1
|
Tan B, Li S, Wang M, Li SC. CeiTEA: Adaptive Hierarchy of Single Cells with Topological Entropy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503539. [PMID: 40245302 DOI: 10.1002/advs.202503539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Indexed: 04/19/2025]
Abstract
Advances in single-cell RNA sequencing (scRNA-seq) enable detailed analysis of cellular heterogeneity, but existing clustering methods often fail to capture the complex hierarchical structures of cell types and subtypes. CeiTEA is introduced, a novel algorithm for adaptive hierarchical clustering based on topological entropy (TE), designed to address this challenge. CeiTEA constructs a multi-nary partition tree that optimally represents relationships and diversity among cell types by minimizing TE. This method combines a bottom-up strategy for hierarchy construction with a top-down strategy for local diversification, facilitating the identification of smaller hierarchical structures within subtrees. CeiTEA is evaluated on both simulated and real-world scRNA-seq datasets, demonstrating superior clustering performance compared to state-of-the-art tools like Louvain, Leiden, K-means, and SEAT. In simulated multi-layer datasets, CeiTEA demonstrated superior performance in retrieving hierarchies with a lower average clustering information distance of 0.15, compared to 0.39 from SEAT and 0.67 from traditional hierarchical clustering methods. On real datasets, the CeiTEA hierarchy reflects the developmental potency of various cell populations, validated by gene ontology enrichment, cell-cell interaction, and pseudo-time analysis. These findings highlight CeiTEA's potential as a powerful tool for understanding complex relationships in single-cell data, with applications in tumor heterogeneity and tissue specification.
Collapse
Affiliation(s)
- Bowen Tan
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Shiying Li
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Mengbo Wang
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
2
|
Li J, Zhang Z, Tang J, Hou Z, Li L, Li B. Emerging roles of nerve-bone axis in modulating skeletal system. Med Res Rev 2024; 44:1867-1903. [PMID: 38421080 DOI: 10.1002/med.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Over the past decades, emerging evidence in the literature has demonstrated that the innervation of bone is a crucial modulator for skeletal physiology and pathophysiology. The nerve-bone axis sparked extensive preclinical and clinical investigations aimed at elucidating the contribution of nerve-bone crosstalks to skeleton metabolism, homeostasis, and injury repair through the perspective of skeletal neurobiology. To date, peripheral nerves have been widely reported to mediate bone growth and development and fracture healing via the secretion of neurotransmitters, neuropeptides, axon guidance factors, and neurotrophins. Relevant studies have further identified several critical neural pathways that stimulate profound alterations in bone cell biology, revealing a complex interplay between the skeleton and nerve systems. In addition, inspired by nerve-bone crosstalk, novel drug delivery systems and bioactive materials have been developed to emulate and facilitate the process of natural bone repair through neuromodulation, eventually boosting osteogenesis for ideal skeletal tissue regeneration. Overall, this work aims to review the novel research findings that contribute to deepening the current understanding of the nerve-bone axis, bringing forth some schemas that can be translated into the clinical scenario to highlight the critical roles of neuromodulation in the skeletal system.
Collapse
Affiliation(s)
- Jingya Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuoyuan Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinru Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zeyu Hou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Maji S, Pradhan AK, Kumar A, Bhoopathi P, Mannangatti P, Guo C, Windle JJ, Subler MA, Wang XY, Semmes OJ, Nyalwidhe JO, Mukhopadhyay N, Paul AK, Hatfield B, Levit MM, Madan E, Sarkar D, Emdad L, Cohen DJ, Gogna R, Cavenee WK, Das SK, Fisher PB. MDA-9/Syntenin in the tumor and microenvironment defines prostate cancer bone metastasis. Proc Natl Acad Sci U S A 2023; 120:e2307094120. [PMID: 37922327 PMCID: PMC10636346 DOI: 10.1073/pnas.2307094120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/25/2023] [Indexed: 11/05/2023] Open
Abstract
Bone metastasis is a frequent and incurable consequence of advanced prostate cancer (PC). An interplay between disseminated tumor cells and heterogeneous bone resident cells in the metastatic niche initiates this process. Melanoma differentiation associated gene-9 (mda-9/Syntenin/syndecan binding protein) is a prometastatic gene expressed in multiple organs, including bone marrow-derived mesenchymal stromal cells (BM-MSCs), under both physiological and pathological conditions. We demonstrate that PDGF-AA secreted by tumor cells induces CXCL5 expression in BM-MSCs by suppressing MDA-9-dependent YAP/MST signaling. CXCL5-derived tumor cell proliferation and immune suppression are consequences of the MDA-9/CXCL5 signaling axis, promoting PC disease progression. mda-9 knockout tumor cells express less PDGF-AA and do not develop bone metastases. Our data document a previously undefined role of MDA-9/Syntenin in the tumor and microenvironment in regulating PC bone metastasis. This study provides a framework for translational strategies to ameliorate health complications and morbidity associated with advanced PC.
Collapse
Affiliation(s)
- Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Anjan K. Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Jolene J. Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Mark A. Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Oliver J. Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA23507
| | - Julius O. Nyalwidhe
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA23507
| | - Nitai Mukhopadhyay
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- Department of Biostatistics, Virginia Commonwealth University, School of Medicine, Richmond, VA23238
| | - Asit Kr. Paul
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- Department of Internal Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23238
| | - Bryce Hatfield
- Department of Pathology, Virginia Commonwealth University, School of Medicine, Richmond, VA23238
| | - Michael M. Levit
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA23238
| | - Esha Madan
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA23238
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - David J. Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA23238
| | - Rajan Gogna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Webster K. Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA92093
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| |
Collapse
|
4
|
Aiyappa-Maudsley R, McLoughlin LFV, Hughes TA. Semaphorins and Their Roles in Breast Cancer: Implications for Therapy Resistance. Int J Mol Sci 2023; 24:13093. [PMID: 37685898 PMCID: PMC10487980 DOI: 10.3390/ijms241713093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Breast cancer is the most common cancer worldwide and a leading cause of cancer-related deaths in women. The clinical management of breast cancer is further complicated by the heterogeneous nature of the disease, which results in varying prognoses and treatment responses in patients. The semaphorins are a family of proteins with varied roles in development and homoeostasis. They are also expressed in a wide range of human cancers and are implicated as regulators of tumour growth, angiogenesis, metastasis and immune evasion. More recently, semaphorins have been implicated in drug resistance across a range of malignancies. In breast cancer, semaphorins are associated with resistance to endocrine therapy as well as breast cancer chemotherapeutic agents such as taxanes and anthracyclines. This review will focus on the semaphorins involved in breast cancer progression and their association with drug resistance.
Collapse
Affiliation(s)
| | | | - Thomas A. Hughes
- School of Medicine, University of Leeds, Leeds LS9 7TF, UK; (R.A.-M.); (L.F.V.M.)
- School of Science, Technology and Health, York St John University, York YO31 7EX, UK
| |
Collapse
|
5
|
Ishii T, Ruiz‐Torruella M, Kim JY, Kanzaki H, Albassam A, Wisitrasameewong W, Shindo S, Pierrelus R, Heidari A, Kandalam U, Nakamura S, Movila A, Minond D, Kawai T. Soluble Sema4D cleaved from osteoclast precursors by TACE suppresses osteoblastogenesis. J Cell Mol Med 2023; 27:1750-1756. [PMID: 37170687 PMCID: PMC10273054 DOI: 10.1111/jcmm.17416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 05/13/2023] Open
Abstract
Bone remodelling is mediated by orchestrated communication between osteoclasts and osteoblasts which, in part, is regulated by coupling and anti-coupling factors. Amongst formally known anti-coupling factors, Semaphorin 4D (Sema4D), produced by osteoclasts, plays a key role in downmodulating osteoblastogenesis. Sema4D is produced in both membrane-bound and soluble forms; however, the mechanism responsible for producing sSema4D from osteoclasts is unknown. Sema4D, TACE and MT1-MMP are all expressed on the surface of RANKL-primed osteoclast precursors. However, only Sema4D and TACE were colocalized, not Sema4D and MT1-MMP. When TACE and MT1-MMP were either chemically inhibited or suppressed by siRNA, TACE was found to be more engaged in shedding Sema4D. Anti-TACE-mAb inhibited sSema4D release from osteoclast precursors by ~90%. Supernatant collected from osteoclast precursors (OC-sup) suppressed osteoblastogenesis from MC3T3-E1 cells, as measured by alkaline phosphatase activity, but OC-sup harvested from the osteoclast precursors treated with anti-TACE-mAb restored osteoblastogenesis activity in a manner that compensates for diminished sSema4D. Finally, systemic administration of anti-TACE-mAb downregulated the generation of sSema4D in the mouse model of critical-sized bone defect, whereas local injection of recombinant sSema4D to anti-TACE-mAb-treated defect upregulated local osteoblastogenesis. Therefore, a novel pathway is proposed whereby TACE-mediated shedding of Sema4D expressed on the osteoclast precursors generates functionally active sSema4D to suppress osteoblastogenesis.
