1
|
Xiao B, Wang J, Xing J, He L, Xu C, Wu A, Li J. Unlocking the Potential of Antimicrobial Peptides: Cutting-Edge Advances and Therapeutic Potential in Combating Bacterial Keratitis. Bioconjug Chem 2025; 36:311-331. [PMID: 39970053 DOI: 10.1021/acs.bioconjchem.4c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Bacterial keratitis is a prevalent, and severe corneal illness resulting from bacterial pathogens. Failure to administer a timely and suitable therapy may lead to corneal opacity, ulceration, significant vision impairment, or potential blindness. Current clinical interventions for bacterial keratitis involve the administration of topical antimicrobial agents and systemic antibiotics. However, the misuse and overuse of antibiotics have led to the rapid emergence of antibiotic-resistant bacteria. Additionally, the restricted antibacterial spectrum and possible adverse effects of antibiotics have provided considerable obstacles to traditional therapies. This highlights the urgent need for novel and highly effective antimicrobial agents. Antimicrobial peptides (AMPs) are a class of naturally occurring or synthetically designed small molecules that have gained significant attention due to their unique antimicrobial mechanisms and low risk of resistance development. AMPs exhibit promising potential in treating bacterial keratitis through direct antibacterial mechanisms, such as inhibiting cell wall synthesis, disrupting cell membranes, and interfering with nucleic acid metabolism, as well as indirect mechanisms, including modulation of the host immune response. This review provides a comprehensive overview of the antibacterial mechanisms of AMPs and their advancements in the treatment of bacterial keratitis. It emphasizes the role of various modification strategies and artificial-intelligence-assisted design in enhancing the antibacterial efficacy, stability, and biocompatibility of AMPs. Furthermore, this review discusses the latest progress in combining AMPs with delivery systems for improved therapeutic outcomes. Finally, the review highlights the current challenges and future perspectives of AMPs in bacterial keratitis treatment, providing valuable insights for developing novel AMPs with high antibacterial efficacy, stability, and safety for bacterial keratitis therapies.
Collapse
Affiliation(s)
- Bingru Xiao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Jie Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Jie Xing
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Lulu He
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Chen Xu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Aiguo Wu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Juan Li
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| |
Collapse
|
2
|
Tapia H, Torres P, Mateluna C, Cáceres M, Torres VA. Histatins, proangiogenic molecules with therapeutic implications in regenerative medicine. iScience 2024; 27:111309. [PMID: 39634559 PMCID: PMC11615599 DOI: 10.1016/j.isci.2024.111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Recent studies show that a group of salivary peptides, collectively known as histatins, are potent inducers of wound healing in both soft and hard tissues. Among these molecules, histatin-1 stands out for its ability to stimulate the repair of skin, oral mucosal, and osseous tissue. Remarkably, all these effects are associated with the capacity of histatin-1 to promote angiogenesis via inducing endothelial cell adhesion, migration, and signaling. These findings have opened new opportunities in the field of regenerative medicine, leading to an increasing number of articles and patents proposing therapeutic uses of histatin-1. However, this scenario raises a relevant concern regarding the appropriate use of these molecules, since, unlike the mode of action, little is known about the molecular mechanism by which they promote angiogenesis and wound healing. Recent studies shed light on the pharmacodynamics of histatin-1, by identifying the endothelial receptor that it binds and downstream signaling. This perspective will discuss current evidence on the role of histatins in wound healing and angiogenesis, emphasizing their impact on regenerative medicine.
