1
|
Sullivan R, Ahrens Q, Mills-Huffnagle SL, Elcheva IA, Hicks SD. A human iPSC-derived midbrain neural stem cell model of prenatal opioid exposure and withdrawal: A proof of concept study. PLoS One 2025; 20:e0319418. [PMID: 40168407 PMCID: PMC11960892 DOI: 10.1371/journal.pone.0319418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/30/2025] [Indexed: 04/03/2025] Open
Abstract
A growing body of clinical literature has described neurodevelopmental delays in infants with chronic prenatal opioid exposure and withdrawal. Despite this, the mechanism of how opioids impact the developing brain remains unknown. Here, we developed an in vitro model of prenatal morphine exposure and withdrawal using healthy human induced pluripotent stem cell (iPSC)-derived midbrain neural progenitors in monolayer. To optimize our model, we identified that a longer neural induction and regional patterning period increases expression of canonical opioid receptors mu and kappa in midbrain neural progenitors compared to a shorter protocol (OPRM1, two-tailed t-test, p = 0.004; OPRK1, p = 0.0003). Next, we showed that the midbrain neural progenitors derived from a longer iPSC neural induction also have scant toll-like receptor 4 (TLR4) expression, a key player in neonatal opioid withdrawal syndrome pathophysiology. During morphine withdrawal, differentiating neural progenitors experience cyclic adenosine monophosphate overshoot compared to cell exposed to vehicle (p = 0.0496) and morphine exposure conditions (p, = 0.0136, 1-way ANOVA). Finally, we showed that morphine exposure and withdrawal alters proportions of differentiated progenitor cell fates (2-way ANOVA, F = 16.05, p < 0.0001). Chronic morphine exposure increased proportions of nestin positive progenitors (p = 0.0094), and decreased proportions of neuronal nuclear antigen positive neurons (NEUN) (p = 0.0047) compared to those exposed to vehicle. Morphine withdrawal decreased proportions of glial fibrillary acidic protein positive cells of astrocytic lineage (p = 0.044), and increased proportions of NEUN-positive neurons (p < 0.0001) compared to those exposed to morphine only. Applications of this paradigm include mechanistic studies underscoring neural progenitor cell fate commitments in early neurodevelopment during morphine exposure and withdrawal.
Collapse
MESH Headings
- Humans
- Neural Stem Cells/metabolism
- Neural Stem Cells/drug effects
- Neural Stem Cells/cytology
- Mesencephalon/cytology
- Mesencephalon/drug effects
- Mesencephalon/metabolism
- Mesencephalon/pathology
- Induced Pluripotent Stem Cells/cytology
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/drug effects
- Morphine/adverse effects
- Morphine/pharmacology
- Female
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/pharmacology
- Cell Differentiation/drug effects
- Pregnancy
- Substance Withdrawal Syndrome/pathology
- Substance Withdrawal Syndrome/metabolism
- Prenatal Exposure Delayed Effects
- Toll-Like Receptor 4/metabolism
- Proof of Concept Study
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, kappa/genetics
Collapse
Affiliation(s)
- Rhea Sullivan
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Quinn Ahrens
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Sara L. Mills-Huffnagle
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Irina A. Elcheva
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Steven D. Hicks
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
2
|
Lee Y, Ju Y, Gee MS, Jeon SH, Kim N, Koo T, Lee JK. Survivin enhances hippocampal neurogenesis and cognitive function in Alzheimer's disease mouse model. CNS Neurosci Ther 2024; 30:e14509. [PMID: 37904343 PMCID: PMC11017468 DOI: 10.1111/cns.14509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023] Open
Abstract
AIMS Cognitive impairment is associated with reduced hippocampal neurogenesis; however, the causes of decreased hippocampal neurogenesis remain highly controversial. Here, we investigated the role of survivin in the modulation of hippocampal neurogenesis in AD. METHODS To investigate the effect of survivin on neurogenesis in neural stem cells (NSCs), we treated mouse embryonic NSCs with a survivin inhibitor (YM155) and adeno-associated viral survivin (AAV-Survivin). To explore the potential role of survivin expression in AD, AAV9-Survivin or AAV9-GFP were injected into the dentate gyrus (DG) of hippocampus of 7-month-old wild-type and 5XFAD mice. Cognitive function was measured by the Y maze and Morris water maze. Neurogenesis was investigated by BrdU staining, immature, and mature neuron markers. RESULTS Our results indicate that suppression of survivin expression resulted in decreased neurogenesis. Conversely, overexpression of survivin using AAV-Survivin restored neurogenesis in NSCs that had been suppressed by YM155 treatment. Furthermore, the expression level of survivin decreased in the 9-month-old 5XFAD compared with that in wild-type mice. AAV-Survivin-mediated overexpression of survivin in the DG in 5XFAD mice enhanced neurogenesis and cognitive function. CONCLUSION Hippocampal neurogenesis can be enhanced by survivin overexpression, suggesting that survivin could serve as a promising therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Yeongae Lee
