1
|
Wang J, Xiong Y, Song Z, Li Y, Zhang L, Qin C. Progress in research on osteoporosis secondary to SARS-CoV-2 infection. Animal Model Exp Med 2025; 8:829-841. [PMID: 40029778 DOI: 10.1002/ame2.12573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/13/2025] [Indexed: 05/28/2025] Open
Abstract
The World Health Organization has declared that COVID-19 no longer constitutes a "public health emergency of international concern," yet the long-term impact of SARS-CoV-2 infection on bone health continues to pose new challenges for global public health. In recent years, numerous animal model and clinical studies have revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to secondary osteoporosis. The mechanisms involved are related to the virus's direct effects on bone tissue, dysregulation of the body's inflammatory response, hypoxia, noncoding RNA imbalance, and metabolic abnormalities. Although these studies have unveiled the connection between SARS-CoV-2 infection and osteoporosis, current research is not comprehensive and in depth. Future studies are needed to evaluate the long-term effects of SARS-CoV-2 on bone density and metabolism, elucidate the specific mechanisms of pathogenesis, and explore potential interventions. This review aims to collate existing research literature on SARS-CoV-2 infection-induced secondary osteoporosis, summarize the underlying mechanisms, and provide direction for future research.
Collapse
Affiliation(s)
- Jinlong Wang
- Institute of Laboratory Animal Sciences, CAMS and Comparative Medicine Center, PUMC, Beijing, China
- Changping National Laboratory (CPNL), Beijing, China
| | - Yibai Xiong
- Institute of Laboratory Animal Sciences, CAMS and Comparative Medicine Center, PUMC, Beijing, China
| | - Zhiqi Song
- Institute of Laboratory Animal Sciences, CAMS and Comparative Medicine Center, PUMC, Beijing, China
| | - Yanhong Li
- Institute of Laboratory Animal Sciences, CAMS and Comparative Medicine Center, PUMC, Beijing, China
| | - Ling Zhang
- Institute of Laboratory Animal Sciences, CAMS and Comparative Medicine Center, PUMC, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, CAMS and Comparative Medicine Center, PUMC, Beijing, China
- Changping National Laboratory (CPNL), Beijing, China
| |
Collapse
|
2
|
Weinstein EJ, Carbonari DM, Newcomb CW, Torgersen J, Smith SM, Brecker KL, Liu XS, Kostman JR, Trooskin S, Hubbard RA, Baker JF, Zemel BS, Leonard MB, Lo Re V. Abnormal Trabecular and Cortical Bone Microarchitecture in Chronic Hepatitis C Infection and Associations With Select Inflammatory Cytokines. Open Forum Infect Dis 2025; 12:ofaf102. [PMID: 40302727 PMCID: PMC12039487 DOI: 10.1093/ofid/ofaf102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Indexed: 05/02/2025] Open
Abstract
Background Hepatitis C virus (HCV) infection is associated with reduced bone mineral density (BMD) and increased fracture risk. The structural underpinnings for skeletal fragility with HCV and contributions of inflammatory cytokines remain unknown. We used high-resolution peripheral quantitative computed tomography (HR-pQCT) to compare skeletal parameters by chronic HCV. Methods We conducted a cross-sectional study among 58 participants with chronic HCV and 58 participants without HCV. Volumetric BMD and cortical dimensions of the radius and tibia were determined by HR-pQCT; visceral fat area and appendicular lean mass were assessed by whole body dual-energy x-ray absorptiometry; serum levels of tumor necrosis factor α (TNF-α), interleukin 6, and interleukin 18 were measured. Multivariable linear regression was used to estimate group differences in bone measurements and cytokines. Results Participants with chronic HCV had lower radius trabecular volumetric BMD (-24.2 mg hydroxyapatite [HA]/cm3) and lower tibia trabecular volumetric BMD (-20.5 mg HA/cm3), cortical area (-20.9 mm2), and cortical thickness (-0.47 mm) than participants without HCV (all P < .05), independent of age, sex, visceral fat area, appendicular lean mass, and smoking. Mean log TNF-α was higher with chronic HCV (+0.1-log pg/mL; P < .001), but no differences in mean log interleukin 6 or interleukin 18 were observed. Higher log TNF-α was associated with lower radius trabecular volumetric BMD (-99.7 mg HA/cm3), lower tibia cortical volumetric BMD (-91.6 mg HA/cm3), and higher tibia cortical porosity (+1.39%) by HR-pQCT (all P < .05). Conclusions Patients with chronic HCV had decreased trabecular volumetric BMD and cortical dimensions and higher TNF-α than individuals without infection, suggesting that HCV-associated inflammation might contribute to bone deficits.
Collapse
Affiliation(s)
- Erica J Weinstein
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dean M Carbonari
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Center for Real-World Effectiveness and Safety of Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Craig W Newcomb
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Center for Real-World Effectiveness and Safety of Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessie Torgersen
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Center for Real-World Effectiveness and Safety of Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shanae M Smith
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Center for Real-World Effectiveness and Safety of Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine L Brecker
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Center for Real-World Effectiveness and Safety of Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - X Sherry Liu
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Rebecca A Hubbard
- Department of Biostatistics, School of Public Health, Brown University, Providence, Rhode Island, USA
| | - Joshua F Baker
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Babette S Zemel
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mary B Leonard
- Department of Pediatrics and Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Vincent Lo Re
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Center for Real-World Effectiveness and Safety of Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Li Q, Zhao J, Yang X, Guo L, Xu Y. Linc00963 up-regulation alleviates postmenopausal osteoporosis through suppression of miR-506-3p. J Orthop Surg Res 2025; 20:367. [PMID: 40211387 PMCID: PMC11987178 DOI: 10.1186/s13018-025-05744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/21/2025] [Indexed: 04/13/2025] Open
Abstract
BACKGROUND This study aimed to investigate the regulatory effect of linc00963 on postmenopausal osteoporosis and the potential molecular mechanisms. METHODS Taking MC3T3-E1 cells as the study object, a cell cycle assay was used to evaluate the effect of linc00963 on cell proliferation. mRNA levels of Runx2, OCN, collagenia-1, OPG, RANKL and RANK were detected. Dual luciferase reporter assay verified the targeting relationship between linc00963 and miR-506-3p. A postmenopausal osteoporosis rat model was established after ovariectomy in 32 Sprague-Dawley rats. The rats were divided into sham group, OVX group, linc00963 overexpression group, and blank plasmid group. The bone mineral density (BMD) of the rat femur was measured by X-ray bone densitometer. Serum linc00963 expression in rat was detected by RT-qPCR. The protein expression of ALP, and BGP in the serum of rats was detected by ELISA. RESULTS Cell studies have shown that linc00963 alleviates postmenopausal osteoporosis by down-regulating the expression of miR-506-3p. Animal studies showed that compared with the sham group, the serum linc00963 level, BMD, serum Ca, P, LEP, SOD, and OPG levels in the OVX group were significantly decreased, while the levels of body weight, ALP, BGP, IL-6, IL-13, RANKL, and RANK were significantly increased. Compared with the OVX group, the use of linc00963 overexpression plasmid can significantly improve the above indexes and play a corresponding therapeutic effect on menopausal osteoporosis rats. CONCLUSION Linc00963 is involved in the pathogenesis of postmenopausal osteoporosis by up-regulating miR-506-3p and activating the OPG/RANKL/RANK pathway. Linc00963 is expected to be a potential therapeutic target for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Qiang Li
- The First Orthopedic Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Jian Zhao
- Department of Orthopaedics, People's Hospital of Dangyang City, Dangyang, Hubei, 444100, China
| | - Xiaoxia Yang
- Oncology Department, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Oncology Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan, 650000, China
| | - Lihua Guo
- Oncology Department, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Oncology Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan, 650000, China
| | - Yong Xu
- Department of Orthopedic and Sports Medicine, Hunan University of Medicine General Hospital, No.144 Jinxi South Road, Hecheng District, Huaihua City, Hunan, 418000, China.
| |
Collapse
|
4
|
Wang Z, Ren L, Li Z, Qiu Q, Wang H, Huang X, Ma D. Impact of Different Cell Types on the Osteogenic Differentiation Process of Mesenchymal Stem Cells. Stem Cells Int 2025; 2025:5551222. [PMID: 39980864 PMCID: PMC11842143 DOI: 10.1155/sci/5551222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/15/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
The skeleton is an important organ in the human body. Bone defects caused by trauma, inflammation, tumors, and other reasons can impact the quality of life of patients. Although the skeleton has a certain ability to repair itself, the current most effective method is still autologous bone transplantation due to factors such as blood supply and defect size. Modern medicine is attempting to overcome these limitations through cell therapy, with mesenchymal stem cells (MSCs) playing a crucial role. MSCs can be extracted from different tissues, and their differentiation potential varies depending on the source. Various cells and cell secretions can influence this process. This article, based on previous research, reviews the effects of macrophages, endothelial cells (ECs), nerve cells, periodontal cells, and even some bacteria on MSC osteogenic differentiation, aiming to provide a reference for multicell coculture strategies related to osteogenesis.
Collapse
Affiliation(s)
- Zixin Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Lina Ren
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Zhengtao Li
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Qingyuan Qiu
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Haonan Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Xin Huang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Dongyang Ma
- School of Stomatology, Lanzhou University, Lanzhou, China
- Department of Oral and Maxillofacial Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| |
Collapse
|
5
|
Liu L, Chen H, Zhao X, Han Q, Xu Y, Liu Y, Zhang A, Li Y, Zhang W, Chen B, Wang J. Advances in the application and research of biomaterials in promoting bone repair and regeneration through immune modulation. Mater Today Bio 2025; 30:101410. [PMID: 39811613 PMCID: PMC11731593 DOI: 10.1016/j.mtbio.2024.101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/02/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
With the ongoing development of osteoimmunology, increasing evidence indicates that the local immune microenvironment plays a critical role in various stages of bone formation. Consequently, modulating the immune inflammatory response triggered by biomaterials to foster a more favorable immune microenvironment for bone regeneration has emerged as a novel strategy in bone tissue engineering. This review first examines the roles of various immune cells in bone tissue injury and repair. Then, the contributions of different biomaterials, including metals, bioceramics, and polymers, in promoting osteogenesis through immune regulation, as well as their future development directions, are discussed. Finally, various design strategies, such as modifying the physicochemical properties of biomaterials and integrating bioactive substances, to optimize material design and create an immune environment conducive to bone formation, are explored. In summary, this review comprehensively covers strategies and approaches for promoting bone tissue regeneration through immune modulation. It offers a thorough understanding of current research trends in biomaterial-based immune regulation, serving as a theoretical reference for the further development and clinical application of biomaterials in bone tissue engineering.
Collapse
Affiliation(s)
- Li Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Hao Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Xue Zhao
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Qing Han
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Yongjun Xu
- Department of Orthopedics Surgery, Wangqing County People's Hospital, Yanbian, 133000, Jilin, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Aobo Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Yongyue Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Weilong Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Bingpeng Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Jincheng Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| |
Collapse
|
6
|
Shaban AM, Ali EA, Tayel SG, Rizk SK, El Agamy DF. The antiosteoporotic effect of oxymatrine compared to testosterone in orchiectomized rats. J Orthop Surg Res 2025; 20:25. [PMID: 39780225 PMCID: PMC11714950 DOI: 10.1186/s13018-024-05344-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/05/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Castration of adult male rats led to the development of osteoporosis. Oxidative stress and inflammatory factors have been identified as potential causative factors. Notably, oxymatrine (OMT) possesses potent anti-inflammatory and antioxidant activities. This study aims to elucidate the antiosteoporotic effects of OMT compared to testosterone in an orchiectomized (ORX) rat model of osteoporosis. METHODS A total of 60 Wistar male rats were divided into the following groups: control (CTRL), surgery + no orchiectomy (SHAM), ORX, ORX + testosterone, and ORX + OMT. Urinary deoxypyridinoline (DPD), calcium (Ca), and phosphorus (P), as well as serum testosterone, parathormone (PTH), alkaline phosphatase (ALP), osteocalcin, N-telopeptide of type I collagen (NTX I), tartrate resistance acid phosphatase (TRAP), and total Ca and P levels were evaluated. Bone was assessed for malondialdehyde (MDA), reduced glutathione (GSH), interleukin 6 (IL-6), Kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1) expression, and receptor activator of nuclear factor κB ligand/ osteoprotegerin (RANKL/OPG) ratio. Bone dual-energy X-ray absorptiometry (DEXA) scan and histological and immunohistochemical studies were performed. RESULTS Testosterone or OMT treatment ameliorated the reduced bone mineral density (BMD) and bone mineral content (BMC) in the DEXA scan and the changes in PTH and Ca levels. Compared to the ORX group, bone formation, and turnover markers were also significantly reversed in the treatment groups. Treatment with testosterone or OMT significantly reduced bone MDA, IL-6, Keap1, RANKL, and RANKL/OPG ratio, and significantly elevated bone GSH, Nrf2, and HO-1. Moreover, testosterone or OMT treatment has restored cortical bone thickness and osteocyte number and reduced bone levels of TNF-α in ORX rats. Consequently, treatment with either testosterone or OMT exhibited nearly equal therapeutic efficacy; however, neither of them could normalize the measured parameters. CONCLUSION OMT treatment showed equal efficacy compared to testosterone in ameliorating osteoporosis in ORX rats, possibly by improving some inflammatory and oxidative stress parameters.