Collapse
Affiliation(s)
- Takenobu Ishii
- Department of OrthodonticsTokyo Dental CollegeChibaJapan
| | | | - Jae Young Kim
- Department of ProsthodonticsYonsei University Dental HospitalSeoulKorea
| | - Hiroyuki Kanzaki
- Department of orthodontics, School of Dental MedicineTsurumi UniversityYokohamaJapan
| | - Abdullah Albassam
- Department of Endodontics, Faculty of DentistryKing Abdulaziz UniversityJeddahSaudi Arabia
| | | | - Satoru Shindo
- Department of Oral Science and Translational Research, College of Dental MedicineNova Southeastern UniversityFort LauderdaleFloridaUSA
| | - Roodelyne Pierrelus
- Department of Oral Science and Translational Research, College of Dental MedicineNova Southeastern UniversityFort LauderdaleFloridaUSA
| | - Alireza Heidari
- Department of Oral Science and Translational Research, College of Dental MedicineNova Southeastern UniversityFort LauderdaleFloridaUSA
| | - Umadevi Kandalam
- Department of Oral Science and Translational Research, College of Dental MedicineNova Southeastern UniversityFort LauderdaleFloridaUSA
| | - Shin Nakamura
- Department of Oral Science and Translational Research, College of Dental MedicineNova Southeastern UniversityFort LauderdaleFloridaUSA
| | - Alexandru Movila
- Department of Oral Science and Translational Research, College of Dental MedicineNova Southeastern UniversityFort LauderdaleFloridaUSA
| | - Dmitriy Minond
- Department of Pharmaceutical Sciences, College of PharmacyNova Southeastern UniversityFort LauderdaleFloridaUSA
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental MedicineNova Southeastern UniversityFort LauderdaleFloridaUSA
- Center for Collaborative Research, Cell Therapy InstituteNova Southeastern UniversityFort LauderdaleFloridaUSA
| |
Collapse
|
6
|
Alsabbagh R, Ahmed M, Alqudah MAY, Hamoudi R, Harati R. Insights into the Molecular Mechanisms Mediating Extravasation in Brain Metastasis of Breast Cancer, Melanoma, and Lung Cancer. Cancers (Basel) 2023; 15:cancers15082258. [PMID: 37190188 DOI: 10.3390/cancers15082258] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Brain metastasis is an incurable end-stage of systemic cancer associated with poor prognosis, and its incidence is increasing. Brain metastasis occurs through a multi-step cascade where cancer cells spread from the primary tumor site to the brain. The extravasation of tumor cells through the blood-brain barrier (BBB) is a critical step in brain metastasis. During extravasation, circulating cancer cells roll along the brain endothelium (BE), adhere to it, then induce alterations in the endothelial barrier to transmigrate through the BBB and enter the brain. Rolling and adhesion are generally mediated by selectins and adhesion molecules induced by inflammatory mediators, while alterations in the endothelial barrier are mediated by proteolytic enzymes, including matrix metalloproteinase, and the transmigration step mediated by factors, including chemokines. However, the molecular mechanisms mediating extravasation are not yet fully understood. A better understanding of these mechanisms is essential as it may serve as the basis for the development of therapeutic strategies for the prevention or treatment of brain metastases. In this review, we summarize the molecular events that occur during the extravasation of cancer cells through the blood-brain barrier in three types of cancer most likely to develop brain metastasis: breast cancer, melanoma, and lung cancer. Common molecular mechanisms driving extravasation in these different tumors are discussed.
Collapse
Affiliation(s)
- Rama Alsabbagh
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Munazza Ahmed
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad A Y Alqudah
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rifat Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London W1W 7EJ, UK
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
7
|
Bica C, Tirpe A, Nutu A, Ciocan C, Chira S, Gurzau ES, Braicu C, Berindan-Neagoe I. Emerging roles and mechanisms of semaphorins activity in cancer. Life Sci 2023; 318:121499. [PMID: 36775114 DOI: 10.1016/j.lfs.2023.121499] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Semaphorins are regulatory molecules that are linked to the modulation of several cancer processes, such as angiogenesis, cancer cell invasiveness and metastasis, tumor growth, as well as cancer cell survival. Semaphorin (SEMA) activity depends on the cancer histotypes and their particularities. In broad terms, the effects of SEMAs result from their interaction with specific receptors/co-receptors - Plexins, Neuropilins and Integrins - and the subsequent effects upon the downstream effectors (e.g. PI3K/AKT, MAPK/ERK). The present article serves as an integrative review work, discussing the broad implications of semaphorins in cancer, focusing on cell proliferation/survival, angiogenesis, invasion, metastasis, stemness, and chemo-resistance/response whilst highlighting their heterogeneity as a family. Herein, we emphasized that semaphorins are largely implicated in cancer progression, interacting with the tumor microenvironment components. Whilst some SEMAs (e.g. SEMA3A, SEMA3B) function widely as tumor suppressors, others (e.g. SEMA3C) act as pro-tumor semaphorins. The differences observed in terms of the biological structure of SEMAs and the particularities of each cancer histotypes require that each semaphorin be viewed as a unique entity, and its roles must be researched accordingly. A more in-depth and comprehensive view of the molecular mechanisms that promote and sustain the malignant behavior of cancer cells is of utmost importance.
Collapse
Affiliation(s)
- Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Eugen S Gurzau
- Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babes-Bolyai University, 7 Pandurilor Street, Cluj-Napoca, Romania; Environmental Health Center, 58 Busuiocului Street, 400240 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| |
Collapse
|
8
|
Hu J, Chen W, Shen L, Chen Z, Huang J. Crosstalk between the peripheral nervous system and breast cancer influences tumor progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188828. [PMID: 36283598 DOI: 10.1016/j.bbcan.2022.188828] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
Abstract
Recent studies have shown that peripheral nerves play an important role in the progression of breast cancer. Breast cancer cells (BCCs) promote local peripheral nerve growth and branching by secreting neuroactive molecules, including neurotrophins and axon guidance molecules (AGMs). Sympathetic nerves promote breast cancer progression, while parasympathetic and sensory nerves mainly have anti-tumor effects in the progression of breast cancer. Specifically, peripheral nerves can influence the progression of breast cancer by secreting neurotransmitters not only directly binding to the corresponding receptors of BCCs, but also indirectly acting on immune cells to modulate anti-tumor immunity. In this review, we summarize the crosstalk between breast cancer and peripheral nerves and the roles of important neuroactive molecules in the progression of breast cancer. In addition, we summarize indicators, including nerve fiber density and perineural invasion (PNI), that may help determine the prognosis of breast cancer based on current research results, as well as potential therapeutic approaches, such as β-blockers and retroviral-mediated genetic neuroengineering techniques, that may enhance the prognosis of breast cancer. In addition, we propose suggestions for future research priorities based on a current lack of knowledge in this area.
Collapse
Affiliation(s)
- Jianming Hu
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Wuzhen Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lesang Shen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhigang Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China..
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China..
| |
Collapse
|
9
|
Sharma G, Pothuraju R, Kanchan RK, Batra SK, Siddiqui JA. Chemokines network in bone metastasis: Vital regulators of seeding and soiling. Semin Cancer Biol 2022; 86:457-472. [PMID: 35124194 PMCID: PMC9744380 DOI: 10.1016/j.semcancer.2022.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 02/07/2023]
Abstract
Chemokines are well equipped with chemo-attractive signals that can regulate cancer cell trafficking to specific organ sites. Currently, updated concepts have revealed the diverse role of chemokines in the biology of cancer initiation and progression. Genomic instabilities and alterations drive tumor heterogeneity, providing more options for the selection and metastatic progression to cancer cells. Tumor heterogeneity and acquired drug resistance are the main obstacles in managing cancer therapy and the primary root cause of metastasis. Studies emphasize that multiple chemokine/receptor axis are involved in cancer cell-mediated organ-specific distant metastasis. One of the persuasive mechanisms for heterogeneity and subsequent events is sturdily interlinked with the crosstalk between chemokines and their receptors on cancer cells and tissue-specific microenvironment. Among different metastatic niches, skeletal metastasis is frequently observed in the late stages of prostate, breast, and lung cancer and significantly reduces the survival of cancer patients. Therefore, it is crucial to elucidate the role of chemokines and their receptors in metastasis and bone remodeling. Here, we review the potential chemokine/receptor axis in tumorigenesis, tumor heterogeneity, metastasis, and vicious cycle in bone microenvironment.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ranjana Kumari Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
10
|
Nojima S. Class IV semaphorins in disease pathogenesis. Pathol Int 2022; 72:471-487. [PMID: 36066011 DOI: 10.1111/pin.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
Abstract
Semaphorins are a large family of secreted and/or transmembrane proteins, originally identified as proteins that function in axon guidance during neuronal development. However, semaphorins play crucial roles in other physiological and pathological processes, including immune responses, angiogenesis, maintenance of tissue homeostasis, and cancer progression. Class IV semaphorins may be present as transmembrane and soluble forms and are implicated in the pathogenesis of various diseases. This review discusses recent progress on the roles of class IV semaphorins determined by clinical and experimental pathology studies.