Collapse
Affiliation(s)
- Héctor Tapia
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Pedro Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Carlos Mateluna
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Mónica Cáceres
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
- Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Vicente A. Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| |
Collapse
|
3
|
Jenwanichkul P, Amornphimoltham P. IN VITRO ANTICANCER ACTIVITY OF HISTATIN-1 COMBINATION WITH CISPLATIN IN HEAD AND NECK CANCER CELL LINES. Exp Oncol 2024; 46:101-109. [PMID: 39396174 DOI: 10.15407/exp-oncology.2024.02.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Chemotherapy of head and neck squamous cell carcinoma (HNSCC) is associated with significant side effects. Antimicrobial peptides (AMPs), which are naturally occurring defense molecules like defensin-1 and LL-37 found in human secretions, have demonstrated potential in prompting tumor cell apoptosis and enhancing the effect of chemotherapeutic agents. However, the anticancer potential of histatin has not yet been thoroughly examined. The aim of the study was to explore the anticancer activity of histatin, an AMP present in human saliva and used alone or in combination with cisplatin in HNSCC cell lines. MATERIALS AND METHODS The gene expression of histatin was evaluated in the HSC4 and SCC25 cell lines by qRT-PCR. Cell proliferation was investigated at different concentrations of histatin peptide (His-1), cisplatin, and their combination using an MTT assay. RESULTS SCC25 cells expressed both HTN1 (histatin-1) and HTN3 (histatin-3), whereas the HSC4 cell line expressed only HTN1. The combination of exogenous His-1 and cisplatin demonstrated a synergistic anti-proliferative effect against the HNSCC cell lines in a dosedependent manner. CONCLUSIONS The combination of low-dose cisplatin and histatin inhibits HNSCC cell proliferation. His-1 sensitizes tumor cells to the cytotoxic effects of cisplatin potentially allowing for a reduction in its effective concentration.
Collapse
Affiliation(s)
- P Jenwanichkul
- Department of Oral Bioscience and Dental Public Health, International College of Dentistry, Walailak University, Bangkok, Thailand
| | - P Amornphimoltham
- Department of Oral Bioscience and Dental Public Health, International College of Dentistry, Walailak University, Bangkok, Thailand
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Sanyal S, Vemula PK, Law S. Investigating the therapeutic potential of Allium cepa extract in combating pesticide exposure induced ocular damage. Exp Eye Res 2024; 240:109816. [PMID: 38309514 DOI: 10.1016/j.exer.2024.109816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/14/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
The ocular surface is subject to a range of potentially hazardous environmental factors and substances, owing to its anatomical location, sensitivity, and physiological makeup. Xenobiotic stress exerted by chronic pesticide exposure on the cornea is primarily responsible for ocular irritation, excessive tear production (hyper-lacrimation), corneal abrasions and decreased visual acuity. Traditional medicine hails the humble onion (Allium cepa) for its multi-faceted properties including but not limited to anti-microbial, antioxidant, anti-inflammatory and wound healing. However, there is a lacuna regarding its impact on the ocular surface. Thereby, the current study investigated whether topical application of crude extract of Allium cepa aided in mitigating pesticide-induced damage to the ocular surface. The deleterious effects of pesticide exposure and their mitigation through the topical application of herbal extract of Allium cepa were analysed initially through in vitro evaluation on cell lines and then on the ocular surface via various in-vivo and ex-vivo techniques. Pathophysiological alterations to the ocular surface that impacted vision were explored through detailed neurophysiological screening with special emphasis on visual acuity wherein it was observed that the murine group treated with topical application of Allium cepa extract had comparable visual capacity to the non-pesticide exposed group. Additionally, SOD2 was utilized as an oxidative stress marker along with the expression of cellular apoptotic markers such as Bcl-xL to analyse the impact of pesticide exposure and subsequent herbal intervention on oxidative stress-induced corneal damage. The impact on the corneal epithelial progenitor cell population (ABCG2 and TERT positive cells) was also flowcytometrically analysed. Therefore, from our observations, it can be postulated that the topical application of Allium cepa extract might serve as an effective strategy to alleviate pesticide exposure related ocular damage.
Collapse
Affiliation(s)
- Shalini Sanyal
- Calcutta School of Tropical Medicine, Kolkata, India; Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Praveen K Vemula
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Sujata Law
- Calcutta School of Tropical Medicine, Kolkata, India; Brainware University, Kolkata, India.