Collapse
Affiliation(s)
- Anwaar M Shaban
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Eman A Ali
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia National University, Menoufia, Egypt.
| | - Sara G Tayel
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia National University, Menoufia, Egypt
| | - Sara Kamal Rizk
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Dalia F El Agamy
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
- Medical Physiology Department, Faculty of Medicine, Menoufia National University, Menoufia, Egypt
| |
Collapse
|
7
|
Yu M, Wang S, Lin D. Mechanism and Application of Biomaterials Targeting Reactive Oxygen Species and Macrophages in Inflammation. Int J Mol Sci 2024; 26:245. [PMID: 39796102 PMCID: PMC11720555 DOI: 10.3390/ijms26010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Inflammation, an adaptive reaction to harmful stimuli, is a necessary immune system response and can be either acute or chronic. Since acute inflammation tends to eliminate harmful stimuli and restore equilibrium, it is generally advantageous to the organism. Chronic inflammation, however, is caused by either increased inflammatory signaling or decreased pro-anti-inflammatory signaling. According to current studies, inflammation is thought to be a major factor in a number of chronic diseases, including diabetes, cancer, arthritis, inflammatory bowel disease, and obesity. Consequently, reducing inflammation is essential for both preventing and delaying diseases. The application of biomaterials in the treatment of inflammatory illnesses has grown in recent years. A variety of biomaterials can be implanted either by themselves or in conjunction with other bioactive ingredients and therapeutic agents. The mechanisms of action and therapeutic applications of well-known anti-inflammatory biomaterials are the main topics of this article.
Collapse
|
8
|
Tyrina E, Yakubets D, Markina E, Buravkova L. Hippo Signaling Pathway Involvement in Osteopotential Regulation of Murine Bone Marrow Cells Under Simulated Microgravity. Cells 2024; 13:1921. [PMID: 39594669 PMCID: PMC11592674 DOI: 10.3390/cells13221921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/02/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
The development of osteopenia is one of the most noticeable manifestations of the adverse effects of space factors on crew members. The Hippo signaling pathway has been shown to play a central role in regulating the functional activity of cells through their response to mechanical stimuli. In the present study, the components of the Hippo pathway and the protective properties of osteodifferentiation inducers were investigated under simulated microgravity (smg) using a heterotypic bone marrow cell culture model, which allows for the maintenance of the close interaction between the stromal and hematopoietic compartments, present in vivo and of great importance for both the fate of osteoprogenitors and hematopoiesis. After 14 days of smg, the osteopotential and osteodifferentiation of bone marrow stromal progenitor cells, the expression of Hippo cascade genes and the immunocytochemical status of the adherent fraction of bone marrow cells, as well as the paracrine profile in the conditioned medium and the localization of Yap1 and Runx2 in mechanosensitive cells of the bone marrow were obtained. Simulated microgravity negatively affects stromal and hematopoietic cells when interacting in a heterotypic murine bone marrow cell culture. This is evidenced by the decrease in cell proliferation and osteopotential. Changes in the production of pleiotropic cytokines IL-6, GROβ and MCP-1 were revealed. Fourteen days of simulated microgravity induced a decrease in the nuclear translocation of Yap1 and the transcription factor Runx2 in the stromal cells of the intact group. Exposure to osteogenic induction conditions partially compensated for the negative effect of simulated microgravity. The data obtained will be crucial for understanding the effects of spaceflight on osteoprogenitor cell growth and differentiation via Hippo-Yap signaling.
Collapse
Affiliation(s)
- Ekaterina Tyrina
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (D.Y.); (L.B.)
| | | | - Elena Markina
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (D.Y.); (L.B.)
| | | |
Collapse
|
9
|
Liang E, Beshara M, Sheng H, Huang XW, Roh JM, Laurent CA, Lee C, Delmerico J, Tang L, Lo JC, Hong CC, Ambrosone CB, Kushi LH, Kwan ML, Yao S. A prospective study of vitamin D, proinflammatory cytokines, and risk of fragility fractures in women on aromatase inhibitors for breast cancer. Breast Cancer Res Treat 2024; 208:349-358. [PMID: 38976164 DOI: 10.1007/s10549-024-07423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Vitamin D is critical to bone health by regulating intestinal absorption of calcium, whereas proinflammatory cytokines, including IL-1, IL-6, IL-12, and TNF-α, are known to increase bone resorption. We hypothesized that vitamin D and these cytokines at the time of breast cancer diagnosis were predictive for fragility fractures in women receiving aromatase inhibitors (AIs). METHODS In a prospective cohort of 1,709 breast cancer patients treated with AIs, we measured the levels of 25-hydroxyvitamin D (25OHD), IL-1β, IL-6, IL-12, and TNF-α from baseline blood samples. The associations of these biomarkers were analyzed with bone turnover markers (BALP and TRACP), bone regulatory markers (OPG and RANKL), bone mineral density (BMD) close to cancer diagnosis, and risk of fragility fractures during a median of 7.5 years of follow up. RESULTS Compared to patients with vitamin D deficiency, patients with sufficient levels had higher bone turnover, lower BMD, and higher fracture risk; the latter became non-significant after controlling for covariates including BMD and no longer existed when patients taking vitamin D supplement or bisphosphonates or with history of fracture or osteoporosis were excluded. There was a non-significant trend of higher levels of IL-1β and TNF-α associated with higher risk of fracture (highest vs. lowest tertile, IL-1β: adjusted HR=1.37, 95% CI=0.94-1.99; TNF-α: adjusted HR=1.38, 95% CI=0.96-1.98). CONCLUSIONS Our results do not support proinflammatory cytokines or vitamin D levels as predictors for risk of fragility fractures in women receiving AIs for breast cancer.
Collapse
Affiliation(s)
- Emily Liang
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Michael Beshara
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Haiyang Sheng
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Biostatistics, University at Buffalo, Buffalo, NY, USA
| | - Xin-Wei Huang
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Biostatistics, University at Buffalo, Buffalo, NY, USA
| | - Janise M Roh
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Cecile A Laurent
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Catherine Lee
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Jennifer Delmerico
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Li Tang
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Joan C Lo
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Marilyn L Kwan
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
10
|
James R, Subramanyam KN, Payva F, E AP, Tv VK, Sivaramakrishnan V, Ks S. In-silico analysis predicts disruption of normal angiogenesis as a causative factor in osteoporosis pathogenesis. BMC Genom Data 2024; 25:85. [PMID: 39379846 PMCID: PMC11460074 DOI: 10.1186/s12863-024-01269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Angiogenesis-osteogenesis coupling is critical for proper functioning and maintaining the health of bones. Any disruption in this coupling, associated with aging and disease, might lead to loss of bone mass. Osteoporosis (OP) is a debilitating bone metabolic disorder that affects the microarchitecture of bones, gradually leading to fracture. Computational analysis revealed that normal angiogenesis is disrupted during the progression of OP, especially postmenopausal osteoporosis (PMOP). The genes associated with OP and PMOP were retrieved from the DisGeNET database. Hub gene analysis and molecular pathway enrichment were performed via the Cytoscape plugins STRING, MCODE, CytoHubba, ClueGO and the web-based tool Enrichr. Twenty-eight (28) hub genes were identified, eight of which were transcription factors (HIF1A, JUN, TP53, ESR1, MYC, PPARG, RUNX2 and SOX9). Analysis of SNPs associated with hub genes via the gnomAD, I-Mutant2.0, MUpro, ConSurf and COACH servers revealed the substitution F201L in IL6 as the most deleterious. The IL6 protein was modeled in the SWISS-MODEL server and the substitution was analyzed via the YASARA FoldX plugin. A positive ΔΔG (1.936) of the F201L mutant indicates that the mutated structure is less stable than the wild-type structure is. Thirteen hub genes, including IL6 and the enriched molecular pathways were found to be profoundly involved in angiogenesis/endothelial function and immune signaling. Mechanical loading of bones through weight-bearing exercises can activate osteoblasts via mechanotransduction leading to increased bone formation. The present study suggests proper mechanical loading of bone as a preventive strategy for PMOP, by which angiogenesis and the immune status of the bone can be maintained. This in silico analysis could be used to understand the molecular etiology of OP and to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Remya James
- Department of Zoology, St. Joseph's College for Women, Alappuzha, Kerala, 688001, India.
- School of Biosciences, Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 614043, India.
| | - Koushik Narayan Subramanyam
- Department of Orthopaedics, Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthigram, Puttaparthi, Andhra Pradesh, 515134, India
| | - Febby Payva
- Department of Zoology, St. Joseph's College for Women, Alappuzha, Kerala, 688001, India
- School of Biosciences, Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 614043, India
| | - Amrisa Pavithra E
- Department of Zoology, St. Joseph's College for Women, Alappuzha, Kerala, 688001, India
| | - Vineeth Kumar Tv
- Department of Zoology, The Cochin College, Kochi, Kerala, 682002, India.
| | - Venketesh Sivaramakrishnan
- School of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam, Puttaparthi, Andhra Pradesh, 515134, India
| | - Santhy Ks
- School of Biosciences, Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 614043, India.
| |
Collapse
|
11
|
Fan S, Cai Y, Wei Y, Yang J, Gao J, Yang Y. Sarcopenic obesity and osteoporosis: Research progress and hot spots. Exp Gerontol 2024; 195:112544. [PMID: 39147076 DOI: 10.1016/j.exger.2024.112544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Sarcopenic obesity (SO) and osteoporosis (OP) are associated with aging and obesity. The pathogenesis of SO is complex, including glucolipid and skeletal muscle metabolic disorders caused by inflammation, insulin resistance, and other factors. Growing evidence links muscle damage to bone loss. Muscle-lipid metabolism disorders of SO disrupt the balance between bone formation and bone resorption, increasing the risk of OP. Conversely, bones also play a role in fat and muscle metabolism. In the context of aging and obesity, the comprehensive review focuses on the effects of mechanical stimulation, mesenchymal stem cells (MSCs), chronic inflammation, myokines, and adipokines on musculoskeletal, at the same time, the impact of osteokines on muscle-lipid metabolism were also analyzed. So far, exercise combined with diet therapy is the most effective strategy for increasing musculoskeletal mass. A holistic treatment of musculoskeletal diseases is still in the preliminary exploration stage. Therefore, this article aims to improve the understanding of musculoskeletal -fat interactions in SO and OP, explores targets that can provide holistic treatment for SO combined with OP, and discusses current limitations and challenges. We hope to provide relevant ideas for developing specific therapies and improving disease prognosis in the future.
Collapse
Affiliation(s)
- Shangheng Fan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Yulan Cai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yunqin Wei
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jia Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China.
| | - Yan Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
12
|
Han MH, Kwon HS, Hwang M, Park HH, Jeong JH, Park KW, Kim EJ, Yoon SJ, Yoon B, Jang JW, Hong JY, Choi SH, Koh SH. Association between osteoporosis and the rate of telomere shortening. Aging (Albany NY) 2024; 16:11151-11161. [PMID: 39074257 PMCID: PMC11315396 DOI: 10.18632/aging.206034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
A shorter leukocyte telomere length (LTL) is reported to be associated with age-related diseases, including osteoporosis. Many studies have tried identifying the association between LTL and osteoporosis, although it remains controversial. This study aimed to determine whether osteoporosis is independently associated with LTL shortening in a prospective longitudinal cohort. The KBASE study is an independent multicenter prospective cohort in South Korea, which began in 2014. We compared the LTL values for each participant at baseline and over a 2-year follow-up period. Boxplots were used to demonstrate the differences in the change in LTL over a 2-year follow-up according to osteoporosis. Multivariable linear regression was conducted to identify whether osteoporosis is independently associated with the rate of telomere shortening. A total of 233 subjects (from 55 to 88 years) from the KBASE cohort were finally enrolled in the study. We observed that the LTL decreased by approximately 1.2 kbp over 2 years. While the LTL decreased as age increased, the rate of LTL shortening did not increase with age. Multivariable linear regression analysis indicated that only osteoporosis was independently associated with rapid LTL shortening over 2 years (B, -8.08; p = 0.038). We sought to identify an association between osteoporosis and LTL shortening in an independent prospective cohort. We found that participants with osteoporosis had significantly faster LTL shortening over 2 years than those without osteoporosis. We hope this study will help elucidate the underlying mechanisms in the relationship between LTL and osteoporosis in the future.
