1
|
Gong X, Wani MY, Al-Bogami AS, Ahmad A, Robinson K, Khan A. The Road Ahead: Advancing Antifungal Vaccines and Addressing Fungal Infections in the Post-COVID World. ACS Infect Dis 2024; 10:3475-3495. [PMID: 39255073 DOI: 10.1021/acsinfecdis.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In impoverished nations, the COVID-19 pandemic has led to a widespread occurrence of deadly fungal diseases like mucormycosis. The limited availability of effective antifungal treatments and the emergence of drug-resistant fungal strains further exacerbate the situation. Factors such as systemic steroid use, intravenous drug misuse, and overutilization of broad-spectrum antimicrobials contribute to the prevalence of hospital-acquired infections caused by drug-resistant fungi. Fungal infections exploit compromised immune status and employ intricate mechanisms to evade immune surveillance. The immune response involves the innate and adaptive immune systems, leading to phagocytic and complement-mediated elimination of fungi. However, resistance to antifungals poses a challenge, highlighting the importance of antifungal prophylaxis and therapeutic vaccination. Understanding the host-fungal immunological interactions and developing vaccines are vital in combating fungal infections. Further research is needed to address the high mortality and morbidity associated with multidrug-resistant fungal pathogens and to develop innovative treatment drugs and vaccines. This review focuses on the global epidemiological burden of fungal infections, host-fungal immunological interactions, recent advancements in vaccine development and the road ahead.
Collapse
Affiliation(s)
- Xiaolong Gong
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589, Jeddah, Saudi Arabia
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, 21589, Jeddah, Saudi Arabia
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, United States
| | - Keven Robinson
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, United States
| | - Amber Khan
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Ding M, Nielsen K. Inbred Mouse Models in Cryptococcus neoformans Research. J Fungi (Basel) 2024; 10:426. [PMID: 38921412 PMCID: PMC11204852 DOI: 10.3390/jof10060426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Animal models are frequently used as surrogates to understand human disease. In the fungal pathogen Cryptococcus species complex, several variations of a mouse model of disease were developed that recapitulate different aspects of human disease. These mouse models have been implemented using various inbred and outbred mouse backgrounds, many of which have genetic differences that can influence host response and disease outcome. In this review, we will discuss the most commonly used inbred mouse backgrounds in C. neoformans infection models.
Collapse
Affiliation(s)
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Clarke CJ, Snider AJ. Perspective: Therapeutic Implications for Sphingolipids in Health and Disease. Mol Pharmacol 2024; 105:118-120. [PMID: 38360837 DOI: 10.1124/molpharm.124.000866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Long thought to be structural components of cell membranes, sphingolipids (SLs) have emerged as bioactive molecules whose metabolism is tightly regulated. These bioactive lipids and their metabolic enzymes have been implicated in numerous disease states, including lysosomal storage disorders, multiple sclerosis, inflammation, and cancer as well as metabolic syndrome and obesity. In addition, the indications for many of these lipids to potentially serve as biomarkers for disease continue to emerge with increasing metabolomic and lipidomic studies. The implications of these studies have, in turn, led to the examination of SL enzymes and their bioactive lipids as potential therapeutic targets and as markers for therapeutic efficacy. SIGNIFICANCE STATEMENT: Many sphingolipids (SLs) and their metabolizing enzymes have been implicated in disease. This perspective highlights the potential for SLs to serve as therapeutic targets and diagnostic markers and discusses the implications for the studies and reviews highlighted in this Special Section on Therapeutic Implications for Sphingolipids in Health and Disease.
Collapse
Affiliation(s)
- Christopher J Clarke
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, New York (C.J.C.) and Nutritional Sciences and Wellness, College of Agriculture, Life and Environmental Sciences, University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (A.J.S.)
| | - Ashley J Snider
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, New York (C.J.C.) and Nutritional Sciences and Wellness, College of Agriculture, Life and Environmental Sciences, University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (A.J.S.)
