1
|
Choi CR, Kim EJ, Choi TH, Han J, Kang D. Enhancing Human Cutaneous Wound Healing through Targeted Suppression of Large Conductance Ca 2+-Activated K + Channels. Int J Mol Sci 2024; 25:803. [PMID: 38255877 PMCID: PMC10815220 DOI: 10.3390/ijms25020803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The modulation of K+ channels plays a crucial role in cell migration and proliferation, but the effect of K+ channels on human cutaneous wound healing (CWH) remains underexplored. This study aimed to determine the necessity of modulating K+ channel activity and expression for human CWH. The use of 25 mM KCl as a K+ channel blocker markedly improved wound healing in vitro (in keratinocytes and fibroblasts) and in vivo (in rat and porcine models). K+ channel blockers, such as quinine and tetraethylammonium, aided in vitro wound healing, while Ba2+ was the exception and did not show similar effects. Single-channel recordings revealed that the Ba2+-insensitive large conductance Ca2+-activated K+ (BKCa) channel was predominantly present in human keratinocytes. NS1619, an opener of the BKCa channel, hindered wound healing processes like proliferation, migration, and filopodia formation. Conversely, charybdotoxin and iberiotoxin, which are BKCa channel blockers, dramatically enhanced these processes. The downregulation of BKCa also improved CWH, whereas its overexpression impeded these healing processes. These findings underscore the facilitative effect of BKCa channel suppression on CWH, proposing BKCa channels as potential molecular targets for enhancing human cutaneous wound healing.
Collapse
Affiliation(s)
- Chang-Rok Choi
- Department of Physiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (C.-R.C.); (E.-J.K.); (J.H.)
| | - Eun-Jin Kim
- Department of Physiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (C.-R.C.); (E.-J.K.); (J.H.)
- Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Tae Hyun Choi
- Thenevus Plastic Surgery Clinic, Seoul 07013, Republic of Korea;
| | - Jaehee Han
- Department of Physiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (C.-R.C.); (E.-J.K.); (J.H.)
| | - Dawon Kang
- Department of Physiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (C.-R.C.); (E.-J.K.); (J.H.)
- Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
2
|
Primak AL, Orlov NA, Peigneur S, Tytgat J, Ignatova AA, Denisova KR, Yakimov SA, Kirpichnikov MP, Nekrasova OV, Feofanov AV. AgTx2-GFP, Fluorescent Blocker Targeting Pharmacologically Important K v1.x (x = 1, 3, 6) Channels. Toxins (Basel) 2023; 15:toxins15030229. [PMID: 36977120 PMCID: PMC10056440 DOI: 10.3390/toxins15030229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The growing interest in potassium channels as pharmacological targets has stimulated the development of their fluorescent ligands (including genetically encoded peptide toxins fused with fluorescent proteins) for analytical and imaging applications. We report on the properties of agitoxin 2 C-terminally fused with enhanced GFP (AgTx2-GFP) as one of the most active genetically encoded fluorescent ligands of potassium voltage-gated Kv1.x (x = 1, 3, 6) channels. AgTx2-GFP possesses subnanomolar affinities for hybrid KcsA-Kv1.x (x = 3, 6) channels and a low nanomolar affinity to KcsA-Kv1.1 with moderate dependence on pH in the 7.0-8.0 range. Electrophysiological studies on oocytes showed a pore-blocking activity of AgTx2-GFP at low nanomolar concentrations for Kv1.x (x = 1, 3, 6) channels and at micromolar concentrations for Kv1.2. AgTx2-GFP bound to Kv1.3 at the membranes of mammalian cells with a dissociation constant of 3.4 ± 0.8 nM, providing fluorescent imaging of the channel membranous distribution, and this binding depended weakly on the channel state (open or closed). AgTx2-GFP can be used in combination with hybrid KcsA-Kv1.x (x = 1, 3, 6) channels on the membranes of E. coli spheroplasts or with Kv1.3 channels on the membranes of mammalian cells for the search and study of nonlabeled peptide pore blockers, including measurement of their affinity.