| |
Collapse
|
5
|
Stewart L, Hong Y, Holmes IR, Firth SJ, Ahmed Y, Quinn J, Santos Y, Cobb SL, Jakubovics NS, Djoko KY. Salivary Antimicrobial Peptide Histatin-5 Does Not Display Zn(II)-Dependent or -Independent Activity against Streptococci. ACS Infect Dis 2023; 9:631-642. [PMID: 36826226 PMCID: PMC10012264 DOI: 10.1021/acsinfecdis.2c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 02/25/2023]
Abstract
Histatin-5 (Hst5) is a member of the histatin superfamily of cationic, His-rich, Zn(II)-binding peptides in human saliva. Hst5 displays antimicrobial activity against fungal and bacterial pathogens, often in a Zn(II)-dependent manner. In contrast, here we showed that under in vitro conditions that are characteristic of human saliva, Hst5 does not kill seven streptococcal species that normally colonize the human oral cavity and oropharynx. We further showed that Zn(II) does not influence this outcome. We then hypothesized that Hst5 exerts more subtle effects on streptococci by modulating Zn(II) availability. We initially proposed that Hst5 contributes to nutritional immunity by limiting nutrient Zn(II) availability and promoting bacterial Zn(II) starvation. By examining the interactions between Hst5 and Streptococcus pyogenes as a model Streptococcus species, we showed that Hst5 does not influence the expression of Zn(II) uptake genes. In addition, Hst5 did not suppress growth of a ΔadcAI mutant strain that is impaired in Zn(II) uptake. These observations establish that Hst5 does not promote Zn(II) starvation. Biochemical examination of purified peptides further confirmed that Hst5 binds Zn(II) with high micromolar affinities and does not compete with the AdcAI high-affinity Zn(II) uptake protein for binding nutrient Zn(II). Instead, we showed that Hst5 weakly limits the availability of excess Zn(II) and suppresses Zn(II) toxicity to a ΔczcD mutant strain that is impaired in Zn(II) efflux. Altogether, our findings led us to reconsider the function of Hst5 as a salivary antimicrobial agent and the role of Zn(II) in Hst5 function.
Collapse
Affiliation(s)
- Louisa
J. Stewart
- Department
of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - YoungJin Hong
- Department
of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Isabel R. Holmes
- Department
of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Samantha J. Firth
- Department
of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Yasmin Ahmed
- Biosciences
Institute, Newcastle University, Newcastle NE2 4HH, United Kingdom
| | - Janet Quinn
- Biosciences
Institute, Newcastle University, Newcastle NE2 4HH, United Kingdom
| | - Yazmin Santos
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Steven L. Cobb
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | | | - Karrera Y. Djoko
- Department
of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
6
|
Ali M, Shah D, Coursey TG, Lee SM, Balasubramaniam A, Yadavalli T, Edward D, Son KN, Shukla D, Aakalu VK. Modulation of ocular surface desiccation in a murine model by histatin-5 application. Ocul Surf 2023; 27:30-37. [PMID: 36513277 PMCID: PMC10355159 DOI: 10.1016/j.jtos.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE To determine the efficacy of Histatin-5 (Hst5) peptide treatment in ameliorating dry eye disease (DED) phenotype in an in-vivo mouse model of scopolamine and desiccating stress (SDS) dry eye. METHODS SDS was induced in female C57BL/6 mice by subcutaneous injections of scopolamine hydrobromide and exposure to low relative humidity and forced air draft for five days. Mouse eyes were topically treated with synthetic Hst5 peptide or balanced salt solution (BSS) twice a day for four days. Control mice were not exposed to SDS induction and did not receive any treatments. Oregon green dextran (OGD) staining was used to evaluate corneal permeability. Histologically, staining with periodic acid schiff (PAS), immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), were used to quantify the number of goblet cells (GC), CD45+ immune cells and apoptotic cells respectively in formalin fixed paraffin embedded (FFPE) mouse whole eye sections. RESULTS Compared to treatment with BSS, Hst5 treatment significantly lowered corneal epithelial permeability, prevented conjunctival epithelial GC loss, decreased conjunctival CD45+ immune cell infiltration and reduced conjunctival epithelial cell apoptosis. CONCLUSIONS Hst5 peptide topical treatment significantly improves the clinical parameters observed in SDS experimental model of DED. This is the first report of the efficacy of Hst5 treatment of dry eye phenotype, and potential novel treatment for DED in the clinic. Hst5 represents a new class of efficacious therapeutic agents, demonstrating pro-epithelial and anti-inflammatory activities at the ocular surface.