Collapse
Affiliation(s)
- Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri 11923, South Korea
| | - Hyuk Sung Kwon
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, South Korea
| | - Mina Hwang
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, South Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, South Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University College of Medicine, Seoul 07804, South Korea
| | - Kyung Won Park
- Department of Neurology, Dong-A Medical Center, Dong-A University College of Medicine, Busan 49201, South Korea
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan 49241, South Korea
| | - Soo Jin Yoon
- Department of Neurology, Eulji University Hospital, Eulji University School of Medicine, Daejeon 35233, South Korea
| | - Bora Yoon
- Department of Neurology, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin Yong Hong
- Department of Neurology, Yonsei University Wonju College of Medicine, Wonju 26426, South Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University College of Medicine, Incheon 22332, South Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, South Korea
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763, South Korea
| |
Collapse
|
13
|
Ali M, He Y, Chang ASN, Wu A, Liu J, Cao Y, Mohammad Y, Popat A, Walsh L, Ye Q, Xu C, Kumeria T. Osteoimmune-modulating and BMP-2-eluting anodised 3D printed titanium for accelerated bone regeneration. J Mater Chem B 2023; 12:97-111. [PMID: 37842835 DOI: 10.1039/d3tb01029e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
3D printing of titanium (Ti) metal has potential to transform the field of personalised orthopaedics and dental implants. However, the impacts of controlled surface topographical features of 3D printed Ti implants on their interactions with the cellular microenvironment and incorporation of biological growth factors, which are critical in guiding the integration of implants with bone, are not well studied. In the present study, we explore the role of surface topological features of 3D printed Ti implants using an anodised titania nanotube (TiNT) surface layer in guiding their immune cell interaction and ability to deliver bioactive form of growth factors. TiNT layers with precisely controlled pore diameter (between 21and 130 nm) were anodically grown on 3D printed Ti surfaces to impart a nano-micro rough topology. Immune biomarker profiles at gene and protein levels show that anodised 3D Ti surfaces with smaller pores resulted in classical activation of macrophages (M1-like), while larger pores (i.e., >100 nm) promoted alternate activation of macrophages (M2-like). The in vitro bone mineralisation studies using the conditioned media from the immunomodulatory studies elucidate a clear impact of pore diameter on bone mineralisation. The tubular structure of TiNTs was utilised as a container to incorporate recombinant human bone morphogenetic protein-2 (BMP-2) in the presence of various sugar and polymeric cryoprotectants. Sucrose offered the most sustainable release of preserved BMP-2 from TiNTs. Downstream effects of released BMP-2 on macrophages as well as bone mineralisation were assessed showing bioactivity retention of the released rhBMP-2. Overall, the TiNT surface topography in combination with controlled, sustained, and local release of bioactive growth factors can potentially enhance the osseointegration outcomes of custom 3D printed Ti implants in the clinic.
Collapse
Affiliation(s)
- Masood Ali
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia
| | - Yan He
- Institute of Regenerative and Translational Medicine, Wuhan University of Science and Technology, Wuhan 430040, China
| | - Anna Sze Ni Chang
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia.
| | - Alice Wu
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia.
| | - Jingyu Liu
- School of Mechanical, Medical and process Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia.
| | - Yousuf Mohammad
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia.
| | - Laurie Walsh
- School of Dentistry, The University of Queensland, Herston, Queensland 4006, Australia.
| | - Qingsong Ye
- Centre of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Chun Xu
- School of Dentistry, The University of Queensland, Herston, Queensland 4006, Australia.
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia.
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| |
Collapse
|
14
|
Imanpour A, Kolahi Azar H, Makarem D, Nematollahi Z, Nahavandi R, Rostami M, Beheshtizadeh N. In silico engineering and simulation of RNA interferences nanoplatforms for osteoporosis treating and bone healing promoting. Sci Rep 2023; 13:18185. [PMID: 37875547 PMCID: PMC10598124 DOI: 10.1038/s41598-023-45183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
Osteoporosis is a bone condition characterized by reduced bone mineral density (BMD), poor bone microarchitecture/mineralization, and/or diminished bone strength. This asymptomatic disorder typically goes untreated until it presents as a low-trauma fracture of the hip, spine, proximal humerus, pelvis, and/or wrist, requiring surgery. Utilizing RNA interference (RNAi) may be accomplished in a number of ways, one of which is by the use of very tiny RNA molecules called microRNAs (miRNAs) and small interfering RNAs (siRNAs). Several kinds of antagomirs and siRNAs are now being developed to prevent the detrimental effects of miRNAs. The goal of this study is to find new antagonists for miRNAs and siRNAs that target multiple genes in order to reduce osteoporosis and promote bone repair. Also, choosing the optimum nanocarriers to deliver these RNAis appropriately to the body could lighten up the research road. In this context, we employed gene ontology analysis to search across multiple datasets. Following data analysis, a systems biology approach was used to process it. A molecular dynamics (MD) simulation was used to explore the possibility of incorporating the suggested siRNAs and miRNA antagonists into polymeric bioresponsive nanocarriers for delivery purposes. Among the three nanocarriers tested [polyethylene glycol (PEG), polyethylenimine (PEI), and PEG-PEI copolymer], MD simulations show that the integration of PEG-PEI with has-mIR-146a-5p is the most stable (total energy = -372.84 kJ/mol, Gyration radius = 2.1084 nm), whereas PEI is an appropriate delivery carrier for has-mIR-7155. The findings of the systems biology and MD simulations indicate that the proposed RNAis might be given through bioresponsive nanocarriers to accelerate bone repair and osteoporosis treatment.
Collapse
Affiliation(s)
- Aylar Imanpour
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Kolahi Azar
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dorna Makarem
- Escuela Tecnica Superior de Ingenieros de Telecomunicacion, Politecnica de Madrid, Madrid, Spain
| | - Zeinab Nematollahi
- UCL Department of Nanotechnology, Division of Surgery and Interventional Science, University College London, London, UK
| | - Reza Nahavandi
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Biochemical and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, 11155-4563, Iran
| | - Mohammadreza Rostami
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Liu X, Zhou Z, Zeng WN, Zeng Q, Zhang X. The role of toll-like receptors in orchestrating osteogenic differentiation of mesenchymal stromal cells and osteoimmunology. Front Cell Dev Biol 2023; 11:1277686. [PMID: 37941898 PMCID: PMC10629627 DOI: 10.3389/fcell.2023.1277686] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Osteoimmunology is a concept involving molecular and cellular crosstalk between the skeletal and immune systems. Toll-like receptors (TLRs) are widely expressed both on mesenchymal stromal cells (MSCs), the hematopoietic cells, and immune cells in the osteogenic microenvironment for bone development or repair. TLRs can sense both exogenous pathogen-associated molecular patterns (PAMPs) derived from microorganisms, and damage-associated molecular patterns (DAMPs) derived from normal cells subjected to injury, inflammation, or cell apoptosis under physiological or pathological conditions. Emerging studies reported that TLR signaling plays an important role in bone remodeling by directly impacting MSC osteogenic differentiation or osteoimmunology. However, how to regulate TLR signaling is critical and remains to be elucidated to promote the osteogenic differentiation of MSCs and new bone formation for bone tissue repair. This review outlines distinct TLR variants on MSCs from various tissues, detailing the impact of TLR pathway activation or inhibition on MSC osteogenic differentiation. It also elucidates TLR pathways' interplay with osteoclasts, immune cells, and extracellular vesicles (EVs) derived from MSCs. Furthermore, we explore biomaterial-based activation to guide MSCs' osteogenic differentiation. Therefore, understanding TLRs' role in this context has significant implications for advancing bone regeneration and repair strategies.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Zongke Zhou
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Nan Zeng
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Sung J, Barratt KR, Pederson SM, Chenu C, Reichert I, Atkins GJ, Anderson PH, Smitham PJ. Unbiased gene expression analysis of the delayed fracture healing observed in Zucker diabetic fatty rats. Bone Joint Res 2023; 12:657-666. [PMID: 37844909 PMCID: PMC10578971 DOI: 10.1302/2046-3758.1210.bjr-2023-0062.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Aims Impaired fracture repair in patients with type 2 diabetes mellitus (T2DM) is not fully understood. In this study, we aimed to characterize the local changes in gene expression (GE) associated with diabetic fracture. We used an unbiased approach to compare GE in the fracture callus of Zucker diabetic fatty (ZDF) rats relative to wild-type (WT) littermates at three weeks following femoral osteotomy. Methods Zucker rats, WT and homozygous for leptin receptor mutation (ZDF), were fed a moderately high-fat diet to induce T2DM only in the ZDF animals. At ten weeks of age, open femoral fractures were simulated using a unilateral osteotomy stabilized with an external fixator. At three weeks post-surgery, the fractured femur from each animal was retrieved for analysis. Callus formation and the extent of healing were assessed by radiograph and histology. Bone tissue was processed for total RNA extraction and messenger RNA (mRNA) sequencing (mRNA-Seq). Results Radiographs and histology demonstrated impaired fracture healing in ZDF rats with incomplete bony bridge formation and an influx of intramedullary inflammatory tissue. In comparison, near-complete bridging between cortices was observed in Sham WT animals. Of 13,160 genes, mRNA-Seq analysis identified 13 that were differentially expressed in ZDF rat callus, using a false discovery rate (FDR) threshold of 10%. Seven genes were upregulated with high confidence (FDR = 0.05) in ZDF fracture callus, most with known roles in inflammation. Conclusion These findings suggest that elevated or prolonged inflammation contributes to delayed fracture healing in T2DM. The identified genes may be used as biomarkers to monitor and treat delayed fracture healing in diabetic patients.
Collapse
Affiliation(s)
- Jonghoo Sung
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Kate R. Barratt
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Stephen M. Pederson
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- Black Ochre Data Labs, Indigenous Genomics, Telethon Kids Institute, Adelaide, Australia
| | | | | | - Gerald J. Atkins
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Paul H. Anderson
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Peter J. Smitham
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
17
|
Xu J, Yu L, Liu F, Wan L, Deng Z. The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: a review. Front Immunol 2023; 14:1222129. [PMID: 37475866 PMCID: PMC10355373 DOI: 10.3389/fimmu.2023.1222129] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
The complicated connections and cross talk between the skeletal system and the immune system are attracting more attention, which is developing into the field of Osteoimmunology. In this field, cytokines that are among osteoblasts and osteoclasts play a critical role in bone remodeling, which is a pathological process in the pathogenesis and development of osteoporosis. Those cytokines include the tumor necrosis factor (TNF) family, the interleukin (IL) family, interferon (IFN), chemokines, and so on, most of which influence the bone microenvironment, osteoblasts, and osteoclasts. This review summarizes the effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis, aiming to providing the latest reference to the role of immunology in osteoporosis.
Collapse
Affiliation(s)
- Jie Xu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linxin Yu
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Longbiao Wan
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhenhua Deng
- Hubei Provincial Hospital of Traditional Chinese Medicine (TCM), Wuhan, China
| |
Collapse
|
18
|
Sonkodi B, Bardoni R, Poór G. Osteoporosis in Light of a New Mechanism Theory of Delayed Onset Muscle Soreness and Non-Contact Anterior Cruciate Ligament Injury. Int J Mol Sci 2022; 23:ijms23169046. [PMID: 36012312 PMCID: PMC9408966 DOI: 10.3390/ijms23169046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is a disorder, with a largely unknown pathomechanism, that is often marked as a “silent thief”, because it usually only becomes undisguised when fractures occur. This implies that the pathological damage occurs earlier than the sensation of pain. The current authors put forward a non-contact injury model in which the chronic overloading of an earlier autologously microinjured Piezo2 ion channel of the spinal proprioceptor terminals could lead the way to re-injury and earlier aging in a dose-limiting and threshold-driven way. As a result, the aging process could eventually lead the way to the metabolic imbalance of primary osteoporosis in a quad-phasic non-contact injury pathway. Furthermore, it is emphasised that delayed onset muscle soreness, non-contact anterior cruciate injury and osteoporosis could have the same initiating proprioceptive non-contact Piezo2 channelopathy, at different locations, however, with different environmental risk factors and a different genetic predisposition, therefore producing different outcomes longitudinally. The current injury model does not intend to challenge any running pathogenic theories or findings, but rather to highlight a principal injury mechanism.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
- Correspondence:
| | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Gyula Poór
- National Institute of Locomotor Diseases and Disabilities, 1023 Budapest, Hungary
- Section of Rheumatology and Physiotherapy, Department of Internal Medicine and Haematology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
19
|
Oh KK, Adnan M, Cho DH. Drug Investigation to Dampen the Comorbidity of Rheumatoid Arthritis and Osteoporosis via Molecular Docking Test. Curr Issues Mol Biol 2022; 44:1046-1061. [PMID: 35723292 PMCID: PMC8947408 DOI: 10.3390/cimb44030069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
At present, most rheumatoid arthritis (RA) patients are at risk of osteoporosis (OP), which is increased by 1.5 times compared to non-RA individuals. Hence, we investigated overlapping targets related directly to the occurrence and development of RA and OP through public databases (DisGeNET, and OMIM) and literature. A total of 678 overlapping targets were considered as comorbid factors, and 604 out of 678 were correlated with one another. Interleukin 6 (IL-6), with the highest degree of value in terms of protein−protein interaction (PPI), was considered to be a core target against comorbidity. We identified 31 existing small molecules (< 1000 g/mol) as IL-6 inhibitors, and 19 ligands were selected by the 3 primary criteria (Lipinski’s rule, TPSA, and binding energy). We postulated that MD2-TLR4-IN-1 (PubChem ID: 138454798), as confirmed by the three criteria, was the key ligand to alleviate comorbidity between RA and OP. In conclusion, we described a promising active ligand (MD2-TLR4-IN-1), and a potential target (IL-6) against comorbidity of RA and OP, providing scientific evidence for a further clinical trial.