Collapse
Affiliation(s)
- Alexandra L Primak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nikita A Orlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Steve Peigneur
- Toxicology and Pharmacology, Campus Gasthuisberg O&N2, University of Leuven (KU Leuven), Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, Campus Gasthuisberg O&N2, University of Leuven (KU Leuven), Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | - Anastasia A Ignatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Kristina R Denisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Sergey A Yakimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Oksana V Nekrasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey V Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
3
|
Zhao M, Qi Q, Liu S, Huang R, Shen J, Zhu Y, Chai J, Zheng H, Wu H, Liu H. MicroRNA-34a: A Novel Therapeutic Target in Fibrosis. Front Physiol 2022; 13:895242. [PMID: 35795649 PMCID: PMC9250967 DOI: 10.3389/fphys.2022.895242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/30/2022] [Indexed: 12/26/2022] Open
Abstract
Fibrosis can occur in many organs, and severe cases leading to organ failure and death. No specific treatment for fibrosis so far. In recent years, microRNA-34a (miR-34a) has been found to play a role in fibrotic diseases. MiR-34a is involved in the apoptosis, autophagy and cellular senescence, also regulates TGF-β1/Smad signal pathway, and negatively regulates the expression of multiple target genes to affect the deposition of extracellular matrix and regulate the process of fibrosis. Some studies have explored the efficacy of miR-34a-targeted therapies for fibrotic diseases. Therefore, miR-34a has specific potential for the treatment of fibrosis. This article reviews the important roles of miR-34a in fibrosis and provides the possibility for miR-34a as a novel therapeutic target in fibrosis.
Collapse
Affiliation(s)
- Min Zhao
- Department of Acupuncture-Moxibustion, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Shimin Liu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Rong Huang
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Shen
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Zhu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Jing Chai
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Handan Zheng
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Huangan Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Huangan Wu, ; Huirong Liu,
| | - Huirong Liu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Huangan Wu, ; Huirong Liu,
| |
Collapse
|
4
|
Cosme D, Estevinho MM, Rieder F, Magro F. Potassium channels in intestinal epithelial cells and their pharmacological modulation: a systematic review. Am J Physiol Cell Physiol 2020; 320:C520-C546. [PMID: 33326312 DOI: 10.1152/ajpcell.00393.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several potassium channels (KCs) have been described throughout the gastrointestinal tract. Notwithstanding, their contribution to both physiologic and pathophysiologic conditions, as inflammatory bowel disease (IBD), remains underexplored. Therefore, we aim to systematically review, for the first time, the evidence on the characteristics and modulation of KCs in intestinal epithelial cells (IECs). PubMed, Scopus, and Web of Science were searched to identify studies focusing on KCs and their modulation in IECs. The included studies were assessed using a reporting inclusiveness checklist. From the 745 identified records, 73 met the inclusion criteria; their reporting inclusiveness was moderate-high. Some studies described the physiological role of KCs, while others explored their importance in pathological settings. Globally, in IBD animal models, apical KCa1.1 channels, responsible for luminal secretion, were upregulated. In human colonocytes, basolateral KCa3.1 channels were downregulated. The pharmacological inhibition of K2P and Kv influenced intestinal barrier function, promoting inflammation. Evidence suggests a strong association between KCs expression and secretory mechanisms in human and animal IECs. Further research is warranted to explore the usefulness of KC pharmacological modulation as a therapeutic target.
Collapse
Affiliation(s)
- Dina Cosme
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP, Center for Drug Discovery and Innovative Medicines, Porto, Portugal
| | - Maria Manuela Estevinho
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Gastroenterology, Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Florian Rieder
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases, and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Fernando Magro
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP, Center for Drug Discovery and Innovative Medicines, Porto, Portugal.,Department of Gastroenterology, Centro Hospitalar São João, Porto, Portugal
| |
Collapse
|
5
|
Jakakul C, Kanjanasirirat P, Muanprasat C. Development of a Cell-Based Assay for Identifying K Ca3.1 Inhibitors Using Intestinal Epithelial Cell Lines. SLAS DISCOVERY 2020; 26:439-449. [PMID: 32830616 DOI: 10.1177/2472555220950661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibition of the KCa3.1 potassium channel has therapeutic potential in a variety of human diseases, including inflammation-associated disorders and cancers. However, KCa3.1 inhibitors with high therapeutic promise are currently not available. This study aimed to establish a screening assay for identifying inhibitors of KCa3.1 in native cells and from library compounds derived from natural products in Thailand. The screening platform was successfully developed based on a thallium flux assay in intestinal epithelial (T84) cells with a Z' factor of 0.52. The screening of 1352 compounds and functional validation using electrophysiological analyses identified 8 compounds as novel KCa3.1 inhibitors with IC50 values ranging from 0.14 to 6.57 µM. These results indicate that the assay developed is of excellent quality for high-throughput screening and capable of identifying KCa3.1 inhibitors. This assay may be useful in identifying novel KCa3.1 inhibitors that may have therapeutic potential for inflammation-associated disorders and cancers.