- College of PharmacyKyung Hee UniversitySeoulKorea
| | - Yeon‐Joo Ju
- College of PharmacyKyung Hee UniversitySeoulKorea
| | - Min Sung Gee
- College of PharmacyKyung Hee UniversitySeoulKorea
| | | | - Namkwon Kim
- College of PharmacyKyung Hee UniversitySeoulKorea
| | - Taeyoung Koo
- College of PharmacyKyung Hee UniversitySeoulKorea
| | - Jong Kil Lee
- College of PharmacyKyung Hee UniversitySeoulKorea
| |
Collapse
|
3
|
Passarelli JP, Nimjee SM, Townsend KL. Stroke and Neurogenesis: Bridging Clinical Observations to New Mechanistic Insights from Animal Models. Transl Stroke Res 2024; 15:53-68. [PMID: 36462099 DOI: 10.1007/s12975-022-01109-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022]
Abstract
Stroke was the 2nd leading cause of death and a major cause of morbidity. Unfortunately, there are limited means to promote neurological recovery post-stroke, but research has unearthed potential targets for therapies to encourage post-stroke neurogenesis and neuroplasticity. The occurrence of neurogenesis in adult mammalian brains, including humans, was not widely accepted until the 1990s. Now, adult neurogenesis has been extensively studied in human and mouse neurogenic brain niches, of which the subventricular zone of the lateral ventricles and subgranular zone of the dentate gyrus are best studied. Numerous other niches are under investigation for neurogenic potential. This review offers a basic overview to stroke in the clinical setting, a focused summary of recent and foundational research literature on cortical neurogenesis and post-stroke brain plasticity, and insights regarding how the meninges and choroid plexus have emerged as key players in neurogenesis and neuroplasticity in the context of focal cerebral ischemia disrupting the anterior circulation. The choroid plexus and meninges are vital as they are integral sites for neuroimmune interactions, glymphatic perfusion, and niche signaling pertinent to neural stem cells and neurogenesis. Modulating neuroimmune interactions with a focus on astrocyte activity, potentially through manipulation of the choroid plexus and meningeal niches, may reduce the exacerbation of stroke by inflammatory mediators and create an environment conducive to neurorecovery. Furthermore, addressing impaired glymphatic perfusion after ischemic stroke likely supports a neurogenic environment by clearing out inflammatory mediators, neurotoxic metabolites, and other accumulated waste. The meninges and choroid plexus also contribute more directly to promoting neurogenesis: the meninges are thought to harbor neural stem cells and are a niche amenable to neural stem/progenitor cell migration. Additionally, the choroid plexus has secretory functions that directly influences stem cells through signaling mechanisms and growth factor actions. More research to better understand the functions of the meninges and choroid plexus may lead to novel approaches for stimulating neuronal recovery after ischemic stroke.
Collapse
Affiliation(s)
| | - Shahid M Nimjee
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, 43210, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Zhang J, Chang Q, Rizzello L, Wu Y. Research progress on the effects and mechanisms of anesthetics on neural stem cells. IBRAIN 2022; 8:453-464. [PMID: 37786590 PMCID: PMC10528967 DOI: 10.1002/ibra.12071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 10/04/2023]
Abstract
Exposure to anesthetic drugs has been proven to seriously affect developing animals in terms of neural stem cells' (NSCs') proliferation, differentiation, and apoptosis. This can severely hamper the development of physiological learning and memory skills. Studies on the effects of anesthetics on NSCs' proliferation and differentiation are thus reviewed here, with the aim to highlight which specific drug mechanisms are the least harmful to NSCs. PubMed has been used as the preferential searching database of relevant literature to identify studies on the effects and mechanisms of NSCs' proliferation and differentiation. It was concluded that propofol and sevoflurane may be the safest options for NSCs during pregnancy and in pediatric clinical procedures, while dexmedetomidine has been found to reduce opioid-related damage in NSCs. It was also found that the growth environment may impact neurodevelopment even more than narcotic drugs. Nonetheless, the current scientific literature available further highlights how more extensive clinical trials are absolutely required for corroborating the conclusion drawn here.