Collapse
Affiliation(s)
- Ki-Kwang Oh
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (K.-K.O.); (M.A.)
| | - Md. Adnan
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (K.-K.O.); (M.A.)
| | - Dong-Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (K.-K.O.); (M.A.)
- Correspondence: ; Tel.: +82-33-250-6475
| |
Collapse
|
20
|
Wang R, Li R, Liu R. An intron SNP rs2069837 in IL-6 is associated with osteonecrosis of the femoral head development. BMC Med Genomics 2022; 15:5. [PMID: 34986839 PMCID: PMC8734317 DOI: 10.1186/s12920-021-01142-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Genetic polymorphisms play a crucial role in the development of osteonecrosis of the femoral head (ONFH). This study mainly explored the association of IL-6 variants and ONFH susceptibility among the Chinese Han population. Methods Two variants (rs2069837, and rs13306435) in the IL-6 gene were identified and genotyped from 566 patients with ONFH and 566 healthy controls. The associations between IL-6 polymorphisms and ONFH susceptibility were assessed using odds ratio (OR) and 95% confidence interval (95% CI) via logistic regression. The potential function of these two variants was predicted by the HaploReg online database. Results The results of the overall analysis revealed that IL-6 rs2069837 was correlated with decreased risk of ONFH among the Chinese Han population (p < 0.05). In stratified analysis, rs2069837 also reduced the susceptibility to ONFH in older people (> 51 years), males, nonsmokers, and nondrinkers (p < 0.05). However, no associations between rs13306435 and ONFH susceptibility were observed (p > 0.05). Conclusions To sum up, we suggested that rs2069837 G>A polymorphism in the IL-6 gene was significantly associated with a decreased risk of ONFH among the Chinese Hans. These findings underscored the crucial role of IL-6 rs2069837 in the occurrence of ONFH. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01142-3.
Collapse
Affiliation(s)
- Ruisong Wang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.,Department of orthopedics, Xi'an Fifth Hospital, Xi'an, 710082, China
| | - Rui Li
- Department of rheumatology, Xi'an Fifth Hospital, Xi'an, 710082, China
| | - Ruiyu Liu
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
21
|
Jiang HQ, Deng Y, Han C, Ma XL. Anti-Osteoporosis Effect of Heme on Osteoblast Pre-Cells and Rat Model. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objectives: Osteoporosis is a metabolic bone disease caused by various factors. As a prosthetic group of haemoglobin, heme can promote the formation of blood vessels and the regeneration of related cells by increasing the proliferation level of endothelial cells and reticulocytes.
This study observed the anti-osteoporosis effect of heme on preosteoblast (POB) cells and rat models. Methods: Heme mimics were transfected into POB cells of patients in stable culture, and the effect of heme transfection on the activity of POB cells was detected via the cell scratch
test and cell migration assay. 45 SD female rats were randomly divided into group A, the rats were only treated with surgery (n = 15); group B, the rats were given 30 mg/kg of heme chloride by tail vein injection on the 1st, 7th, and 14th days after surgery (n = 15); group C,
rats were injected with the same amount of saline in the tail vein (n = 15). The mRNA and protein expressions of alkaline phosphatase (ALP), bone-specific alkaline phosphatase (B-ALP), and type I collagen C-terminal peptide (CTX) in rats serum were detected via western blot and real-time
PCR (real-time polymerase chain reaction). The expressions of IL-6 and TNF-α in rats serum were detected via Elisa. The pathological changes in the morphology of distal femur were observed by Hematoxylin-eosin staining. Results: After transfected with heme mimics, the proliferation,
migration and invasion ability of the patient’s cells increased significantly, and the apoptosis rate of the cells decreased significantly. The relative expression levels of ALP and CTX mRNA and protein in serum of osteoporosis patients and rat significantly decreased 24 hours after
transfection of heme mimics (p < 0.05), while B-ALP significantly increased. The expression of IL-6 and TNF-α in the rat model of osteoporosis group significantly increased (p < 0.05), but after transfection with heme mimic, the expression of IL-6 and TNF-α
in the rat reduced significantly. HE showed that, after transfection, the femoral trabeculae were substantially broader and thicker, and the number also increased significantly. The number of trabecular fractures and fat cells was decreased, the trabecular bones were smoother and close to
the control group. Conclusion: Heme can significantly promote the proliferation, migration and invasion of POB cells in the body, and also can achieve the anti-osteoporosis effect by adjusting the expression of ALP, B-ALP, and CTX, IL-6 and TNF-α in osteoporosis model of rat.
Collapse
Affiliation(s)
- Hong-Qiang Jiang
- Department of Orthopedics, Tianjin Hospital, Tianjin City, 300000, China
| | - Yao Deng
- Department of Orthopedics, Tianjin Hospital, Tianjin City, 300000, China
| | - Chao Han
- Department of Orthopedics, Tianjin Hospital, Tianjin City, 300000, China
| | - Xin-Long Ma
- Department of Orthopedics, Tianjin Hospital, Tianjin City, 300000, China
| |
Collapse
|
22
|
Yun S, Choi D, Choi DJ, Jin S, Yun WS, Huh JB, Shim JH. Bone Fracture-Treatment Method: Fixing 3D-Printed Polycaprolactone Scaffolds with Hydrogel Type Bone-Derived Extracellular Matrix and β-Tricalcium Phosphate as an Osteogenic Promoter. Int J Mol Sci 2021; 22:ijms22169084. [PMID: 34445788 PMCID: PMC8396563 DOI: 10.3390/ijms22169084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
Bone formation and growth are crucial for treating bone fractures. Improving bone-reconstruction methods using autologous bone and synthetic implants can reduce the recovery time. Here, we investigated three treatments using two different materials, a bone-derived decellularized extracellular matrix (bdECM) and β-tricalcium phosphate (β-TCP), individually and in combination, as osteogenic promoter between bone and 3D-printed polycaprolactone scaffold (6-mm diameter) in rat calvarial defects (8-mm critical diameter). The materials were tested with a human pre-osteoblast cell line (MG63) to determine the effects of the osteogenic promoter on bone formation in vitro. A polycaprolactone (PCL) scaffold with a porous structure was placed at the center of the in vivo rat calvarial defects. The gap between the defective bone and PCL scaffold was filled with each material. Animals were sacrificed four weeks post-implantation, and skull samples were preserved for analysis. The preserved samples were scanned by micro-computed tomography and analyzed histologically to examine the clinical benefits of the materials. The bdECM–β-TCP mixture showed faster bone formation and a lower inflammatory response in the rats. Therefore, our results imply that a bdECM–β-TCP mixture is an ideal osteogenic promoter for treating fractures.
Collapse
Affiliation(s)
- Seokhwan Yun
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-si 15073, Korea; (S.Y.); (D.-J.C.); (S.J.)
| | - Dami Choi
- Research Institute, T&R Biofab Co., Ltd., Siheung-si 15073, Korea;
| | - Dong-Jin Choi
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-si 15073, Korea; (S.Y.); (D.-J.C.); (S.J.)
| | - Songwan Jin
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-si 15073, Korea; (S.Y.); (D.-J.C.); (S.J.)
- Research Institute, T&R Biofab Co., Ltd., Siheung-si 15073, Korea;
| | - Won-Soo Yun
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-si 15073, Korea; (S.Y.); (D.-J.C.); (S.J.)
- Research Institute, T&R Biofab Co., Ltd., Siheung-si 15073, Korea;
- Correspondence: (W.-S.Y.); (J.-B.H.); (J.-H.S.); Tel.: +82-31-8041-1819 (W.-S.Y.); +82-55-360-5146 (J.-B.H.); +82-31-8041-1819 (J.-H.S.)
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, School of Dentistry, Pusan National University, Yangsan-si 50612, Korea
- Correspondence: (W.-S.Y.); (J.-B.H.); (J.-H.S.); Tel.: +82-31-8041-1819 (W.-S.Y.); +82-55-360-5146 (J.-B.H.); +82-31-8041-1819 (J.-H.S.)
| | - Jin-Hyung Shim
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-si 15073, Korea; (S.Y.); (D.-J.C.); (S.J.)
- Research Institute, T&R Biofab Co., Ltd., Siheung-si 15073, Korea;
- Correspondence: (W.-S.Y.); (J.-B.H.); (J.-H.S.); Tel.: +82-31-8041-1819 (W.-S.Y.); +82-55-360-5146 (J.-B.H.); +82-31-8041-1819 (J.-H.S.)
| |
Collapse
|
23
|
IL-6 regulates the bone metabolism and inflammatory microenvironment in aging mice by inhibiting Setd7. Acta Histochem 2021; 123:151718. [PMID: 33962150 DOI: 10.1016/j.acthis.2021.151718] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022]
Abstract
Aging, which has become a worldwide problem, leads to the degeneration of multiple organs and tissues. Two of the main changes in aging are dysregulation of the tissue microenvironment and abnormal functioning of specific stem cells. Bone marrow stem cells (BMSCs) in the aging microenvironment are not only effector cells but also immunomodulatory cells that change the microenvironment. IL-6 is a primary inflammatory response factor associated with bone diseases. In this study, we stimulated BMSCs with IL-6 to investigate a novel mechanism of age-related osteoporosis. IL-6 activated the TLR2, TLR4 and AKT pathway as well as inhibited the expression of β-catenin and Setd7. In addition, Setd7 expression in the bone tissues of aged mice was suppressed. Setd7 not only promoted BMSC osteogenic differentiation but also mediated proinflammatory gene expression in BMSCs under IL-6 stimulation. Due to its dual functions in BMSCs, Setd7 may be a novel molecular target for age-related osteoporosis prevention and treatment.
Collapse
|
24
|
Kang S, Han M, Park CI, Jung I, Kim EH, Boo YJ, Kang JI, Kim SJ. Use of serotonin reuptake inhibitors and risk of subsequent bone loss in a nationwide population-based cohort study. Sci Rep 2021; 11:13461. [PMID: 34188108 PMCID: PMC8241982 DOI: 10.1038/s41598-021-92821-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
This study examined whether the use of SRIs is associated with an increased risk of bone loss using a nested case-control design with a nationwide population-based cohort in Korea. Using the Korean National Health Screening Cohort, subjects newly diagnosed with osteoporosis or osteopenia (n = 55,799) were matched with controls (n = 278,995) at a ratio of 1:5. We stratified the participants by their time-dependent use of SRIs and sex and controlled for various confounders, including lifestyle habits, laboratory data, and comorbidities. Conditional logistic regression showed that both recent and former users of SRIs had an increased risk of subsequent bone loss compared with non-users: men [recent users: odds ratio (OR) 1.35, 95% confidential interval (CI) 1.20, 1.53; former-users: OR 1.10, 95% CI 1.01, 1.20]; women (recent users: OR 1.38, 95% CI 1.28-1.48; former-users: OR 1.07, 95% CI 1.02, 1.21). The use of SRIs was associated with an increased risk of bone loss in both men and women. In particular, the association was stronger in recent users. These findings provide population-level evidence for the risk of bone loss associated with SRI exposure and highlight the importance of monitoring the bone health of SRI users.
Collapse
Affiliation(s)
- Sunyoung Kang
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minkyung Han
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chun Il Park
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Inkyung Jung
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Hwa Kim
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Jun Boo
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee In Kang
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Psychiatry, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Se Joo Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Psychiatry, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
25
|
Short-term glucocorticoid excess blunts abaloparatide-induced increase in femoral bone mass and strength in mice. Sci Rep 2021; 11:12258. [PMID: 34112892 PMCID: PMC8192916 DOI: 10.1038/s41598-021-91729-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/31/2021] [Indexed: 12/21/2022] Open
Abstract
Glucocorticoids (GCs), such as prednisolone, are widely used to treat inflammatory diseases. Continuously long-term or high dose treatment with GCs is one of the most common causes of secondary osteoporosis and is associated with sarcopenia and increased risk of debilitating osteoporotic fragility fractures. Abaloparatide (ABL) is a potent parathyroid hormone-related peptide analog, which can increase bone mineral density (aBMD), improve trabecular microarchitecture, and increase bone strength. The present study aimed to investigate whether GC excess blunts the osteoanabolic effect of ABL. Sixty 12–13-week-old female RjOrl:SWISS mice were allocated to the following groups: Baseline, Control, ABL, GC, and GC + ABL. ABL was administered as subcutaneous injections (100 μg/kg), while GC was delivered by subcutaneous implantation of a 60-days slow-release prednisolone-pellet (10 mg). The study lasted four weeks. GC induced a substantial reduction in muscle mass, trabecular mineral apposition rate (MAR) and bone formation rate (BFR/BS), and endocortical MAR compared with Control, but did not alter the trabecular microarchitecture or bone strength. In mice not receiving GC, ABL increased aBMD, bone mineral content (BMC), cortical and trabecular microarchitecture, mineralizing surface (MS/BS), MAR, BFR/BS, and bone strength compared with Control. However, when administered concomitantly with GC, the osteoanabolic effect of ABL on BMC, cortical morphology, and cortical bone strength was blunted. In conclusion, at cortical bone sites, the osteoanabolic effect of ABL is generally blunted by short-term GC excess.