| |
Collapse
|
4
|
Alanazi AH, Chastain DB, Rudraraju M, Parvathagiri V, Shan S, Lin X, Henao-Martínez AF, Franco-Paredes C, Narayanan SP, Somanath PR. A multi-arm, parallel, preclinical study investigating the potential benefits of acetazolamide, candesartan, and triciribine in combination with fluconazole for the treatment of cryptococcal meningoencephalitis. Eur J Pharmacol 2023; 960:176177. [PMID: 37931839 PMCID: PMC10985624 DOI: 10.1016/j.ejphar.2023.176177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Cryptococcus neoformans, an opportunistic fungal pathogen, primarily infects immunodeficient patients frequently causing cryptococcal meningoencephalitis (CM). Increased intracranial pressure (ICP) is a serious complication responsible for increased morbidity and mortality in CM patients. Non-invasive pharmacological agents that mitigate ICP could be beneficial in treating CM patients. The objective of the study was to investigate the efficacy of acetazolamide (AZA), candesartan (CAN), and triciribine (TCBN), in combination with the antifungal fluconazole, on C. neoformans-induced endothelial, brain, and lung injury in an experimental mouse model of CM. Our study shows that C. neoformans increases the expression of brain endothelial cell (BEC) junction proteins Claudin-5 (Cldn5) and VE-Cadherin to induce pathological cell-barrier remodeling and gap formation associated with increased Akt and p38 MAPK activation. All three agents inhibited C. neoformans-induced endothelial gap formation, only CAN and TCBN significantly reduced C. neoformans-induced Cldn5 expression, and only TCBN was effective in inhibiting Akt and p38MAPK. Interestingly, although C. neoformans did not cause brain or lung edema in mice, it induced lung and brain injuries, which were significantly reversed by AZA, CAN, or TCBN. Our study provides novel insights into the direct effects of C. neoformans on BECs in vitro, and the potential benefits of using AZA, CAN, or TCBN in the management of CM patients.
Collapse
Affiliation(s)
- Abdulaziz H Alanazi
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30907, USA; Research Department, Charlie Norwood VA Medical Center, Augusta, GA, 30901, USA
| | - Daniel B Chastain
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, SWGA Clinical Campus, Phoebe Putney Memorial Hospital, Albany, GA, 31701, USA
| | - Madhuri Rudraraju
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30907, USA; Research Department, Charlie Norwood VA Medical Center, Augusta, GA, 30901, USA
| | - Varun Parvathagiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30907, USA; Research Department, Charlie Norwood VA Medical Center, Augusta, GA, 30901, USA
| | - Shengshuai Shan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30907, USA; Research Department, Charlie Norwood VA Medical Center, Augusta, GA, 30901, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Andrés F Henao-Martínez
- Division of Infectious Diseases, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Carlos Franco-Paredes
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523, USA; Hospital Infantil de México, Federico Gómez, México City, 06720, Mexico
| | - S Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30907, USA; Research Department, Charlie Norwood VA Medical Center, Augusta, GA, 30901, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30907, USA; Research Department, Charlie Norwood VA Medical Center, Augusta, GA, 30901, USA.
| |
Collapse
|
5
|
Matos GS, Fernandes CM, Del Poeta M. Role of sphingolipids in the host-pathogen interaction. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159384. [PMID: 37673393 PMCID: PMC11218662 DOI: 10.1016/j.bbalip.2023.159384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 09/08/2023]
Abstract
Fungal pathogens have been under the spotlight as their expanding geographic range combined with their potential harm to vulnerable populations turns them into increasingly threats to public health. Therefore, it is ultimately important to unveil the mechanisms associated with their infection process for further new treatment discovery. With this purpose, sphingolipid-based research has gained attention over the last years as these molecules have key properties that can regulate fungal pathogenicity. Here we discuss some of these properties as well as their role in fungal diseases, focusing on the subgroup of glycosphingolipids, as they represent promising molecules for drug discovery and for the development of fungal vaccines.
Collapse
Affiliation(s)
- Gabriel Soares Matos
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | | | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery (ICB&DD), Stony Brook, NY, USA; Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, USA; Veterans Administration Medical Center, Northport, NY, USA.
| |
Collapse
|
6
|
Kawano T, Zhou J, Anwar S, Salah H, Dayal AH, Ishikawa Y, Boetel K, Takahashi T, Sharma K, Inoue M. T cell infiltration into the brain triggers pulmonary dysfunction in murine Cryptococcus-associated IRIS. Nat Commun 2023; 14:3831. [PMID: 37380639 DOI: 10.1038/s41467-023-39518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/16/2023] [Indexed: 06/30/2023] Open
Abstract
Cryptococcus-associated immune reconstitution inflammatory syndrome (C-IRIS) is a condition frequently occurring in immunocompromised patients receiving antiretroviral therapy. C-IRIS patients exhibit many critical symptoms, including pulmonary distress, potentially complicating the progression and recovery from this condition. Here, utilizing our previously established mouse model of unmasking C-IRIS (CnH99 preinfection and adoptive transfer of CD4+ T cells), we demonstrated that pulmonary dysfunction associated with the C-IRIS condition in mice could be attributed to the infiltration of CD4+ T cells into the brain via the CCL8-CCR5 axis, which triggers the nucleus tractus solitarius (NTS) neuronal damage and neuronal disconnection via upregulated ephrin B3 and semaphorin 6B in CD4+ T cells. Our findings provide unique insight into the mechanism behind pulmonary dysfunction in C-IRIS and nominate potential therapeutic targets for treatment.