Collapse
Affiliation(s)
- Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
11
|
Lu Q, Cai P, Yu Y, Liu Z, Chen G, Zeng Z. Sema4D correlates with tumour immune infiltration and is a prognostic biomarker in bladder cancer, renal clear cell carcinoma, melanoma and thymoma. Autoimmunity 2021; 54:294-302. [PMID: 33974462 DOI: 10.1080/08916934.2021.1925885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sema4D, a member of the immune semaphorin family, plays crucial roles in the immune regulation, bone resorption and nervous system. It is also involved in angiogenesis and tumour progression. However, systemic studies on the correlation between Sema4D expression and the immune infiltration or clinical outcomes in tumours are still limited. Here, we analysed the landscape of Sema4D expression and its prognostic value in the cancer genome atlas pan-cancer as well as the correlation between Sema4D and immune cell infiltration by Tumour Immune Estimation Resource and Gene Expression Profiling interactive analysis online tools. Results showed that a higher Sema4D expression was significantly correlated with a favourable overall survival in diverse solid tumours including bladder cancer (Hazards Ratio (HR)=0.68, p = .0095), kidney renal clear cell carcinoma (HR = 0.61, p = .0016), melanoma (HR = 0.58, p = 6.6e-05) and thymoma (HR = 0.1, p = .011). Interestingly, Sema4D expression has positive correlation with various tumour infiltrating immune cells and immune cell biomarkers in these tumours. These results suggest that Sema4D could be a prospective biomarker for calculating hazard ratio of tumour patients and their tumour immune infiltration levels.
Collapse
Affiliation(s)
- Qiongyu Lu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology of Jiangsu Province, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Ping Cai
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yan Yu
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Ziting Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology of Jiangsu Province, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Guona Chen
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology of Jiangsu Province, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Zhao Zeng
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
12
|
Jiang H, Tang J, Qiu L, Zhang Z, Shi S, Xue L, Kui L, Huang T, Nan W, Zhou B, Zhao C, Yu M, Sun Q. Semaphorin 4D is a potential biomarker in pediatric leukemia and promotes leukemogenesis by activating PI3K/AKT and ERK signaling pathways. Oncol Rep 2021. [PMID: 33649851 DOI: 10.3892/or.2021.8021/html] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Semaphorin 4D (Sema4D) is highly expressed in a variety of tumors and is associated with high invasion, poor prognosis and poor therapeutic response. However, the expression and role of Sema4D in leukemia remains unclear. The present study investigated the expression of Sema4D in pediatric leukemia and its effects in leukemia cells. The results demonstrated that Sema4D protein was highly expressed in peripheral blood mononuclear cells of patients with pediatric leukemia, and high levels of soluble Sema4D were also observed in the plasma of these patients. Sema4D knockdown induced cell cycle arrest in G0/G1 phase, inhibited proliferation and promoted apoptosis in BALL‑1 cells, while Sema4D overexpression exhibited the opposite effect. In Jurkat cells, Sema4D knockdown inhibited proliferation and promoted apoptosis, while Sema4D overexpression decreased the abundance of the cells in the G0/G1 phase of the cell cycle and promoted proliferation. Sema4D overexpression also increased the migratory capacity of Jurkat cells and the invasive capacity of BALL‑1 cells. The phosphorylation level of PI3K was decreased in both Sema4D knocked‑down Jurkat and BALL‑1 cells, and the phosphorylation level of ERK was decreased in Sema4D knocked‑down BALL‑1 cells. The phosphorylation levels of PI3K, ERK and AKT were elevated in patients with pediatric leukemia, and were correlated to the increased Sema4D expression. Sema4D overexpression was associated with a shorter overall survival in patients with acute myeloid leukemia. Overall, the results of the present study indicated that Sema4D serves an important role in leukemia development by activating PI3K/AKT and ERK signaling, and it may be used as a potential target for the diagnosis and treatment of leukemia.
Collapse
MESH Headings
- Adolescent
- Antigens, CD/biosynthesis
- Antigens, CD/blood
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/blood
- Case-Control Studies
- Cell Line, Tumor
- Cell Proliferation/physiology
- Child
- Child, Preschool
- Female
- Humans
- Infant
- Jurkat Cells
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukocytes, Mononuclear/metabolism
- MAP Kinase Signaling System
- Male
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Proto-Oncogene Proteins c-akt/metabolism
- Semaphorins/biosynthesis
- Semaphorins/blood
Collapse
Affiliation(s)
- Hongchao Jiang
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Jiaolian Tang
- Institute of Pediatrics, Children's Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650228, P.R. China
| | - Lijuan Qiu
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Zhen Zhang
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Shulan Shi
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Li Xue
- Institute of Medicine, Dali University, Dali, Yunnan 671000, P.R. China
| | - Liyue Kui
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Tilong Huang
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Weiwei Nan
- Institute of Medicine, Dali University, Dali, Yunnan 671000, P.R. China
| | - Bailing Zhou
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Canchun Zhao
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Ming Yu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
13
|
Haider MT, Ridlmaier N, Smit DJ, Taipaleenmäki H. Interleukins as Mediators of the Tumor Cell-Bone Cell Crosstalk during the Initiation of Breast Cancer Bone Metastasis. Int J Mol Sci 2021; 22:2898. [PMID: 33809315 PMCID: PMC7999500 DOI: 10.3390/ijms22062898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with advanced breast cancer are at high risk of developing bone metastasis. Despite treatment advances for primary breast cancer, metastatic bone disease remains incurable with a low relative survival. Hence, new therapeutic approaches are required to improve survival and treatment outcome for these patients. Bone is among the most frequent sites of metastasis in breast cancer. Once in the bone, disseminated tumor cells can acquire a dormant state and remain quiescent until they resume growth, resulting in overt metastasis. At this stage the disease is characterized by excessive, osteoclast-mediated osteolysis. Cells of the bone microenvironment including osteoclasts, osteoblasts and endothelial cells contribute to the initiation and progression of breast cancer bone metastasis. Direct cell-to-cell contact as well as soluble factors regulate the crosstalk between disseminated breast cancer cells and bone cells. In this complex signaling network interleukins (ILs) have been identified as key regulators since both, cancer cells and bone cells secrete ILs and express corresponding receptors. ILs regulate differentiation and function of bone cells, with several ILs being reported to act pro-osteoclastogenic. Consistently, the expression level of ILs (e.g., in serum) has been associated with poor prognosis in breast cancer. In this review we discuss the role of the most extensively investigated ILs during the establishment of breast cancer bone metastasis and highlight their potential as therapeutic targets in preventing metastatic outgrowth in bone.
Collapse
Affiliation(s)
- Marie-Therese Haider
- Molecular Skeletal Biology Laboratory, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.-T.H.); (N.R.)
| | - Nicole Ridlmaier
- Molecular Skeletal Biology Laboratory, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.-T.H.); (N.R.)
- Department of Life Sciences, IMC FH Krems University of Applied Sciences, 3500 Krems, Austria
| | - Daniel J. Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.-T.H.); (N.R.)
| |
Collapse
|
14
|
Jiang H, Tang J, Qiu L, Zhang Z, Shi S, Xue L, Kui L, Huang T, Nan W, Zhou B, Zhao C, Yu M, Sun Q. Semaphorin 4D is a potential biomarker in pediatric leukemia and promotes leukemogenesis by activating PI3K/AKT and ERK signaling pathways. Oncol Rep 2021; 45:1. [PMID: 33649851 PMCID: PMC7877000 DOI: 10.3892/or.2021.7952] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
Semaphorin 4D (Sema4D) is highly expressed in a variety of tumors and is associated with high invasion, poor prognosis and poor therapeutic response. However, the expression and role of Sema4D in leukemia remains unclear. The present study investigated the expression of Sema4D in pediatric leukemia and its effects in leukemia cells. The results demonstrated that Sema4D protein was highly expressed in peripheral blood mononuclear cells of patients with pediatric leukemia, and high levels of soluble Sema4D were also observed in the plasma of these patients. Sema4D knockdown induced cell cycle arrest in G0/G1 phase, inhibited proliferation and promoted apoptosis in BALL-1 cells, while Sema4D overexpression exhibited the opposite effect. In Jurkat cells, Sema4D knockdown inhibited proliferation and promoted apoptosis, while Sema4D overexpression decreased the abundance of the cells in the G0/G1 phase of the cell cycle and promoted proliferation. Sema4D overexpression also increased the migratory capacity of Jurkat cells and the invasive capacity of BALL-1 cells. The phosphorylation level of PI3K was decreased in both Sema4D knocked-down Jurkat and BALL-1 cells, and the phosphorylation level of ERK was decreased in Sema4D knocked-down BALL-1 cells. The phosphorylation levels of PI3K, ERK and AKT were elevated in patients with pediatric leukemia, and were correlated to the increased Sema4D expression. Sema4D overexpression was associated with a shorter overall survival in patients with acute myeloid leukemia. Overall, the results of the present study indicated that Sema4D serves an important role in leukemia development by activating PI3K/AKT and ERK signaling, and it may be used as a potential target for the diagnosis and treatment of leukemia.