Collapse
Affiliation(s)
- Marwan Ali
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Dhara Shah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | | | - Sang Min Lee
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Arun Balasubramaniam
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Deepak Edward
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Kyung-No Son
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Vinay Kumar Aakalu
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
7
|
Shannon AH, Adelman SA, Hisey EA, Potnis SS, Rozo V, Yung MW, Li JY, Murphy CJ, Thomasy SM, Leonard BC. Antimicrobial Peptide Expression at the Ocular Surface and Their Therapeutic Use in the Treatment of Microbial Keratitis. Front Microbiol 2022; 13:857735. [PMID: 35722307 PMCID: PMC9201425 DOI: 10.3389/fmicb.2022.857735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
Microbial keratitis is a common cause of ocular pain and visual impairment worldwide. The ocular surface has a relatively paucicellular microbial community, mostly found in the conjunctiva, while the cornea would be considered relatively sterile. However, in patients with microbial keratitis, the cornea can be infected with multiple pathogens including Staphylococcus aureus, Pseudomonas aeruginosa, and Fusarium sp. Treatment with topical antimicrobials serves as the standard of care for microbial keratitis, however, due to high rates of pathogen resistance to current antimicrobial medications, alternative therapeutic strategies must be developed. Multiple studies have characterized the expression and activity of antimicrobial peptides (AMPs), endogenous peptides with key antimicrobial and wound healing properties, on the ocular surface. Recent studies and clinical trials provide promise for the use of AMPs as therapeutic agents. This article reviews the repertoire of AMPs expressed at the ocular surface, how expression of these AMPs can be modulated, and the potential for harnessing the AMPs as potential therapeutics for patients with microbial keratitis.
Collapse
Affiliation(s)
- Allison H. Shannon
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sara A. Adelman
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Erin A. Hisey
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sanskruti S. Potnis
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Vanessa Rozo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Madeline W. Yung
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Jennifer Y. Li
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Christopher J. Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Hayashi R, Okubo T, Kudo Y, Ishikawa Y, Imaizumi T, Suzuki K, Shibata S, Katayama T, Park SJ, Young RD, Quantock AJ, Nishida K. Generation of 3D lacrimal gland organoids from human pluripotent stem cells. Nature 2022; 605:126-131. [PMID: 35444274 DOI: 10.1038/s41586-022-04613-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/28/2022] [Indexed: 12/29/2022]
Abstract
Lacrimal glands are the main exocrine glands of the eyes. Situated within the orbit, behind the upper eyelid and towards the temporal side of each eye, they secrete lacrimal fluid as a major component of the tear film. Here we identify cells with characteristics of lacrimal gland primordia that emerge in two-dimensional eye-like organoids cultured from human pluripotent stem cells1. When isolated by cell sorting and grown under defined conditions, the cells form a three-dimensional lacrimal-gland-like tissue organoid with ducts and acini, enabled by budding and branching. Clonal colony analyses indicate that the organoids originate from multipotent ocular surface epithelial stem cells. The organoids exhibit notable similarities to native lacrimal glands on the basis of their morphology, immunolabelling characteristics and gene expression patterns, and undergo functional maturation when transplanted adjacent to the eyes of recipient rats, developing lumina and producing tear-film proteins.
Collapse
Affiliation(s)
- Ryuhei Hayashi
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
| | - Toru Okubo
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Basic Research Development Division, ROHTO Pharmaceutical, Osaka, Japan
| | - Yuji Kudo
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Basic Research Development Division, ROHTO Pharmaceutical, Osaka, Japan
| | - Yuki Ishikawa
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tsutomu Imaizumi
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Basic Research Development Division, ROHTO Pharmaceutical, Osaka, Japan
| | - Kenji Suzuki
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shun Shibata
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Basic Research Development Division, ROHTO Pharmaceutical, Osaka, Japan
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiko Katayama
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sung-Joon Park
- Laboratory of Functional Analysis In Silico, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Robert D Young
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Andrew J Quantock
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Histatin-1 Attenuates LPS-Induced Inflammatory Signaling in RAW264.7 Macrophages. Int J Mol Sci 2021; 22:ijms22157856. [PMID: 34360629 PMCID: PMC8345949 DOI: 10.3390/ijms22157856] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Macrophages play a critical role in the inflammatory response to environmental triggers, such as lipopolysaccharide (LPS). Inflammatory signaling through macrophages and the innate immune system are increasingly recognized as important contributors to multiple acute and chronic disease processes. Nitric oxide (NO) is a free radical that plays an important role in immune and inflammatory responses as an important intercellular messenger. In addition, NO has an important role in inflammatory responses in mucosal environments such as the ocular surface. Histatin peptides are well-established antimicrobial and wound healing agents. These peptides are important in multiple biological systems, playing roles in responses to the environment and immunomodulation. Given the importance of macrophages in responses to environmental triggers and pathogens, we investigated the effect of histatin-1 (Hst1) on LPS-induced inflammatory responses and the underlying molecular mechanisms in RAW264.7 (RAW) macrophages. LPS-induced inflammatory signaling, NO production and cytokine production in macrophages were tested in response to treatment with Hst1. Hst1 application significantly reduced LPS-induced NO production, inflammatory cytokine production, and inflammatory signaling through the JNK and NF-kB pathways in RAW cells. These results demonstrate that Hst1 can inhibit LPS-induced inflammatory mediator production and MAPK signaling pathways in macrophages.