Collapse
Affiliation(s)
- Tasuku Kawano
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima Aoba-Ku, Sendai, Miyagi, 981-8558, Japan
| | - Jinyan Zhou
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- Neuroscience Program, The University of Illinois at Urbana-Champaign, 405 North Matthews Avenue, Urbana, IL, 61801, USA
| | - Shehata Anwar
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University (BSU), Beni-Suef, 62511, Egypt
| | - Haneen Salah
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- School of Molecular and Cell Biology, The University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Andrea H Dayal
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- School of Molecular and Cell Biology, The University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Yuzuki Ishikawa
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- School of Molecular and Cell Biology, The University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Katelyn Boetel
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- School of Molecular and Cell Biology, The University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Tomoko Takahashi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima Aoba-Ku, Sendai, Miyagi, 981-8558, Japan
| | - Kamal Sharma
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, 808 S. Wood Street, Chicago, IL, 60612, USA
| | - Makoto Inoue
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA.
- Neuroscience Program, The University of Illinois at Urbana-Champaign, 405 North Matthews Avenue, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, 405 North Matthews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
7
|
Sato K, Kawakami K. PAMPs and Host Immune Response in Cryptococcal Infection. Med Mycol J 2022; 63:133-138. [DOI: 10.3314/mmj.22.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Ko Sato
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine
| |
Collapse
|
8
|
Malik A, Fatma T, Shamsi W, Khan HA, Gul A, Jamal A, Bhatti MF. Molecular Characterization of Medically Important Fungi: Current Research and Future Prospects. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Fernandes CM, Poeta MD. Fungal sphingolipids: role in the regulation of virulence and potential as targets for future antifungal therapies. Expert Rev Anti Infect Ther 2020; 18:1083-1092. [PMID: 32673125 PMCID: PMC7657966 DOI: 10.1080/14787210.2020.1792288] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The antifungal therapy currently available includes three major classes of drugs: polyenes, azoles and echinocandins. However, the clinical use of these compounds faces several challenges: while polyenes are toxic to the host, antifungal resistance to azoles and echinocandins has been reported. AREAS COVERED Fungal sphingolipids (SL) play a pivotal role in growth, morphogenesis and virulence. In addition, fungi possess unique enzymes involved in SL synthesis, leading to the production of lipids which are absent or differ structurally from the mammalian counterparts. In this review, we address the enzymatic reactions involved in the SL synthesis and their relevance to the fungal pathogenesis, highlighting their potential as targets for novel drugs and the inhibitors described so far. EXPERT OPINION The pharmacological inhibition of fungal serine palmitoyltransferase depends on the development of specific drugs, as myriocin also targets the mammalian enzyme. Inhibitors of ceramide synthase might constitute potent antifungals, by depleting the pool of complex SL and leading to the accumulation of the toxic intermediates. Acylhydrazones and aureobasidin A, which inhibit GlcCer and IPC synthesis, are not toxic to the host and effectively treat invasive mycoses, emerging as promising new classes of antifungal drugs.
Collapse
Affiliation(s)
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, NY, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, NY, USA
- Veterans Administration Medical Center, Northport, NY, USA
| |
Collapse
|
10
|
Limited Role of Mincle in the Host Defense against Infection with Cryptococcus deneoformans. Infect Immun 2020; 88:IAI.00400-20. [PMID: 32868343 DOI: 10.1128/iai.00400-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus deneoformans is an opportunistic fungal pathogen that frequently causes fatal meningoencephalitis in patients with impaired cell-mediated immune responses such as AIDS. Caspase-associated recruitment domain 9 (CARD9) plays a critical role in the host defense against cryptococcal infection, suggesting the involvement of one or more C-type lectin receptors (CLRs). In the present study, we analyzed the role of macrophage-inducible C-type lectin (Mincle), one of the CLRs, in the host defense against C. deneoformans infection. Mincle expression in the lungs of wild-type (WT) mice was increased in the early stage of cryptococcal infection in a CARD9-dependent manner. In Mincle gene-disrupted (Mincle KO) mice, the clearance of this fungus, pathological findings, Th1/Th2 response, and antimicrobial peptide production in the infected lungs were nearly comparable to those in WT mice. However, the production of interleukin-22 (IL-22), tumor necrosis factor alpha (TNF-α), and IL-6 and the expression of AhR were significantly decreased in the lungs of Mincle KO mice compared to those of WT mice. In in vitro experiments, TNF-α production by bone marrow-derived dendritic cells was significantly decreased in Mincle KO mice. In addition, the disrupted lysates of C. deneoformans, but not those of whole yeast cells, activated Mincle-triggered signaling in an assay with a nuclear factor of activated T cells (NFAT)-green fluorescent protein (GFP) reporter cells expressing this receptor. These results suggest that Mincle may be involved in the production of Th22-related cytokines at the early stage of cryptococcal infection, although its role may be limited in the host defense against infection with C. deneoformans.
