additives for the crucian carp feeding experiment. A total of 225 commercially available healthy crucian carp (250 ± 10 g) of similar age were kept in 30°C water for a week and then immediately transferred to 18 ± 1°C water, assigned to three dietary treatments for a 16-day feeding trial randomly: (1) HC, diets without additives (the control group); (2) HT, diets with 106 CFU/ml L. lactis 1,209; and (3) HL, with 106 CFU/ml L. lactis 1,242. Each group was set up with 3 replicates and each with 25 fish. The results showed that the mortality rate of crucian carp in HC, HT, and HL group was 50, 27, and 33%, respectively. High-throughput sequencing results displayed that the composition of the intestinal microorganism varied dynamically in response to different treatments and water temperature decrease. Among them, compared with the HC group, a higher abundance of Firmicutes and Proteobacteria, and a lower of Actinobacteria appeared in HT and HL. The cytokines heat shock protein 70 (HSP-70) in crucian carp intestinal tract significantly decreased when water temperature decreased (p < 0.05).
Collapse
Affiliation(s)
- Yuan Liu
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural, Zhengzhou University, Zhengzhou, China
| | - Haoxin Lv
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Liping Xu
- Xining Vegetable Technical Service Center, Xining, China
| | - Kun Zhang
- Xining Vegetable Technical Service Center, Xining, China
| | - Yan Mei
- Xining Vegetable Technical Service Center, Xining, China
| | - Jun Chen
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
| | - Min Wang
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural, Zhengzhou University, Zhengzhou, China
| | - Yifei Guan
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural, Zhengzhou University, Zhengzhou, China
| | - Huili Pang
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural, Zhengzhou University, Zhengzhou, China
| | - Yanping Wang
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural, Zhengzhou University, Zhengzhou, China
| | - Zhongfang Tan
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural, Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhongfang Tan,
| |
Collapse
|
11
|
The Outer Membrane Vesicles of Salmonella enterica Serovar Typhimurium Activate Chicken Immune Cells through Lipopolysaccharides and Membrane Proteins. Pathogens 2022; 11:pathogens11030339. [PMID: 35335663 PMCID: PMC8948782 DOI: 10.3390/pathogens11030339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
Salmonella is a common pathogen which can secrete outer membrane vesicles (OMVs). However, the effect of OMVs from Salmonella enterica Serovar Typhimurium (S. Typhimurium) of poultry origin on cells of the chicken innate immune system is not well known. In this study, S. Typhimurium OMVs were first isolated from three different poultry strains of Salmonella, Salmonella CVCC542, SALA, and SALB. In order to investigate the effect of OMVs on the maturation of monocytes into macrophages, both bone marrow-derived (BMD) monocytes and macrophage cell line HD11 cells were used. OMVs promoted the formation of monocyte dendrites in both types of cells, enabled BMD cells to become larger, and stimulated expression of LPS-induced TNF-αfactor (LITAF), IL-6, and inducible nitric oxide synthase (iNOS) genes in HD11 cells. These results demonstrated the capability of OMVs to promote the development of chicken monocytes into macrophages and the maturation of macrophages. In order to study the effect of OMVs on the phagocytosis of macrophages, chicken spleen-derived monocytes and HD11 cells were used. Phagocytosis of FITC-Salmonella and FITC-dextran by these two types of cells was enhanced after stimulation with OMVs. To determine which components in OMVs were responsible for the above observed results, OMVs were treated with proteinase K(PK) or polymyxin B (PMB). Both treatments reduced the phagocytosis of FITC-Salmonella by HD11 cells and chicken spleen mononuclear cells and reduced the secretion of IL-1β, LITAF, and IL-6 cytokines. These results demonstrated that Salmonella OMVs activated chicken macrophages and spleen mononuclear cells and the activation was achieved mainly through lipopolysaccharides and membrane proteins.
Collapse
|
12
|
Shi S, Liu J, Dong J, Hu J, Liu Y, Feng J, Zhou D. Research progress on the regulation mechanism of probiotics on the microecological flora of infected intestines in livestock and poultry. Lett Appl Microbiol 2021; 74:647-655. [PMID: 34882816 DOI: 10.1111/lam.13629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022]
Abstract
The animal intestine is a complex ecosystem composed of host cells, gut microbiota and available nutrients. Gut microbiota can prevent the occurrence of intestinal diseases in animals by regulating the homeostasis of the intestinal environment. The intestinal microbiota is a complex and stable microbial community, and the homeostasis of the intestinal environment is closely related to the invasion of intestinal pathogens, which plays an important role in protecting the host from pathogen infections. Probiotics are strains of microorganisms that are beneficial to health, and their potential has recently led to a significant increase in studies on the regulation of intestinal flora. Various potential mechanisms of action have been proposed on probiotics, especially mediating the regulation mechanism of the intestinal flora on the host, mainly including competitive inhibition of pathogens, stimulation of the host's adaptive immune system and regulation of the intestinal flora. The advent of high-throughput sequencing technology has given us a clearer understanding and has facilitated the development of research methods to investigate the intestinal microecological flora. This review will focus on the regulation of probiotics on the microbial flora of intestinal infections in livestock and poultry and will depict future research directions.