Collapse
|
10
|
Pan L, Zhang X, Gao Q. Effects and mechanisms of histatins as novel skin wound-healing agents. J Tissue Viability 2021; 30:190-195. [PMID: 33551241 DOI: 10.1016/j.jtv.2021.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/27/2020] [Accepted: 01/11/2021] [Indexed: 12/31/2022]
Abstract
Wound healing is a complex and important physiological process that maintains the integrity of skin after various injuries. Abnormal wound healing, especially of chronic wounds, impairs normal physical function. Therefore, the search for effective and safe healing agents is one of the main concerns. Histatins are histidine-rich low molecular weight peptides that are expressed in the saliva of both humans and higher primates. Histatins have two main biological effects, cell stimulation and bacteria killing, with the former playing an important role in wound healing by promoting epithelial cell and fibroblast migration and angiogenesis and enhancing the re-epithelialization of the wounded area. Because of these biological effects, histatins have been shown to be promising agents of improved wound healing. Histatins are categorized into many subtypes, of which histatin 1 and its hydrolysates are the most effective in promoting wound healing. This review addresses the bioactivity of histatins in wound healing, such as their stimulatory effects on epithelial cells and fibroblasts, and elucidates the possible mechanisms by which histatin subtypes induce their biological effects.
Collapse
Affiliation(s)
- Li Pan
- Department of Cardiopulmonary Bypass, Lanzhou University Second Hospital, Lanzhou, China
| | - Xuanfen Zhang
- Department of Orthopaedic Surgery, Lanzhou University Second Hospital, Lanzhou, China.
| | - Qiong Gao
- Department of Orthopaedic Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
11
|
Eshac Y, Redfern RL, Aakalu VK. The Role of Endogenous Antimicrobial Peptides in Modulating Innate Immunity of the Ocular Surface in Dry Eye Diseases. Int J Mol Sci 2021; 22:E721. [PMID: 33450870 PMCID: PMC7828360 DOI: 10.3390/ijms22020721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
The ocular surface has the challenging responsibility of maintaining a clear moist refractive surface while protecting the eye from exogenous pathogens and the environment. Homeostasis of the ocular surface, including its innate immune components, is altered in ocular surface disease states. In this review, we focus on antimicrobial peptides and the role they play in the immune response of the ocular surface during healthy states and dry eye diseases. Antimicrobial peptides are of special interest to the study of the ocular surface because of their various roles that include microbial threat neutralization, wound healing, and immune modulation. This review explores current literature on antimicrobial peptides in ocular surface diseases and discusses their therapeutic potential in ocular surface diseases and dry eye.
Collapse
Affiliation(s)
- Youssof Eshac
- Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt;
| | - Rachel L. Redfern
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX 77204, USA;
| | - Vinay Kumar Aakalu
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
12
|
|
13
|
Shah D, Son KN, Kalmodia S, Lee BS, Ali M, Balasubramaniam A, Shukla D, Aakalu VK. Wound Healing Properties of Histatin-5 and Identification of a Functional Domain Required for Histatin-5-Induced Cell Migration. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:709-716. [PMID: 32346548 PMCID: PMC7178547 DOI: 10.1016/j.omtm.2020.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/25/2020] [Indexed: 11/25/2022]
Abstract
Histatin peptides are endogenous anti-microbial peptides that were originally discovered in the saliva. Aside from their broad anti-microbial properties, these peptides play an important role in multiple biological systems. Different members of this family are thought to have relative specializations, with histatin-5 originally being thought to have mostly anti-fungal properties, and histatin-1 having strong wound healing properties. In this report, we describe the robust wound healing properties of histatin-5 and elucidate a functional domain, which is necessary and sufficient for promoting wound healing. We demonstrate these findings in multiple different cell types in vitro and with a standardized murine corneal wound healing model. Discovery of this wound healing domain and description of this functional role of histatin-5 will support developing therapies.