Collapse
Affiliation(s)
- Hongchao Jiang
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Jiaolian Tang
- Institute of Pediatrics, Children's Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650228, P.R. China
| | - Lijuan Qiu
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Zhen Zhang
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Shulan Shi
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Li Xue
- Institute of Medicine, Dali University, Dali, Yunnan 671000, P.R. China
| | - Liyue Kui
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Tilong Huang
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Weiwei Nan
- Institute of Medicine, Dali University, Dali, Yunnan 671000, P.R. China
| | - Bailing Zhou
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Canchun Zhao
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Ming Yu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
15
|
Ritchie S, Reed DA, Pereira BA, Timpson P. The cancer cell secretome drives cooperative manipulation of the tumour microenvironment to accelerate tumourigenesis. Fac Rev 2021; 10:4. [PMID: 33659922 PMCID: PMC7894270 DOI: 10.12703/r/10-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cellular secretions are a fundamental aspect of cell-cell and cell-matrix interactions in vivo. In malignancy, cancer cells have an aberrant secretome compared to their non-malignant counterparts, termed the "cancer cell secretome". The cancer cell secretome can influence every stage of the tumourigenic cascade. At the primary site, cancer cells can secrete a multitude of factors that facilitate invasion into surrounding tissue, allowing interaction with the local tumour microenvironment (TME), driving tumour development and progression. In more advanced disease, the cancer cell secretome can be involved in extravasation and metastasis, including metastatic organotropism, pre-metastatic niche (PMN) preparation, and metastatic outgrowth. In this review, we will explore the latest advances in the field of cancer cell secretions, including its dynamic and complex role in activating the TME and potentiating invasion and metastasis, with comments on how these secretions may also promote therapy resistance.
Collapse
Affiliation(s)
- Shona Ritchie
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Daniel A Reed
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Brooke A Pereira
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
16
|
Li C, Wan L, Wang P, Guan X, Li C, Wang X. Sema4D/Plexin-B1 promotes the progression of osteosarcoma cells by activating Pyk2-PI3K-AKT pathway. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:577-583. [PMID: 34854398 PMCID: PMC8672410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVES Osteosarcoma (OS) is one of the two most common malignant bone tumors among children and teens but it is still a rare disorder. Semaphorin 4D (Sema4D) has been reported to play a specific role in human cancers. The aim of this study was to explore the function of Sema4D in the tumorigenesis and development of OS. METHODS 10 pairs of OS tissues and paracancerous normal tissues from human OS samples and OS cell lines were used. Western blot assay was performed to detect the protein expression of Sema4D, Plexin-B1, and associated proteins of Pyk2-PI3K/AKT pathway. To explore the effect of Sema4D in the progression of OS, we reduced the expression of Sema4D. The effect of Sema4D knockdown on cell proliferation was explored by CCK-8 assay and clone formation assay. The effect of Sema4D knockdown on cell migration and invasion was assessed by Transwell assay. RESULTS Sema4D was overexpressed in OS tissues and cell lines. Sema4D knockdown notably suppressed cell proliferation in OS cells. Cell migration and invasion were reduced by Sema4D knockdown. Sema4D/Plexin-B1 facilitated OS, progression by promoting Pyk2-PI3K/AKT pathway. CONCLUSION Sema4D/Plexin-B1 promoted the development of OS so Sema4D might be a potential target of treatment for patients with OS.
Collapse
Affiliation(s)
- Changhui Li
- Department of Orthopedics, People’s Hospital of Rizhao, Rizhao, China,Department of Rehabilitation Medicine, People’s Hospital of Rizhao, Rizhao, China
| | - Lei Wan
- Department of Orthopedics, People’s Hospital of Rizhao, Rizhao, China
| | - Peng Wang
- Department of Rehabilitation Medicine, People’s Hospital of Rizhao, Rizhao, China
| | - Xiliang Guan
- Department of Orthopedics, People’s Hospital of Rizhao, Rizhao, China
| | - Congda Li
- Department of Orthopedics, People’s Hospital of Rizhao, Rizhao, China
| | - Xishan Wang
- Department of Orthopedics, People’s Hospital of Rizhao, Rizhao, China,Corresponding author: Xishan Wang, Department of Orthopedics, People’s Hospital of Rizhao, No. 126 Taian Road, Rizhao, China E-mail:
| |
Collapse
|
17
|
Durmaz A, Henderson TAD, Bebek G. Frequent Subgraph Mining of Functional Interaction Patterns Across Multiple Cancers. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2021; 26:261-272. [PMID: 33691023 PMCID: PMC7958985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Molecular mechanisms characterizing cancer development and progression are complex and process through thousands of interacting elements in the cell. Understanding the underlying structure of interactions requires the integration of cellular networks with extensive combinations of dysregulation patterns. Recent pan-cancer studies focused on identifying common dysregulation patterns in a confined set of pathways or targeting a manually curated set of genes. However, the complex nature of the disease presents a challenge for finding pathways that would constitute a basis for tumor progression and requires evaluation of subnetworks with functional interactions. Uncovering these relationships is critical for translational medicine and the identification of future therapeutics. We present a frequent subgraph mining algorithm to find functional dysregulation patterns across the cancer spectrum. We mined frequent subgraphs coupled with biased random walks utilizing genomic alterations, gene expression profiles, and protein-protein interaction networks. In this unsupervised approach, we have recovered expert-curated pathways previously reported for explaining the underlying biology of cancer progression in multiple cancer types. Furthermore, we have clustered the genes identified in the frequent subgraphs into highly connected networks using a greedy approach and evaluated biological significance through pathway enrichment analysis. Gene clusters further elaborated on the inherent heterogeneity of cancer samples by both suggesting specific mechanisms for cancer type and common dysregulation patterns across different cancer types. Survival analysis of sample level clusters also revealed significant differences among cancer types (p < 0.001). These results could extend the current understanding of disease etiology by identifying biologically relevant interactions.Supplementary Information: Supplementary methods, figures, tables and code are available at https://github.com/bebeklab/FSM_Pancancer.
Collapse
Affiliation(s)
- Arda Durmaz
- Systems Biology and Bioinformatics Graduate Program, Case Western Reserve University, 10900 Euclid Ave., Cleveland OH 44106, USA5The Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA,
| | | | | |
Collapse
|
18
|
Wang Y, Ren S, Wang Z, Wang Z, Zhu N, Cai D, Ye Z, Ruan J. Chemokines in bone-metastatic breast cancer: Therapeutic opportunities. Int Immunopharmacol 2020; 87:106815. [PMID: 32711376 DOI: 10.1016/j.intimp.2020.106815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Due to non-response to chemotherapy, incomplete surgical resection, and resistance to checkpoint inhibitors, breast cancer with bone metastasis is notoriously difficult to cure. Therefore, the development of novel, efficient strategies to tackle bone metastasis of breast cancer is urgently needed. Chemokines, which induce directed migration of immune cells and act as guide molecules between diverse cells and tissues, are small proteins indispensable in immunity. These complex chemokine networks play pro-tumor roles or anti-tumor roles when produced by breast cancer cells in the tumor microenvironment. Additionally, chemokines have diverse roles when secreted by various immune cells in the tumor microenvironment of breast cancer, which can be roughly divided into immunosuppressive effects and immunostimulatory effects. Recently, targeting chemokine networks has been shown to have potential for use in treatment of metastatic malignancies, including bone-metastatic breast cancer. In this review, we focus on the role of chemokines networks in the biology of breast cancer and metastasis to the bone. We also discuss the therapeutic opportunities and future prospects of targeting chemokine networks, in combination with other current standard therapies, for the treatment of bone-metastatic breast cancer.