Collapse
|
11
|
Normile TG, Bryan AM, Del Poeta M. Animal Models of Cryptococcus neoformans in Identifying Immune Parameters Associated With Primary Infection and Reactivation of Latent Infection. Front Immunol 2020; 11:581750. [PMID: 33042164 PMCID: PMC7522366 DOI: 10.3389/fimmu.2020.581750] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cryptococcus species are environmental fungal pathogens and the causative agents of cryptococcosis. Infection occurs upon inhalation of infectious particles, which proliferate in the lung causing a primary infection. From this primary lung infection, fungal cells can eventually disseminate to other organs, particularly the brain, causing lethal meningoencephalitis. However, in most cases, the primary infection resolves with the formation of a lung granuloma. Upon severe immunodeficiency, dormant cryptococcal cells will start proliferating in the lung granuloma and eventually will disseminate to the brain. Many investigators have sought to study the protective host immune response to this pathogen in search of host parameters that keep the proliferation of cryptococcal cells under control. The majority of the work assimilates research carried out using the primary infection animal model, mainly because a reactivation model has been available only very recently. This review will focus on anti-cryptococcal immunity in both the primary and reactivation models. An understanding of the differences in host immunity between the primary and reactivation models will help to define the key host parameters that control the infections and are important for the research and development of new therapeutic and vaccine strategies against cryptococcosis.
Collapse
Affiliation(s)
- Tyler G Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Arielle M Bryan
- Ingenious Targeting Laboratory Incorporated, Ronkonkoma, NY, United States
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States.,Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, United States.,Veterans Administration Medical Center, Northport, NY, United States
| |
Collapse
|
12
|
Vargas G, Honorato L, Guimarães AJ, Rodrigues ML, Reis FCG, Vale AM, Ray A, Nosanchuk JD, Nimrichter L. Protective effect of fungal extracellular vesicles against murine candidiasis. Cell Microbiol 2020; 22:e13238. [PMID: 32558196 DOI: 10.1111/cmi.13238] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/07/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs) are lipid bilayered compartments released by virtually all living cells, including fungi. Among the diverse molecules carried by fungal EVs, a number of immunogens, virulence factors and regulators have been characterised. Within EVs, these components could potentially impact disease outcomes by interacting with the host. From this perspective, we previously demonstrated that EVs from Candida albicans could be taken up by and activate macrophages and dendritic cells to produce cytokines and express costimulatory molecules. Moreover, pre-treatment of Galleria mellonella larvae with fungal EVs protected the insects against a subsequent lethal infection with C. albicans yeasts. These data indicate that C. albicans EVs are multi-antigenic compartments that activate the innate immune system and could be exploited as vaccine formulations. Here, we investigated whether immunisation with C. albicans EVs induces a protective effect against murine candidiasis in immunosuppressed mice. Total and fungal antigen-specific serum IgG antibodies increased by 21 days after immunisation, confirming the efficacy of the protocol. Vaccination decreased fungal burden in the liver, spleen and kidney of mice challenged with C. albicans. Splenic levels of cytokines indicated a lower inflammatory response in mice immunised with EVs when compared with EVs + Freund's adjuvant (ADJ). Higher levels of IL-12p70, TNFα and IFNγ were detected in mice vaccinated with EVs + ADJ, while IL-12p70, TGFβ, IL-4 and IL-10 were increased when no adjuvants were added. Full protection of lethally challenged mice was observed when EVs were administered, regardless the presence of adjuvant. Physical properties of the EVs were also investigated and EVs produced by C. albicans were relatively stable after storage at 4, -20 or -80°C, keeping their ability to activate dendritic cells and to protect G. mellonella against a lethal candidiasis. Our data suggest that fungal EVs could be a safe source of antigens to be exploited in vaccine formulations.