Collapse
Affiliation(s)
- Ji Zhang
- Department of AnesthesiologySouthwest Medical UniversityLuzhouChina
| | - Quan‐Yuan Chang
- Department of AnesthesiologySouthwest Medical UniversityLuzhouChina
| | - Loris Rizzello
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- National Institute of Molecular Genetics (INGM)MilanItaly
| | - You Wu
- Department of Family PlanningThe Affiliated Hospital of Zunyi Medical UniversityGuizhouZunyiChina
| |
Collapse
|
5
|
Vaselbehagh M, Sadegh M, Karami H, Babaie S, Sakhaie MH. Coenzyme Q10 Modulates Apoptotic Effects of Chronic Administration of Methadone on NMRI Mouse Hippocampus. CELL JOURNAL 2021; 23:538-543. [PMID: 34837681 PMCID: PMC8588821 DOI: 10.22074/cellj.2021.7384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/11/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Methadone is one of the widely used drug substances prescribed in treatment of opioid dependence and pain management; however, several studies have shown its neurotoxic effects on individuals and animal models. The purpose of this study was to assess neuroprotective effects of Coenzyme Q10 (CoQ10) on neurotoxicity induced by methadone in hippocampus of adult NMRI male mice. MATERIALS AND METHODS In this experimental study, 48 adult NMRI male mice were randomly divided into 4 groups (n=12 in each) including Methadone, Methadone with sesame oil, Methadone with CoQ10 and saline. The injections of methadone, saline and sesame oil were performed intraperitoneally for 20 days. 24 hours after last injection, half of the animals in each group (n=6) were randomly assessed for evaluating of spatial memory by radial maze. Following behavioral study, animals were sacrificed, and their brains were removed to evaluate pyknotic cells through histological assessment. The remaining were used to study the expression of Arc, Bax, Bcl-2 and Bdnf genes. RESULTS Results of the present study showed that daily administration of methadone increased the number of pyknotic neurons in the CA1 hippocampus and altered the expression of Bax, Bdnf, Arc and Bcl-2. However, it did not alter spatial memory comparing to saline group. CoQ10 treatment significantly reduced the number of pyknotic cells and expression of Bax, Bdnf, Arc when compared to the vehicle group treated by sesame oil. However, the expression of Bcl-2 significantly increased as a result of CoQ10 treatment. CONCLUSION CoQ10 reduced the neuronal damage caused by methadone in the hippocampus CA1.
Collapse
Affiliation(s)
- Maryam Vaselbehagh
- Department of Anatomy, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mehdi Sadegh
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hadi Karami
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Saied Babaie
- Department of Anatomy, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Hassan Sakhaie
- Department of Anatomy, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran,P.O.Box: 3848176941Department of AnatomyFaculty of MedicineArak University of Medical SciencesArakIran
| |
Collapse
|
6
|
Zhang H, Qu M, Gorur A, Sun Z, Cata JP, Chen W, Miao C. Association of Mu-Opioid Receptor(MOR) Expression and Opioids Requirement With Survival in Patients With Stage I-III Pancreatic Ductal Adenocarcinoma. Front Oncol 2021; 11:686877. [PMID: 34222012 PMCID: PMC8249918 DOI: 10.3389/fonc.2021.686877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/07/2021] [Indexed: 01/16/2023] Open
Abstract
Background The use of opioids in patients with metastatic pancreatic ductal adenocarcinoma (PDAC) is associated with shorter survival and not dependent on the expression of the mu-opioid receptor (MOR). The role of opioid use and MOR expression in stage I-III PDAC has not been investigated. Methods We conducted retrospective study in patients with stage I-III PDAC. MOR expression and OPRM1 gene expression in tumour tissue and non-tumour tissue was measured. Primary endpoints were overall survival (OS) and disease-free survival (DFS). Secondary endpoints included perineural invasion, intraoperative sufentanil consumption, and length of stay. We performed a subgroup group analysis to evaluate the interaction between levels of MOR expression, amount of opioids use (high versus low) and its association with survival. Results A total of 236 patients were enrolled in this study.There were no significantly difference in OS rates in patients with high versus low levels of MOR (1-year OS: 65.2% versus 70.6%, P=0.064; 3-year: 31.4% versus 35.8%, P=0.071; 5-year: 19.4% versus. 16.2%, P=0.153, respectively) in the tumours. The DFS rates between the groups were no significantly difference. Of note, a high expression of MOR combined with high opioid consumption was associated with poor prognosis in stage I-III PDAC patients. Tumor expressing high levels of MOR show higher rates of perineural invasion. Conclusion MOR is not an independent predictor of poor survival in stage I-III PDAC but associated with perineural invasion. Patients requiring high amounts of opioids intraoperatively show worse outcome if they are expressing high levels of MOR.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengdi Qu
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aysegul Gorur
- Department of Anaesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Centre, Houston, TX, United States.,Anaesthesiology and Surgical Oncology Research Group, Houston, TX, United States
| | - Zhirong Sun
- Department of Anaesthesiology, Fudan University Shanghai Cancer Centre, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Juan P Cata
- Department of Anaesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Centre, Houston, TX, United States.,Anaesthesiology and Surgical Oncology Research Group, Houston, TX, United States
| | - Wankun Chen
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Zhangjiang Institute, Shanghai, China
| | - Changhong Miao
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Sun J, Yang J, Miao X, Loh HH, Pei D, Zheng H. Proteins in DNA methylation and their role in neural stem cell proliferation and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:7. [PMID: 33649938 PMCID: PMC7921253 DOI: 10.1186/s13619-020-00070-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/25/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Epigenetic modifications, namely non-coding RNAs, DNA methylation, and histone modifications such as methylation, phosphorylation, acetylation, ubiquitylation, and sumoylation play a significant role in brain development. DNA methyltransferases, methyl-CpG binding proteins, and ten-eleven translocation proteins facilitate the maintenance, interpretation, and removal of DNA methylation, respectively. Different forms of methylation, including 5-methylcytosine, 5-hydroxymethylcytosine, and other oxidized forms, have been detected by recently developed sequencing technologies. Emerging evidence suggests that the diversity of DNA methylation patterns in the brain plays a key role in fine-tuning and coordinating gene expression in the development, plasticity, and disorders of the mammalian central nervous system. Neural stem cells (NSCs), originating from the neuroepithelium, generate neurons and glial cells in the central nervous system and contribute to brain plasticity in the adult mammalian brain. MAIN BODY Here, we summarized recent research in proteins responsible for the establishment, maintenance, interpretation, and removal of DNA methylation and those involved in the regulation of the proliferation and differentiation of NSCs. In addition, we discussed the interactions of chemicals with epigenetic pathways to regulate NSCs as well as the connections between proteins involved in DNA methylation and human diseases. CONCLUSION Understanding the interplay between DNA methylation and NSCs in a broad biological context can facilitate the related studies and reduce potential misunderstanding.