Collapse
Affiliation(s)
| | - Shihong Ren
- First People's Hospital of Wenling, Wenling, China
| | - Zhan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zenan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Zhu
- Hebei North University, Zhangjiakou, China
| | | | - Zhaoming Ye
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | | |
Collapse
|
19
|
Morein D, Erlichman N, Ben-Baruch A. Beyond Cell Motility: The Expanding Roles of Chemokines and Their Receptors in Malignancy. Front Immunol 2020; 11:952. [PMID: 32582148 PMCID: PMC7287041 DOI: 10.3389/fimmu.2020.00952] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/23/2020] [Indexed: 01/10/2023] Open
Abstract
The anti-tumor activities of some members of the chemokine family are often overcome by the functions of many chemokines that are strongly and causatively linked with increased tumor progression. Being key leukocyte attractants, chemokines promote the presence of inflammatory pro-tumor myeloid cells and immune-suppressive cells in tumors and metastases. In parallel, chemokines elevate additional pro-cancerous processes that depend on cell motility: endothelial cell migration (angiogenesis), recruitment of mesenchymal stem cells (MSCs) and site-specific metastasis. However, the array of chemokine activities in cancer expands beyond such “typical” migration-related processes and includes chemokine-induced/mediated atypical functions that do not activate directly motility processes; these non-conventional chemokine functions provide the tumor cells with new sets of detrimental tools. Within this scope, this review article addresses the roles of chemokines and their receptors at atypical levels that are exerted on the cancer cell themselves: promoting tumor cell proliferation and survival; controlling tumor cell senescence; enriching tumors with cancer stem cells; inducing metastasis-related functions such as epithelial-to-mesenchymal transition (EMT) and elevated expression of matrix metalloproteinases (MMPs); and promoting resistance to chemotherapy and to endocrine therapy. The review also describes atypical effects of chemokines at the tumor microenvironment: their ability to up-regulate/stabilize the expression of inhibitory immune checkpoints and to reduce the efficacy of their blockade; to induce bone remodeling and elevate osteoclastogenesis/bone resorption; and to mediate tumor-stromal interactions that promote cancer progression. To illustrate this expanding array of atypical chemokine activities at the cancer setting, the review focuses on major metastasis-promoting inflammatory chemokines—including CXCL8 (IL-8), CCL2 (MCP-1), and CCL5 (RANTES)—and their receptors. In addition, non-conventional activities of CXCL12 which is a key regulator of tumor progression, and its CXCR4 receptor are described, alongside with the other CXCL12-binding receptor CXCR7 (RDC1). CXCR7, a member of the subgroup of atypical chemokine receptors (ACKRs) known also as ACKR3, opens the gate for discussion of atypical activities of additional ACKRs in cancer: ACKR1 (DARC, Duffy), ACKR2 (D6), and ACKR4 (CCRL1). The mechanisms involved in chemokine activities and the signals delivered by their receptors are described, and the clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Dina Morein
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nofar Erlichman
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adit Ben-Baruch
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Taherian-Esfahani Z, Ghafouri-Fard S. A bioinformatics approach for identification lncRNA-miRNA-protein interactions for SNHG1 and SNHG5. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Salamanna F, Borsari V, Contartese D, Costa V, Giavaresi G, Fini M. What Is the Role of Interleukins in Breast Cancer Bone Metastases? A Systematic Review of Preclinical and Clinical Evidence. Cancers (Basel) 2019; 11:cancers11122018. [PMID: 31847214 PMCID: PMC6966526 DOI: 10.3390/cancers11122018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/07/2019] [Indexed: 12/25/2022] Open
Abstract
Breast cancer cells produce stimulators of bone resorption known as interleukins (ILs). However, data on the functional roles of ILs in the homing of metastatic breast cancer to bone are still fragmented. A systematic search was carried out in three databases (PubMed, Scopus, Web of Science Core Collection) to identify preclinical reports, and in three clinical registers (ClinicalTrials.gov, World Health Organization (WHO) International Clinical Trials Registry Platform, European Union (EU) Clinical Trials Register) to identify clinical trials, from 2008 to 2019. Sixty-seven preclinical studies and 11 clinical trials were recognized as eligible. Although preclinical studies identified specific key ILs which promote breast cancer bone metastases, which have pro-metastatic effects (e.g., IL-6, IL-8, IL-1β, IL-11), and whose inhibition also shows potential preclinical therapeutic effects, the clinical trials focused principally on ILs (IL-2 and IL-12), which have an anti-metastatic effect and a potential to generate a localized and systemic antitumor response. However, these clinical trials are yet to post any results or conclusions. This inconsistency indicates that further studies are necessary to further develop the understanding of cellular and molecular relations, as well as signaling pathways, both up- and downstream of ILs, which could represent a novel strategy to treat tumors that are resistant to standard care therapies for patients affected by breast cancer bone disease.
Collapse
Affiliation(s)
- Francesca Salamanna
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.S.); (D.C.); (G.G.); (M.F.)
| | - Veronica Borsari
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.S.); (D.C.); (G.G.); (M.F.)
- Correspondence: ; Tel.: +39-051-6366-6558
| | - Deyanira Contartese
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.S.); (D.C.); (G.G.); (M.F.)
| | - Viviana Costa
- Innovative Technological Platforms for Tissue Engineering, Theranostic and Oncology, IRCCS Istituto Ortopedico Rizzoli, 90133 Palermo, Italy;
| | - Gianluca Giavaresi
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.S.); (D.C.); (G.G.); (M.F.)
| | - Milena Fini
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.S.); (D.C.); (G.G.); (M.F.)
| |
Collapse
|
22
|
Wang Y, Zhao H, Zhi W. SEMA4D under the posttranscriptional regulation of HuR and miR-4319 boosts cancer progression in esophageal squamous cell carcinoma. Cancer Biol Ther 2019; 21:122-129. [PMID: 31651222 DOI: 10.1080/15384047.2019.1669996] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the major type of esophageal carcinoma, one of the main reasons of cancer-caused death. While the therapeutic effect on ESCC patents is still unsatisfactory as a result of tumor aggression, recurrence and metastasis. RNA-binding proteins, microRNAs and specific genes get involved in tumorigenesis and development of tumors in a large proportion. In several reports, SEMA4D is an oncogene and miR-4319 is a tumor suppressor. We discovered the interaction of SEMA4D with HuR and miR-4319, whereas the detailed mechanism in ESCC was yet to be researched. At first, SEMA4D was significantly overexpressed in ESCC cells, and its knockdown repressed cell proliferation and migration as well as accelerated cell apoptosis. And then HuR was proved to stabilize SEMA4D mRNA by binding to its 3'UTR. In addition, miR-4319 targeted and degraded SEMA4D. Taken together, SEMA4D was regulated competitively by HuR and miR-4319. Collectively, HuR and miR-4319 co-regulating SEMA4D affected cell proliferation, apoptosis and migration in ESCC. This research explored the regulatory mechanism on SEMA4D in ESCC and provided optional therapeutic targets for ESCC patients.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, Huxi Hospital Affiliated to Jining Medical College, Shandong, China
| | - Hongli Zhao
- Department of Gastroenterology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Weiwei Zhi
- Department of Cardio-Thoracic Surgery, Xi'an No .3 Hospital, Xi'an, China
| |
Collapse
|
23
|
Klotz R, Thomas A, Teng T, Han SM, Iriondo O, Li L, Restrepo-Vassalli S, Wang A, Izadian N, MacKay M, Moon BS, Liu KJ, Ganesan SK, Lee G, Kang DS, Walmsley CS, Pinto C, Press MF, Lu W, Lu J, Juric D, Bardia A, Hicks J, Salhia B, Attenello F, Smith AD, Yu M. Circulating Tumor Cells Exhibit Metastatic Tropism and Reveal Brain Metastasis Drivers. Cancer Discov 2019; 10:86-103. [PMID: 31601552 DOI: 10.1158/2159-8290.cd-19-0384] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/06/2019] [Accepted: 10/07/2019] [Indexed: 11/16/2022]
Abstract
Hematogenous metastasis is initiated by a subset of circulating tumor cells (CTC) shed from primary or metastatic tumors into the blood circulation. Thus, CTCs provide a unique patient biopsy resource to decipher the cellular subpopulations that initiate metastasis and their molecular properties. However, one crucial question is whether CTCs derived and expanded ex vivo from patients recapitulate human metastatic disease in an animal model. Here, we show that CTC lines established from patients with breast cancer are capable of generating metastases in mice with a pattern recapitulating most major organs from corresponding patients. Genome-wide sequencing analyses of metastatic variants identified semaphorin 4D as a regulator of tumor cell transmigration through the blood-brain barrier and MYC as a crucial regulator for the adaptation of disseminated tumor cells to the activated brain microenvironment. These data provide the direct experimental evidence of the promising role of CTCs as a prognostic factor for site-specific metastasis. SIGNIFICANCE: Interests abound in gaining new knowledge of the physiopathology of brain metastasis. In a direct metastatic tropism analysis, we demonstrated that ex vivo-cultured CTCs from 4 patients with breast cancer showed organotropism, revealing molecular features that allow a subset of CTCs to enter and grow in the brain.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Amal Thomas