Collapse
Affiliation(s)
- S Shi
- College of Life Sciences, Anqing Normal University and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui Province, Anqing, P. R. China
| | | | - J Dong
- College of Life Sciences, Anqing Normal University and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui Province, Anqing, P. R. China
| | - J Hu
- College of Life Sciences, Anqing Normal University and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui Province, Anqing, P. R. China
| | - Y Liu
- College of Life Sciences, Anqing Normal University and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui Province, Anqing, P. R. China
| | - J Feng
- Susong Chunrun Food Co., Ltd, Anqing, P. R. China
| | - D Zhou
- College of Life Sciences, Anqing Normal University and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui Province, Anqing, P. R. China
| |
Collapse
|
13
|
Role of Exposure to Lactic Acid Bacteria from Foods of Animal Origin in Human Health. Foods 2021; 10:foods10092092. [PMID: 34574202 PMCID: PMC8471122 DOI: 10.3390/foods10092092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/20/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
Animal products, in particular dairy and fermented products, are major natural sources of lactic acid bacteria (LAB). These are known for their antimicrobial properties, as well as for their roles in organoleptic changes, antioxidant activity, nutrient digestibility, the release of peptides and polysaccharides, amino acid decarboxylation, and biogenic amine production and degradation. Due to their antimicrobial properties, LAB are used in humans and in animals, with beneficial effects, as probiotics or in the treatment of a variety of diseases. In livestock production, LAB contribute to animal performance, health, and productivity. In the food industry, LAB are applied as bioprotective and biopreservation agents, contributing to improve food safety and quality. However, some studies have described resistance to relevant antibiotics in LAB, with the concomitant risks associated with the transfer of antibiotic resistance genes to foodborne pathogens and their potential dissemination throughout the food chain and the environment. Here, we summarize the application of LAB in livestock and animal products, as well as the health impact of LAB in animal food products. In general, the beneficial effects of LAB on the human food chain seem to outweigh the potential risks associated with their consumption as part of animal and human diets. However, further studies and continuous monitorization efforts are needed to ensure their safe application in animal products and in the control of pathogenic microorganisms, preventing the possible risks associated with antibiotic resistance and, thus, protecting public health.
Collapse
|
14
|
Trukhachev VI, Chmykhalo VK, Belanova AA, Beseda DK, Chikindas ML, Bren AB, Ermakov AM, Donnik IM, Belousova MM, Zolotukhin PV. Probiotic biomarkers and models upside down: From humans to animals. Vet Microbiol 2021; 261:109156. [PMID: 34388682 DOI: 10.1016/j.vetmic.2021.109156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 06/16/2021] [Indexed: 12/22/2022]
Abstract
Probiotics development for animal farming implies thorough testing of a vast variety of properties, including adhesion, toxicity, host cells signaling modulation, and immune effects. Being diverse, these properties are often tested individually and using separate biological models, with great emphasis on the host organism. Although being precise, this approach is cost-ineffective, limits the probiotics screening throughput and lacks informativeness due to the 'one model - one test - one property' principle. There is а solution coming from human-derived cells and in vitro systems, an extraordinary example of human models serving animal research. In the present review, we focus on the current outlooks of employing human-derived in vitro biological models in probiotics development for animal applications, examples of such studies and the analysis of concordance between these models and host-derived in vivo data. In our opinion, human-cells derived screening systems allow to test several probiotic properties at once with reasonable precision, great informativeness and less expenses and labor effort.
Collapse
Affiliation(s)
- Vladimir I Trukhachev
- Center for Agrobiotechnology, Don State Technical University, Gagarin Square 1, Rostov-on-Don, 344000, Russia; Russian State Agrarian University, Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya st., 49, Moscow, 127550, Russia.
| | - Victor K Chmykhalo
- Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave., 194/1, Rostov-on-Don, 344090, Russia.
| | - Anna A Belanova
- Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave., 194/1, Rostov-on-Don, 344090, Russia.
| | - Darya K Beseda
- Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave., 194/1, Rostov-on-Don, 344090, Russia.
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarin Square 1, Rostov-on-Don, 344000, Russia; Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901, USA; I.M. Sechenov First Moscow State Medical University, Bol'shaya Pirogovskaya Str., 19с1, Moscow, 119146, Russia.
| | - Anzhelika B Bren
- Center for Agrobiotechnology, Don State Technical University, Gagarin Square 1, Rostov-on-Don, 344000, Russia; Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave., 194/1, Rostov-on-Don, 344090, Russia.
| | - Alexey M Ermakov
- Center for Agrobiotechnology, Don State Technical University, Gagarin Square 1, Rostov-on-Don, 344000, Russia.
| | - Irina M Donnik
- Russian Academy of Sciences, Leninskii Ave., 14, Moscow, 119991, Russia.
| | - Marya M Belousova
- English Language Department for Natural Sciences Faculties, Southern Federal University, 5 Zorge Str., Rostov-on-Don, 344090, Russia.
| | - Peter V Zolotukhin
- Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave., 194/1, Rostov-on-Don, 344090, Russia.
| |
Collapse
|
15
|
Li Z, Song Q, Wang M, Ren J, Liu S, Zhao S. Comparative genomics analysis of Pediococcus acidilactici species. J Microbiol 2021; 59:573-583. [PMID: 33990913 DOI: 10.1007/s12275-021-0618-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 01/24/2023]
Abstract
Pediococcus acidilactici is a reliable bacteriocin producer and a promising probiotic species with wide application in the food and health industry. However, the underlying genetic features of this species have not been analyzed. In this study, we performed a comprehensive comparative genomic analysis of 41 P. acidilactici strains from various ecological niches. The bacteriocin production of 41 strains were predicted and three kinds of bacteriocin encoding genes were identified in 11 P. acidilactici strains, namely pediocin PA-1, enterolysin A, and colicin-B. Moreover, whole-genome analysis showed a high genetic diversity within the population, mainly related to a large proportion of variable genomes, mobile elements, and hypothetical genes obtained through horizontal gene transfer. In addition, comparative genomics also facilitated the genetic explanation of the adaptation for host environment, which specify the protection mechanism against the invasion of foreign DNA (i.e. CRISPR/Cas locus), as well as carbohydrate fermentation. The 41 strains of P. acidilactici can metabolize a variety of carbon sources, which enhances the adaptability of this species and survival in different environments. This study evaluated the antibacterial ability, genome evolution, and ecological flexibility of P. acidilactici from the perspective of genetics and provides strong supporting evidence for its industrial development and application.