Collapse
Affiliation(s)
- Jiaqi Sun
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China.
| | - Junzheng Yang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China
| | - Xiaoli Miao
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China
| | - Horace H Loh
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China
| | - Duanqing Pei
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China.,CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China.,Institutes for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,School of Life Science, Westlake University, Hangzhou, 310024, China
| | - Hui Zheng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China. .,CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China. .,Institutes for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
8
|
Nam MH, Won W, Han KS, Lee CJ. Signaling mechanisms of μ-opioid receptor (MOR) in the hippocampus: disinhibition versus astrocytic glutamate regulation. Cell Mol Life Sci 2021; 78:415-426. [PMID: 32671427 PMCID: PMC11073310 DOI: 10.1007/s00018-020-03595-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
μ-opioid receptor (MOR) is a class of opioid receptors that is critical for analgesia, reward, and euphoria. MOR is distributed in various brain regions, including the hippocampus, where traditionally, it is believed to be localized mainly at the presynaptic terminals of the GABAergic inhibitory interneurons to exert a strong disinhibitory effect on excitatory pyramidal neurons. However, recent intensive research has uncovered the existence of MOR in hippocampal astrocytes, shedding light on how astrocytic MOR participates in opioid signaling via glia-neuron interaction in the hippocampus. Activation of astrocytic MOR has shown to cause glutamate release from hippocampal astrocytes and increase the excitability of presynaptic axon fibers to enhance the release of glutamate at the Schaffer Collateral-CA1 synapses, thereby, intensifying the synaptic strength and plasticity. This novel mechanism involving astrocytic MOR has been shown to participate in hippocampus-dependent conditioned place preference. Furthermore, the signaling of hippocampal MOR, whose action is sexually dimorphic, is engaged in adult neurogenesis, seizure, and stress-induced memory impairment. In this review, we focus on the two profoundly different hippocampal opioid signaling pathways through either GABAergic interneuronal or astrocytic MOR. We further compare and contrast their molecular and cellular mechanisms and their possible roles in opioid-associated conditioned place preference and other hippocampus-dependent behaviors.
Collapse
Affiliation(s)
- Min-Ho Nam
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Woojin Won
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seogbuk-gu, Seoul, 02841, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Kyung-Seok Han
- Department of Medical Biotechnology, Dongguk University-Gyeongju, 123 Dongdae-ro, Gyeongju, Gyeongbuk, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seogbuk-gu, Seoul, 02841, Republic of Korea.
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
9
|
Hu J, Cui F, Zhang X. Morphine modulates hippocampal neurogenesis and contextual memory extinction via miR-34c/Notch1 pathway in male ICR mice. Open Life Sci 2020. [DOI: 10.1515/biol-2020-0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AbstractBackgroundThe opioid Morphine is known to affect neurogenesis in the hippocampus. Evidence has shown that several microRNAs modulate morphine-induced neurogenesis, and hence morphine-induced contextual memory. This complex network has yet to be elucidated. In this study, we screened for morphine addiction related microRNA and determined its effects on hippocampal neurogenesis and morphine-induced contextual memory using the conditioned place preference (CPP) model.MethodsThe previously established CPP model was utilized in this study. For differential expression of miRNA in the hippocampus, the GeneChip miRNA array was used. Lentivirus technology was used to overexpress or downregulate the miRNA, and changes in expression level was verified with qRT-PCR. Protein expression levels were measured with western blot. Immunofluorescence was used to observe the protein expression during the differentiation of NSCs.ResultsThe results showed that morphine administration upregulated microRNA-34c (miR-34c) and Notch1. Downregulating miR-34c in vivo decreased Notch1 expression and partially rescued the morphine-induced inhibition of the differentiation of neural stem cells (NSCs). This did not affect the morphine-induced proliferation of cells. Furthermore, downregulating miR-34c in vivo prolonged the extinction of morphine-induced contextual memory without affecting acquired CPP response.ConclusionThe miR-34c regulates the hippocampal neurogenesis in addicted mice by up-regulating Notch1 expression, by inhibiting differentiation of neural precursor cells. The miR-34c/Notch1 pathway may be a new potential target for the prevention and treatment of opioid psychotic dependence.