Collapse
|
26
|
Xu W, Ni C, Wang Y, Zheng G, Zhang J, Xu Y. Age-related trabecular bone loss is associated with a decline in serum Galectin-1 level. BMC Musculoskelet Disord 2021; 22:394. [PMID: 33906620 PMCID: PMC8080405 DOI: 10.1186/s12891-021-04272-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Senile osteoporosis with age-related bone loss is diagnosed depending on radiographic changes of bone and bone mineral density (BMD) measurement. However, radiographic alterations are usually signs of medium-late stage osteoporosis. Therefore, biomarkers have been proposed as indicators of bone loss. In the current study, Galectin-1 (Gal-1) showed age-related decline in mice serum. The role of Gal-1 in osteoporosis has not been investigated so far. Hence, the current study illustrated the relationship of serum Gal-1 level with bone loss. METHODS We employed 6- and 18-month-old mice to establish an animal model of age-related trabecular bone loss, whose bone density and microstructure were investigated by micro-CT. ELISA was used to measure the levels of Gal-1 in serum. The correlation analysis was performed to illustrate the relationship between serum Gal-1 levels and trabecular bone loss. In addition, immunohistochemistry was used to investigate the abundance of Gal-1 in bone marrow of mice. ELISA and western blot were performed to measure the secretion ability and protein expression of Gal-1 in bone marrow stromal cells (BMSC), hematopoietic stem cells (HSC) and myeloid progenitor (MP) respectively. Flow cytometry was used to measure BMSC number in bone marrow. Finally, male volunteers with age-related BMD decrease were recruited and the relationship between serum Gal-1 and BMD was analyzed. RESULTS Gal-1 showed age-related decline in mice serum. Serum Gal-1 was positively associated with BV/TV of femur, tibia and L1 vertebrae in mice. BMSC secreted more Gal-1 compared with HSC and MP. BMSC number in bone marrow was significantly lower in aged mice compared with young mice. Significant attenuation of Gal-1 protein expression was observed in BMSC and HSC from aged mice compared with young mice. Further, we found a decline in serum Gal-1 levels in men with age-related BMD decrease. There was positive correlation between BMD and serum Gal-1 levels in these men. CONCLUSIONS Age-related trabecular bone loss is associated with a decline in serum Gal-1 level in mice and men. Our study suggested Gal-1 had great potential to be a biomarker for discovering BMSC senescence, diagnosing early osteoporosis and monitoring trabecular bone loss.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.,Department of Orthopaedics, Shanghai Jiangong Hospital, Shanghai, 200083, China
| | - Cheng Ni
- Department of Orthopaedics, Shanghai Jiangong Hospital, Shanghai, 200083, China
| | - Yuxuan Wang
- Department of Orthopaedics, Shanghai Jiangong Hospital, Shanghai, 200083, China
| | - Guoqing Zheng
- Department of Orthopaedics, Shanghai Jiangong Hospital, Shanghai, 200083, China
| | - Jinshan Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Youjia Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
27
|
Kynurenine induces an age-related phenotype in bone marrow stromal cells. Mech Ageing Dev 2021; 195:111464. [PMID: 33631183 DOI: 10.1016/j.mad.2021.111464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/08/2021] [Accepted: 02/21/2021] [Indexed: 01/02/2023]
Abstract
Advanced age is one of the important contributing factors for musculoskeletal deterioration. Although the exact mechanism behind this degeneration is unknown, it has been previously established that nutritional signaling plays a vital role in musculoskeletal pathophysiology. Our group established the vital role of the essential amino acid, tryptophan, in aging musculoskeletal health. With advanced age, inflammatory factors activate indoleamine 2,3-dioxygenase (IDO1) and accumulate excessive intermediate tryptophan metabolites such as Kynurenine (KYN). With age, Kynurenine accumulates and suppresses osteogenic differentiation, impairs autophagy, promotes early senescence, and alters cellular bioenergetics of bone marrow stem cells. Recent studies have shown that Kynurenine negatively impacts bone marrow stromal cells (BMSCs) and, consequently, promotes bone loss. Overall, understanding the mechanism behind BMSCs losing their ability for osteogenic differentiation can provide insight into the prevention of osteoporosis and the development of targeted therapies. Therefore, in this article, we review Kynurenine and how it plays a vital role in BMSC dysfunction and bone loss with age.
Collapse
|
28
|
Yang YJ, Kim DJ. An Overview of the Molecular Mechanisms Contributing to Musculoskeletal Disorders in Chronic Liver Disease: Osteoporosis, Sarcopenia, and Osteoporotic Sarcopenia. Int J Mol Sci 2021; 22:2604. [PMID: 33807573 PMCID: PMC7961345 DOI: 10.3390/ijms22052604] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
The prevalence of osteoporosis and sarcopenia is significantly higher in patients with liver disease than in those without liver disease and osteoporosis and sarcopenia negatively influence morbidity and mortality in liver disease, yet these musculoskeletal disorders are frequently overlooked in clinical practice for patients with chronic liver disease. The objective of this review is to provide a comprehensive understanding of the molecular mechanisms of musculoskeletal disorders accompanying the pathogenesis of liver disease. The increased bone resorption through the receptor activator of nuclear factor kappa (RANK)-RANK ligand (RANKL)-osteoprotegerin (OPG) system and upregulation of inflammatory cytokines and decreased bone formation through increased bilirubin and sclerostin and lower insulin-like growth factor-1 are important mechanisms for osteoporosis in patients with liver disease. Sarcopenia is associated with insulin resistance and obesity in non-alcoholic fatty liver disease, whereas hyperammonemia, low amount of branched chain amino acids, and hypogonadism contributes to sarcopenia in liver cirrhosis. The bidirectional crosstalk between muscle and bone through myostatin, irisin, β-aminoisobutyric acid (BAIBA), osteocalcin, as well as the activation of the RANK and the Wnt/β-catenin pathways are associated with osteosarcopenia. The increased understandings for these musculoskeletal disorders would be contributes to the development of effective therapies targeting the pathophysiological mechanism involved.
Collapse
Affiliation(s)
- Young Joo Yang
- Department of Internal Medicine, Hallym University College of Medicine, Gangwon-do, Chuncheon 24252, Korea;
- Institute for Liver and Digestive Diseases, Hallym University, Gangwon-do, Chuncheon 24253, Korea
| | - Dong Joon Kim
- Department of Internal Medicine, Hallym University College of Medicine, Gangwon-do, Chuncheon 24252, Korea;
- Institute for Liver and Digestive Diseases, Hallym University, Gangwon-do, Chuncheon 24253, Korea
| |
Collapse
|
29
|
Coates BA, McKenzie JA, Yoneda S, Silva MJ. Interleukin-6 (IL-6) deficiency enhances intramembranous osteogenesis following stress fracture in mice. Bone 2021; 143:115737. [PMID: 33181349 PMCID: PMC8408837 DOI: 10.1016/j.bone.2020.115737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/08/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022]
Abstract
Interleukin-6 (IL-6) is highly upregulated in response to skeletal injury, suggesting it plays a role in the inflammatory phase of fracture repair. However, the impact of IL-6 on successful repair remains incompletely defined. Therefore, we investigated the role of IL-6 in two models of fracture repair (full fracture and stress fracture) using 12-week old IL-6 global knockout mice (IL-6 KO) and wild type (WT) littermate controls. Callus morphology and mineral density 14 days after full femur fracture did not differ between IL-6 knockout mice and controls. In contrast, IL-6 KO mice had an enhanced bone response 7 days after ulnar stress fracture compared to WT, with increased total callus volume (p = 0.020) and callus bone volume (p = 0.045). IL-6 KO did not alter the recruitment of immune cells (Gr-1 or F4/80 positive) to the stress fracture callus. IL-6 KO also did not alter the number of osteoclasts in the stress fracture callus. Using RNA-seq, we identified differentially expressed genes in stress fracture vs. contralateral control ulnae, and observed that IL-6 KO resulted in only modest alterations to the gene expression response to stress fracture (SFx). Wnt1 was more highly upregulated in IL-6 KO SFx callus at both day 1 (fold change 12.5 in KO vs. 5.7 in WT) and day 3 (fold change 4.7 in KO vs. 1.9 in WT). Finally, using tibial compression to induce bone formation without bone injury, we found that IL-6 KO directly impacted osteoblast function, increasing the propensity for woven bone formation. In summary, we report that IL-6 knockout enhanced formation of callus and bone following stress fracture injury, likely through direct action on the osteoblast's ability to produce woven bone. This suggests a novel role of IL-6 as a suppressor of intramembranous bone formation.
Collapse
Affiliation(s)
- Brandon A Coates
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America.
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America
| | - Susumu Yoneda
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America
| |
Collapse
|
30
|
Dubrovsky AM, Nyman JS, Uppuganti S, Chmiel KJ, Kimmel DB, Lane NE. Bone Strength/Bone Mass Discrepancy in Glucocorticoid-Treated Adult Mice. JBMR Plus 2020; 5:e10443. [PMID: 33778319 PMCID: PMC7990143 DOI: 10.1002/jbm4.10443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 11/12/2022] Open
Abstract
Glucocorticoids increase bone fragility in patients in a manner that is underestimated by bone mass measurement. This study aimed to determine if the adult mouse could model this bone strength/bone mass discrepancy. Forty‐two 13‐week‐old BALB/cJ mice were randomized into vehicle and glucocorticoid groups, implanted with vehicle or 6‐methylprednisolone pellets, and necropsied after 60 and 120 days. Bone strength and bone mass/microarchitecture were assessed at the right central femur (CF; cortical‐bone–rich) and sixth lumbar vertebral body (LVB6; trabecular‐bone–rich). Bound water (BW) of the whole right femur was analyzed by proton‐nuclear magnetic resonance (1H‐NMR) relaxometry. Data were analyzed by two‐factor ANOVA with time (day 60 and day 120) and treatment (vehicle and glucocorticoid) as main effects for all data. Significant interactions were further analyzed with a Tukey's post hoc test. Most bone strength measures in the CF were lower in the glucocorticoid group, regardless of the duration of treatment, with no time × treatment interaction. However, bone mass measures in the CF showed a significant time × treatment interaction (p = 0.0001). Bone strength measures in LVB6 showed a time × treatment interaction (p < 0.02) such that LVB6 strength was lower after 120 days of glucocorticoids compared with 120 days of vehicle treatment. Whole‐femur–BW was lower with both glucocorticoid treatment (p = 0.0001) and time (p < 0.02), with a significant time × treatment interaction (p = 0.005). Glucocorticoid treatment of male BALB/cJ mice resulted in the lowering of bone strength in both cortical and trabecular bone that either appeared earlier or was greater than the treatment‐related changes in bone mass/microarchitecture. The adult mouse may be a good model for investigating the bone strength/mass discrepancy observed in glucocorticoid‐treated patients. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alanna M Dubrovsky
- Center for Musculoskeletal Health University of California at Davis Medical Center Sacramento CA USA
| | - Jeffrey S Nyman
- Department of Orthopaedic Surgery Vanderbilt University Medical Center Nashville TN USA
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery Vanderbilt University Medical Center Nashville TN USA
| | - Kenneth J Chmiel
- Center for Musculoskeletal Health University of California at Davis Medical Center Sacramento CA USA
| | - Donald B Kimmel
- Department of Physiological Sciences University of Florida Gainesville FL USA
| | - Nancy E Lane
- Center for Musculoskeletal Health University of California at Davis Medical Center Sacramento CA USA
| |
Collapse
|
31
|
Khodabandehloo F, Taleahmad S, Aflatoonian R, Rajaei F, Zandieh Z, Nassiri-Asl M, Eslaminejad MB. Microarray analysis identification of key pathways and interaction network of differential gene expressions during osteogenic differentiation. Hum Genomics 2020; 14:43. [PMID: 33234152 PMCID: PMC7687700 DOI: 10.1186/s40246-020-00293-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/13/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Adult bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells that can differentiate into three lineages. They are suitable sources for cell-based therapy and regenerative medicine applications. This study aims to evaluate the hub genes and key pathways of differentially expressed genes (DEGs) related to osteogenesis by bioinformatics analysis in three different days. The DEGs were derived from the three different days compared with day 0. RESULTS Gene expression profiles of GSE37558 were obtained from the Gene Expression Omnibus (GEO) database. A total of 4076 DEGs were acquired on days 8, 12, and 25. Gene ontology (GO) enrichment analysis showed that the non-canonical Wnt signaling pathway and lipopolysaccharide (LPS)-mediated signaling pathway were commonly upregulated DEGs for all 3 days. KEGG pathway analysis indicated that the PI3K-Akt and focal adhesion were also commonly upregulated DEGs for all 3 days. Ten hub genes were identified by CytoHubba on days 8, 12, and 25. Then, we focused on the association of these hub genes with the Wnt pathways that had been enriched from the protein-protein interaction (PPI) by the Cytoscape plugin MCODE. CONCLUSIONS These findings suggested further insights into the roles of the PI3K/AKT and Wnt pathways and their association with osteogenesis. In addition, the stem cell microenvironment via growth factors, extracellular matrix (ECM), IGF1, IGF2, LPS, and Wnt most likely affect osteogenesis by PI3K/AKT.