- Department of Molecular and Computational Biology, USC David and Dana Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Teng Teng
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Sung Min Han
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Oihana Iriondo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Lin Li
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Sara Restrepo-Vassalli
- Bridge Institute, USC David and Dana Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Alan Wang
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Negeen Izadian
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California.,MS Biotechnology Program, California State University Channel Islands, Camarillo, California
| | - Matthew MacKay
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Byoung-San Moon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Kevin J Liu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Sathish Kumar Ganesan
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Grace Lee
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Diane S Kang
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | | | | | - Michael F Press
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Wange Lu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Janice Lu
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Dejan Juric
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - James Hicks
- Bridge Institute, USC David and Dana Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Bodour Salhia
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Department of Translational Genomics, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Frank Attenello
- Neurological Surgery, Keck School of Medicine of the University of California, Los Angeles, California
| | - Andrew D Smith
- Department of Molecular and Computational Biology, USC David and Dana Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California. .,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
24
|
Lu JJ, Su YW, Wang CJ, Li DF, Zhou L. Semaphorin 4D promotes the proliferation and metastasis of bladder cancer by activating the PI3K/AKT pathway. TUMORI JOURNAL 2019; 105:231-242. [PMID: 30674231 PMCID: PMC6566455 DOI: 10.1177/0300891618811280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022]
Abstract
The present study aimed to investigate the role of semaphorin 4D (Sema4D) in bladder cancer cell proliferation and metastasis in vivo and in vitro. Effects of Sema4D modulation on cancer cell viability and clonogenic abilities were assessed by MTT assay and colony formation assay. Cell apoptosis, cell cycle analysis, transwell assays, and wound-healing assays were also assayed. A mouse model of bladder cancer was established to observe the tumorigenesis in vivo. Our data showed that Sema4D was 4-fold upregulated in clinical bladder cancer tissues relative to noncancerous ones and differentially expressed in bladder cancer cell lines. Knockdown of Sema4D in bladder cancer T24 and 5637 cells significantly decreased cell proliferation, clonogenic potential, and motility. On the contrary, overexpression of Sema4D in bladder cancer SV-HUC-1 cells significantly increased cell viability and motility. Concordantly, knockdown of Sema4D impaired while overexpression of Sema4D promoted bladder cancer cell growth rates in xenotransplanted mice. Cell cycle was arrested by modulation of Sema4D. Cell apoptotic rates and the mitochondrial membrane potentials were consistently increased upon knockdown of Sema4D in T24 cells and 5637 cells. Western blotting revealed that epithelial-mesenchymal transition was promoted by Sema4D. The PI3K/AKT pathway was activated upon Sema4D overexpression in SV-HUC-1 cells, while it was inactivated by knockdown of Sema4D in T24 cells. All these data suggest that Sema4D promotes cell proliferation and metastasis in bladder cancer in vivo and in vitro. The oncogenic behavior of Sema4D is achieved by activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jian-jun Lu
- Department of Urinary Surgery, Ningbo Beilun District People ’s Hospital, Ningbo, China
| | - Yao-wu Su
- Department of Urinary Surgery, Ningbo Beilun District People ’s Hospital, Ningbo, China
| | - Chao-jun Wang
- Department of Urinary Surgery, The First Affiliated Hospital Zhejiang University, Zhejiang, China
| | - Di-feng Li
- Department of Urinary Surgery, Ningbo Beilun District People ’s Hospital, Ningbo, China
| | - Liang Zhou
- Department of Urinary Surgery, Ningbo Beilun District People ’s Hospital, Ningbo, China
| |
Collapse
|
25
|
Plasma levels of Semaphorin 4D are decreased by adjuvant tamoxifen but not aromatase inhibitor therapy in breast cancer patients. J Bone Oncol 2019; 16:100237. [PMID: 31011525 PMCID: PMC6461588 DOI: 10.1016/j.jbo.2019.100237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 01/28/2023] Open
Abstract
Background Semaphorin 4D (Sema4D) is a glycoprotein that inhibits bone formation and has been associated with cancer progression and the occurrence of bone metastases. Recently, Sema4D expression has been linked to estrogen signaling in breast cancer. Endocrine therapies like tamoxifen and aromatase inhibitors (AI) are a standard therapeutic approach in hormone receptor positive breast cancers. Tamoxifen exerts ER-agonistic effects on bone, whereas AI negatively affect bone health by increasing resorption and fracture risk. The effect of endocrine therapies on circulating Sema4D levels in breast cancer patients has not been investigated yet. Methods We measured circulating Sema4D plasma levels at primary diagnosis and in a follow-up sample 12 months after surgery in a cohort of 46 pre- and postmenopausal women with primary estrogen receptor positive breast cancer receiving adjuvant tamoxifen or AI. Results The mean baseline levels ± SD for Sema4D were 441.6 ± 143.4 pmol/l. No significant differences in total plasma Sema4D were observed when stratifying the patients according to age, menopausal status, tumor subtype, nodal and hormone receptor status, or tumor size. However, Sema4D levels were significantly reduced by 28% (p<0.001) in tamoxifen treated patients 12 months after surgery, whereas no alteration was observed in patients treated with AI. Conclusion This finding potentially represents an additional mechanism of the bone-protective properties of tamoxifen and further emphasizes a link between Sema4D and estrogen receptor signaling.
Collapse
|
26
|
Sema4D expression and secretion are increased by HIF-1α and inhibit osteogenesis in bone metastases of lung cancer. Clin Exp Metastasis 2019; 36:39-56. [DOI: 10.1007/s10585-018-9951-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022]
|
27
|
Butti R, Kumar TV, Nimma R, Kundu GC. Impact of semaphorin expression on prognostic characteristics in breast cancer. BREAST CANCER-TARGETS AND THERAPY 2018; 10:79-88. [PMID: 29910635 PMCID: PMC5987790 DOI: 10.2147/bctt.s135753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Breast cancer is one of the major causes of cancer-related deaths among women worldwide. Aberrant regulation of various growth factors, cytokines, and other proteins and their receptors in cancer cells drives the activation of various oncogenic signaling pathways that lead to cancer progression. Semaphorins are a class of proteins which are differentially expressed in various types of cancer including breast cancer. Earlier, these proteins were known to have a major function in the nerve cell adhesion, migration, and development of the central nervous system. However, their role in the regulation of several aspects of tumor progression has eventually emerged. There are over 30 genes encoding the semaphorins, which are divided into eight subclasses. It has been reported that some members of semaphorin classes are antiangiogenic and antimetastatic in nature, whereas others act as proangiogenic and prometastatic genes. Because of their differential expression and role in angiogenesis and metastasis, semaphorins emerged as one of the important prognostic factors for appraising breast cancer progression.
Collapse
Affiliation(s)
- Ramesh Butti
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Totakura Vs Kumar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Ramakrishna Nimma
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
28
|
Semaphorin 4D correlates with increased bone resorption, hypercalcemia, and disease stage in newly diagnosed patients with multiple myeloma. Blood Cancer J 2018; 8:42. [PMID: 29748532 PMCID: PMC5945651 DOI: 10.1038/s41408-018-0075-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/21/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is characterized by bone destruction due to increased bone resorption and decreased bone formation. Semaphorin 4D (CD100, Sema4D) is expressed by osteoclasts, binds to its receptor Plexin-B1, and acts as a mediator of osteoclast–osteoblast interaction that ultimately inhibits osteoblastic bone formation. Preclinical data suggest that Sema4D/Plexin-B1 pathway is implicated in MM-induced bone disease. However, there is no information on the role of Sema4D in MM patients. Thus, we evaluated Sema4D and Plexin-B1 in six myeloma cells lines in vitro; in the bone marrow plasma (BMP) and serum of 72 newly diagnosed symptomatic MM (NDMM) patients and in 25 healthy controls. Only one myeloma cell line produced high Sema4D. BMP and circulating Sema4D and Plexin-B1 levels were significantly higher in MM patients compared to controls (p < 0.01). Sema4D correlated with serum calcium levels (p < 0.001), increased bone resorption (as assessed by CTX; p < 0.01), and ISS (p < 0.001). There was a trend for higher Sema4D levels in patients with osteolysis (p = 0.07), while patients with diffuse MRI pattern had higher BMP Sema4D levels (p = 0.02). Our data suggest that Sema4D is elevated in MM patients and correlate with adverse myeloma features and increased bone resorption, providing a possible target for novel therapeutic approaches in MM.