Collapse
Affiliation(s)
- JieWei Hu
- College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, China
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - FuHua Cui
- College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, China
- PLA Urumqi General Hospital, Urumqi, Xinjiang, China
| | - XiaoDong Zhang
- College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, China
| |
Collapse
|
10
|
Kibaly C, Xu C, Cahill CM, Evans CJ, Law PY. Non-nociceptive roles of opioids in the CNS: opioids' effects on neurogenesis, learning, memory and affect. Nat Rev Neurosci 2019; 20:5-18. [PMID: 30518959 DOI: 10.1038/s41583-018-0092-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mortality due to opioid use has grown to the point where, for the first time in history, opioid-related deaths exceed those caused by car accidents in many states in the United States. Changes in the prescribing of opioids for pain and the illicit use of fentanyl (and derivatives) have contributed to the current epidemic. Less known is the impact of opioids on hippocampal neurogenesis, the functional manipulation of which may improve the deleterious effects of opioid use. We provide new insights into how the dysregulation of neurogenesis by opioids can modify learning and affect, mood and emotions, processes that have been well accepted to motivate addictive behaviours.
Collapse
Affiliation(s)
- Cherkaouia Kibaly
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA.
| | - Chi Xu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Christopher J Evans
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Ping-Yee Law
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Rivera PD, Simmons SJ, Reynolds RP, Just AL, Birnbaum SG, Eisch AJ. Image-guided cranial irradiation-induced ablation of dentate gyrus neurogenesis impairs extinction of recent morphine reward memories. Hippocampus 2019; 29:726-735. [PMID: 30779299 DOI: 10.1002/hipo.23071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/25/2022]
Abstract
Dentate gyrus adult neurogenesis is implicated in the formation of hippocampal-dependent contextual associations. However, the role of adult neurogenesis during reward-based context-dependent paradigms-such as conditioned place preference (CPP)-is understudied. Therefore, we used image-guided, hippocampal-targeted X-ray irradiation (IG-IR) and morphine CPP to explore whether dentate gyrus adult neurogenesis plays a role in reward memories created in adult C57BL/6J male mice. In addition, as adult neurogenesis appears to participate to a greater extent in retrieval and extinction of recent (<48 hr posttraining) versus remote (>1 week posttraining) memories, we specifically examined the role of adult neurogenesis in reward-associated contextual memories probed at recent and remote timepoints. Six weeks post-IG-IR or Sham treatment, mice underwent morphine CPP. Using separate groups, retrieval of recent and remote reward memories was found to be similar between IG-IR and Sham treatments. Interestingly, IG-IR mice showed impaired extinction-or increased persistence-of the morphine-associated reward memory when it was probed 24-hr (recent) but not 3-weeks (remote) postconditioning relative to Sham mice. Taken together, these data show that hippocampal-directed irradiation and the associated decrease in dentate gyrus adult neurogenesis affect the persistence of recently-but not remotely-probed reward memory. These data indicate a novel role for adult neurogenesis in reward-based memories and particularly the extinction rate of these memories. Consideration of this work may lead to better understanding of extinction-based behavioral interventions for psychiatric conditions characterized by dysregulated reward processing.
Collapse
Affiliation(s)
- Phillip D Rivera
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Steven J Simmons
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ryan P Reynolds
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas.,Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alanna L Just
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Shari G Birnbaum
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Amelia J Eisch
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas.,Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Rivera PD, Hanamsagar R, Kan MJ, Tran PK, Stewart D, Jo YC, Gunn M, Bilbo SD. Removal of microglial-specific MyD88 signaling alters dentate gyrus doublecortin and enhances opioid addiction-like behaviors. Brain Behav Immun 2019; 76:104-115. [PMID: 30447281 PMCID: PMC6348129 DOI: 10.1016/j.bbi.2018.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022] Open
Abstract
Drugs of abuse promote a potent immune response in central nervous system (CNS) via the activation of microglia and astrocytes. However, the molecular mechanisms underlying microglial activation during addiction are not well known. We developed and functionally characterized a novel transgenic mouse (Cx3cr1-CreBTtg/0:MyD88f/f [Cretg/0]) wherein the immune signaling adaptor gene, MyD88, was specifically deleted in microglia. To test the downstream effects of loss of microglia-specific MyD88 signaling in morphine addiction, Cretg/0 and Cre0/0 mice were tested for reward learning, extinction, and reinstatement using a conditioned place preference (CPP) paradigm. There were no differences in drug acquisition, but Cretg/0 mice had prolonged extinction and enhanced reinstatement compared to Cre0/0 controls. Furthermore, morphine-treated Cretg/0 mice showed increased doublecortin (DCX) signal relative to Cre0/0 control mice in the hippocampus, indicative of increased number of immature neurons. Additionally, there was an increase in colocalization of microglial lysosomal marker CD68 with DCX+cells in morphine-treated Cretg/0 mice but not in Cre0/0 or drug-naїve mice, suggesting a specific role for microglial MyD88 signaling in neuronal phagocytosis in the hippocampus. Our results show that MyD88 deletion in microglia may negatively impact maturing neurons within the adult hippocampus and thus reward memories, suggesting a novel protective role for microglia in opioid addiction.