Collapse
Affiliation(s)
- Zhenzhen Li
- BGI College, Zhengzhou University, Zhengzhou, 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Qi Song
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
- Key Laboratory of Genomics, Ministry of Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Mingming Wang
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Junli Ren
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Songling Liu
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
- Key Laboratory of Genomics, Ministry of Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Shancen Zhao
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China.
| |
Collapse
|
16
|
Martínez Y, Altamirano E, Ortega V, Paz P, Valdivié M. Effect of Age on the Immune and Visceral Organ Weights and Cecal Traits in Modern Broilers. Animals (Basel) 2021; 11:ani11030845. [PMID: 33802665 PMCID: PMC8002570 DOI: 10.3390/ani11030845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Currently, due to the high developments achieved in the poultry industry especially in genetics, management, nutrition, health, and animal welfare, modern broilers reach slaughter weight at an earlier age, which in turn has brought about notable changes in the morphophysiology of these birds. The following research proposes to determine the effect of age on visceral and immune organ weight, cecal pH, and cecal lactic acid bacteria in Ross 308® broilers, up to 10 days old. It was concluded that the immune and visceral organs increase their absolute and relative weight according to age and on days 9 and 10 the highest growth rate of the organs was found, furthermore, the colonization of the cecal lactic acid bacteria is established before 10 days of life (as the most critical stage), although with variable changes for intestinal pH. The correlation showed, in addition, a significant association between the organs evaluated, as well as for the cecum relative weight and the cecal lactic bacteria count. These results could contribute to updating knowledge on immunological activity, cecal microbiology, and the functioning of the digestive system, as well as for the development of new nutritional requirements and the optimization of dietary formulations. Abstract This study aimed to determine the effect of age on the immune and visceral organ weights and cecal traits in modern broilers. 200 male Ross® 308 broilers were randomly selected, then 20 broilers were slaughtered every day (up to 10 days old) after six hours of fasting. All the organs measured had a progressive increase in absolute weight as the days progressed, apart from the spleen, which decreased its absolute weight on day 5, even though on day 10 it showed the highest values. Moreover, the small intestine relative weight increased from the fourth to the ninth day and was correlated (p ≤ 0.05) with the relative weight of the proventriculus, gizzard, small intestine, and cecum, although without statistical association with the of the heart. There was a correlation between the cecum relative weight and the cecal lactic acid bacteria, and between the primary lymphoid organs. The pH (from 5.74 to 7.40) and cecal lactic acid bacteria (from 6.11 to 8.79 log 10 CFU/g) changed according to the age of the broilers. The results could contribute to the understanding of the physiology and intestinal microbiology of the first 10 days old of modern broilers, which is crucial to improve the genetic expression of these animals.
Collapse
Affiliation(s)
- Yordan Martínez
- Poultry Research and Teaching Center, Agricultural Science and Production Department, Zamorano University, P.O. Box 93, Valle de Yeguare, San Antonio de Oriente, Francisco Morazan, Tegucigalpa 11101, Honduras; (E.A.); (V.O.)
- Correspondence: ; Tel.: +504-94422496
| | - Edison Altamirano
- Poultry Research and Teaching Center, Agricultural Science and Production Department, Zamorano University, P.O. Box 93, Valle de Yeguare, San Antonio de Oriente, Francisco Morazan, Tegucigalpa 11101, Honduras; (E.A.); (V.O.)
| | - Victoria Ortega
- Poultry Research and Teaching Center, Agricultural Science and Production Department, Zamorano University, P.O. Box 93, Valle de Yeguare, San Antonio de Oriente, Francisco Morazan, Tegucigalpa 11101, Honduras; (E.A.); (V.O.)
| | - Patricio Paz
- Agricultural Science and Production Department, Zamorano University, P.O. Box 93, Valle de Yeguare, San Antonio de Oriente, Francisco Morazan, Tegucigalpa 11101, Honduras;
| | - Manuel Valdivié
- National Center for Laboratory Animal Production, P.O. Box 6240, Santiago de las Vegas, Rancho Boyeros, La Habana, Cuba;
| |
Collapse
|
17
|
El-Sharkawy H, Tahoun A, Rizk AM, Suzuki T, Elmonir W, Nassef E, Shukry M, Germoush MO, Farrag F, Bin-Jumah M, Mahmoud AM. Evaluation of Bifidobacteria and Lactobacillus Probiotics as Alternative Therapy for Salmonella typhimurium Infection in Broiler Chickens. Animals (Basel) 2020; 10:ani10061023. [PMID: 32545606 PMCID: PMC7341506 DOI: 10.3390/ani10061023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Salmonella is an important foodborne pathogen that represents a very critical threat to poultry industry worldwide. This study concerns an important aspect of human food and health problem by treating a common zoonotic bacterial disease in poultry industry. Owing to the increased resistance to antibiotics among Salmonellaenterica serotypes, we aimed to explore the beneficial effects of different probiotics strains as alternative sources of protection against infection in broiler chickens. Three probiotic strains Lactobacillus (Lacticaseibacillus) casei ATTC334, Bifidobacterium breve JCM1192 and Bifidobacterium infantis BL2416) improved body weight gain and prevented the deleterious effects and mortality induced by Salmonella infection in chicks through different mechanisms, including competitive exclusion and the promotion of cytokines’ release. Abstract Chicken Salmonella enterica serovars are enteric bacteria associated with massive public health risks and economic losses. There is a widespread antimicrobial resistance among S.enterica serotypes, and innovative solutions to antibiotic resistance are needed. We aimed to use probiotics to reduce antibiotic resistance and identify the major probiotic players that modify the early interactions between S.enterica and host cells. One-day-old cobb broiler chicks were challenged with S. typhimurium after oral inoculation with different probiotic strains for 3 days. The adherence of different probiotic strains to Caco-2 intestinal epithelial cells was studied in vitro. Lactobacillus (Lacticaseibacillus) casei ATTC334 and Bifidobacterium breve JCM1192 strains attached to Caco-2 cells stronger than B. infantis BL2416. L. casei ATTC334 and B. breve JCM1192 reduced S. typhimurium recovery from the cecal tonsils by competitive exclusion mechanism. Although B. infantis BL2416 bound poorly to Caco-2 epithelial cells, it reduced S. typhimurium recovery and increased IFN-γ and TNF-α production. L. casei ATTC334, B. breve JCM1192 and B. infantis BL2416 improved body weight gain and the food conversion rate in S. typhimurium-infected broilers. B. longum Ncc2785 neither attached to epithelial cells nor induced IFN-γ and TNF-α release and consequently did not prevent S. typhimurium colonization in broiler chickens. In conclusion, probiotics prevented the intestinal colonization of S. typhimurium in infected chickens by competitive exclusion or cytokine production mechanisms.
