2
|
Mitogen-activated protein kinases are involved in cucurbitacin D-induced antitumor effects on adult T-cell leukemia cells. Invest New Drugs 2020; 39:122-130. [PMID: 32914311 DOI: 10.1007/s10637-020-00997-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/04/2020] [Indexed: 10/23/2022]
Abstract
Adult T cell leukemia (ATL) is an aggressive and malignant blood disease. We previously reported that steroid-structured cucurbitacin D (CuD) induces apoptosis in ATL cells. In this study, we investigated the effects of mitogen-activated protein kinase (MAPK) signaling inhibitors on CuD-induced cell death in peripheral blood lymphocytes (PBLs) isolated from ATL/acute lymphoblastic leukemia (ALL) patients and two human leukemia cell lines (MT-1 and MT-4). PBLs were isolated from an ATL/ALL patient as well as from a healthy donor. Cell surface markers were examined using flow cytometry. Serum cytokine levels were estimated using LEGENDplex or analyzed at the Center for Clinical and Translational Research of Kyushu University Hospital. Cell proliferation was assessed using the Cell Titer-Glo luminescent cell viability assay. Protein expression was determined by western blotting. PBLs from patients highly expressed CD4 and CD5. Serum from the patient contained high levels of interleukin (IL)-8, IL-10, IL-18, and interferon-γ compared to the healthy donor. CuD-induced cell death was enhanced by the mitogen-activated protein kinase kinase (MEK)1/2 inhibitor U0126. However, a c-Jun N-terminal kinase (JNK) inhibitor prevented CuD-induced cell death. Immunoblot analyses revealed that CuD reduced the phosphorylation of extracellular signal-regulated kinase (ERK), p38, and JNK, and co-treatment with CuD and U0126 did not affect the phosphorylation of ERK. MEK1/2 and p38 inhibitors enhanced CuD-induced cell death, and U0126 enhanced the CuD-induced de-phosphorylation of ERK in MT-1 and MT-4 cells. We conclude that CuD reduces ERK activation, resulting in enhanced antitumor effects on leukemic cells.
Collapse
|
3
|
Ameur LB, Marie P, Thenoz M, Giraud G, Combe E, Claude JB, Lemaire S, Fontrodona N, Polveche H, Bastien M, Gessain A, Wattel E, Bourgeois CF, Auboeuf D, Mortreux F. Intragenic recruitment of NF-κB drives splicing modifications upon activation by the oncogene Tax of HTLV-1. Nat Commun 2020; 11:3045. [PMID: 32546717 PMCID: PMC7298006 DOI: 10.1038/s41467-020-16853-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic NF-κB activation in inflammation and cancer has long been linked to persistent activation of NF-κB–responsive gene promoters. However, NF-κB factors also massively bind to gene bodies. Here, we demonstrate that recruitment of the NF-κB factor RELA to intragenic regions regulates alternative splicing upon NF-κB activation by the viral oncogene Tax of HTLV-1. Integrative analyses of RNA splicing and chromatin occupancy, combined with chromatin tethering assays, demonstrate that DNA-bound RELA interacts with and recruits the splicing regulator DDX17, in an NF-κB activation-dependent manner. This leads to alternative splicing of target exons due to the RNA helicase activity of DDX17. Similar results were obtained upon Tax-independent NF-κB activation, indicating that Tax likely exacerbates a physiological process where RELA provides splice target specificity. Collectively, our results demonstrate a physical and direct involvement of NF-κB in alternative splicing regulation, which significantly revisits our knowledge of HTLV-1 pathogenesis and other NF-κB-related diseases. The nuclear factors κB (NF-κB) is a transcription factor involved in immune functions, inflammation, and cancer. Here, the authors show that the NF-κB factor RELA regulates splicing of target genes by recruiting DDX17 on chromatin upon expression of the viral oncogene Tax.
Collapse
Affiliation(s)
- Lamya Ben Ameur
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Paul Marie
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Morgan Thenoz
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France.,Department of Pediatrics and Medical Genetics, Faculty of Medicine and Health Sciences, 9000, Gent, Belgium
| | - Guillaume Giraud
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Emmanuel Combe
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Jean-Baptiste Claude
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Sebastien Lemaire
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Nicolas Fontrodona
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | | | - Marine Bastien
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France.,School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Antoine Gessain
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogénes, Institut Pasteur, Paris, France
| | - Eric Wattel
- Université Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Faculté de Médecine Lyon Sud, ENS - HCL, Pierre Bénite, France.,Université Lyon 1, Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Cyril F Bourgeois
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France.
| | - Franck Mortreux
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France.
| |
Collapse
|
4
|
Fochi S, Ciminale V, Trabetti E, Bertazzoni U, D’Agostino DM, Zipeto D, Romanelli MG. NF-κB and MicroRNA Deregulation Mediated by HTLV-1 Tax and HBZ. Pathogens 2019; 8:E290. [PMID: 31835460 PMCID: PMC6963194 DOI: 10.3390/pathogens8040290] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022] Open
Abstract
The risk of developing adult T-cell leukemia/lymphoma (ATLL) in individuals infected with human T-cell lymphotropic virus 1 (HTLV-1) is about 3-5%. The mechanisms by which the virus triggers this aggressive cancer are still an area of intensive investigation. The viral protein Tax-1, together with additional regulatory proteins, in particular HTLV-1 basic leucine zipper factor (HBZ), are recognized as relevant viral factors required for both viral replication and transformation of infected cells. Tax-1 deregulates several cellular pathways affecting the cell cycle, survival, and proliferation. The effects of Tax-1 on the NF-κB pathway have been thoroughly studied. Recent studies also revealed the impact of Tax-1 and HBZ on microRNA expression. In this review, we summarize the recent progress in understanding the contribution of HTLV-1 Tax- and HBZ-mediated deregulation of NF-κB and the microRNA regulatory network to HTLV-1 pathogenesis.