Collapse
|
29
|
Abstract
Several neuronal guidance proteins, known as semaphorin molecules, function in the immune system. This dual tissue performance has led to them being defined as "neuroimmune semaphorins". They have been shown to regulate T cell activation by serving as costimulatory molecules. Similar to classical costimulatory molecules, neuroimmune semaphorins are either constitutively or inducibly expressed on immune cells. In contrast to the classical costimulatory molecule function, the action of neuroimmune semaphorins requires the presence of two signals, the first one provided by TCR/MHC engagement, and the second one provided by B7/CD28 interaction. Thus, neuroimmune semaphorins serve as a "signal three" for immune cell activation and regulate the overall intensity of immune response. The current knowledge on their structures, multiple receptors, specific cell/tissue/organ expression, and distinct functions in different diseases are summarized and discussed in this review.
Collapse
Affiliation(s)
- Svetlana P Chapoval
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.
- Program in Oncology at the Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
- SemaPlex LLC, Ellicott City, MD, USA.
| |
Collapse
|
30
|
Mediero A, Wilder T, Shah L, Cronstein BN. Adenosine A 2A receptor (A2AR) stimulation modulates expression of semaphorins 4D and 3A, regulators of bone homeostasis. FASEB J 2018; 32:3487-3501. [PMID: 29394106 DOI: 10.1096/fj.201700217r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The axonal guidance proteins semaphorin (Sema)4D and Sema3A play important roles in communication between osteoclasts and osteoblasts. As stimulation of adenosine A2A receptors (A2AR) regulates both osteoclast and osteoblast function, we asked whether A2AR regulates both osteoclast and osteoblast expression of Semas. In vivo bone formation and Sema3A/PlexinA1/Neuropilin-1, Sema4D/PlexinB1 protein expression were studied in a murine model of wear particle-induced osteolysis. Osteoclast/osteoblast differentiation were studied in vitro as the number of tartrate-resistant acid phosphatase+/Alizarin Red+ cells after challenge with CGS21680 (A2AR agonist, 1 µM) or ZM241385 (A2AR antagonist, 1 µM), with or without Sema4D or Sema3A (10 ng/ml). Sema3A/PlexinA1/Neuropilin-1, Sema4D/PlexinB1, and receptor activator of NF-κB ligand/osteoprotegerin (RANKL/OPG) expression was studied by RT-PCR and Western blot. β-Catenin activation and cytoskeleton changes were studied by fluorescence microscopy and Western blot. In mice with wear particles implanted over the calvaria, CGS21680 treatment increased bone formation in vivo, reduced Sema4D, and increased Sema3A expression compared with mice with wear particle-induced osteolysis treated with vehicle alone. During osteoclast differentiation, CGS21680 abrogated RANKL-induced Sema4D mRNA expression (1.3 ± 0.3- vs. 2.5 ± 0.1-fold change, P < 0.001, n = 4). PlexinA1, but not Neuropilin-1, mRNA was enhanced by CGS21680 treatment. CGS21680 enhanced Sema3A mRNA expression during osteoblast differentiation (8.7 ± 0.2-fold increase, P < 0.001, n = 4); PlexinB1 mRNA was increased 2-fold during osteoblast differentiation and was not altered by CGS21680. Similar changes were observed at the protein level. CGS21680 decreased RANKL, increased OPG, and increased total/nuclear β-catenin expression in osteoblasts. Sema4D increased Ras homolog gene family, member A phosphorylation and focal adhesion kinase activation in osteoclast precursors, and CGS21680 abrogated these effects. In summary, A2AR activation diminishes secretion of Sema4D by osteoclasts, inhibits Sema4D-mediated osteoclast activation, and enhances secretion of Sema3A by osteoblasts, increasing osteoblast differentiation and diminishing inflammatory osteolysis.-Mediero, A., Wilder, T., Shah, L., Cronstein, B. N. Adenosine A2A receptor (A2AR) stimulation modulates expression of semaphorins 4D and 3A, regulators of bone homeostasis.
Collapse
Affiliation(s)
- Aránzazu Mediero
- Division of Translational Medicine, Department of Medicine, New York University-Langone Medical Center, New York, New York, USA; and.,Bone and Joint Research Unit, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
| | - Tuere Wilder
- Division of Translational Medicine, Department of Medicine, New York University-Langone Medical Center, New York, New York, USA; and
| | - Lopa Shah
- Division of Translational Medicine, Department of Medicine, New York University-Langone Medical Center, New York, New York, USA; and
| | - Bruce N Cronstein
- Division of Translational Medicine, Department of Medicine, New York University-Langone Medical Center, New York, New York, USA; and
| |
Collapse
|
31
|
Coniglio SJ. Role of Tumor-Derived Chemokines in Osteolytic Bone Metastasis. Front Endocrinol (Lausanne) 2018; 9:313. [PMID: 29930538 PMCID: PMC5999726 DOI: 10.3389/fendo.2018.00313] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/25/2018] [Indexed: 11/13/2022] Open
Abstract
Metastasis is the primary cause of mortality and morbidity in cancer patients. The bone marrow is a common destination for many malignant cancers, including breast carcinoma (BC), prostate carcinoma, multiple myeloma, lung carcinoma, uterine cancer, thyroid cancer, bladder cancer, and neuroblastoma. The molecular mechanism by which metastatic cancer are able to recognize, infiltrate, and colonize bone are still unclear. Chemokines are small soluble proteins which under normal physiological conditions mediate chemotactic trafficking of leukocytes to specific tissues in the body. In the context of metastasis, the best characterized role for the chemokine system is in the regulation of primary tumor growth, survival, invasion, and homing to specific secondary sites. However, there is ample evidence that metastatic tumors exploit chemokines to modulate the metastatic niche within bone which ultimately results in osteolytic bone disease. In this review, we examine the role of chemokines in metastatic tumor growth within bone. In particular, the chemokines CCL2, CCL3, IL-8/CXCL8, and CXCL12 are consistently involved in promoting osteoclastogenesis and tumor growth. We will also evaluate the suitability of chemokines as targets for chemotherapy with the use of neutralizing antibodies and chemokine receptor-specific antagonists.
Collapse
|
32
|
Lontos K, Adamik J, Tsagianni A, Galson DL, Chirgwin JM, Suvannasankha A. The Role of Semaphorin 4D in Bone Remodeling and Cancer Metastasis. Front Endocrinol (Lausanne) 2018; 9:322. [PMID: 29971044 PMCID: PMC6018527 DOI: 10.3389/fendo.2018.00322] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
Abstract
Semaphorin 4D (Sema4D; CD100) is a transmembrane homodimer 150-kDa glycoprotein member of the Semaphorin family. Semaphorins were first identified as chemorepellants that guide neural axon growth. Sema4D also possesses immune regulatory activity. Recent data suggest other Sema4D functions: inactivation of platelets, stimulation of angiogenesis, and regulation of bone formation. Sema4D is a coupling factor expressed on osteoclasts that inhibits osteoblast differentiation. Blocking Sema4D may, therefore, be anabolic for bone. Sema4D and its receptor Plexin-B1 are commonly dysregulated in cancers, suggesting roles in cancer progression, invasion, tumor angiogenesis, and skeletal metastasis. This review focuses on Sema4D in bone and cancer biology and the molecular pathways involved, particularly Sema4D-Plexin-B1 signaling crosstalk between cancer cells and the bone marrow microenvironment-pertinent areas since a humanized Sema4D-neutralizing antibody is now in early phase clinical trials in cancers and neurological disorders.
Collapse
Affiliation(s)
- Konstantinos Lontos
- Hematology-Oncology Division, Department of Medicine, UPMC Hillman Cancer Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Juraj Adamik
- Hematology-Oncology Division, Department of Medicine, UPMC Hillman Cancer Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anastasia Tsagianni
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Deborah L. Galson
- Hematology-Oncology Division, Department of Medicine, UPMC Hillman Cancer Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - John M. Chirgwin
- Hematology and Oncology Division, Department of Medicine, Indiana University School of Medicine, Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Attaya Suvannasankha
- Hematology and Oncology Division, Department of Medicine, Indiana University School of Medicine, Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
- *Correspondence: Attaya Suvannasankha,
| |
Collapse
|
33
|
Roca H, Jones JD, Purica MC, Weidner S, Koh AJ, Kuo R, Wilkinson JE, Wang Y, Daignault-Newton S, Pienta KJ, Morgan TM, Keller ET, Nör JE, Shea LD, McCauley LK. Apoptosis-induced CXCL5 accelerates inflammation and growth of prostate tumor metastases in bone. J Clin Invest 2017; 128:248-266. [PMID: 29202471 DOI: 10.1172/jci92466] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 10/17/2017] [Indexed: 12/31/2022] Open
Abstract
During tumor progression, immune system phagocytes continually clear apoptotic cancer cells in a process known as efferocytosis. However, the impact of efferocytosis in metastatic tumor growth is unknown. In this study, we observed that macrophage-driven efferocytosis of prostate cancer cells in vitro induced the expression of proinflammatory cytokines such as CXCL5 by activating Stat3 and NF-κB(p65) signaling. Administration of a dimerizer ligand (AP20187) triggered apoptosis in 2 in vivo syngeneic models of bone tumor growth in which apoptosis-inducible prostate cancer cells were either coimplanted with vertebral bodies, or inoculated in the tibiae of immunocompetent mice. Induction of 2 pulses of apoptosis correlated with increased infiltration of inflammatory cells and accelerated tumor growth in the bone. Apoptosis-induced tumors displayed elevated expression of the proinflammatory cytokine CXCL5. Likewise, CXCL5-deficient mice had reduced tumor progression. Peripheral blood monocytes isolated from patients with bone metastasis of prostate cancer were more efferocytic compared with normal controls, and CXCL5 serum levels were higher in metastatic prostate cancer patients relative to patients with localized prostate cancer or controls. Altogether, these findings suggest that the myeloid phagocytic clearance of apoptotic cancer cells accelerates CXCL5-mediated inflammation and tumor growth in bone, pointing to CXCL5 as a potential target for cancer therapeutics.