Collapse
Affiliation(s)
- Dhara Shah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyung-No Son
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Sushma Kalmodia
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Bao-Shiang Lee
- Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Marwan Ali
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Arun Balasubramaniam
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Vinay Kumar Aakalu
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Kalmodia S, Son KN, Cao D, Lee BS, Surenkhuu B, Shah D, Ali M, Balasubramaniam A, Jain S, Aakalu VK. Presence of Histatin-1 in Human Tears and Association with Aqueous Deficient Dry Eye Diagnosis: A Preliminary Study. Sci Rep 2019; 9:10304. [PMID: 31311993 PMCID: PMC6635511 DOI: 10.1038/s41598-019-46623-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/02/2019] [Indexed: 12/16/2022] Open
Abstract
The aims of this study were to determine if histatin-1 (H1) is present in normal human tears and whether tear levels of H1 varied between normal patients and those with aqueous deficient dry eye disease (ADDE). Patient samples were obtained from 11 normal patients and 11 severe ADDE patients. Relevant patient characteristics, including age, sex, and dry eye disease (DED) diagnostic parameters were collected. Multiple qualitative and quantitative methods were used to compare the concentration of H1 between patient groups. Mixed linear modeling was used to compare H1 levels between groups, and diagnostic performance was assessed using the receiver-operator-characteristic (ROC). ADDE patients had significantly lower H1 concentrations (85.9 ± 63.7 ng/ml) than the normal group (891.6 ± 196.5 ng/ml) (p < 0.001), while controlling for age and sex. ROC analysis indicated that H1 concentration is potentially a biomarker for ADDE (area under curve = 0.96). Reclassification of patients by DED parameters including, Ocular Surface Disease Index (OSDI) (≤13, >13) and Schirmer I (without anesthesia) (<10 mm, ≥10 mm) showed significant differences in H1 level (OSDI, p = 0.004) and Schirmer I ((p = 0.010). In conclusion, this is the first preliminary report of the presence of H1 in human tears. H1 concentrations are lower in ADDE patients and H1 may have diagnostic potential in evaluation ADDE patients.
Collapse
Affiliation(s)
- Sushma Kalmodia
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, USA
| | - Kyung-No Son
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, USA
| | - Dingcai Cao
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, USA
| | - Bao-Shiang Lee
- Research Resources Center, University of Illinois at Chicago, Chicago, USA
| | - Bayasgalan Surenkhuu
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, USA
| | - Dhara Shah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, USA
| | - Marwan Ali
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, USA
| | - Arun Balasubramaniam
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, USA
| | - Sandeep Jain
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, USA
| | - Vinay Kumar Aakalu
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, USA.
| |
Collapse
|
15
|
Oydanich M, Epstein SP, Gadaria-Rathod N, Guers JJ, Fernandez KB, Asbell PA. In Vivo Efficacy of Histatin-1 in a Rabbit Animal Model. Curr Eye Res 2018; 43:1215-1220. [PMID: 29945490 DOI: 10.1080/02713683.2018.1490772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Purpose/Aim: Corneal abrasions and nonhealing corneal epithelial defects are common conditions that cause pain and sometimes are slow to heal. Histatins, a family of histidine-rich peptides, have been implicated in oral and skin epithelial wound healing, and have been shown to be effective in vitro in human corneal epithelial cells. The objective of this study was to test the efficacy of histatin-1 on corneal epithelial wound healing in rabbits. MATERIALS & METHODS Twenty-two (22) rabbits were separated into four treatment groups, each containing 3-7 rabbits. Treatments included three histatin-1 formulations (0.1 ug/ml. 1 ug/ml, and 10 ug/ml) and one inactive vehicle, one drop given three times per day. Eight (8) mm circular wounds were created using 0.5 ml of 20% ethyl alcohol in the right eye of each rabbit. A masked observer photographed each eye twice daily using slit-lamp biomicrophotography. Wound area was analyzed by using ImageJ. Statistical analysis was conducted using Graphpad Prism. RESULTS Wound recovery was faster in animals given 0.1 ug/ml, 1 ug/ml, and 10 ug/ml when compared to the vehicle solution at 6, 24, and 30 hours after wound creation (p < 0.01). No adverse events were observed in any eyes. When analyzing area under the curve, % recovered area was higher overall in the 0.1 ug/ml (p < 0.01), 1 ug/ml (p < 0.01), and 10 ug/ml (p < 0.001) groups when compared to the vehicle solution. Hourly healing rate was also observed to be faster in the 0.1 ug/ml, 1 ug/ml, and 10 ug/ml groups (p < 0.001) at 24 hours postinjury suggesting an accelerated healing process as compared to the vehicle group. CONCLUSION This study represents the first in vivo experiment evaluating and confirming the efficacy of topical histatin on the corneal epithelium wound healing. Further studiesare warranted to better understand the mechanism and safety of topical histatin-1 in corneal epithelial wound-healing and its potential role for human disease treatment.