Collapse
Affiliation(s)
- Hanem El-Sharkawy
- Department of Poultry and Rabbit Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt;
| | - Amin Tahoun
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
- Correspondence: (A.T.); (A.M.M.)
| | - Amira M. Rizk
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Benha University, Benha 13511, Egypt;
| | - Tohru Suzuki
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
| | - Walid Elmonir
- Department of Hygiene and Preventive Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt;
| | - Eldsokey Nassef
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt;
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt;
| | - Mousa O. Germoush
- Biology Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia;
| | - Foad Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt;
| | - May Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia;
| | - Ayman M. Mahmoud
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Correspondence: (A.T.); (A.M.M.)
| |
Collapse
|
18
|
Mazkour S, Shekarforoush SS, Basiri S, Nazifi S, Yektaseresht A, Honarmand M. Effects of two probiotic spores of Bacillus species on hematological, biochemical, and inflammatory parameters in Salmonella Typhimurium infected rats. Sci Rep 2020; 10:8035. [PMID: 32415253 PMCID: PMC7229222 DOI: 10.1038/s41598-020-64559-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/15/2020] [Indexed: 01/27/2023] Open
Abstract
Salmonella infections have become a major health concern in recent decades. This pathogen has evolved to become resistant to antibiotics, which has caused problems in its treatment. As such, finding a novel preventive method is important in the treatment and management of this infection. In recent years, uses of probiotics, especially spore-former genera such as Bacillus spp. has become increasingly popular. In this study spores of two probiotic bacteria, Bacillus subtilis and Bacillus coagulans were fed to rats for three weeks through their daily water intake after which Salmonella Typhimurium was gavaged to the rats. On days 1, 3, 5 and 7 after gavaging, the number of Salmonella was counted in liver, spleen, mesenteric lymph nodes, feces and content of ileum and cecum. Hematological and biochemical parameters, inflammatory mediators, total antioxidant capacity and malondialdehyde were also measured. The results showed that B. subtilis and B. coagulans caused delation in infiltration of Salmonella into the lymph nodes, spleen and liver, reduction of the inflammatory mediators, and decreases in oxidative stress, hematological and biochemical changes. The overall count of Salmonella in the above mentioned parameters has also decreased and a faster return to normal base were also witnessed. The results showed that the use of B. subtilis and B. coagulans can potentially help boost the body’s immune system, to combat the effects of exposure to the Salmonella pathogen.
Collapse
Affiliation(s)
- Somaye Mazkour
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Seyed Shahram Shekarforoush
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Sara Basiri
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeed Nazifi
- Department of Clinical Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Azadeh Yektaseresht
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Masoumeh Honarmand
- Department of Clinical Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
19
|
Yang X, Liang S, Guo F, Ren Z, Yang X, Long F. Gut microbiota mediates the protective role of Lactobacillus plantarum in ameliorating deoxynivalenol-induced apoptosis and intestinal inflammation of broiler chickens. Poult Sci 2020; 99:2395-2406. [PMID: 32359574 PMCID: PMC7597391 DOI: 10.1016/j.psj.2019.10.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/02/2022] Open
Abstract
The protection of Lactobacillus plantarum JM113 against deoxynivalenol (DON)-induced apoptosis and intestinal inflammation on the jejunum of broiler chickens and the potential roles of gut microbiota were determined. A total of 144 one-day-old male broilers (Arbor Acres) were randomly divided into 3 treatment groups consisting of 6 replicates with 8 birds per replicate, including the CON (basal diet), the DON (basal diet + 10 mg/kg DON), and the DL (basal diet + 10 mg/kg DON + 1 × 109 CFU/kg L. plantarum JM113). The DON-diet decreased (P < 0.05) the mRNA expression of mucosal defense proteins and mechanistic target of rapamycin pathway genes. Meanwhile, DON challenge significantly increased Bcl-2-associated X gene/B-cell lymphoma 2 gene (Bcl-2) in the jejunum (P < 0.05) and demonstrated proapoptosis status. In contrast, the DL group showed normal immunity-related gene expression of jejunal mucosa and manifested a superior antiapoptosis status. Adding L. plantarum JM113 significantly raised (P < 0.05) propionic acid, n-butyric acid, and total short-chain fatty acids concentrations in cecal contents of birds fed with DON diet. In addition, DON exposure altered bacterial community structure and disturbed the abundance of several bacterial phyla, families, and genera, leading to dysbiosis. Supplementation with JM113 shifted the gut microbiota composition to that of the CON group. Finally, Spearman correlation analysis suggested that most positive correlations with the mRNA expression of immunity-related and apoptosis-regulatory gene were observed within the phylum Bacteroidetes, and most negative correlations with the indicators were observed within the phylum Firmicutes. The mRNA expression of Bcl-2, TLR2, mTOR, Raptor, and RPS6KB1 (P < 0.05), which are regarded as important cell proliferation and antiapoptosis parameters, were significantly negatively associated with the relative abundances of norank_f__Erysipelotrichaceae, Subdoligranulum, and Anaeroplasma, whereas they had a strong positive correlation with Ruminococcaceae_UCG-004, Alistipes, and Ruminococcaceae_NK4A214_group. These results implied that L. plantarum JM113 supplementation could ameliorate DON-induced apoptosis and intestinal inflammation via manipulating the bacterial community composition and could be used as a potential candidate to attenuate intestinal impairments.