Collapse
Affiliation(s)
- Gabriele Vargas
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Honorato
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allan Jefferson Guimarães
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil.,Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia C G Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André M Vale
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anjana Ray
- Department of Medicine - Hematology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Joshua Daniel Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.,Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Caneppa A, de Meirelles JV, Rollin-Pinheiro R, Dutra Xisto MIDS, Liporagi-Lopes LC, Souza LD, Villela Romanos MT, Barreto-Bergter E. Structural Differences Influence Biological Properties of Glucosylceramides from Clinical and Environmental Isolates of Scedosporium aurantiacum and Pseudallescheria minutispora. J Fungi (Basel) 2019; 5:jof5030062. [PMID: 31311197 PMCID: PMC6787682 DOI: 10.3390/jof5030062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Scedosporium/Lomentospora complex is composed of filamentous fungi, including some clinically relevant species, such as Pseudallescheria boydii, Scedosporium aurantiacum, and Scedosporium apiospermum. Glucosylceramide (GlcCer), a conserved neutral glycosphingolipid, has been described as an important cell surface molecule playing a role in fungal morphological transition and pathogenesis. The present work aimed at the evaluation of GlcCer structures in S. aurantiacum and Pseudallescheria minutispora, a clinical and an environmental isolate, respectively, in order to determine their participation in fungal growth and host-pathogen interactions. Structural analysis by positive ion-mode ESI-MS (electrospray ionization mass spectrometer) revealed the presence of different ceramide moieties in GlcCer in these species. Monoclonal antibodies against Aspergillus fumigatus GlcCer could recognize S. aurantiacum and P. minutispora conidia, suggesting a conserved epitope in fungal GlcCer. In addition, these antibodies reduced fungal viability, enhanced conidia phagocytosis by macrophages, and decreased fungal survival inside phagocytic cells. Purified GlcCer from both species led to macrophage activation, increasing cell viability as well as nitric oxide and superoxide production in different proportions between the two species. These results evidenced some important properties of GlcCer from species of the Scedosporium/Lomentospora complex, as well as the effects of monoclonal anti-GlcCer antibodies on fungal cells and host-pathogen interaction. The differences between the two species regarding the observed biological properties suggest that variation in GlcCer structures and strain origin could interfere in the role of GlcCer in host-pathogen interaction.
Collapse
Affiliation(s)
- Adriana Caneppa
- Departamento de Microbiologia Geral, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro/RJ 21941-901, Brazil
| | - Jardel Vieira de Meirelles
- Departamento de Microbiologia Geral, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro/RJ 21941-901, Brazil
| | - Rodrigo Rollin-Pinheiro
- Departamento de Microbiologia Geral, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro/RJ 21941-901, Brazil
| | - Mariana Ingrid da Silva Dutra Xisto
- Departamento de Microbiologia Geral, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro/RJ 21941-901, Brazil
| | - Livia Cristina Liporagi-Lopes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro/RJ 21941-901, Brazil
| | - Lauro de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba/PR 81531-980, Brazil
| | - Maria Teresa Villela Romanos
- Departamento de Virologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro/RJ 21941-901, Brazil
| | - Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro/RJ 21941-901, Brazil.
| |
Collapse
|
14
|
Roth MT, Zamith-Miranda D, Nosanchuk JD. Immunization Strategies for the Control of Histoplasmosis. CURRENT TROPICAL MEDICINE REPORTS 2019; 6:35-41. [PMID: 31772912 PMCID: PMC6879175 DOI: 10.1007/s40475-019-00172-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Histoplasmosis is an infection caused by the dimorphic fungus Histoplasma capsulatum. Histoplasmosis is typically self-limited and presents asymptomatically in most people. Nevertheless, histoplasmosis can cause severe pulmonary disease and death. Histoplasmosis is increasingly found worldwide; however, it is best documented in the endemic region of the Mississippi river valley system in the Eastern part of the United States (US). Epidemiological studies from the US detailing the morbidity, mortality, and cost associated with histoplasmosis underscore the need to develop a vaccine. PURPOSE OF REVIEW This review will detail some of the major developments in potential vaccines against histoplasmosis, with particular emphasis on those that could be used to immunize immunocompromised hosts. Additionally, this review will highlight some non-traditional vaccine-like ideas for the prevention of diverse mycoses. RECENT FINDINGS Historically, immunization strategies against histoplasmosis have largely focused on identifying immunogenic proteins that confer protection in animal models. More recently, novel active, therapeutic, and immunomodulatory strategies have been explored as potential alternatives for those with various immune-deficiencies. SUMMARY The studies summarized in this review demonstrate that more research is needed to clarify the immunobiology, clinical role and efficacy of each candidate vaccine in the ever-expanding potential armamentarium against histoplasmosis.
