1
|
Huang H, Mu Y, Li S. The biological function of Serpinb9 and Serpinb9-based therapy. Front Immunol 2024; 15:1422113. [PMID: 38966643 PMCID: PMC11222584 DOI: 10.3389/fimmu.2024.1422113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Recent breakthroughs in discovering novel immune signaling pathways have revolutionized different disease treatments. SERPINB9 (Sb9), also known as Proteinase Inhibitor 9 (PI-9), is a well-known endogenous inhibitor of Granzyme B (GzmB). GzmB is a potent cytotoxic molecule secreted by cytotoxic T lymphocytes and natural killer cells, which plays a crucial role in inducing apoptosis in target cells during immune responses. Sb9 acts as a protective mechanism against the potentially harmful effects of GzmB within the cells of the immune system itself. On the other hand, overexpression of Sb9 is an important mechanism of immune evasion in diseases like cancers and viral infections. The intricate functions of Sb9 in different cell types represent a fine-tuned regulatory mechanism for preventing immunopathology, protection against autoimmune diseases, and the regulation of cell death, all of which are essential for maintaining health and responding effectively to disease challenges. Dysregulation of the Sb9 will disrupt human normal physiological condition, potentially leading to a range of diseases, including cancers, inflammatory conditions, viral infections or other pathological disorders. Deepening our understanding of the role of Sb9 will aid in the discovery of innovative and effective treatments for various medical conditions. Therefore, the objective of this review is to consolidate current knowledge regarding the biological role of Sb9. It aims to offer insights into its discovery, structure, functions, distribution, its association with various diseases, and the potential of nanoparticle-based therapies targeting Sb9.
Collapse
Affiliation(s)
- Haozhe Huang
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yiqing Mu
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Song Li
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Budhiraja S, Najem H, Tripathi S, Wadhawani NR, Horbinski C, McCord M, Lenzen AC, Heimberger AB, DeCuypere M. Immunobiology and Cytokine Modulation of the Pediatric Brain Tumor Microenvironment: A Scoping Review. Cancers (Basel) 2023; 15:3655. [PMID: 37509316 PMCID: PMC10377457 DOI: 10.3390/cancers15143655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Utilizing a Scoping Review strategy in the domain of immune biology to identify immune therapeutic targets, knowledge gaps for implementing immune therapeutic strategies for pediatric brain tumors was assessed. The analysis demonstrated limited efforts to date to characterize and understand the immunological aspects of tumor biology with an over-reliance on observations from the adult glioma population. Foundational knowledge regarding the frequency and ubiquity of immune therapeutic targets is an area of unmet need along with the development of immune-competent pediatric tumor models to test therapeutics and especially combinatorial treatment. Opportunities arise in the evolution of pediatric tumor classification from histological to molecular with targeted immune therapeutics.
Collapse
Affiliation(s)
- Shreya Budhiraja
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (C.H.); (A.B.H.)
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Hinda Najem
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (C.H.); (A.B.H.)
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Shashwat Tripathi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (C.H.); (A.B.H.)
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Nitin R. Wadhawani
- Division of Pathology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Craig Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (C.H.); (A.B.H.)
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Matthew McCord
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alicia C. Lenzen
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplantation, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (C.H.); (A.B.H.)
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Michael DeCuypere
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (C.H.); (A.B.H.)
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
3
|
Li S, Poolen GC, van Vliet LC, Schipper JG, Broekhuizen R, Monnikhof M, Van Hecke W, Vermeulen JF, Bovenschen N. Pediatric medulloblastoma express immune checkpoint B7-H3. Clin Transl Oncol 2022; 24:1204-1208. [PMID: 34988920 PMCID: PMC9107433 DOI: 10.1007/s12094-021-02762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE Medulloblastomas (MB) are highly malignant brain tumors that predominantly occur in young infants. Immunotherapy to boost the immune system is emerging as a novel promising approach, but is often hampered by inhibitory immune checkpoints. In the present study, we have studied immune checkpoint B7-H3 expression in a tissue cohort of human pediatric MB. METHODS Expression of B7-H3 was detected by immunohistochemistry and classified via B7-H3 staining intensity and percentage of B7-H3 positive tumor cells. Subsequently, B7-H3 protein expression was distinguished in MB molecular subtypes and correlated to immune cell infiltrates, patient characteristics, and survival. RESULTS B7-H3 protein expression was found in 23 out of 24 (96%) human pediatric MB cases and in 17 out of 24 (71%) MB cases > 25% of tumor cells had any level of B7-H3 expression. B7-H3 protein expression was more frequent on Group-4 MB as compared with other molecular subtypes (p = 0.02). Tumors with high B7-H3 expression showed less influx of γδT cells (p = 0.002) and CD3+ T cells (p = 0.041). CONCLUSION Immune checkpoint B7-H3 is differentially expressed by the large majority of pediatric MB. This further warrants the development of novel B7-H3-directed (immuno)therapeutic methods for children with incurable, metastatic, or chemo-resistant MB.