Collapse
Affiliation(s)
- Xin Yang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Saisai Liang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Fangshen Guo
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhouzheng Ren
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China.
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China.
| |
Collapse
|
20
|
Whelan RA, Doranalli K, Rinttilä T, Vienola K, Jurgens G, Apajalahti J. The impact of Bacillus subtilis DSM 32315 on the pathology, performance, and intestinal microbiome of broiler chickens in a necrotic enteritis challenge. Poult Sci 2019; 98:3450-3463. [PMID: 30452717 PMCID: PMC6698186 DOI: 10.3382/ps/pey500] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022] Open
Abstract
It was hypothesized that dietary inclusion of Bacillus subtilis DSM 32315 could inhibit Clostridium perfringens induced necrotic enteritis (NE), thereby improving broiler performance. Male, d 0 chicks were randomly assigned 14 birds/pen, 11 pens/treatment in 3 treatments: a basal diet (control), a coccidiostat fed control (Narasin), and a direct fed microbial (DFM) B. subtilis DSM 32315 treatment. Necrotic enteritis was induced in all birds by oral inoculation of Eimeria maxima oocysts on d 12 and a virulent C. perfringens on d 16. Mortality was reduced (P < 0.001) in DFM and Narasin compared to control. DFM reduced (P < 0.001) feed conversion ratio (FCR) compared to control. Furthermore, DFM and Narasin reduced (P < 0.001) footpad lesions. The DFM was shown to increase (P < 0.05) Bacillus spp. and decrease (P < 0.05) C. perfringens in the ileum and cecum at several time points. To investigate microbiome changes in the cecum, digesta samples were analyzed with % guanine and cytosine (%G+C) microbial profiling which fractionates bacterial chromosomes based on the %G+C in DNA. The method revealed treatment profile peaks in low (27.0 to 34.5%), mid (40.5 to 54.0%), and high (59.0 to 68.0%) G+C fractions. 16S rRNA gene amplification and high throughput sequencing was conducted on each of these fractions in order to elucidate specific bacterial population differences. In the low and mid %G+C fractions, DFM had greater abundance of Lactobacillaceae family members (P = 0.03 and P = 0.01, respectively) and Lactobacillus salivarius (P = 0.04 and P = 0.01, respectively) than control or Narasin. Lactobacillus johnsonii was also greater in the low %G+C fraction compared to control and Narasin (P = 0.01). Lachnospiraceae (P = 0.04) and Ruminococcaceae (P < 0.01) in the mid %G+C fraction were reduced in the DFM compared to control. Positive alterations to the microbial populations in the gut of broilers may at least be a partial mechanism by which B. subtilis DSM 32315 reduced pathology and improved performance of broilers in the NE challenge.
Collapse
Affiliation(s)
- Rose A Whelan
- Evonik Nutrition & Care GmbH, Hanau, 63067, Hessen, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Effects of oxygen levels and a Lactobacillus plantarum strain on mortality and immune response of chickens at high altitude. Sci Rep 2019; 9:16037. [PMID: 31690779 PMCID: PMC6831595 DOI: 10.1038/s41598-019-52514-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/17/2019] [Indexed: 01/01/2023] Open
Abstract
Chickens reared in high altitude regions suffer from a high mortality, possibly due to poor immune responses induced by hypoxia. This experiment was conducted to evaluate whether increasing the oxygen level or administration of a probiotic could improve mortality and immune response of chickens at high altitude (2,986 m above the sea level). One-d-old chickens were randomly allocated to 1 of 6 treatments in a 2 × 3 factorial arrangement. The first factor was the oxygen level (low and high), while the second factor was the diet (basal diet, basal diet containing aureomycin, and basal diet plus L. plantarum). Increasing the oxygen level significantly reduced the mortality and improved immune responses. The levels of IgA, IgG, IL-10 and anti-BSA antibodies were significantly higher, while IL-1β, LITAF were significantly lower in chickens reared in the high-oxygen room. In the low-oxygen room, L. plantarum significantly decreased the mortality of chickens compared with the other 2 groups. Moreover, L. plantarum significantly increased the levels of IgA, anti-BSA antibodies, IL-10 and decreased IL-1β, LITAF compared with the control group. These results demonstrated that increasing oxygen level or administration of L. plantarum can improve health status of chickens in high altitude regions.