Collapse
Affiliation(s)
- Maxwell T Roth
- Department of Medicine (Division of Infectious Diseases) and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Daniel Zamith-Miranda
- Department of Medicine (Division of Infectious Diseases) and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Joshua D Nosanchuk
- Department of Medicine (Division of Infectious Diseases) and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
15
|
Cryptococcus neoformans Glucuronoxylomannan and Sterylglucoside Are Required for Host Protection in an Animal Vaccination Model. mBio 2019; 10:mBio.02909-18. [PMID: 30940711 PMCID: PMC6445945 DOI: 10.1128/mbio.02909-18] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The number of deaths from cryptococcal meningitis is around 180,000 per year. The disease is the second leading cause of mortality among individuals with AIDS. Antifungal treatment is costly and associated with adverse effects and resistance, evidencing the urgency of development of both therapeutic and prophylactic tools. Here we demonstrate the key roles of polysaccharide- and glycolipid-containing structures in a vaccination model to prevent cryptococcosis. Cryptococcus neoformans is an encapsulated fungal pathogen that causes meningoencephalitis. There are no prophylactic tools for cryptococcosis. Previously, our group showed that a C. neoformans mutant lacking the gene encoding sterylglucosidase (Δsgl1) induced protection in both immunocompetent and immunocompromised murine models of cryptococcosis. Since sterylglucosidase catalyzes degradation of sterylglucosides (SGs), accumulation of this glycolipid could be responsible for protective immunity. In this study, we analyzed whether the activity of SGs is sufficient for the protective effect induced by the Δsgl1 strain. We observed that the accumulation of SGs impacted several properties of the main polysaccharide that composes the fungal capsule, glucuronoxylomannan (GXM). We therefore used genetic manipulation to delete the SGL1 gene in the acapsular mutant Δcap59 to generate a double mutant (strain Δcap59/Δsgl1) that was shown to be nonpathogenic and cleared from the lung of mice within 7 days post-intranasal infection. The inflammatory immune response triggered by the Δcap59/Δsgl1 mutant in the lung differed from the response seen with the other strains. The double mutant did not induce protection in a vaccination model, suggesting that SG-related protection requires the main capsular polysaccharide. Finally, GXM-containing extracellular vesicles (EVs) enriched in SGs delayed the acute lethality of Galleria mellonella against C. neoformans infection. These studies highlighted a key role for GXM and SGs in inducing protection against a secondary cryptococcal infection, and, since EVs notoriously contain GXM, these results suggest the potential use of Δsgl1 EVs as a vaccination strategy for cryptococcosis.
Collapse
|
16
|
Geddes-McAlister J, Shapiro RS. New pathogens, new tricks: emerging, drug-resistant fungal pathogens and future prospects for antifungal therapeutics. Ann N Y Acad Sci 2018; 1435:57-78. [DOI: 10.1111/nyas.13739] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology; University of Guelph; Guelph Ontario Canada
- Department of Proteomics and Signal Transduction; Max Planck Institute of Biochemistry; Munich Germany
| | - Rebecca S. Shapiro
- Department of Molecular and Cellular Biology; University of Guelph; Guelph Ontario Canada
| |
Collapse
|
17
|
Caballero Van Dyke MC, Wormley FL. A Call to Arms: Quest for a Cryptococcal Vaccine. Trends Microbiol 2018; 26:436-446. [PMID: 29103990 PMCID: PMC5910246 DOI: 10.1016/j.tim.2017.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/18/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022]
Abstract
Cryptococcosis remains a significant cause of morbidity and mortality world-wide, particularly among AIDS patients. Yet, to date, there are no licensed vaccines clinically available to treat or prevent cryptococcosis. In this review, we provide a rationale to support continued investment in Cryptococcus vaccine research, potential challenges that must be overcome along the way, and a literature review of the current progress underway towards developing a vaccine to prevent cryptococcosis.