Collapse
Affiliation(s)
- S Li
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - G C Poolen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - L C van Vliet
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - J G Schipper
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - R Broekhuizen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - M Monnikhof
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - W Van Hecke
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - J F Vermeulen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - N Bovenschen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Wang WJ, Wang J, Ouyang C, Chen C, Xu XF, Ye XQ. Overview of serpin B9 and its roles in cancer (Review). Oncol Rep 2021; 46:190. [PMID: 34278491 DOI: 10.3892/or.2021.8141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/25/2021] [Indexed: 11/06/2022] Open
Abstract
Serine proteinase inhibitor B9 (serpin B9) is a member of the serine protease inhibitor superfamily, which is widely found in animals, plants and microorganisms. Serpin B9 has been reported to protect cells from the immune‑killing effect of granzyme B (GrB) released by lymphocytes. In recent years, an increasing number of studies have indicated that serpin B9 is involved in tumour apoptosis, immune evasion, tumorigenesis, progression, metastasis, drug resistance and even in maintaining the stemness of cancer stem cells (CSCs). Moreover, according to clinical studies, serpin B9 has been demonstrated to be significantly associated with the development of precancerous lesions, a poor prognosis and ineffective therapies, suggesting that serpin B9 may be a potential target for cancer treatment and an indicator of cancer diagnosis; thus, it has begun to attract increased attention from scholars. The present review concisely described the structure and biological functions of the serpin superfamily and serpin B9. In addition, related research on serpins in cancer is discussed in order to provide a comprehensive understanding of the role of serpin B9 in cancer, as well as its clinical significance for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiao Wang
- Department of Respiratory Diseases, Jiujiang First People's Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Chao Ouyang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chong Chen
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Feng Xu
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Qun Ye
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
5
|
Li Y, Li G, Zhang J, Wu X, Chen X. The Dual Roles of Human γδ T Cells: Anti-Tumor or Tumor-Promoting. Front Immunol 2021; 11:619954. [PMID: 33664732 PMCID: PMC7921733 DOI: 10.3389/fimmu.2020.619954] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
γδ T cells are the unique T cell subgroup with their T cell receptors composed of γ chain and δ chain. Unlike αβ T cells, γδ T cells are non-MHC-restricted in recognizing tumor antigens, and therefore defined as innate immune cells. Activated γδ T cells can promote the anti-tumor function of adaptive immune cells. They are considered as a bridge between adaptive immunity and innate immunity. However, several other studies have shown that γδ T cells can also promote tumor progression by inhibiting anti-tumor response. Therefore, γδ T cells may have both anti-tumor and tumor-promoting effects. In order to clarify this contradiction, in this review, we summarized the functions of the main subsets of human γδ T cells in how they exhibit their respective anti-tumor or pro-tumor effects in cancer. Then, we reviewed recent γδ T cell-based anti-tumor immunotherapy. Finally, we summarized the existing problems and prospect of this immunotherapy.
Collapse
Affiliation(s)
- Yang Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jian Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoli Wu
- School of Life Sciences, Tian Jin University, Tian Jin, China
| | - Xi Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Mendioroz M, Puebla-Guedea M, Montero-Marín J, Urdánoz-Casado A, Blanco-Luquin I, Roldán M, Labarga A, García-Campayo J. Telomere length correlates with subtelomeric DNA methylation in long-term mindfulness practitioners. Sci Rep 2020; 10:4564. [PMID: 32165663 PMCID: PMC7067861 DOI: 10.1038/s41598-020-61241-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Mindfulness and meditation techniques have proven successful for the reduction of stress and improvement in general health. In addition, meditation is linked to longevity and longer telomere length, a proposed biomarker of human aging. Interestingly, DNA methylation changes have been described at specific subtelomeric regions in long-term meditators compared to controls. However, the molecular basis underlying these beneficial effects of meditation on human health still remains unclear. Here we show that DNA methylation levels, measured by the Infinium HumanMethylation450 BeadChip (Illumina) array, at specific subtelomeric regions containing GPR31 and SERPINB9 genes were associated with telomere length in long-term meditators with a strong statistical trend when correcting for multiple testing. Notably, age showed no association with telomere length in the group of long-term meditators. These results may suggest that long-term meditation could be related to epigenetic mechanisms, in particular gene-specific DNA methylation changes at distinct subtelomeric regions.
