1
|
Sarkis S, Chamard C, Johansen B, Daien V, Michon F. Challenging glaucoma with emerging therapies: an overview of advancements against the silent thief of sight. Front Med (Lausanne) 2025; 12:1527319. [PMID: 40206485 PMCID: PMC11979169 DOI: 10.3389/fmed.2025.1527319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Glaucoma, a leading cause of irreversible blindness, represents a significant challenge in ophthalmology. This review examines recent advancements in glaucoma treatment, focusing on innovative medications and creative strategies. While new agents offer promising methods for lowering intraocular pressure (IOP), they also pose challenges related to efficacy and side effects. Alongside IOP reduction, emerging neuroprotective approaches are being explored to safeguard retinal ganglion cells (RGCs) from glaucoma-induced damage. The review also evaluates the potential of novel drug delivery systems, such as biodegradable implants and nanoparticles, to enhance treatment effectiveness and patient adherence. Additionally, it highlights the role of personalized medicine in identifying new biomarkers and customizing therapies based on individual genetic and environmental factors.
Collapse
Affiliation(s)
- Solange Sarkis
- Institute for Neurosciences of Montpellier, Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
- Laboratoires Théa, Clermont-Ferrand, France
| | - Chloé Chamard
- Institute for Neurosciences of Montpellier, Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
| | | | - Vincent Daien
- Institute for Neurosciences of Montpellier, Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
- Sydney Medical School, The Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Frederic Michon
- Institute for Neurosciences of Montpellier, Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
| |
Collapse
|
2
|
Wang Y, Lv Z, Chen Y, Cen X, Zhang H, Chen D. A high-fat plus high-sucrose diet induces age-related macular degeneration in an experimental rabbit model. Dis Model Mech 2024; 17:dmm052015. [PMID: 39463155 PMCID: PMC11625886 DOI: 10.1242/dmm.052015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness. Metabolic disorders and diets are risk factors. We compared lipid profiles and retinal phenotypes with long-term feeding of four diets in male Chinchilla rabbits. Animals were fed a normal diet (ND), high-fat diet (HFD), high-sucrose diet (HSD) or a high-fat plus high-sucrose diet (HFSD) for 6 months. Eyes were examined using multimodal imaging modalities and electroretinograms. Retinal sections were analyzed using H&E staining, Toluidine Blue staining, immunostaining and transmission electron microscopy. Lipids and complement C3 protein (C3) in serum or aqueous humor were measured. RNA sequencing was performed to evaluate the retinal transcriptomes. HFD and HSD had minor effects on lipid profiles but, when fed concomitantly, synergistically induced severe dyslipidemia. None of the four diets caused obesity. HFSD induced retinal lesions, such as reticular pseudodrusen (RPDs) and other pigmentary abnormalities. RPD-like lesions were mainly lipid droplets around cells of the retinal pigment epithelium. HFSD also induced elevated levels of ocular C3 and reduced the density of retinal vessels. In conclusion, HFD and HSD can - when combined - induce normal-weight dyslipidemia and RPD-like retinal lesions. HFSD-fed male Chinchilla rabbits are a good model of early AMD.
Collapse
Affiliation(s)
- Yujiao Wang
- Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences, Eye Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, West China-Frontier Pharma Tech Co., Ltd., Chengdu 610041, China
| | - Zhongping Lv
- Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences, Eye Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongjiang Chen
- Waterloo eye institute, School of Optometry and Vision Science, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, West China-Frontier Pharma Tech Co., Ltd., Chengdu 610041, China
| | - Hui Zhang
- National Chengdu Center for Safety Evaluation of Drugs, West China-Frontier Pharma Tech Co., Ltd., Chengdu 610041, China
| | - Danian Chen
- Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences, Eye Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Arslan H, Yorgancilar N, Kose O, Aslan MG, Altin A, Bayrakdar SK, Yemenoglu H, Findik H, Yilmaz A. Periodontitis Provokes Retinal Neurodegenerative Effects of Metabolic Syndrome: A Cross-Sectional Study. Dent J (Basel) 2024; 12:351. [PMID: 39590401 PMCID: PMC11592826 DOI: 10.3390/dj12110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND This cross-sectional study aims to investigate the retino-choroidal degenerative effects of periodontitis, metabolic syndrome (Mets), and the combination of these diseases using optical coherence tomography (OCT) measurements. METHODS Ninety-two patients selected according to inclusion criteria were divided into four groups: systemically and periodontally healthy (control), systemically healthy periodontitis (PD), periodontally healthy metabolic syndrome (MetS), and periodontitis and metabolic syndrome combined (PD-MetS). The systemic inflammatory-oxidative effects of periodontitis and MetS were biochemically evaluated using the serum TNF-α level, IL-1β/IL-10 ratio, and oxidative stress index (OSI: TOS/TAS). Retinal (AMT, pRNFLT, and GCL + T) and choroidal (SFCT) morphometric measurements and vascular evaluations (foveal capillary density) were performed via OCT Angio with swept-source technology. RESULTS Both periodontitis and Mets cause systemic inflammatory stress characterized by significant increases in the IL-1β/IL-10 ratio and OSI (p < 0.05). Compared to the control group, the AMT was significantly thinner in the MetS group, the pRNFLT was significantly thinner in the PD-MetS group, and the SFCT was significantly thinner in both groups (p < 0.05). The GCL+ was slightly thicker in the Mets groups. (p > 0.05) Foveal capillary density did not differ significantly among the groups. (p > 0.05). CONCLUSIONS Periodontitis-related inflammatory stress alone causes changes in retinal and subfoveal choroidal thicknesses that are not statistically significant. On the other hand, when combined with Mets, it may significantly provoke the retinal neurodegenerative effects of this disease.