Collapse
|
22
|
Feng J, Chang X, Zhang Y, Lu R, Meng X, Song D, Yan X, Zhang J, Nie G. Characterization of a polysaccharide HP-02 from Honeysuckle flowers and its immunoregulatory and anti-Aeromonas hydrophila effects in Cyprinus carpio L. Int J Biol Macromol 2019; 140:477-483. [DOI: 10.1016/j.ijbiomac.2019.08.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/17/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
|
23
|
Huang T, Peng XY, Gao B, Wei QL, Xiang R, Yuan MG, Xu ZH. The Effect of Clostridium butyricum on Gut Microbiota, Immune Response and Intestinal Barrier Function During the Development of Necrotic Enteritis in Chickens. Front Microbiol 2019; 10:2309. [PMID: 31681193 PMCID: PMC6797560 DOI: 10.3389/fmicb.2019.02309] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/20/2019] [Indexed: 01/19/2023] Open
Abstract
Necrotic enteritis (NE) causes huge economic losses to the poultry industry. Probiotics are used as potential alternatives to antibiotics to prevent NE. It is known that Clostridium butyricum can act as a probiotic that can prevent infection. However, whether or not it exerts a beneficial effect on NE in chickens remains elusive. Therefore, we investigated the impact of C. butyricum on immune response and intestinal microbiota during the development of NE in chickens, including experimental stages with basal diets, high-fishmeal-supplementation diets, and Clostridium perfringens challenge. Chickens were divided into two groups from day 1 to day 20: one group had its diet supplemented with C. butyricum supplementation and one did not. At day 20, the chickens were divided into four groups: C. perfringens challenged and unchallenged chickens with and without C. butyricum supplementation. All groups were fed a basal diet for 13 days and thereafter a basal diet with 50% fishmeal from day 14 to 24. Chickens were infected with C. perfringens from day 21 to 23. At days 13, 20 and 24, samples were collected for analysis of the relative expression of immune response and intestinal mucosa barrier-related genes and intestinal microbes. The results show that C. butyricum can inhibit the increase in IL-17A gene expression and the reduction in Claudin-1 gene induced-expression caused by C. perfringens challenge. Moreover, C. butyricum was found to increase the expression of anti-inflammatory IL-10 in infected chickens. Although C. butyricum was found to have a significant beneficial effect on the structure of intestinal bacteria in the basal diet groups and decrease the abundance of C. perfringens in the gut, it did not significantly affect the occurrence of intestinal lesions and did not significantly correct the shift in gut bacterial composition post C. perfringens infection. In conclusion, although C. butyricum promotes the expression of anti-inflammatory and tight junction protein genes and inhibits pro-inflammatory genes in C. perfringens-challenged chickens, it is not adequate to improve the structure of intestinal microbiota in NE chickens. Therefore, more effective schemes of C. butyricum supplementation to prevent and treat NE in chickens need to be identified.
Collapse
Affiliation(s)
- Ting Huang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China.,Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Xin-Yu Peng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China.,Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Biao Gao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China.,Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Qi-Lin Wei
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China.,Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Rong Xiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China.,Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Ming-Gui Yuan
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China.,Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Zhi-Hong Xu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China.,Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| |
Collapse
|
24
|
Mu H, Bai H, Sun F, Liu Y, Lu C, Qiu Y, Chen P, Yang Y, Kong L, Duan J. Pathogen-targeting glycovesicles as a therapy for salmonellosis. Nat Commun 2019; 10:4039. [PMID: 31492864 PMCID: PMC6731243 DOI: 10.1038/s41467-019-12066-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 08/16/2019] [Indexed: 12/16/2022] Open
Abstract
Antibiotic therapy is usually not recommended for salmonellosis, as it is associated with prolonged fecal carriage without reducing symptom duration or severity. Here we show that antibiotics encapsulated in hydrogen sulfide (H2S)-responsive glycovesicles may be potentially useful for the treatment of salmonellosis. The antibiotics are released in the presence of Salmonella, which is known to produce H2S. This approach prevents the quick absorption of antibiotics into the bloodstream, allows localized targeting of the pathogen in the gut, and alleviates disease symptoms in a mouse infection model. In addition, it reduces antibiotic-induced changes in the gut microbiota, and increases the abundance of potentially beneficial lactobacilli due to the release of prebiotic xylooligosaccharide analogs.
Collapse
Affiliation(s)
- Haibo Mu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Hu Bai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Feifei Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yinyin Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Chunbo Lu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yuanhao Qiu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Peng Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yu Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Lili Kong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Jinyou Duan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
25
|
Zhou L, Wang L, Tian P, Bao T, Li L, Zhao X. The LiaFSR and BsrXRS Systems Contribute to Bile Salt Resistance in Enterococcus faecium Isolates. Front Microbiol 2019; 10:1048. [PMID: 31134041 PMCID: PMC6522849 DOI: 10.3389/fmicb.2019.01048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 11/23/2022] Open
Abstract
Two-component systems (TCSs) are dominant regulating components in bacteria for responding to environmental stimuli. However, little information is available on how TCSs in Enterococcus faecium respond to bile salts - an important environmental stimulus for intestinal bacteria. In this study, the gene expression of 2 TCSs, BsrXRS and LiaFSR, was positively correlated with survival rates of different E. faecium isolates during exposure to ox gall. Moreover, gene disruptions of bsrR, bsrS, liaS, and liaR significantly reduced the survival rates of E. faecium in the presence of ox gall. Finally, EMSA results indicated that BsrR functioned as a transcription regulator for expression of its own gene as well as lipoate-protein ligase A (lplA). Additional 27 potential target genes by BsrR were revealed through in silico analyses. These findings suggest that BsrXRS and LiaFSR systems play important roles in bile salt resistance in E. faecium.
Collapse
Affiliation(s)
- Luoxiong Zhou
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Lihong Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Ping Tian
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Tingting Bao
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Lianbin Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- Department of Animal Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
26
|
Khaneghah AM, Fakhri Y. Probiotics and Prebiotics as Functional Foods: State of the Art. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401314666180416120241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Foods, besides their nutritional value, are used to be as a tool in maintaining of physical
and mental well-being and prevent disease. Based on the definition of Functional foods as foods,
which may offer health benefits beyond basic nutrition, functional foods, are categorized as foods,
not medicine. Among the last decades, the growing market for functional foods, representing both
opportunities and challenges to food producers as well academic sections to cover such demand and
furthermore conquer the acceptance of consumer. In this article, an overview regarding the probiotics
as well as prebiotics as outstanding components of functional foods, compatibility and their use in
food products have been reviewed.