Collapse
Affiliation(s)
- Phillip D Rivera
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Lurie Center for Autism, MassGeneral Hospital for Children, Boston, MA, USA; Department of Psychology & Neuroscience, Duke University, Durham, NC, USA; Department of Biology, Hope College, Holland, MI, USA
| | - Richa Hanamsagar
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Lurie Center for Autism, MassGeneral Hospital for Children, Boston, MA, USA; Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Matthew J Kan
- Department of Immunology, Duke University Medical Center, Durham, NC, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA; Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Phuong K Tran
- Department of Pediatrics, Lurie Center for Autism, MassGeneral Hospital for Children, Boston, MA, USA; Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - David Stewart
- Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Young Chan Jo
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Lurie Center for Autism, MassGeneral Hospital for Children, Boston, MA, USA
| | - Michael Gunn
- Department of Immunology, Duke University Medical Center, Durham, NC, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Staci D Bilbo
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Lurie Center for Autism, MassGeneral Hospital for Children, Boston, MA, USA; Department of Psychology & Neuroscience, Duke University, Durham, NC, USA.
| |
Collapse
|
13
|
Fan W, Wang H, Zhang Y, Loh HH, Law PY, Xu C. Morphine regulates adult neurogenesis and contextual memory extinction via the PKCε/Prox1 pathway. Neuropharmacology 2018; 141:126-138. [PMID: 30170081 DOI: 10.1016/j.neuropharm.2018.08.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 02/08/2023]
Abstract
We have previously reported that the miR-181a/Prox1/Notch1 pathway mediates the effect of morphine on modulating lineage-specific differentiation of adult neural stem/progenitor cells (NSPCs) via a PKCε-dependent pathway, whereas fentanyl shows no such effect. However, the role of the PKCε/Prox1 pathway in mediating drug-associated contextual memory remains unknown. The current study investigated the effect of PKCε/Prox1 on morphine-induced inhibition of adult neurogenesis and drug-associated contextual memory in mice, while the effect of fentanyl was tested simultaneously. By using BrdU labeling, we were able to examine the lineages of differentiated NSPCs in adult DG. PKCε knockout blocked morphine's effects on inducing in vivo astrocyte-preferential differentiation of NSPCs, but did not alter NSPC lineages upon fentanyl treatment. Inhibited adult neurogenesis further resulted in prolonged extinction and enhanced reinstatement of morphine-induced CPP, as well as prolonged extinction of space reference memory indicated by the Morris water maze paradigm. However, after fentanyl administration, no significant changes were found between wild-type and PKCε knockout mice, during either CPP or water maze tasks. When the lentivirus encoding Nestin-promoter-controlled Prox1 cDNA was injected into hippocampi of wildtype and PKCε knockout adult mice to modulate PKCε/Prox1 activity, similar effects were discovered in adult mice injected with lentivirus encoding Prox1, and more dramatic effects were found in PKCε knockout mice with concurrent Prox1 overexpression. In conclusion, morphine mediates lineage-specific NSPC differentiation, inhibits adult neurogenesis and regulates contextual memory retention via the PKCε/Prox1 pathway, which are implicated in the eventual context-associated relapse.
Collapse
Affiliation(s)
- Wenxiang Fan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Helei Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yue Zhang
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Chi Xu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
14
|
Bulin SE, Mendoza ML, Richardson DR, Song KH, Solberg TD, Yun S, Eisch AJ. Dentate gyrus neurogenesis ablation via cranial irradiation enhances morphine self-administration and locomotor sensitization. Addict Biol 2018. [PMID: 28626932 DOI: 10.1111/adb.12524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adult dentate gyrus (DG) neurogenesis is important for hippocampal-dependent learning and memory, but the role of new neurons in addiction-relevant learning and memory is unclear. To test the hypothesis that neurogenesis is involved in the vulnerability to morphine addiction, we ablated adult DG neurogenesis and examined morphine self-administration (MSA) and locomotor sensitization. Male Sprague-Dawley rats underwent hippocampal-focused, image-guided X-ray irradiation (IRR) to eliminate new DG neurons or sham treatment (Sham). Six weeks later, rats underwent either MSA (Sham = 16, IRR = 15) or locomotor sensitization (Sham = 12, IRR = 12). Over 21 days of MSA, IRR rats self-administered ~70 percent more morphine than Sham rats. After 28 days of withdrawal, IRR rats pressed the active lever 40 percent more than Sham during extinction. This was not a general enhancement of learning or locomotion, as IRR and Sham groups had similar operant learning and inactive lever presses. For locomotor sensitization, both IRR and Sham rats sensitized, but IRR rats sensitized faster and to a greater extent. Furthermore, dose-response revealed that IRR rats were more sensitive at a lower dose. Importantly, these increases in locomotor activity were not apparent after acute morphine administration and were not a byproduct of irradiation or post-irradiation recovery time. Therefore, these data, along with other previously published data, indicate that reduced hippocampal neurogenesis confers vulnerability for multiple classes of drugs. Thus, therapeutics to specifically increase or stabilize hippocampal neurogenesis could aid in preventing initial addiction as well as future relapse.