Collapse
Affiliation(s)
- Maite Mendioroz
- Neuroepigenetics Laboratory, Navarrabiomed Biomedical Research Center- UPNA-Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, 31008, Spain. .,Department of Neurology, Complejo Hospitalario de Navarra, Pamplona, Navarra, 31008, Spain.
| | - Marta Puebla-Guedea
- Instituto de Investigación Sanitaria de Aragón. Red de Investigación en Atención Primaria (REDIAPP), Zaragoza, Spain
| | - Jesús Montero-Marín
- Instituto de Investigación Sanitaria de Aragón. Red de Investigación en Atención Primaria (REDIAPP), Zaragoza, Spain.,Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Amaya Urdánoz-Casado
- Neuroepigenetics Laboratory, Navarrabiomed Biomedical Research Center- UPNA-Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, 31008, Spain
| | - Idoia Blanco-Luquin
- Neuroepigenetics Laboratory, Navarrabiomed Biomedical Research Center- UPNA-Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, 31008, Spain
| | - Miren Roldán
- Neuroepigenetics Laboratory, Navarrabiomed Biomedical Research Center- UPNA-Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, 31008, Spain
| | - Alberto Labarga
- Bioinformatics Unit, Navarrabiomed Biomedical Research Center - UPNA-Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, 31008, Spain
| | - Javier García-Campayo
- Instituto de Investigación Sanitaria de Aragón. Red de Investigación en Atención Primaria (REDIAPP), Zaragoza, Spain.,Miguel Servet University Hospital, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
7
|
Xu Q, Li J, Zhang N, Zhang L, Qian R. Utilization of invariant natural killer T cells for gastric cancer treatment. Future Oncol 2018; 14:2053-2066. [PMID: 30051730 DOI: 10.2217/fon-2017-0724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIM To evaluate the expression of CD1d and the susceptibility to invariant natural killer T (iNKT) cells in gastric cancer. METHODS The expression of CD1d was examined in gastric cancer. The in vitro and in vivo cytotoxic activities of iNKT cells were evaluated against gastric cancer cell lines. RESULTS CD1d was expressed in gastric cancer cell lines and primary tumors. iNKT cells have potent in vivo and in vitro anti-tumor activities against CD1d-positve gastric cancer in the presence of α-galactosylceramide. Cisplatin could upregulate CD1d expression in gastric cancer cells and make them more vulnerable to iNKT cell-mediated cytotoxicity. CONCLUSION These results justified clinical translation of this iNKT cell-based therapeutics, either used alone or combined with chemotherapy, for the treatment of patients with gastric cancer.
Collapse
Affiliation(s)
- Qi Xu
- Department of Abdominal Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, PR China
| | - Jingjing Li
- Department of Abdominal Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, PR China
| | - Na Zhang
- Department of Abdominal Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, PR China
| | - Lili Zhang
- Department of Pathology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Runmei Qian
- Department of Pathology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| |
Collapse
|
8
|
Wang GY, Li L, Liu B, Han X, Wang CH, Wang JW. Integrated bioinformatic analysis unveils significant genes and pathways in the pathogenesis of supratentorial primitive neuroectodermal tumor. Onco Targets Ther 2018; 11:1849-1859. [PMID: 29670360 PMCID: PMC5894672 DOI: 10.2147/ott.s148776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose This study aimed to explore significant genes and pathways involved in the pathogenesis of supratentorial primitive neuroectodermal tumor (sPNET). Materials and methods Gene expression profile of GSE14295 was downloaded from publicly available Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened out in primary sPNET samples compared with normal fetal and adult brain reference samples (sPNET vs fetal brain and sPNET vs adult brain). Pathway enrichment analysis of these DEGs was conducted, followed by protein–protein interaction (PPI) network construction and significant module selection. Additionally, transcription factors (TFs) regulating the common DEGs in the two comparison groups were identified, and the regulatory network was constructed. Results In total, 526 DEGs (99 up- and 427 downregulated) in sPNET vs fetal brain and 815 DEGs (200 up- and 615 downregulated) in sPNET vs adult brain were identified. DEGs in sPNET vs fetal brain and sPNET vs adult brain were associated with calcium signaling pathway, cell cycle, and p53 signaling pathway. CDK1, CDC20, BUB1B, and BUB1 were hub nodes in the PPI networks of DEGs in sPNET vs fetal brain and sPNET vs adult brain. Significant modules were extracted from the PPI networks. In addition, 64 upregulated and 200 downregulated overlapping DEGs were identified in both sPNET vs fetal brain and sPNET vs adult brain. The genes involved in the regulatory network upon overlapping DEGs and the TFs were correlated with calcium signaling pathway. Conclusion Calcium signaling pathway and several genes (CDK1, CDC20, BUB1B, and BUB1) may play important roles in the pathogenesis of sPNET.