Collapse
Affiliation(s)
- Chanon Jakakul
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Phongthon Kanjanasirirat
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| |
Collapse
|
6
|
Amador-Muñoz D, Gutiérrez ÁM, Payán-Gómez C, Matheus LM. In silico and in vitro analysis of cation-activated potassium channels in human corneal endothelial cells. Exp Eye Res 2020; 197:108114. [PMID: 32561484 DOI: 10.1016/j.exer.2020.108114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/31/2022]
Abstract
The corneal endothelium is the inner cell monolayer involved in the maintenance of corneal transparence by the generation of homeostatic dehydration. The glycosaminoglycans of the corneal stroma develop a continuous swelling pressure that should be counteracted by the corneal endothelial cells through active transport mechanisms to move the water to the anterior chamber. Protein transporters for sodium (Na+), potassium (K+), chloride (Cl-) and bicarbonate (HCO3-) are involved in this endothelial "pump function", however despite its physiological importance, the efflux mechanism is not completely understood. There is experimental evidence describing transendothelial diffusion of water in the absence of osmotic gradients. Therefore, it is important to get a deeper understanding of alternative models that drive the fluid transport across the endothelium such as the electrochemical gradients. Three transcriptomic datasets of the corneal endothelium were used in this study to analyze the expression of genes that encode proteins that participate in the transport and the reestablishment of the membrane potential across the semipermeable endothelium. Subsequently, the expression of the identified channels was validated in vitro both at mRNA and protein levels. The results of this study provide the first evidence of the expression of KCNN2, KCNN3 and KCNT2 genes in the corneal endothelium. Differences among the level of expression of KCNN2, KCNT2 and KCNN4 genes were found in a differentially expressed gene analysis of the dataset. Taken together these results underscore the potential importance of the ionic channels in the pathophysiology of corneal diseases. Moreover, we elucidate novel mechanisms that might be involved in the pivotal dehydrating function of the endothelium and in others physiologic functions of these cells using in silico pathways analysis.
Collapse
Affiliation(s)
- Diana Amador-Muñoz
- Neuroscience (NEUROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63 C 69, P.O 111221, Bogotá, Colombia.
| | - Ángela María Gutiérrez
- Escuela Superior de Oftalmología, Instituto Barraquer de América, Calle 100 No. 18 A 51, Bogotá, Colombia.
| | - César Payán-Gómez
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Carrera 24 No. 63 C 69, Bogotá, P.O 111221, Colombia.
| | - Luisa Marina Matheus
- Neuroscience (NEUROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63 C 69, P.O 111221, Bogotá, Colombia.
| |
Collapse
|
7
|
Zundler S, Tauschek V, Neurath MF. Immune Cell Circuits in Mucosal Wound Healing: Clinical Implications. Visc Med 2020; 36:129-136. [PMID: 32355670 DOI: 10.1159/000506846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background An intact mucosal barrier is essential for homeostasis in the gastrointestinal tract. Various pathological conditions such as infection or immune-mediated inflammation as well as therapeutic interventions like bowel surgery can result in injury of the intestinal mucosa. To counteract potential negative sequelae and to restore integrity of the tissue, a tightly regulated machinery of mechanisms exists, which crucially depends on the presence and absence of various immune cell subsets in different phases of intestinal wound healing. Cell trafficking is an increasingly acknowledged process that steers the localization of cells in tissues and the circulation. Thus, such cell circuits also crucially impact on the recruitment of immune cells in wound healing. Summary We performed a selective literature research. In our review, we will shortly delineate some basic principles of intestinal immune cell trafficking before discussing the contribution of different immune cells to wound healing. Finally, we will discuss potential clinical implications of immune cell trafficking and wound healing interactions in inflammatory bowel disease (IBD) and bowel surgery. Key Messages Intestinal wound healing has immense importance in pathological conditions like IBD, anastomotic healing, and others. Immune cell trafficking is indispensable for the correct temporal and spatial interaction of the cells involved. Further research is required to understand the final consequences of interfering with immune cell trafficking for intestinal wound healing.
Collapse
Affiliation(s)
- Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Erlangen, Germany
| | - Verena Tauschek
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
8
|
Dynamic Gene Network Analysis of Caco-2 Cell Response to Shiga Toxin-Producing Escherichia coli-Associated Hemolytic-Uremic Syndrome. Microorganisms 2019; 7:microorganisms7070195. [PMID: 31288487 PMCID: PMC6680469 DOI: 10.3390/microorganisms7070195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 01/26/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O113:H21 strains are associated with human diarrhea and some strains may cause hemolytic-uremic syndrome (HUS). In Brazil, these strains are commonly found in cattle but, so far, were not isolated from HUS patients. Here, a system biology approach was used to investigate the differential transcriptomic and phenotypic responses of enterocyte-like Caco-2 cells to two STEC O113:H21 strains with similar virulence factor profiles (i.e. expressing stx2, ehxA, epeA, espA, iha, saa, sab, and subA): EH41 (Caco-2/EH41), isolated from a HUS patient in Australia, and Ec472/01 (Caco-2/Ec472), isolated from bovine feces in Brazil, during a 3 h period of bacteria-enterocyte interaction. Gene co-expression network analysis for Caco-2/EH41 revealed a quite abrupt pattern of topological variation along 3 h of enterocyte-bacteria interaction when compared with networks obtained for Caco-2/Ec472. Transcriptional module characterization revealed that EH41 induces inflammatory and apoptotic responses in Caco-2 cells just after the first hour of enterocyte-bacteria interaction, whereas the response to Ec472/01 is associated with cytoskeleton organization at the first hour, followed by the expression of immune response modulators. Scanning electron microscopy showed more intense microvilli destruction in Caco-2 cells exposed to EH41 when compared to those exposed to Ec472/01. Altogether, these results show that EH41 expresses virulence genes, inducing a distinctive host cell response, and is likely associated with severe pathogenicity.