Collapse
Affiliation(s)
| | - Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Zandieh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
32
|
Traditional and modern management strategies for rheumatoid arthritis. Clin Chim Acta 2020; 512:142-155. [PMID: 33186593 DOI: 10.1016/j.cca.2020.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022]
Abstract
Rheumatoid arthritis (RA) is a serious disorder of the joints affecting 1 or 2% of the population aged between 20 and 50 years worldwide. RA is the foremost cause of disability in developing and Western populations. It is an autoimmune disease-causing inflammation and pain involving synovial joints. Pro-inflammatory markers, including cytokines, such as interleukin -1 (IL-1), IL-6, IL-7, IL-8, and tumor necrosis factor-α (TNF-α) are involved in RA. RA treatment involves TNF-α blockade, B cell therapy, IL-1 and IL-6 blockade, and angiogenesis inhibition. Synthetic drugs available for the treatment of RA include disease-modifying anti-rheumatic drugs (DMARD), such as cyclophosphamide, sulfasalazine, methotrexate, nonsteroidal anti-inflammatory drugs (NSAIDs), and intramuscular gold. These agents induce adverse hepatorenal effects, hypertension, and gastric ulcers. We found that patients diagnosed with chronic pain, as in RA, and those refractory to contemporary management are most likely to seek traditional medicine. Approximately 60-90% of patients with arthritis use traditional medicines. Therefore, the efficacy and safety of these traditional medicines need to be established. The treatment for RA entails a comprehensive multidisciplinary strategy to reduce pain and inflammation and to restore the activity of joints. The potential medicinal plants exhibiting anti-arthritic and anti-rheumatic pharmacological activity are reviewed here.
Collapse
|
33
|
Muñoz J, Akhavan NS, Mullins AP, Arjmandi BH. Macrophage Polarization and Osteoporosis: A Review. Nutrients 2020; 12:nu12102999. [PMID: 33007863 PMCID: PMC7601854 DOI: 10.3390/nu12102999] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Over 200 million people suffer from osteoporosis worldwide. Individuals with osteoporosis have increased rates of bone resorption while simultaneously having impaired osteogenesis. Most current treatments for osteoporosis focus on anti-resorptive methods to prevent further bone loss. However, it is important to identify safe and cost-efficient treatments that not only inhibit bone resorption, but also stimulate anabolic mechanisms to upregulate osteogenesis. Recent data suggest that macrophage polarization may contribute to osteoblast differentiation and increased osteogenesis as well as bone mineralization. Macrophages exist in two major polarization states, classically activated macrophages (M1) and alternatively activated macrophage (M2) macrophages. The polarization state of macrophages is dependent on molecules in the microenvironment including several cytokines and chemokines. Mechanistically, M2 macrophages secrete osteogenic factors that stimulate the differentiation and activation of pre-osteoblastic cells, such as mesenchymal stem cells (MSC’s), and subsequently increase bone mineralization. In this review, we cover the mechanisms by which M2 macrophages contribute to osteogenesis and postulate the hypothesis that regulating macrophage polarization states may be a potential treatment for the treatment of osteoporosis.
Collapse
|
34
|
Anaya JM, Bollag WB, Hamrick MW, Isales CM. The Role of Tryptophan Metabolites in Musculoskeletal Stem Cell Aging. Int J Mol Sci 2020; 21:ijms21186670. [PMID: 32933099 PMCID: PMC7555967 DOI: 10.3390/ijms21186670] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Although aging is considered a normal process, there are cellular and molecular changes that occur with aging that may be detrimental to health. Osteoporosis is one of the most common age-related degenerative diseases, and its progression correlates with aging and decreased capacity for stem cell differentiation and proliferation in both men and women. Tryptophan metabolism through the kynurenine pathway appears to be a key factor in promoting bone-aging phenotypes, promoting bone breakdown and interfering with stem cell function and osteogenesis; however, little data is available on the impact of tryptophan metabolites downstream of kynurenine. Here we review available data on the impact of these tryptophan breakdown products on the body in general and, when available, the existing evidence of their impact on bone. A number of tryptophan metabolites (e.g., 3-hydroxykynurenine (3HKYN), kynurenic acid (KYNA) and anthranilic acid (AA)) have a detrimental effect on bone, decreasing bone mineral density (BMD) and increasing fracture risk. Other metabolites (e.g., 3-hydroxyAA, xanthurenic acid (XA), picolinic acid (PIA), quinolinic acid (QA), and NAD+) promote an increase in bone mineral density and are associated with lower fracture risk. Furthermore, the effects of other tryptophan breakdown products (e.g., serotonin) are complex, with either anabolic or catabolic actions on bone depending on their source. The mechanisms involved in the cellular actions of these tryptophan metabolites on bone are not yet fully known and will require further research as they are potential therapeutic targets. The current review is meant as a brief overview of existing English language literature on tryptophan and its metabolites and their effects on stem cells and musculoskeletal systems. The search terms used for a Medline database search were: kynurenine, mesenchymal stem cells, bone loss, tryptophan metabolism, aging, and oxidative stress.
Collapse
Affiliation(s)
- Jordan Marcano Anaya
- Universidad Central Del Caribe Laurel, Av. Sta. Juanita, Bayamón PR 00960, Puerto Rico;
| | - Wendy B. Bollag
- Department of Physiology, Augusta University and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA;
| | - Mark W. Hamrick
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA;
| | - Carlos M. Isales
- Departments of Medicine, Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +706-721-0692
| |
Collapse
|
35
|
He B, Yin X, Hao D, Zhang X, Zhang Z, Zhang K, Yang X. Blockade of IL-6 alleviates bone loss induced by modeled microgravity in mice. Can J Physiol Pharmacol 2020; 98:678-683. [PMID: 32787688 DOI: 10.1139/cjpp-2019-0632] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study investigated the effects of blockade of IL-6 on bone loss induced by modeled microgravity (MG). Adult male mice were exposed to hind-limb suspension (HLS) and treated with IL-6-neutralizing antibody (IL-6 nAb) for 4 weeks. HLS in mice led to upregulation of IL-6 expression in both sera and femurs. IL-6 nAb treatment in HLS mice significantly alleviated bone loss, evidenced by increased bone mineral density of whole tibia, trabecular thickness and number, bone volume fraction of proximal tibiae, and ultimate load and stiffness of femoral diaphysis. IL-6 nAb treatment in HLS mice significantly enhanced levels of osteocalcin in sera and reduced levels of deoxypyridinoline. In MC3T3-E1 cells exposed to MG in vitro, IL-6 nAb treatment increased mRNA expression and activity of alkaline phosphatase, mRNA expression of osteopontin and runt-related transcription factor 2, and protein levels of osteoprotegerin and decreased protein levels of receptor activator of the NF-κB ligand. In RAW254.7 cells exposed to MG, IL-6 nAb treatment downregulated mRNA expression of cathepsin K and tartrate-resistant acid phosphatase (TRAP) and reduced numbers of TRAP-positive multinucleated osteoclasts. In conclusion, blockade of IL-6 alleviated the bone loss induced by MG.
Collapse
Affiliation(s)
- Baorong He
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xinhua Yin
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.,Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xuefang Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.,Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Zhen Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.,Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Ke Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.,Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xiaobin Yang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.,Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
36
|
Lehrskov LL, Kjeldsen S, Lyngbæk MP, Chirstensen RH, Wedell-Neergaard AS, Søderlund L, Jørgensen NR, Krogh-Madsen R, Wewer Albrechtsen NJ, Ellingsgaard H. Interleukin-6 May Not Affect Bone Resorption Marker CTX or Bone Formation Marker P1NP in Humans. J Endocr Soc 2020; 4:bvaa093. [PMID: 32793846 PMCID: PMC7414920 DOI: 10.1210/jendso/bvaa093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/03/2020] [Indexed: 01/21/2023] Open
Abstract
Context Interleukin 6 (IL-6) contributes to bone remodeling in preclinical studies. Clinical trials investigating the role of IL-6 in bone remodeling are limited. Objective To investigate if IL-6 regulates bone remodeling in humans. Design Plasma concentrations of the bone resorption marker carboxy-terminal type I collagen crosslinks (CTX) and of the bone formation marker procollagen type 1 N-terminal propeptide (P1NP) were measured during a mixed-meal tolerance test (MMTT) in 3 placebo-controlled human studies. Participants Five healthy individuals participated in study 1; 52 obese individuals, in study 2; and 10 healthy individuals, in study 3. Interventions Study 1 was a single-blinded crossover study consisting of a 1-h infusion of saline (placebo) or the IL-6 receptor antibody tocilizumab followed by an exercise bout. Study 2 was a randomized, double-blinded 12-week exercise training intervention study. Participants received infusions of saline or tocilizumab. Study 3 was a randomized, double-blinded, crossover study consisting of 30 min infusion of saline or IL-6. Main outcomes measures Effect of IL-6 on CTX levels. Results CTX was significantly (P < 0.01) decreased during MMTTs in all 3 studies. Treatment with tocilizumab did not affect exercise or meal induced changes in plasma CTX or P1NP concentrations acutely (study 1) or after a 12-week treatment period (study 2). Exogenous IL-6 had no effect on CTX or P1NP plasma concentrations (study 3). Conclusions IL-6 may not regulate bone remodeling in humans.
Collapse
Affiliation(s)
- Louise L Lehrskov
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sasha Kjeldsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mark P Lyngbæk
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Regitse Højgaard Chirstensen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Sophie Wedell-Neergaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Line Søderlund
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Krogh-Madsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helga Ellingsgaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Li W, Alahdal M, Deng Z, Liu J, Zhao Z, Cheng X, Chen X, Li J, Yin J, Li Y, Wang G, Wang D, Tang K, Zhang J. Molecular functions of FSTL1 in the osteoarthritis. Int Immunopharmacol 2020; 83:106465. [PMID: 32259701 DOI: 10.1016/j.intimp.2020.106465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022]
|
38
|
Wang T, Yu X, He C. Pro-inflammatory Cytokines: Cellular and Molecular Drug Targets for Glucocorticoid-induced-osteoporosis via Osteocyte. Curr Drug Targets 2020; 20:1-15. [PMID: 29618305 DOI: 10.2174/1389450119666180405094046] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/11/2018] [Accepted: 03/21/2018] [Indexed: 02/08/2023]
Abstract
Glucocorticoids are widely used to treat varieties of allergic and autoimmune diseases, however, long-term application results in glucocorticoid-induced osteoporosis (GIOP). Inflammatory cytokines: tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) play important regulatory roles in bone metabolism, but their roles in GIOP remain largely unknown. Osteocytes can modulate the formation and function of both osteoblasts and osteoclasts, directly via gap junctions, or indirectly by transferring molecule signaling. Apoptotic osteocytes release RANKL, HMGB1 and pro-inflammatory cytokines to stimulate osteoclastogenesis. Moreover, osteocytes can secrete FGF23 to regulate bone metabolism. Exposure to high levels of GCs can drive osteocyte apoptosis and influence gap junctions, leading to bone loss. GCs treatment is regarded to produce more FGF23 to inhibit bone mineralization. GCs also disrupt the vascular to decrease osteocyte feasibility and mineral appositional rate, resulting in a decline in bone strength. Apoptotic bodies from osteocytes induced by GCs treatment can enhance production of TNF-α and IL-6. On the other hand, TNF-α and IL-6 show synergistic effects by altering osteocytes signaling towards osteoclasts and osteoblasts. In addition, TNF-α can induce osteocyte apoptosis and attribute to a worsened bone quality in GCs. IL-6 and osteocytes may interact with each other. Therefore, we hypothesize that GCs regulate osteocyteogenesis through TNF-α and IL-6, which are highly expressed around osteocyte undergoing apoptosis. In the present review, we summarized the roles of osteocytes in regulating osteoblasts and osteoclasts. Furthermore, the mechanism of GCs altered relationship between osteocytes and osteoblasts/osteoclasts. In addition, we discussed the roles of TNF-α and IL-6 in GIOP by modulating osteocytes. Lastly, we discussed the possibility of using pro-inflammatory signaling pathway as therapeutic targets to develop drugs for GIOP.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
39
|
Zhou Z, Pan C, Wang N, Zhou L, Shan H, Gao Y, Yu X. A high-fat diet aggravates osteonecrosis through a macrophage-derived IL-6 pathway. Int Immunol 2020; 31:263-273. [PMID: 30779845 DOI: 10.1093/intimm/dxz002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 02/11/2019] [Indexed: 12/28/2022] Open
Abstract
Inflammation plays an important role in osteonecrosis. Obesity, a risk factor for osteonecrosis, leads to a chronic inflammatory status. We hypothesized that inflammation mediated the effects of obesity on osteonecrosis and tested our hypothesis in a mouse model of osteonecrosis. We fed mice with a high-fat diet (HFD) for 12 weeks before osteonecrosis induction by methylprednisolone and examined bone structure and IL-6 expression. Then we investigated the effects of IL-6 deletion in mice with osteonecrosis on the HFD. Next, we isolated bone marrow cells and determined the cell types responsible for HFD-induced IL-6 secretion. Finally, we investigated the roles of macrophages and macrophage-driven IL-6 in HFD-mediated effects on osteonecrosis and osteogenesis of bone marrow stromal cells (BMSCs). The HFD lead to exacerbated destruction of the femoral head in mice with osteonecrosis and increased IL-6 expression in macrophages. Il-6 knockout or macrophage depletion suppressed the effects of the HFD on bone damage. When co-cultured with macrophages isolated from HFD-fed mice with osteonecrosis, BMSCs showed reduced viability and suppressed osteogenic differentiation. Our results suggest that macrophage-driven IL-6 bridges obesity and osteonecrosis and inhibition of IL-6 or depletion of macrophage may represent a therapeutic strategy for obesity-associated osteonecrosis.