Collapse
Affiliation(s)
- Sarah E. Bulin
- Department of Psychiatry; University of Texas Southwestern Medical Center; Dallas TX USA
- Department of Pharmacology; University of Texas Health Science Center; San Antonio TX USA
| | - Matthew L. Mendoza
- Department of Psychiatry; University of Texas Southwestern Medical Center; Dallas TX USA
| | - Devon R. Richardson
- Department of Psychiatry; University of Texas Southwestern Medical Center; Dallas TX USA
| | - Kwang H. Song
- Department of Radiology Oncology; University of Texas Southwestern Medical Center; Dallas TX USA
- Texas Oncology PA; Fort Worth TX USA
| | - Timothy D. Solberg
- Department of Radiology Oncology; University of Texas Southwestern Medical Center; Dallas TX USA
- Department of Radiation Oncology; University of California; San Francisco CA USA
| | - Sanghee Yun
- Mahoney Institute of Neurosciences; University of Pennsylvania Perelman School of Medicine; Philadelphia PA USA
- Department of Anesthesiology and Critical Care Medicine; Children's Hospital of Philadelphia; Philadelphia PA USA
| | - Amelia J. Eisch
- Department of Psychiatry; University of Texas Southwestern Medical Center; Dallas TX USA
- Mahoney Institute of Neurosciences; University of Pennsylvania Perelman School of Medicine; Philadelphia PA USA
- Department of Anesthesiology and Critical Care Medicine; Children's Hospital of Philadelphia; Philadelphia PA USA
| |
Collapse
|
15
|
Kim J, Im HI, Moon C. Intravenous morphine self-administration alters accumbal microRNA profiles in the mouse brain. Neural Regen Res 2018; 13:77-85. [PMID: 29451210 PMCID: PMC5840996 DOI: 10.4103/1673-5374.224374] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A significant amount of evidence indicates that microRNAs (miRNAs) play an important role in drug addiction. The nucleus accumbens (NAc) is a critical part of the brain's reward circuit and is involved in a variety of psychiatric disorders, including depression, anxiety, and drug addiction. However, few studies have examined the expression of miRNAs and their functional roles in the NAc under conditions of morphine addiction. In this study, mice were intravenously infused with morphine (0.01, 0.03, 0.3, 1 and 3 mg/kg/infusion) and showed inverted U-shaped response. After morphine self-administration, NAc was used to analyze the functional networks of altered miRNAs and their putative target mRNAs in the NAc following intravenous self-administration of morphine. We utilized several bioinformatics tools, including Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapping and CyTargetLinker. We found that 62 miRNAs were altered and exhibited differential expression patterns. The putative targets were related to diverse regulatory functions, such as neurogenesis, neurodegeneration, and synaptic plasticity, as well as the pharmacological effects of morphine (receptor internalization/endocytosis). The present findings provide novel insights into the regulatory mechanisms of accumbal molecules under conditions of morphine addiction and identify several novel biomarkers associated with morphine addiction.
Collapse
Affiliation(s)
- Juhwan Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju; Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Heh-In Im
- Center for Neuroscience, Korea Institute of Science and Technology (KIST); Convergence Research Center for Diagnosis, Treatment and Care System of Dementia; Division of Biomedical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
16
|
Jimenez-Gonzalez A, García-Concejo A, León-Lobera F, Rodriguez RE. Morphine delays neural stem cells differentiation by facilitating Nestin overexpression. Biochim Biophys Acta Gen Subj 2017; 1862:474-484. [PMID: 29111275 DOI: 10.1016/j.bbagen.2017.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/30/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Morphine is used as an analgesic although it causes important secondary effects. These effects are triggered by several mechanisms leading to the dysregulation of gene expression. Here we aimed to study these alterations on neural stem cells (NSC) during CNS development. METHODS AB strain and tg nestin:GFP zebrafish embryos, zebrafish primary neuron culture and mouse embryonic stem cells were used to assess the effect of morphine by qPCR, time lapse microscopy and western blot. ChIP-qPCR and bisulfite conversion assay were performed to determine the changes exerted by morphine in a Nestin candidate enhancer. RESULTS Morphine increases GFP in nestin:GFP embryos and overexpresses the NSC marker Nestin. Morphine also exerts a hyperacetylation effect on H3K27 and decreases DNA methylation within a region located 18 Kb upstream nestin transcription starting site. Here, a binding site for the transcription factor complex Sox2/Oct4/Nanog was predicted. These factors are also upregulated by morphine. Besides, morphine increases the histone acetyl transferase p300. The inhibition of p300 activity decreases Nestin. CONCLUSIONS Morphine facilitates Nestin increase by several mechanisms which include hyperacetylation of H3K27, decreased DNA methylation and the overexpression of the transcription factors sox2, oct4 and nanog. It has also been demonstrated that nestin levels depend on p300 activity. The facilitated Nestin expression delays the normal differentiation of neural stem cells. GENERAL SIGNIFICANCE The present work provides novel evidence of the effects induced by morphine in the normal differentiation of NSCs, altering Nestin through changes on p300, H3K27ac, DNA methylation and Oct4, Sox2, and Nanog.