Collapse
Affiliation(s)
- Marko Oydanich
- a Department of Ophthalmology , Mount Sinai Medical Center , New York , New York , USA
| | - Seth P Epstein
- a Department of Ophthalmology , Mount Sinai Medical Center , New York , New York , USA
| | - Neha Gadaria-Rathod
- a Department of Ophthalmology , Mount Sinai Medical Center , New York , New York , USA
| | - John J Guers
- b Department of Exercise Science , Stockton University , Galloway , New Jersey , USA
| | - Karen B Fernandez
- a Department of Ophthalmology , Mount Sinai Medical Center , New York , New York , USA
| | - Penny A Asbell
- a Department of Ophthalmology , Mount Sinai Medical Center , New York , New York , USA
| |
Collapse
|
16
|
Torres P, Castro M, Reyes M, Torres VA. Histatins, wound healing, and cell migration. Oral Dis 2018; 24:1150-1160. [PMID: 29230909 DOI: 10.1111/odi.12816] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022]
Abstract
Wounds in the oral mucosa heal faster and more efficiently than those in the skin, although the mechanisms underlying these differences are not completely clear. In the last 10 years, a group of salivary peptides, the histatins, has gained attention on behalf of their ability to improve several phases of the wound-healing process. In addition to their roles as anti-microbial agents and in enamel maintenance, histatins elicit other biological effects, namely by promoting the migration of different cell types contained in the oral mucosa and in non-oral tissues. Histatins, and specifically histatin-1, promote cell adhesion and migration in oral keratinocytes, gingival and dermal fibroblasts, non-oral epithelial cells, and endothelial cells. This is particularly relevant, as histatin-1 promotes the re-epithelialization phase and the angiogenic responses by increasing epithelial and endothelial cell migration. Although the molecular mechanisms associated with histatin-dependent cell migration remain poorly understood, recent studies have pointed to the control of signaling endosomes and the balance of small GTPases. This review aimed to update the literature on the effects of histatins in cell migration, with a focus on wound healing. We will also discuss the consequences that this increasing field will have in disease and therapy design.
Collapse
Affiliation(s)
- P Torres
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - M Castro
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - M Reyes
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - V A Torres
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Shah D, Ali M, Shukla D, Jain S, Aakalu VK. Effects of histatin-1 peptide on human corneal epithelial cells. PLoS One 2017; 12:e0178030. [PMID: 28542418 PMCID: PMC5441629 DOI: 10.1371/journal.pone.0178030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/07/2017] [Indexed: 11/19/2022] Open
Abstract
Purpose Ocular surface and corneal epithelial wounds are common and potentially debilitating problems. Ideal treatments for these injuries would promote epithelial healing without inflammation, infection and scarring. In addition the best treatments would be cost-efficient, effective, non-toxic and easily applied. Histatin-1 peptides have been shown to be safe and effective enhancers of epithelial wound healing in other model systems. We sought to determine whether histatin-1 peptides could enhance human corneal epithelial wound healing in vitro. Methods Histatin-1 peptides were applied to human corneal epithelial cells and compared over useful dose ranges in scratch assays using time-lapse microscopy. In addition, path finding analysis, cell spreading assays, toxicity and proliferation assays were performed to further characterize the effects of histatin-1 peptide on human corneal limbal epithelial (HCLE). Results Histatin-1 enhanced human corneal epithelial wound healing in typical wound healing models. There was minimal toxicity and no significant enhancement of proliferation of corneal epithelium in response to histatin-1 application. Corneal epithelial spreading and pathfinding appeared to be enhanced by the application of histatin-1 peptides. Conclusions Histatin -1 peptide may enhance migration of HCLE cells and wound healing in vitro. These peptides may have benefit in corneal epithelial wounds and need to be investigated further.