Collapse
Affiliation(s)
- Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chenhao Pan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Nan Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lihui Zhou
- Department of Orthopaedic Surgery, Xiangshan First People's Hospital, Ningbo, Zhejiang, China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Youshui Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
40
|
Kondrikov D, Elmansi A, Bragg RT, Mobley T, Barrett T, Eisa N, Kondrikova G, Schoeinlein P, Aguilar-Perez A, Shi XM, Fulzele S, Lawrence MM, Hamrick M, Isales C, Hill W. Kynurenine inhibits autophagy and promotes senescence in aged bone marrow mesenchymal stem cells through the aryl hydrocarbon receptor pathway. Exp Gerontol 2020; 130:110805. [PMID: 31812582 PMCID: PMC7861134 DOI: 10.1016/j.exger.2019.110805] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/08/2023]
Abstract
Osteoporosis is an age-related deterioration in bone health that is, at least in part, a stem cell disease. The different mechanisms and signaling pathways that change with age and contribute to the development of osteoporosis are being identified. One key upstream mechanism that appears to target a number of osteogenic pathways with age is kynurenine, a tryptophan metabolite and an endogenous Aryl hydrocarbon receptor (AhR) agonist. The AhR signaling pathway has been reported to promote aging phenotypes across species and in different tissues. We previously found that kynurenine accumulates with age in the plasma and various tissues including bone and induces bone loss and osteoporosis in mice. Bone marrow mesenchymal stem cells (BMSCs) are responsible for osteogenesis, adipogenesis, and overall bone regeneration. In the present study, we investigated the effect of kynurenine on BMSCs, with a focus on autophagy and senescence as two cellular processes that control BMSCs proliferation and differentiation capacity. We found that physiological levels of kynurenine (10 and 100 μM) disrupted autophagic flux as evidenced by the reduction of LC3B-II, and autophagolysosomal production, as well as a significant increase of p62 protein level. Additionally, kynurenine also induced a senescent phenotype in BMSCs as shown by the increased expression of several senescence markers including senescence associated β-galactosidase in BMSCs. Additionally, western blotting reveals that levels of p21, another marker of senescence, also increased in kynurenine-treated BMSCs, while senescent-associated aggregation of nuclear H3K9me3 also showed a significant increase in response to kynurenine treatment. To validate that these effects are in fact due to AhR signaling pathway, we utilized two known AhR antagonists: CH-223191, and 3',4'-dimethoxyflavone to try to block AhR signaling and rescue kynurenine /AhR mediated effects. Indeed, AhR inhibition restored kynurenine-suppressed autophagy levels as shown by levels of LC3B-II, p62 and autophagolysosomal formation demonstrating a rescuing of autophagic flux. Furthermore, inhibition of AhR signaling prevented the kynurenine-induced increase in senescence associated β-galactosidase and p21 levels, as well as blocking aggregation of nuclear H3K9me3. Taken together, our results suggest that kynurenine inhibits autophagy and induces senescence in BMSCs via AhR signaling, and that this may be a novel target to prevent or reduce age-associated bone loss and osteoporosis.
Collapse
Affiliation(s)
- Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Ahmed Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Robert Tailor Bragg
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Tanner Mobley
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Thomas Barrett
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Nada Eisa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Galina Kondrikova
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Patricia Schoeinlein
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Alexandra Aguilar-Perez
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Anatomy and Cell Biology, Indiana University School of Medicine in Indianapolis, IN, United States of America; Department of Cellular and Molecular Biology, School of Medicine, Universidad Central del Caribe, Bayamon 00956, Puerto Rico
| | - Xing-Ming Shi
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States of America; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, United States of America
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States of America
| | - Meghan McGee Lawrence
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States of America
| | - Mark Hamrick
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States of America
| | - Carlos Isales
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States of America; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - William Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America.
| |
Collapse
|
41
|
Abstract
Cytokines and hematopoietic growth factors have traditionally been thought of as regulators of the development and function of immune and blood cells. However, an ever-expanding number of these factors have been discovered to have major effects on bone cells and the development of the skeleton in health and disease (Table 1). In addition, several cytokines have been directly linked to the development of osteoporosis in both animal models and in patients. In order to understand the mechanisms regulating bone cells and how this may be dysregulated in disease states, it is necessary to appreciate the diverse effects that cytokines and inflammation have on osteoblasts, osteoclasts, and bone mass. This chapter provides a broad overview of this topic with extensive references so that, if desired, readers can access specific references to delve into individual topics in greater detail.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Departments of Medicine and Orthopaedic Surgery, UConn Health, Farmington, CT, USA.
| |
Collapse
|
42
|
Fasolino I, Raucci MG, Soriente A, Demitri C, Madaghiele M, Sannino A, Ambrosio L. Osteoinductive and anti-inflammatory properties of chitosan-based scaffolds for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110046. [DOI: 10.1016/j.msec.2019.110046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 01/12/2023]
|
43
|
Chen Y, Wei P, Yu, BS J. Higher concentration of serum C-terminal cross-linking telopeptide of type I collagen is positively related with inflammatory factors in postmenopausal women with H-type hypertension and osteoporosis. Orthop Surg 2019; 11:1135-1141. [PMID: 31823500 PMCID: PMC6904650 DOI: 10.1111/os.12567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/22/2019] [Accepted: 10/08/2019] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To investigate the changes of inflammatory factors and bone metabolism markers in postmenopausal women with H-type hypertension and to assess the relationship between them. METHODS Postmenopausal women who were diagnosed with osteoporosis were selected as observation objects. Participants were divided into three groups: only osteoporosis group (osteoporosis group), hypertension combined with osteoporosis group (hypertension group), and H-type hypertension combined with osteoporosis group (H-type hypertension group). The changes in bone mineral density and bone metabolic markers (osteocalcin [OC], procollagen type I N-terminal propeptide (PINP), and C-terminal cross-linking telopeptide of type I collagen [CTX]) and inflammatory factors (interleukin-6 [IL-6] and tumor necrosis factor-α [TNF-α]) were compared among three groups. RESULTS In the hypertension group and the H-type hypertension group, the bone mineral density of the lumbar spine (0.647 ± 0.038 vs 0.638 ± 0.034 vs 0.668 ± 0.047, P < 0.05) and the femoral neck (0.567 ± 0.047 vs 0.552 ± 0.053 vs 0.618 ± 0.059, P < 0.05) was significantly lower than that in the osteoporosis group. The concentrations of CTX (266.61 ± 64.65 vs 293.09 ± 72.34 vs 235.48 ± 62.85, P < 0.05), IL-6 (44.36 ± 6.45 vs 48.05 ± 8.04 vs 39.06 ± 7.95, P < 0.05) and TNF-α (30.53 ± 6.28 vs 34.52 ± 7.15 vs 28.66 ± 6.19, P < 0.01) in the hypertension group and in the H-type hypertension group were significantly higher than those in the osteoporosis group. The concentrations of OC (30.59 ± 6.43 vs 27.10 ± 6.51, P < 0.05) and PINP (36.36 ± 6.16 vs 33.16 ± 6.77, P < 0.05) in the H-type hypertension group were increased dramatically. The concentration of CTX was positively correlated with the concentration of IL-6 (r = 0.587, P < 0.01) and TNF-α (r = 0.474, P < 0.01) and negatively related with the concentration of OC (r = -0.591, P < 0.01) and PINP (r = -0.646, P < 0.01) and the bone mineral density of the lumbar spine (r = -0.470, P < 0.01) and the femoral neck (r = -0.509, P < 0.01). CONCLUSION Higher concentration of serum CTX is found in postmenopausal women with H-type hypertension, which is positively correlated with inflammatory factors. Besides, H-type hypertension could further enhance the activity of osteoclasts and increase the expressions of inflammatory factors, resulting in the aggravation of osteoporosis.
Collapse
Affiliation(s)
- Yu‐ning Chen
- Department of GeriatricsThird Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Peng Wei
- Department of CardiologyXuzhou Hospital Affiliated to Southeast UniversityXuzhouChina
| | - Jian Yu, BS
- Department of GeriatricsThird Affiliated Hospital of Soochow UniversityChangzhouChina
| |
Collapse
|
44
|
Jeong HM, Kim DJ. Bone Diseases in Patients with Chronic Liver Disease. Int J Mol Sci 2019; 20:4270. [PMID: 31480433 PMCID: PMC6747370 DOI: 10.3390/ijms20174270] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is a frequently observed complication in patients with chronic liver disease, particularly liver cirrhosis and cholestatic liver diseases. In addition, osteoporosis is critical in patients receiving a liver transplant. Nevertheless, few studies have evaluated bone diseases in patients with more frequently observed chronic liver disease, such as chronic viral hepatitis, nonalcoholic fatty liver disease and alcoholic liver disease. Osteoporosis is a disease caused by an imbalance in the activities of osteoblasts and osteoclasts. Over the last few decades, many advances have improved our knowledge of the pathogenesis of osteoporosis. Importantly, activated immune cells affect the progression of osteoporosis, and chronic inflammation may exert an additional effect on the existing pathophysiology of osteoporosis. The microbiota of the intestinal tract may also affect the progression of bone loss in patients with chronic liver disease. Recently, studies regarding the effects of chronic inflammation on dysbiosis in bone diseases have been conducted. However, mechanisms underlying osteoporosis in patients with chronic liver disease are complex and precise mechanisms remain unknown. The following special considerations in patients with chronic liver disease are reviewed: bone diseases in patients who underwent a liver transplant, the association between chronic hepatitis B virus infection treatment and bone diseases, the association between sarcopenia and bone diseases in patients with chronic liver disease, and the association between chronic liver disease and avascular necrosis of the hip. Few guidelines are currently available for the management of low bone mineral density or bone diseases in patients with chronic liver disease. Due to increased life expectancy and therapeutic advances in chronic liver disease, the importance of managing osteoporosis and other bone diseases in patients with chronic liver disease is expected to increase. Consequently, specific guidelines need to be established in the near future.
Collapse
Affiliation(s)
- Hae Min Jeong
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-do 24253, Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Gangwon-do 24253, Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Gangwon-do 24253, Korea.
- Department of Internal Medicine, Hallym University College of Medicine, Seoul 05355, Korea.
| |
Collapse
|
45
|
Yang M, Zhang K, Zhang X, Zhang Z, Yin X, He G, Li L, Yang X, He B. Treatment with hydrogen sulfide donor attenuates bone loss induced by modeled microgravity. Can J Physiol Pharmacol 2019; 97:655-660. [PMID: 30870598 DOI: 10.1139/cjpp-2018-0521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present study was undertaken to explore the therapeutic potential of hydrogen sulfide against bone loss induced by modeled microgravity. Hindlimb suspension (HLS) and rotary wall vessel bioreactor were applied to model microgravity in vivo and in vitro, respectively. Treatment of rats with GYY4137 (a water soluble donor of hydrogen sulfide, 25 mg/kg per day, i.p.) attenuated HLS-induced reduction of bone mineral density in tibiae, and preserved bone structure in tibiae and mechanical strength in femurs. In HLS group, GYY4137 treatment significantly increased levels of osteocalcin in sera. Interestingly, treatment of HLS rats with GYY4137 enhanced osteoblast surface, but had no significant effect on osteoclast surface of proximal tibiae. In MC3T3-E1 cells exposed to modeled microgravity, GYY4137 stimulated transcriptional levels of runt-related transcription factor 2 and enhanced osteoblastic differentiation, as evidenced by increased mRNA expression and activity of alkaline phosphatase. HLS in rats led to enhanced levels of interleukin 6 in sera, skeletal muscle, and tibiae, which could be attenuated by GYY4137 treatment. Our study showed that GYY4137 preserved bone structure in rats exposed to HLS and promoted osteoblastic differentiation in MC3T3-E1 cells under modeled microgravity.