Collapse
Affiliation(s)
- Hernan Roca
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Jacqueline D Jones
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Marta C Purica
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Savannah Weidner
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Amy J Koh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Robert Kuo
- Department of Chemical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - John E Wilkinson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yugang Wang
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Stephanie Daignault-Newton
- Department of Biostatistics, Center for Cancer Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kenneth J Pienta
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Todd M Morgan
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Evan T Keller
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Jacques E Nör
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
34
|
Zhu S, Yao F, Qiu H, Zhang G, Xu H, Xu J. Coupling factors and exosomal packaging microRNAs involved in the regulation of bone remodelling. Biol Rev Camb Philos Soc 2017; 93:469-480. [PMID: 28795526 DOI: 10.1111/brv.12353] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/18/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Abstract
Bone remodelling is a continuous process by which bone resorption by osteoclasts is followed by bone formation by osteoblasts to maintain skeletal homeostasis. These two forces must be tightly coordinated not only quantitatively, but also in time and space, and its malfunction leads to diseases such as osteoporosis. Recent research focusing on the cross-talk and coupling mechanisms associated with the sequential recruitment of osteoblasts to areas where osteoclasts have removed bone matrix have identified a number of osteogenic factors produced by the osteoclasts themselves. Osteoclast-derived factors and exosomal-containing microRNA (miRNA) can either enhance or inhibit osteoblast differentiation through paracrine and juxtacrine mechanisms, and therefore may have a central coupling role in bone formation. Entwined with angiocrine factors released by vessel-specific endothelial cells and perivascular cells or pericytes, these factors play a critical role in angiogenesis-osteogenesis coupling essential in bone remodelling.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Molecular Laboratory, School of Pathology and Laboratory Medicine, The University of Western Australia, Perth 6009, M504, Australia
| | - Felix Yao
- Molecular Laboratory, School of Pathology and Laboratory Medicine, The University of Western Australia, Perth 6009, M504, Australia
| | - Heng Qiu
- Molecular Laboratory, School of Pathology and Laboratory Medicine, The University of Western Australia, Perth 6009, M504, Australia
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Molecular Laboratory, School of Pathology and Laboratory Medicine, The University of Western Australia, Perth 6009, M504, Australia
| |
Collapse
|
35
|
Takada H, Ibaragi S, Eguchi T, Okui T, Obata K, Masui M, Morisawa A, Takabatake K, Kawai H, Yoshioka N, Hassan NMM, Shimo T, Hu GF, Nagatsuka H, Sasaki A. Semaphorin 4D promotes bone invasion in head and neck squamous cell carcinoma. Int J Oncol 2017; 51:625-632. [PMID: 28656278 DOI: 10.3892/ijo.2017.4050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) frequently invade the bones of the facial skeleton. Semaphorin 4D (Sema4D) is an axon guidance molecule produced by oligodendrocytes. Sema4D was also identified in the bone microenvironment and many cancer tissues including HNSCC. To date, however, the role of Sema4D in cancer-associated bone disease is still unknown. This is the first study to demonstrate the role of Sema4D in bone invasion of cancer. In the clinical tissue samples of bone lesion of HNSCC, Sema4D was detected at high levels, and its expression was correlated with insulin-like growth factor-I (IGF-I) expression. In vitro experiments showed that IGF-I regulates Sema4D expression and Sema4D increased proliferation, migration and invasion in HNSCC cells. Sema4D also regulated the expression of receptor activator of nuclear factor κβ ligand (RANKL) in osteoblasts, and this stimulated osteoclastgenesis. Furthermore, knockdown of Sema4D in HNSCC cells inhibited tumor growth and decreased the number of osteoclasts in a mouse xenograft model. Taken together, IGF-I-driven production of Sema4D in HNSCCs promotes osteoclastogenesis and bone invasion.
Collapse
Affiliation(s)
- Hiroyuki Takada
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Takanori Eguchi
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Kyoichi Obata
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Masanori Masui
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Ayaka Morisawa
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Kiyofumi Takabatake
- Departments of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Hotaka Kawai
- Departments of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Norie Yoshioka
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | | | - Tsuyoshi Shimo
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Guo-Fu Hu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Hitoshi Nagatsuka
- Departments of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| |
Collapse
|
36
|
Ginaldi L, De Martinis M. Osteoimmunology and Beyond. Curr Med Chem 2017; 23:3754-3774. [PMID: 27604089 PMCID: PMC5204071 DOI: 10.2174/0929867323666160907162546] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/27/2022]
Abstract
Abstract: Objective Osteoimmunology investigates interactions between skeleton and immune system. In the light of recent discoveries in this field, a new reading register of osteoporosis is actually emerging, in which bone and immune cells are strictly interconnected. Osteoporosis could therefore be considered a chronic immune mediated disease which shares with other age related disorders a common inflammatory background. Here, we highlight these recent discoveries and the new landscape that is emerging. Method Extensive literature search in PubMed central. Results While the inflammatory nature of osteoporosis has been clearly recognized, other interesting aspects of osteoimmunology are currently emerging. In addition, mounting evidence indicates that the immunoskeletal interface is involved in the regulation of important body functions beyond bone remodeling. Bone cells take part with cells of the immune system in various immunological functions, configuring a real expanded immune system, and are therefore variously involved not only as target but also as main actors in various pathological conditions affecting primarily the immune system, such as autoimmunity and immune deficiencies, as well as in aging, menopause and other diseases sharing an inflammatory background. Conclusion The review highlights the complexity of interwoven pathways and shared mechanisms of the crosstalk between the immune and bone systems. More interestingly, the interdisciplinary field of osteoimmunology is now expanding beyond bone and immune cells, defining new homeostatic networks in which other organs and systems are functionally interconnected. Therefore, the correct skeletal integrity maintenance may be also relevant to other functions outside its involvement in bone mineral homeostasis, hemopoiesis and immunity.
Collapse
Affiliation(s)
- Lia Ginaldi
- School and Unit of Allergy and Clinical Immunology, Department of Life, Health, & Environmental Sciences, University of L'Aquila, Italy.
| | | |
Collapse
|
37
|
What Is Breast in the Bone? Int J Mol Sci 2016; 17:ijms17101764. [PMID: 27782069 PMCID: PMC5085788 DOI: 10.3390/ijms17101764] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 12/17/2022] Open
Abstract
The normal developmental program that prolactin generates in the mammary gland is usurped in the cancerous process and can be used out of its normal cellular context at a site of secondary metastasis. Prolactin is a pleiotropic peptide hormone and cytokine that is secreted from the pituitary gland, as well as from normal and cancerous breast cells. Experimental and epidemiologic data suggest that prolactin is associated with mammary gland development, and also the increased risk of breast tumors and metastatic disease in postmenopausal women. Breast cancer spreads to the bone in approximately 70% of cases with advanced breast cancer. Despite treatment, new bone metastases will still occur in 30%–50% of patients. Only 20% of patients with bone metastases survive five years after the diagnosis of bone metastasis. The breast cancer cells in the bone microenvironment release soluble factors that engage osteoclasts and/or osteoblasts and result in bone breakdown. The breakdown of the bone matrix, in turn, enhances the proliferation of the cancer cells, creating a vicious cycle. Recently, it was shown that prolactin accelerated the breast cancer cell-mediated osteoclast differentiation and bone breakdown by the regulation of breast cancer-secreted proteins. Interestingly, prolactin has the potential to affect multiple proteins that are involved in both breast development and likely bone metastasis, as well. Prolactin has normal bone homeostatic roles and, combined with the natural “recycling” of proteins in different tissues that can be used for breast development and function, or in bone function, increases the impact of prolactin signaling in breast cancer bone metastases. Thus, this review will focus on the role of prolactin in breast development, bone homeostasis and in breast cancer to bone metastases, covering the molecular aspects of the vicious cycle.
Collapse
|