Collapse
Affiliation(s)
- Marley C Caballero Van Dyke
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Floyd L Wormley
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
18
|
Fukunaga S, Wada S, Aoi W, Osada‐Oka M, Minamiyama Y, Ichikawa H, Higashi A. Effect of melanogenesis inhibition by a yeast extract in comparison to that by other food extracts, and its mechanism of action. J Food Biochem 2018. [DOI: 10.1111/jfbc.12520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shoko Fukunaga
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityShimogamo Kyoto606 8522 Japan
| | - Sayori Wada
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityShimogamo Kyoto606 8522 Japan
| | - Wataru Aoi
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityShimogamo Kyoto606 8522 Japan
| | - Mayuko Osada‐Oka
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityShimogamo Kyoto606 8522 Japan
| | - Yukiko Minamiyama
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityShimogamo Kyoto606 8522 Japan
| | - Hiroshi Ichikawa
- Graduate School of Life and Medical SciencesDoshisha University, Tatara MiyakodaniKyotanabe Kyoto610 0394 Japan
| | - Akane Higashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityShimogamo Kyoto606 8522 Japan
| |
Collapse
|
19
|
Fukunaga S, Wada S, Sato T, Hamaguchi M, Aoi W, Higashi A. Effect of Torula Yeast (Candida utilis)-Derived Glucosylceramide on Skin Dryness and Other Skin Conditions in Winter. J Nutr Sci Vitaminol (Tokyo) 2018; 64:265-270. [PMID: 30175789 DOI: 10.3177/jnsv.64.265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glucosylceramide (GlcCer) is present in foods such as barley, corn, and wheat flour. GlcCer derived from different foods has differences in its physiological effects, depending on the sphingoid backbone and constituent fatty acids. In this study, we investigated the moisturizing and skin conditioning effects of GlcCer derived from torula yeast (Candida utilis) in healthy human subjects. The participants were randomly distributed in a crossover, double-blind comparative manner. Seventeen volunteers were orally administered both 1.8 mg/d of GlcCer derived from torula yeast and a placebo for 4 wk. Before and after oral administration, transepidermal water loss (TEWL) was measured and the objective skin condition observation and a questionnaire on skin condition were conducted. The primary endpoint was TEWL; secondary endpoints included the objective and subjective skin conditions. The change in TEWL over the study period on the forearm was -0.97±0.48 and -1.26±0.46 g/m2•h in the placebo and GlcCer groups, respectively, with significantly lower (p=0.01) TEWL observed in the GlcCer group. Brown spots increased in the placebo group but significantly decreased in the GlcCer group (p=0.04). Although chapped skin worsened in the placebo group, it significantly improved in the GlcCer group (p=0.04). The use of torula yeast-derived GlcCer as a functional cosmeceutical food is a viable option to ameliorate skin conditions, including improvement in skin barrier function, reduction of brown spots, and fixation of chapped skin.
Collapse
Affiliation(s)
- Shoko Fukunaga
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| | - Sayori Wada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| | | | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Wataru Aoi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| | - Akane Higashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| |
Collapse
|
20
|
Nutritional Requirements and Their Importance for Virulence of Pathogenic Cryptococcus Species. Microorganisms 2017; 5:microorganisms5040065. [PMID: 28974017 PMCID: PMC5748574 DOI: 10.3390/microorganisms5040065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
Cryptococcus sp. are basidiomycete yeasts which can be found widely, free-living in the environment. Interactions with natural predators, such as amoebae in the soil, are thought to have promoted the development of adaptations enabling the organism to survive inside human macrophages. Infection with Cryptococcus in humans occurs following inhalation of desiccated yeast cells or spore particles and may result in fatal meningoencephalitis. Human disease is caused almost exclusively by the Cryptococcus neoformans species complex, which predominantly infects immunocompromised patients, and the Cryptococcus gattii species complex, which is capable of infecting immunocompetent individuals. The nutritional requirements of Cryptococcus are critical for its virulence in animals. Cryptococcus has evolved a broad range of nutrient acquisition strategies, many if not most of which also appear to contribute to its virulence, enabling infection of animal hosts. In this review, we summarise the current understanding of nutritional requirements and acquisition in Cryptococcus and offer perspectives to its evolution as a significant pathogen of humans.
Collapse
|
21
|
Singh A, MacKenzie A, Girnun G, Del Poeta M. Analysis of sphingolipids, sterols, and phospholipids in human pathogenic Cryptococcus strains. J Lipid Res 2017; 58:2017-2036. [PMID: 28811322 DOI: 10.1194/jlr.m078600] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/13/2017] [Indexed: 01/07/2023] Open
Abstract
Cryptococcus species cause invasive infections in humans. Lipids play an important role in the progression of these infections. Independent studies done by our group and others provide some detail about the functions of these lipids in Cryptococcus infections. However, the pathways of biosynthesis and the metabolism of these lipids are not completely understood. To thoroughly understand the physiological role of these Cryptococcus lipids, a proper structure and composition analysis of Cryptococcus lipids is demanded. In this study, a detailed spectroscopic analysis of lipid extracts from Cryptococcus gattii and Cryptococcus grubii strains is presented. Sphingolipid profiling by LC-ESI-MS/MS was used to analyze sphingosine, dihydrosphingosine, sphingosine-1-phosphate, dihydrosphingosine-1-phosphate, ceramide, dihydroceramide, glucosylceramide, phytosphingosine, phytosphingosine-1-phosphate, phytoceramide, α-hydroxy phytoceramide, and inositolphosphorylceramide species. A total of 13 sterol species were identified using GC-MS, where ergosterol is the most abundant species. The 31P-NMR-based phospholipid analysis identified phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidyl-N,N-dimethylethanolamine, phosphatidyl-N-monomethylethanolamine, phosphatidylglycerol, phosphatidic acid, and lysophosphatidylethanolamine. A comparison of lipid profiles among different Cryptococcus strains illustrates a marked change in the metabolic flux of these organisms, especially sphingolipid metabolism. These data improve our understanding of the structure, biosynthesis, and metabolism of common lipid groups of Cryptococcus and should be useful while studying their functional significance and designing therapeutic interventions.