Collapse
Affiliation(s)
- Ming Yang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054, China
| | - Ke Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054, China
| | - Xuefang Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054, China
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054, China
| | - Zhen Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054, China
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054, China
| | - Xinhua Yin
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054, China
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054, China
| | - Gaole He
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054, China
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054, China
| | - Liang Li
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054, China
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054, China
| | - Xiaobin Yang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054, China
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054, China
| | - Baorong He
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054, China
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054, China
| |
Collapse
|
46
|
Stem cells in Osteoporosis: From Biology to New Therapeutic Approaches. Stem Cells Int 2019; 2019:1730978. [PMID: 31281368 PMCID: PMC6589256 DOI: 10.1155/2019/1730978] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a systemic disease that affects the skeleton, causing reduction of bone density and mass, resulting in destruction of bone microstructure and increased risk of bone fractures. Since osteoporosis is a disease affecting the elderly and the aging of the world's population is constantly increasing, it is expected that the incidence of osteoporosis and its financial burden on the insurance systems will increase continuously and there is a need for more understanding this condition in order to prevent and/or treat it. At present, available drug therapy for osteoporosis primarily targets the inhibition of bone resorption and agents that promote bone mineralization, designed to slow disease progression. Safe and predictable pharmaceutical means to increase bone formation have been elusive. Stem cell therapy of osteoporosis, as a therapeutic strategy, offers the promise of an increase in osteoblast differentiation and thus reversing the shift towards bone resorption in osteoporosis. This review is focused on the current views regarding the implication of the stem cells in the cellular and physiologic mechanisms of osteoporosis and discusses data obtained from stem cell-based therapies of osteoporosis in experimental animal models and the possibility of their future application in clinical trials.
Collapse
|
47
|
Harmer D, Falank C, Reagan MR. Interleukin-6 Interweaves the Bone Marrow Microenvironment, Bone Loss, and Multiple Myeloma. Front Endocrinol (Lausanne) 2019; 9:788. [PMID: 30671025 PMCID: PMC6333051 DOI: 10.3389/fendo.2018.00788] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
The immune system is strongly linked to the maintenance of healthy bone. Inflammatory cytokines, specifically, are crucial to skeletal homeostasis and any dysregulation can result in detrimental health complications. Interleukins, such as interleukin 6 (IL-6), act as osteoclast differentiation modulators and as such, must be carefully monitored and regulated. IL-6 encourages osteoclastogenesis when bound to progenitors and can cause excessive osteoclastic activity and osteolysis when overly abundant. Numerous bone diseases are tied to IL-6 overexpression, including rheumatoid arthritis, osteoporosis, and bone-metastatic cancers. In the latter, IL-6 can be released with growth factors into the bone marrow microenvironment (BMM) during osteolysis from bone matrix or from cancer cells and osteoblasts in an inflammatory response to cancer cells. Thus, IL-6 helps create an ideal microenvironment for oncogenesis and metastasis. Multiple myeloma (MM) is a blood cancer that homes to the BMM and is strongly tied to overexpression of IL-6 and bone loss. The roles of IL-6 in the progression of MM are discussed in this review, including roles in bone homing, cancer-associated bone loss, disease progression and drug resistance. MM disease progression often includes the development of drug-resistant clones, and patients commonly struggle with reoccurrence. As such, therapeutics that specifically target the microenvironment, rather than the cancer itself, are ideal and IL-6, and its myriad of downstream signaling partners, are model targets. Lastly, current and potential therapeutic interventions involving IL-6 and connected signaling molecules are discussed in this review.
Collapse
Affiliation(s)
- Danielle Harmer
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Carolyne Falank
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Michaela R. Reagan
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- School of Medicine, Tufts University, Boston, MA, United States
| |
Collapse
|
48
|
Rafique S, Hingorjo MR, Mumtaz M, Qureshi MA. The relationship of 1,25-dihydroxyvitamin D and Vitamin D binding protein in periodontitis. Pak J Med Sci 2019; 35:847-851. [PMID: 31258606 PMCID: PMC6572958 DOI: 10.12669/pjms.35.3.482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/10/2019] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE This study was conducted to explore the relationship between 1,25-dihydroxy vitamin D (1,25(OH)2D) and Vitamin-D binding protein (DBP) in patients with periodontitis and healthy controls. METHODS Seventy-five periodontitis cases were recruited from the dental OPD of Dow University of Health Sciences, Karachi. Diagnostic criteria of periodontitis were followed according to the probe pocket depth and clinical attachment loss. Seventy-five periodontal healthy controls were selected from the faculty and students of same university. Serum levels of 1,25(OH)2D and DBP were determined by ELISA. RESULTS Significantly low levels of 1,25(OH)2D and high levels of serum DBP were observed in periodontitis patients compared to healthy controls (p<0.05), with levels of DBP increasing significantly with the severity of periodontitis (p=0.005). Concentrations of DBP correlated positively with 1,25(OH)2D, especially in cases with periodontitis (r =0.780; p<0.001). CONCLUSION Within the limits of the study, we conclude that low 1,25(OH)2D levels and high DBP levels are associated with periodontitis.
Collapse
Affiliation(s)
- Sara Rafique
- Dr. Sara Rafique, MPhil, Department of Physiology, Jinnah Medical & Dental College, Karachi, Pakistan
| | - Mozaffer Rahim Hingorjo
- Prof. Mozaffer Rahim Hingorjo, PhD, Department of Physiology, Jinnah Medical & Dental College, Karachi, Pakistan
| | - Mahparah Mumtaz
- Dr. Mahparah Mumtaz, BDS, Department of Physiology, Jinnah Medical & Dental College, Karachi, Pakistan
| | - Masood Anwar Qureshi
- Prof. Masood Anwar Qureshi, PhD, Department of Physiology, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
49
|
Simão M, Camacho A, Ostertag A, Cohen-Solal M, Pinto IJ, Porto G, Hang Korng E, Cancela ML. Iron-enriched diet contributes to early onset of osteoporotic phenotype in a mouse model of hereditary hemochromatosis. PLoS One 2018; 13:e0207441. [PMID: 30427936 PMCID: PMC6241130 DOI: 10.1371/journal.pone.0207441] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/31/2018] [Indexed: 01/12/2023] Open
Abstract
Osteoporosis is associated with chronic iron overload secondary to hereditary hemochromatosis (HH), but the causative mechanisms are incompletely understood. The main objective of this study was to investigate the role of dietary iron on osteoporosis, using as biological model the Hfe-KO mice, which have a systemic iron overload. We showed that these mice show an increased susceptibility for developing a bone loss phenotype compared to WT mice, which can be exacerbated by an iron rich diet. The dietary iron overload caused an increase in inflammation and iron incorporation within the trabecular bone in both WT and Hfe-KO mice. However, the osteoporotic phenotype was only evident in Hfe-KO mice fed the iron-enriched diet. This appeared to result from an imbalance between bone formation and bone resorption driven by iron toxicity associated to Hfe-KO and confirmed by a decrease in bone microarchitecture parameters (identified by micro-CT) and osteoblast number. These findings were supported by the observed downregulation of bone metabolism markers and upregulation of ferritin heavy polypeptide 1 (Fth1) and transferrin receptor-1 (Tfrc), which are associated with iron toxicity and bone loss phenotype. In WT mice the iron rich diet was not enough to promote a bone loss phenotype, essentially due to the concomitant depression of bone resorption observed in those animals. In conclusion the dietary challenge influences the development of osteoporosis in the HH mice model thus suggesting that the iron content in the diet may influence the osteoporotic phenotype in systemic iron overload conditions.
Collapse
Affiliation(s)
- Márcio Simão
- PhD Program in Biomedical Sciences, Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - António Camacho
- Department of Orthopedics, Hospital de Cascais, Alcabideche, Portugal
| | - Agnès Ostertag
- Inserm U1132, Bioscar, Hôpital Lariboisiére, pôle locomoteur, service de rhumatologie, Université Paris 7 Denis Diderot, Paris, France
| | - Martine Cohen-Solal
- Inserm U1132, Bioscar, Hôpital Lariboisiére, pôle locomoteur, service de rhumatologie, Université Paris 7 Denis Diderot, Paris, France
| | - I. Jorge Pinto
- Basic and Clinical Research on Iron Biology, Institute for Molecular and Cell Biology (IBMC) and I3S –Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Graça Porto
- Basic and Clinical Research on Iron Biology, Institute for Molecular and Cell Biology (IBMC) and I3S –Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Hematology Service, Hospital de Santo António, Centro Hospitalar do Porto, Porto, Portugal
| | - Ea Hang Korng
- Inserm U1132, Bioscar, Hôpital Lariboisiére, pôle locomoteur, service de rhumatologie, Université Paris 7 Denis Diderot, Paris, France
| | - M. Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
- Algarve Biomedical Center, University of Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
50
|
Alam I, Oakes DK, Reilly AM, Billingsley C, Sbeta S, Gerard-O'Riley RL, Acton D, Sato A, Bellido T, Econs MJ. Overexpression of WNT16 Does Not Prevent Cortical Bone Loss Due to Glucocorticoid Treatment in Mice. JBMR Plus 2018; 3:e10084. [PMID: 31044183 PMCID: PMC6478588 DOI: 10.1002/jbm4.10084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022] Open
Abstract
Glucocorticoids (GC) are commonly used for the treatment of a wide variety of autoimmune, pulmonary, gastrointestinal, and malignancy conditions. One of the devastating side effects of GC use is osteoporotic fractures, particularly in the spine and hip. Bisphosphonates (BP) are the most commonly prescribed pharmacological agents for the prevention and treatment of GC-induced osteoporosis (GIO). However, GIO is marked by reduced bone formation and BP serves mainly to decrease bone resorption. The WNT signaling pathway plays a major role in bone and mineral homeostasis. Previously, we demonstrated that overexpression of WNT16 in mice led to higher bone mineral density and improved bone microarchitecture and strength. We hypothesized that WNT16 overexpression would prevent bone loss due to glucocorticoid treatment in mice. To test our hypothesis, we treated adult wild-type and WNT16-transgenic mice with vehicle and GC (prednisolone; 2.1 mg/kg body weight) via slow-release pellets for 28 days. We measured bone mass and microarchitecture by dual-energy X-ray absorptiometry (DXA) and micro-CT, and performed gene expression and serum biochemical analysis. We found that GC treatment compared with the vehicle significantly decreased femoral areal bone mineral density (aBMD), bone mineral content (BMC), and cortical bone area and thickness in both wild-type and transgenic female mice. In contrast, the trabecular bone parameters at distal femur were not significantly changed by GC treatment in male and female mice for both genotypes. Further, we observed significantly lower level of serum P1NP and a tendency of higher level of serum TRAP in wild-type and transgenic mice due to GC treatment in both sexes. Gene expression analysis showed lower mRNA levels of Wnt16, Opg, and Opg/Rankl ratio in GC-treated female mice for both genotypes compared with the sex-matched vehicle-treated mice. These data suggest that although WNT16 overexpression resulted in higher baseline bone mineral density and bone volume per trabecular volume (BV/TV) in the transgenic mice, this was insufficient to prevent bone loss in mice due to glucocorticoid treatment.
Collapse
Affiliation(s)
- Imranul Alam
- Department of Medicine Indiana University School of Medicine Indianapolis IN USA.,Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA
| | - Dana K Oakes
- Department of Medicine Indiana University School of Medicine Indianapolis IN USA
| | - Austin M Reilly
- Department of Medicine Indiana University School of Medicine Indianapolis IN USA
| | - Caylin Billingsley
- Department of Medicine Indiana University School of Medicine Indianapolis IN USA
| | - Shahed Sbeta
- Department of Medicine Indiana University School of Medicine Indianapolis IN USA
| | | | - Dena Acton
- Department of Medicine Indiana University School of Medicine Indianapolis IN USA
| | - Amy Sato
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA.,Department of Anatomy and Cell Biology Indiana University School of Medicine Indianapolis IN USA
| | - Teresita Bellido
- Department of Medicine Indiana University School of Medicine Indianapolis IN USA.,Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA.,Department of Anatomy and Cell Biology Indiana University School of Medicine Indianapolis IN USA
| | - Michael J Econs
- Department of Medicine Indiana University School of Medicine Indianapolis IN USA.,Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA.,Department of Medical and Molecular Genetics Indiana University School of Medicine Indianapolis IN USA
| |
Collapse
|