Collapse
Affiliation(s)
- Dhara Shah
- Lacrimal Cell Biology Laboratory, University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, United States of America
| | - Marwan Ali
- Lacrimal Cell Biology Laboratory, University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, United States of America
| | - Deepak Shukla
- University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, United States of America
| | - Sandeep Jain
- University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, United States of America
| | - Vinay Kumar Aakalu
- Lacrimal Cell Biology Laboratory, University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, United States of America
- * E-mail:
| |
Collapse
|
18
|
Aakalu VK, Parameswaran S, Maienschein-Cline M, Bahroos N, Shah D, Ali M, Krishnakumar S. Human Lacrimal Gland Gene Expression. PLoS One 2017; 12:e0169346. [PMID: 28081151 PMCID: PMC5231359 DOI: 10.1371/journal.pone.0169346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. METHODS We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. RESULTS The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. CONCLUSIONS Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas.
Collapse
Affiliation(s)
- Vinay Kumar Aakalu
- Lacrimal Cell Biology Laboratory, University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, United States of America
- * E-mail:
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, Tamil Nadu, India
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Neil Bahroos
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Dhara Shah
- Lacrimal Cell Biology Laboratory, University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, United States of America
| | - Marwan Ali
- Lacrimal Cell Biology Laboratory, University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, United States of America
| | - Subramanian Krishnakumar
- Radheshyam Kanoi Stem Cell Laboratory, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, Tamil Nadu, India
| |
Collapse
|
19
|
Ali M, Shah D, Pasha Z, Jassim SH, Jassim Jaboori A, Setabutr P, Aakalu VK. Evaluation of Accessory Lacrimal Gland in Muller's Muscle Conjunctival Resection Specimens for Precursor Cell Markers and Biological Markers of Dry Eye Disease. Curr Eye Res 2016; 42:491-497. [PMID: 27612554 DOI: 10.1080/02713683.2016.1214966] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE The accessory lacrimal glands (ALGs) are an understudied component of the tear functional unit, even though they are important in the development of dry eye syndrome (DES). To advance our understanding of aging changes, regenerative potential, and histologic correlates to human characteristics, we investigated human ALG tissue from surgical samples to determine the presence or absence of progenitor cell markers and lacrimal epithelial markers and to correlate marker expression to relevant patient characteristics. MATERIALS AND METHODS ALG tissues obtained from Muller's muscle conjunctival resection (MMCR) specimens were created using tissue microarrays (TMAs). Immunofluorescence staining of MMCR sections was performed using primary antibodies specific to cell protein markers. Cell marker localization in TMAs was then assessed by two blinded observers using a standardized scoring system. Patient characteristics including age, race, and status of ocular surface health were then compared against expression of stem cell markers. RESULTS Human ALG expressed a number of epithelial markers, and in particular, histatin-1 was well correlated with the expression of epithelial markers and was present in most acini. In addition, we noted the presence of precursor cell markers nestin, ABCG2, and CD90 in ALG tissue. There was a decrease in precursor cell marker expression with increasing age. Finally, we noted that a negative association was present between histatin-1 expression and DES. CONCLUSIONS Thus, we report for the first time that human ALG tissues contain precursor marker-positive cells and that this marker expression may decrease with increasing age. Moreover, histatin-1 expression may be decreased in DES. Future studies will be performed to use these cell markers to isolate and culture lacrimal epithelial cells from heterogeneous tissues, determine the relevance of histatin-1 expression to DES, and isolate candidate precursor cells from ALG tissue.
Collapse
Affiliation(s)
- Marwan Ali
- a Department of Ophthalmology and Visual Sciences , University of Illinois at Chicago , Chicago , IL , USA
| | - Dhara Shah
- a Department of Ophthalmology and Visual Sciences , University of Illinois at Chicago , Chicago , IL , USA
| | - Zeeshan Pasha
- a Department of Ophthalmology and Visual Sciences , University of Illinois at Chicago , Chicago , IL , USA
| | - Sarmad H Jassim
- a Department of Ophthalmology and Visual Sciences , University of Illinois at Chicago , Chicago , IL , USA
| | - Assraa Jassim Jaboori
- a Department of Ophthalmology and Visual Sciences , University of Illinois at Chicago , Chicago , IL , USA
| | - Pete Setabutr
- a Department of Ophthalmology and Visual Sciences , University of Illinois at Chicago , Chicago , IL , USA
| | - Vinay K Aakalu
- a Department of Ophthalmology and Visual Sciences , University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|