Collapse
Affiliation(s)
- Ashutosh Singh
- Department of Molecular Genetics and Microbiology and Stony Brook University, Stony Brook, NY 11794
| | | | - Geoffrey Girnun
- Department of Pathology, Stony Brook School of Medicine, Stony Brook, NY 11794
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology and Stony Brook University, Stony Brook, NY 11794 .,Veterans Administration Medical Center, Northport, NY 11768.,Division of Infectious Diseases, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
22
|
De Coninck B, Verheesen P, Vos CM, Van Daele I, De Bolle MF, Vieira JV, Peferoen M, Cammue BPA, Thevissen K. Fungal Glucosylceramide-Specific Camelid Single Domain Antibodies Are Characterized by Broad Spectrum Antifungal Activity. Front Microbiol 2017; 8:1059. [PMID: 28659884 PMCID: PMC5469901 DOI: 10.3389/fmicb.2017.01059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/26/2017] [Indexed: 01/19/2023] Open
Abstract
Chemical crop protection is widely used to control plant diseases. However, the adverse effects of pesticide use on human health and environment, resistance development and the impact of regulatory requirements on the crop protection market urges the agrochemical industry to explore innovative and alternative approaches. In that context, we demonstrate here the potential of camelid single domain antibodies (VHHs) generated against fungal glucosylceramides (fGlcCer), important pathogenicity factors. To this end, llamas were immunized with purified fGlcCer and a mixture of mycelium and spores of the fungus Botrytis cinerea, one of the most important plant pathogenic fungi. The llama immune repertoire was subsequently cloned in a phage display vector to generate a library with a diversity of at least 108 different clones. This library was incubated with fGlcCer to identify phages that bind to fGlcCer, and VHHs that specifically bound fGlcCer but not mammalian or plant-derived GlcCer were selected. They were shown to inhibit the growth of B. cinerea in vitro, with VHH 41D01 having the highest antifungal activity. Moreover, VHH 41D01 could reduce disease symptoms induced by B. cinerea when sprayed on tomato leaves. Based on all these data, anti-fGlcCer VHHs show the potential to be used as an alternative approach to combat fungal plant diseases.
Collapse
Affiliation(s)
- Barbara De Coninck
- Centre of Microbial and Plant Genetics, KU LeuvenLeuven, Belgium.,Department of Plant Systems Biology, VIBGhent, Belgium
| | | | - Christine M Vos
- Centre of Microbial and Plant Genetics, KU LeuvenLeuven, Belgium.,Department of Plant Systems Biology, VIBGhent, Belgium
| | | | | | | | | | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU LeuvenLeuven, Belgium.,Department of Plant Systems Biology, VIBGhent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU LeuvenLeuven, Belgium
| |
Collapse
|
23
|
Abstract
Invasive fungal infections continue to appear in record numbers as the immunocompromised population of the world increases, owing partially to the increased number of individuals who are infected with HIV and partially to the successful treatment of serious underlying diseases. The effectiveness of current antifungal therapies - polyenes, flucytosine, azoles and echinocandins (as monotherapies or in combinations for prophylaxis, or as empiric, pre-emptive or specific therapies) - in the management of these infections has plateaued. Although these drugs are clinically useful, they have several limitations, such as off-target toxicity, and drug-resistant fungi are now emerging. New antifungals are therefore needed. In this Review, I discuss the robust and dynamic antifungal pipeline, including results from preclinical academic efforts through to pharmaceutical industry products, and describe the targets, strategies, compounds and potential outcomes.
Collapse
Affiliation(s)
- John R Perfect
- Duke University Medical Center, 200 Trent Drive, Durham, North Carolina 27710, USA
| |
Collapse
|
24
|
Scorzoni L, de Paula E Silva ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, Costa-Orlandi CB, Mendes-Giannini MJS, Fusco-Almeida AM. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front Microbiol 2017; 8:36. [PMID: 28167935 PMCID: PMC5253656 DOI: 10.3389/fmicb.2017.00036] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the preliminary testing of new antifungal agents. In general, many years are required from discovery of a new antifungal to clinical use. However, the development of new antifungal strategies will reduce the therapeutic time and/or increase the quality of life of patients.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Wanessa C M A de Melo
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Caroline B Costa-Orlandi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| |
Collapse
|