Collapse
Affiliation(s)
- Stefania Fochi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| | - Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy;
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Elisabetta Trabetti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| | - Umberto Bertazzoni
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| | | | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| |
Collapse
|
5
|
Subramanian K, Dierckx T, Khouri R, Menezes SM, Kagdi H, Taylor GP, Farre L, Bittencourt A, Kataoka K, Ogawa S, Van Weyenbergh J. Decreased RORC expression and downstream signaling in HTLV-1-associated adult T-cell lymphoma/leukemia uncovers an antiproliferative IL17 link: A potential target for immunotherapy? Int J Cancer 2018; 144:1664-1675. [PMID: 30303535 PMCID: PMC6590643 DOI: 10.1002/ijc.31922] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 01/05/2023]
Abstract
Retinoic acid‐related drugs have shown promising pre‐clinical activity in Adult T‐cell Leukemia/Lymphoma, but RORC signaling has not been explored. Therefore, we investigated transcriptome‐wide interactions of the RORC pathway in HTLV‐1 and ATL, using our own and publicly available gene expression data for ATL and other leukemias. Gene expression data from ATL patients were analyzed using WGCNA to determine gene modules and their correlation to clinical and molecular data. Both PBMCs and CD4+ T‐Cells exhibited decreased RORC expression in four different ATL cohorts. A small subset of RORChi ATL patients was identified with significantly lower pathognomonic CADM1 and HBZ levels but similar levels of other ATL markers (CD4/CD25/CCR4), hinting at a less aggressive ATL subtype. An age‐dependent decrease in RORC expression was found in HTLV‐1‐infected individuals, but not in healthy controls, suggesting an early molecular event predisposing to leukemogenesis. Genes upstream of RORC signaling were members of a proliferative gene module (containing proliferation markers PCNA/Ki67), whereas downstream members clustered in an anti‐proliferative gene module. IL17C transcripts showed the strongest negative correlation to PCNA in both ATL cohorts, which was replicated in two large cohorts of T‐ and B‐cell acute lymphoid leukemia (ALL). Finally, IL17C expression in purified CD4 + CCR4 + CD26‐CD7‐ “ATL‐like” cells from HTLV‐1‐infected individuals and ATL patients was negatively correlated with clonality, underscoring a possible antileukemic/antiproliferative role. In conclusion, decreased RORC expression and downstream signaling might represent an early event in ATL pathogenesis. An antiproliferative IL17C/PCNA link is shared between ATL, T‐ALL and B‐ALL, suggesting (immuno)therapeutic benefit of boosting RORC/IL17 signaling. What's new? Drugs that affect the retinoic acid pathway are of interest for the treatment of adult T‐cell leukemia (ATL). Here, investigation of the role of retinoic acid‐related orphan receptor C (RORC), a regulator of the proinflammatory Th17/IL‐17 axis, reveals a prevailing occurrence of low RORC expression among ATL patients. By comparison, fewer patients exhibited a RORChi phenotype, which was associated with reduced levels of pathognomonic biomarkers CADM1 and HbZ, indicating a protective role for elevated RORC. An antiproliferative link was identified between RORC and IL17C. The data suggest that strategies to increase RORC/IL17C signaling could be important to improving ATL outcomes.
Collapse
Affiliation(s)
- Kritika Subramanian
- St. George's University School of MedicineUniversity CentreGrenadaWest Indies
- KU Leuven – University of Leuven, Department of Microbiology and ImmunologyRega Institute for Medical Research, Clinical and Epidemiological VirologyLeuvenBelgium
| | - Tim Dierckx
- KU Leuven – University of Leuven, Department of Microbiology and ImmunologyRega Institute for Medical Research, Clinical and Epidemiological VirologyLeuvenBelgium
| | - Ricardo Khouri
- KU Leuven – University of Leuven, Department of Microbiology and ImmunologyRega Institute for Medical Research, Clinical and Epidemiological VirologyLeuvenBelgium
- Instituto Gonçalo Moniz – FIOCRUZSalvadorBahiaBrazil
| | - Soraya Maria Menezes
- KU Leuven – University of Leuven, Department of Microbiology and ImmunologyRega Institute for Medical Research, Clinical and Epidemiological VirologyLeuvenBelgium
| | - Huseini Kagdi
- Department of MedicineImperial College LondonLondonUK
| | | | - Lourdes Farre
- Instituto Gonçalo Moniz – FIOCRUZSalvadorBahiaBrazil
| | | | - Keisuke Kataoka
- Department of Pathology and Tumor BiologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
- Division of Molecular OncologyNational Cancer Center Research InstituteTokyoJapan
| | - Seishi Ogawa
- Department of Pathology and Tumor BiologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Johan Van Weyenbergh
- KU Leuven – University of Leuven, Department of Microbiology and ImmunologyRega Institute for Medical Research, Clinical and Epidemiological VirologyLeuvenBelgium
| |
Collapse
|