Collapse
Affiliation(s)
| | - Ling Li
- Department of Pediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong
| | - Bo Liu
- Department of Neurosurgery
| | | | | | - Ji-Wen Wang
- Department of Neurology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Pudong New District, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Vermeulen JF, Van Hecke W, Adriaansen EJM, Jansen MK, Bouma RG, Villacorta Hidalgo J, Fisch P, Broekhuizen R, Spliet WGM, Kool M, Bovenschen N. Prognostic relevance of tumor-infiltrating lymphocytes and immune checkpoints in pediatric medulloblastoma. Oncoimmunology 2017; 7:e1398877. [PMID: 29399402 PMCID: PMC5790383 DOI: 10.1080/2162402x.2017.1398877] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
Pediatric medulloblastomas are the most frequently diagnosed embryonal tumors of the central nervous system. Current therapies cause severe neurological and cognitive side effects including secondary malignancies. Cellular immunotherapy might be key to improve survival and to avoid morbidity. Efficient killing of tumor cells using immunotherapy requires to overcome cancer-associated strategies to evade cytotoxic immune responses. Here, we examined the immune response and immune evasion strategies in pediatric medulloblastomas. Cytotoxic T-cells, infiltrating medulloblastomas with variable activation status, showed no correlation with overall survival of the patients. We found limited numbers of PD1+ T-cells and complete absence of PD-L1 on medulloblastomas. Medulloblastomas downregulated immune recognition molecules MHC-I and CD1 d. Intriguingly, expression of granzyme inhibitors SERPINB1 and SERPINB4 was acquired in 23% and 50% of the tumors, respectively. Concluding, pediatric medulloblastomas exploit multiple immune evasion strategies to overcome immune surveillance. Absence of PD-L1 expression in medulloblastoma suggest limited or no added value for immunotherapy with PD1/PD-L1 blockers.
Collapse
Affiliation(s)
- Jeroen F Vermeulen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wim Van Hecke
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Mieke K Jansen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rianne G Bouma
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Paul Fisch
- Institute of Clinical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Roel Broekhuizen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wim G M Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
Abou-Antoun TJ, Hale JS, Lathia JD, Dombrowski SM. Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications. Neurotherapeutics 2017; 14:372-384. [PMID: 28374184 PMCID: PMC5398995 DOI: 10.1007/s13311-017-0524-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Brain tumors represent some of the most malignant cancers in both children and adults. Current treatment options target the majority of tumor cells but do not adequately target self-renewing cancer stem cells (CSCs). CSCs have been reported to resist the most aggressive radiation and chemotherapies, and give rise to recurrent, treatment-resistant secondary malignancies. With advancing technologies, we now have a better understanding of the genetic, epigenetic and molecular signatures and microenvironmental influences which are useful in distinguishing between distinctly different tumor subtypes. As a result, efforts are now underway to identify and target CSCs within various tumor subtypes based on this foundation. This review discusses progress in CSC biology as it relates to targeted therapies which may be uniquely different between pediatric and adult brain tumors. Studies to date suggest that pediatric brain tumors may benefit more from genetic and epigenetic targeted therapies, while combination treatments aimed specifically at multiple molecular pathways may be more effective in treating adult brain tumors which seem to have a greater propensity towards microenvironmental interactions. Ultimately, CSC targeting approaches in combination with current clinical therapies have the potential to be more effective owing to their ability to compromise CSCs maintenance and the mechanisms which underlie their highly aggressive and deadly nature.
Collapse
Affiliation(s)
- Tamara J Abou-Antoun
- School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese American University, Byblos, Lebanon
| | - James S Hale
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case, Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Stephen M Dombrowski
- Department of Neurological Surgery, Section of Pediatric Neurosurgical Oncology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|