Collapse
Affiliation(s)
- Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Caixa Postal: 6121, CEP: 13083-862 Campinas, Sao Paulo, Brazil
| | - Yadolah Fakhri
- Department of Environmental Health Engineering, Student Research Committee, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Abhisingha M, Dumnil J, Pitaksutheepong C. Selection of Potential Probiotic Lactobacillus with Inhibitory Activity Against Salmonella and Fecal Coliform Bacteria. Probiotics Antimicrob Proteins 2019; 10:218-227. [PMID: 28712023 DOI: 10.1007/s12602-017-9304-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Three hundred and sixty presumptive lactic acid bacteria (LAB) isolated from pregnant sows, newborn, suckling, and weaned piglets were preliminarily screened for anti-Salmonella activity. Fifty-eight isolates consisting of Lactobacillus reuteri (n = 32), Lactobacillus salivarius (n = 10), Lactobacillus mucosae (n = 8), Lactobacillus johnsonii (n = 5), and Lactobacillus crispatus (n = 3) were selected and further characterized for probiotic properties including production of antimicrobial substances, acid and bile tolerance, and cell adherence to Caco-2 cells. Eight isolates including Lact. johnsonii LJ202 and Lact. reuteri LR108 were identified as potential probiotics. LJ202 was selected for further use in co-culture studies of two-bacterial and multiple-bacterial species to examine its inhibitory activity against Salmonella enterica serovar Enteritidis DMST7106 (SE7106). Co-culture of LJ202 and SE7106 showed that LJ202 could completely inhibit the growth of SE7106 in 10 h of co-culture. In co-culture of multiple-bacterial species, culturable fecal bacteria from pig feces were used as representative of multiple-bacterial species. The study was performed to examine whether interactions among multiple-bacterial species would influence antagonistic activity of LJ202 against SE7106 and fecal coliform bacteria. Co-culture of SE7106 with different combinations of fecal bacteria and probiotic (LJ202 and LR108) or non-probiotic (Lact. mucosae LM303) strains revealed that the growth of SE7106 was completely inhibited either in the presence or in the absence of probiotic strains. Intriguingly, LJ202 exhibited notable inhibitory activity against fecal coliform bacteria while LR108 did not. Taken together, the results of co-culture studies suggested that LJ202 is a good probiotic candidate for further study its inhibitory effects against pathogen infections in pigs.
Collapse
Affiliation(s)
- Mattika Abhisingha
- Food Biotechnology Laboratory, Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Jureeporn Dumnil
- Food Biotechnology Laboratory, Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Chetsadaporn Pitaksutheepong
- Food Biotechnology Laboratory, Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
28
|
Wang L, Li L, Lv Y, Chen Q, Feng J, Zhao X. Lactobacillus plantarum Restores Intestinal Permeability Disrupted by Salmonella Infection in Newly-hatched Chicks. Sci Rep 2018; 8:2229. [PMID: 29396554 PMCID: PMC5797085 DOI: 10.1038/s41598-018-20752-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/23/2018] [Indexed: 01/03/2023] Open
Abstract
Salmonella infections in newly hatched chicks result in enteric and systemic diseases with a high mortality. Probiotics can improve the health of a host. The purpose of the present study was to investigate the effect of Lactobacillus plantarum LTC-113 on the gut permeability in the presence or absence of Salmonella (Salmonella Typhimurium) infection. Newly hatched chicks were randomly allocated to 4 treatments (i) NC (negative control); (ii) LAC (the L. plantarum LTC-113-treated group); (iii) SAL (the Salmonella-infected group), and (iv) LAC + SAL (the L. plantarum LTC-113-treated and Salmonella-infected group). Compared with the NC group, the intestinal permeability and claudin-2 (CLDN-2) were significantly increased, while mRNA levels of zonula occludens-1 (ZO-1) and claudin-5 (CLDN-5) were significantly decreased in the SAL group. However, these changes were eliminated in the LAC + SAL group. Additionally, numbers of Salmonella in liver, spleen and ceca were significantly reduced in the LAC + SAL group compared with the SAL group. Moreover, L. plantarum LTC-113 prevented the increase of inflammatory meditators myeloperoxidase (MPO), LITAF, IL-1β, IL-6 and inflammation scores induced by Salmonella. These findings indicate that L. plantarum LTC-113 can protect hosts from Salmonella induced intestinal barrier disruption by regulating expression of tight junction genes and inflammatory meditators and decreasing Salmonella colonization.
Collapse
Affiliation(s)
- Lihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Department of Animal Engineering, YangLing Vocational & Technical College, Yangling, China
| | - Yan Lv
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qiaoling Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junchang Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
- Department of Animal Science, McGill University, Montreal, QC, Canada.
| |
Collapse
|
29
|
Ranjan R, Pandit RJ, Duggirala SM, Joshi CG, Sharma S, Patil NV. Genome sequencing of Pediococcus acidilactici (NRCC1), a novel isolate from dromedary camel (Camelus dromedarius) rumen fluid. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1320-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
30
|
Zhao X, Yang J, Wang L, Lin H, Sun S. Protection Mechanism of Clostridium butyricum against Salmonella Enteritidis Infection in Broilers. Front Microbiol 2017; 8:1523. [PMID: 28848530 PMCID: PMC5552664 DOI: 10.3389/fmicb.2017.01523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/28/2017] [Indexed: 12/31/2022] Open
Abstract
This study was designed to evaluate the protection mechanism of oral administration of Clostridium butyricum against Salmonella enteritidis (SE) colonization in broilers. In the current study, 180 one-day-old healthy Arbor Acres (AA) broilers were meanly grouped into three, with three replicates of 20 birds each. An negative control group was fed basal diet without SE challenge and a positive control (PC) group was fed the basal diet and challenged with SE [106 colony forming unit (CFU)/0.2 mL]. An experimental (EXP) group was fed the basal diet, orally administered with C. butyricum (106 CFU/mL) and challenged with SE (106 CFU/0.2 mL). The results showed that compared to the PC group, the SE loads in livers, spleens, and cecal contents of chickens in EXP group were significantly reduced (P < 0.05) except in spleens at the 2-day post-infection; the production of interferon-γ, interleukin (IL)-1β, IL-8, and tumor necrosis factor-α in the livers, spleens, and cecal tissues of chickens in EXP group were decreased to different extents. The results of quantitative real-time polymerase chain reaction further revealed that the inflammation of chickens in EXP group was alleviated by C. butyricum via down-regulating TLR4, MyD88, and NF-κB-dependent pathways. Collectively, these findings indicated that oral administration of C. butyricum could be a suitable alternative for preventing SE infection in broilers.