Collapse
|
9
|
Matsui M, Terasawa K, Kajikuri J, Kito H, Endo K, Jaikhan P, Suzuki T, Ohya S. Histone Deacetylases Enhance Ca 2+-Activated K⁺ Channel K Ca3.1 Expression in Murine Inflammatory CD4⁺ T Cells. Int J Mol Sci 2018; 19:ijms19102942. [PMID: 30262728 PMCID: PMC6213394 DOI: 10.3390/ijms19102942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022] Open
Abstract
The up-regulated expression of the Ca2+-activated K+ channel KCa3.1 in inflammatory CD4+ T cells has been implicated in the pathogenesis of inflammatory bowel disease (IBD) through the enhanced production of inflammatory cytokines, such as interferon-γ (IFN-γ). However, the underlying mechanisms have not yet been elucidated. The objective of the present study is to clarify the involvement of histone deacetylases (HDACs) in the up-regulation of KCa3.1 in the CD4+ T cells of IBD model mice. The expression levels of KCa3.1 and its regulators, such as function-modifying molecules and transcription factors, were quantitated using a real-time polymerase chain reaction (PCR) assay, Western blotting, and depolarization responses, which were induced by the selective KCa3.1 blocker TRAM-34 (1 μM) and were measured using a voltage-sensitive fluorescent dye imaging system. The treatment with 1 μM vorinostat, a pan-HDAC inhibitor, for 24 h repressed the transcriptional expression of KCa3.1 in the splenic CD4+ T cells of IBD model mice. Accordingly, TRAM-34-induced depolarization responses were significantly reduced. HDAC2 and HDAC3 were significantly up-regulated in the CD4+ T cells of IBD model mice. The down-regulated expression of KCa3.1 was observed following treatments with the selective inhibitors of HDAC2 and HDAC3. The KCa3.1 K+ channel regulates inflammatory cytokine production in CD4+ T cells, mediating epigenetic modifications by HDAC2 and HDAC3.
Collapse
Affiliation(s)
- Miki Matsui
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Kyoko Terasawa
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Kyoko Endo
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Pattaporn Jaikhan
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 403-8334, Japan.
| | - Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 403-8334, Japan.
| | - Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| |
Collapse
|
10
|
Ketchem CJ, Kucera C, Barve A, Beverly LJ. The Antiarrhythmic Drug, Amiodarone, Decreases AKT Activity and Sensitizes Human Acute Myeloid Leukemia Cells to Apoptosis by ABT-263. Am J Med Sci 2018; 355:488-496. [PMID: 29753379 DOI: 10.1016/j.amjms.2018.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Successful treatment of leukemia requires new medications to combat drug resistance, but the development of novel therapies is an arduous and risky endeavor. Repurposing currently approved drugs or those already in clinical development to treat other indications is a more practical approach. Moreover, combinatorial therapeutics are often more efficacious than single agent therapeutics because the former can simultaneously target multiple pathways that mitigate tumor aggressiveness and induce cancer cell death. MATERIAL AND METHODS In this study, we combined the class III antiarrhythmic agent amiodarone and the BH3 mimetic ABT-263 based on data from a prior drug screen to assess the degree of apoptotic induction in 2 human leukemia cell lines. RESULTS The combination yielded statistically significant increases in apoptosis in both cell lines by downregulating AKT activity and increasing cleaved caspase-3. CONCLUSIONS Overall, our findings suggest that combining K+ channel blockers with prosurvival Bcl-2 family inhibitors is a promising therapeutic approach in treating leukemia.
Collapse
Affiliation(s)
- Corey J Ketchem
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Cory Kucera
- Department of Physiology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Aditya Barve
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Levi J Beverly
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky; Department of Physiology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky; Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| |
Collapse
|
11
|
KCa3.1 (IK) modulates pancreatic cancer cell migration, invasion and proliferation: anomalous effects on TRAM-34. Pflugers Arch 2016; 468:1865-1875. [DOI: 10.1007/s00424-016-1891-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 12/30/2022]
|