Collapse
Affiliation(s)
- Ada Jimenez-Gonzalez
- Institute of Neurosciences of Castilla y Leon (INCyL). University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Adrián García-Concejo
- Institute of Neurosciences of Castilla y Leon (INCyL). University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Fernando León-Lobera
- Institute of Neurosciences of Castilla y Leon (INCyL). University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Raquel E Rodriguez
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain; Institute of Neurosciences of Castilla y Leon (INCyL). University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.
| |
Collapse
|
17
|
Grilli M. Chronic pain and adult hippocampal neurogenesis: translational implications from preclinical studies. J Pain Res 2017; 10:2281-2286. [PMID: 29033604 PMCID: PMC5614764 DOI: 10.2147/jpr.s146399] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adult hippocampal neurogenesis (ahNG) occurs in the human brain. Adult generated neurons have been proposed to functionally contribute to relevant hippocampal functions such as learning and memory, mood regulation, and stress response. Learning, environmental enrichment, and physical exercise exert positive effects on ahNG. In parallel, these proneurogenic stimuli have been shown to ameliorate cognitive performance and/or depressive-like behavior in animal models. Conversely, aging, social isolation, and chronic stress exert negative effects on ahNG. Interestingly, reduction of hippocampal neurogenesis is suggested to potentially contribute to cognitive decline and mood alterations associated with aging and several neuropsychiatric disorders. Clinical observation demonstrates that patients affected by chronic pain often exhibit increased anxiety and depression, impaired cognitive flexibility, and memory capacities. As of today, our understanding of the molecular and cellular events that may underlie the comorbidity of chronic pain, depression, and cognitive impairment is limited. Herein we review recent preclinical data suggesting that chronic pain may induce profound changes in hippocampal plasticity, including reduced ahNG. We discuss the possibility that deregulated hippocampal neurogenesis in chronic pain may, at least in part, contribute to cognitive and mood alterations. Based on this hypothesis, the mechanisms underlying chronic pain-associated changes in hippocampal neurogenesis and related functions need to be addressed experimentally. One interesting feature of ahNG is its susceptibility to pharmacological modulation. Again, based on preclinical data we discuss the possibility that, at least in principle, distinct analgesic drugs commonly used in chronic pain states (typical and atypical opiates, α2δ ligands, and acetyl-l-carnitine) may differentially impact ahNG and that this aspect could be taken into account to reduce and/or prevent the potential risk of cognitive and emotional side effects in the clinical setting.
Collapse
Affiliation(s)
- Mariagrazia Grilli
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
18
|
Bortolotto V, Grilli M. Opiate Analgesics as Negative Modulators of Adult Hippocampal Neurogenesis: Potential Implications in Clinical Practice. Front Pharmacol 2017; 8:254. [PMID: 28536527 PMCID: PMC5422555 DOI: 10.3389/fphar.2017.00254] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
During the past decade, studies of the mechanisms and functional implications of adult hippocampal neurogenesis (ahNG) have significantly progressed. At present, it is proposed that adult born neurons may contribute to a variety of hippocampal-related functions, including specific cognitive aspects and mood regulation. Several groups focussed on the factors that regulate proliferation and fate determination of adult neural stem/progenitor cells (NSC/NPC), including clinically relevant drugs. Opiates were the first drugs shown to negatively impact neurogenesis in the adult mammalian hippocampus. Since that initial report, a vast array of information has been collected on the effect of opiate drugs, by either modulating proliferation of stem/progenitor cells or interfering with differentiation, maturation and survival of adult born neurons. The goal of this review is to critically revise the present state of knowledge on the effect of opiate drugs on the different developmental stages of ahNG, as well as the possible underlying mechanisms. We will also highlight the potential impact of deregulated hippocampal neurogenesis on patients undergoing chronic opiate treatment. Finally, we will discuss the differences in the negative impact on ahNG among clinically relevant opiate drugs, an aspect that may be potentially taken into account to avoid long-term deregulation of neural plasticity and its associated functions in the clinical practice.
Collapse
Affiliation(s)
- Valeria Bortolotto
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte OrientaleNovara, Italy
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte OrientaleNovara, Italy
| |
Collapse
|