Collapse
Affiliation(s)
- Xiaonan Zhao
- College of Animal Science and Technology, Shandong Agricultural UniversityTai'an, China
| | - Jie Yang
- College of Animal Science and Technology, Shandong Agricultural UniversityTai'an, China
| | - Lili Wang
- College of Animal Science and Technology, Shandong Agricultural UniversityTai'an, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Agricultural UniversityTai'an, China
| | - Shuhong Sun
- College of Animal Science and Technology, Shandong Agricultural UniversityTai'an, China
| |
Collapse
|
31
|
Chen Q, Tong C, Ma S, Zhou L, Zhao L, Zhao X. Involvement of MicroRNAs in Probiotics-Induced Reduction of the Cecal Inflammation by Salmonella Typhimurium. Front Immunol 2017; 8:704. [PMID: 28659929 PMCID: PMC5468434 DOI: 10.3389/fimmu.2017.00704] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 05/31/2017] [Indexed: 12/20/2022] Open
Abstract
The microRNAs (miRNAs) have been shown to play important roles in the development of the immune system and in regulation of host inflammation responses. Probiotics can effectively alleviate the inflammation caused by Salmonella in chickens. However, whether and how miRNAs are involved in modulation of the inflammation response in the gut of chickens have not been reported. In this study, the impact of a probiotics, Lactobacillus plantarum Z01 (LPZ01), was investigated on the cecal miRNAs and cytokine secretions in Salmonella Typhimurium (S. Typhimurium)-infected chickens at the age of 3 days. Newly hatched chicks were assigned to four groups (1): NC (basal diet) (2): S (basal diet + S. Typhimurium challenged) (3): SP (basal diet + S. Typhimurium challenged + LPZ01) (4): P (basal diet + LPZ01). In comparison with the S group, chicks in the SP group reduced the number of S. Typhimurium and had lower levels of interferon-γ and lipopolysaccharide-induced tumor necrosis factor alpha factor (LITAF) in ceca post challenge. Expression of 14 miRNAs was significantly affected by the presence of S. Typhimurium and/or lactobacillus. Five differential expression miRNAs (gga-miR-215-5p, gga-miR-3525, gga-miR-193a-5p, gga-miR-122-5p, and gga-miR-375) were randomly selected for confirmation by the RT-PCR. Predicted target genes of differentially expressed miRNAs were enriched in regulation of cAMP-dependent protein kinase activity, stress-activated MAPK cascade, immune system development and regulation of immune system process as well as in immune related pathways such as MAPK and Wnt signaling pathways. The relationship between changes of miRNAs and changes of cytokines was explored. Finally, 119 novel miRNAs were identified in 36 libraries totally. Identification of novel miRNAs significantly expanded the repertoire of chicken miRNAs and provided the basis for understanding the function of miRNAs in the host. Our results suggest that the probiotics reduce the inflammation of the S. Typhimurium infection in neonatal broiler chicks, at least partially, through regulation of miRNAs expression.
Collapse
Affiliation(s)
- Qiaoling Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chao Tong
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shaoyang Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Luoxiong Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lili Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Department of Animal Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
32
|
Moshiri M, Dallal MMS, Rezaei F, Douraghi M, Sharifi L, Noroozbabaei Z, Gholami M, Mirshafiey A. The Effect of Lactobacillus acidophilus PTCC 1643 on Cultured Intestinal Epithelial Cells Infected with Salmonella enterica serovar Enteritidis. Osong Public Health Res Perspect 2017; 8:54-60. [PMID: 28443224 PMCID: PMC5402851 DOI: 10.24171/j.phrp.2017.8.1.07] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objectives Gastrointestinal disorders caused by Salmonella enterica serovar Enteritidis (SesE) are a significant health problem around the globe. Probiotic bacteria have been shown to have positive effects on the immune responses. Lactobacillus acidophilus was examined for its capability to influence the innate immune response of HT29 intestinal epithelial cells towards SesE. The purpose of this work was to assess the effect of L. acidophilus PTCC 1643 on cultured intestinal epithelial cells infected with SesE. Methods HT29 cells were cultured in Roswell Park Memorial Institute medium supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. The cells were treated with L. acidophilus PTCC 1643 after or before challenge with SesE. At 2 and 4 hours post-infection, we measured changes in the expression levels of TLR2 and TLR4 via real-time polymerase chain reaction. Results Treatment with L. acidophilus inhibited SesE-induced increases in TLR2 and TLR4 expression in the infected HT29 cells. Moreover, the expression of TLR2 and TLR4 in cells that were pretreated with L. acidophilus and then infected with SesE was significantly higher than that in cells infected with SesE without pretreatment. Taken together, the results indicated that L. acidophilus had an anti-inflammatory effect and modulated the innate immune response to SesE by influencing TLR2 and TLR4 expression. Conclusion Our findings suggested that L. acidophilus PTCC 1643 was able to suppress inflammation caused by SesE infection in HT29 cells and reduce TLR2 and TLR4 expression. Additional in vivo and in vitro studies are required to further elucidate the mechanisms underlying this anti-inflammatory effect.
Collapse
Affiliation(s)
- Mona Moshiri
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Soltan Dallal
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Laleh Sharifi
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Noroozbabaei
- Department of Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Gholami
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|