Collapse
Affiliation(s)
- Hatice Arslan
- Department of Periodontology, School of Dentistry, Recep Tayyip Erdogan University, Rize 53100, Turkey; (H.A.); (O.K.); (H.Y.)
| | - Nur Yorgancilar
- Department of Periodontology, School of Dentistry, Recep Tayyip Erdogan University, Rize 53100, Turkey; (H.A.); (O.K.); (H.Y.)
| | - Oguz Kose
- Department of Periodontology, School of Dentistry, Recep Tayyip Erdogan University, Rize 53100, Turkey; (H.A.); (O.K.); (H.Y.)
| | - Mehmet Gokhan Aslan
- Department of Ophthalmology, School of Medicine, Recep Tayyip Erdogan University, Rize 53100, Turkey; (M.G.A.); (H.F.)
| | - Ahmet Altin
- Department of Periodontology, School of Dentistry, Istanbul Kent University, Istanbul 34433, Turkey;
| | - Sevda Kurt Bayrakdar
- Department of Periodontology, School of Dentistry, Eskişehir Osmangazi University, Eskisehir 26040, Turkey;
| | - Hatice Yemenoglu
- Department of Periodontology, School of Dentistry, Recep Tayyip Erdogan University, Rize 53100, Turkey; (H.A.); (O.K.); (H.Y.)
| | - Huseyin Findik
- Department of Ophthalmology, School of Medicine, Recep Tayyip Erdogan University, Rize 53100, Turkey; (M.G.A.); (H.F.)
| | - Adnan Yilmaz
- Department of Biochemistry, School of Medicine, Recep Tayyip Erdogan University, Rize 53100, Turkey;
| |
Collapse
|
4
|
Kang T, Zhou Y, Fan C, Zhang Y, Yang Y, Jiang J. Genetic association of lipid traits and lipid-related drug targets with normal tension glaucoma: a Mendelian randomization study for predictive preventive and personalized medicine. EPMA J 2024; 15:511-524. [PMID: 39239107 PMCID: PMC11371969 DOI: 10.1007/s13167-024-00373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/05/2024] [Indexed: 09/07/2024]
Abstract
Background Glaucoma is the leading cause of irreversible blindness worldwide. Normal tension glaucoma (NTG) is a distinct subtype characterized by intraocular pressures (IOP) within the normal range (< 21 mm Hg). Due to its insidious onset and optic nerve damage, patients often present with advanced conditions upon diagnosis. NTG poses an additional challenge as it is difficult to identify with normal IOP, complicating its prediction, prevention, and treatment. Observational studies suggest a potential association between NTG and abnormal lipid metabolism, yet conclusive evidence establishing a direct causal relationship is lacking. This study aims to explore the causal link between serum lipids and NTG, while identifying lipid-related therapeutic targets. From the perspective of predictive, preventive, and personalized medicine (PPPM), clarifying the role of dyslipidemia in the development of NTG could provide a new strategy for primary prediction, targeted prevention, and personalized treatment of the disease. Working hypothesis and methods In our study, we hypothesized that individuals with dyslipidemia may be more susceptible to NTG due to a dysregulation of microvasculature in optic nerve head. To verify the working hypothesis, univariable Mendelian randomization (UVMR) and multivariable Mendelian randomization (MVMR) were utilized to estimate the causal effects of lipid traits on NTG. Drug target MR was used to explore possible target genes for NTG treatment. Genetic variants associated with lipid traits and variants of genes encoding seven lipid-related drug targets were extracted from the Global Lipids Genetics Consortium genome-wide association study (GWAS). GWAS data for NTG, primary open angle glaucoma (POAG), and suspected glaucoma (GLAUSUSP) were obtained from FinnGen Consortium. For apolipoproteins, we used summary statistics from a GWAS study by Kettunen et al. in 2016. For metabolic syndrome, summary statistics were extracted from UK Biobank participants. In the end, these findings could help identify individuals at risk of NTG by screening for lipid dyslipidemia, potentially leading to new targeted prevention and personalized treatment approaches. Results Genetically assessed high-density cholesterol (HDL) was negatively associated with NTG risk (inverse-variance weighted [IVW] model: OR per SD change of HDL level = 0.64; 95% CI, 0.49-0.85; P = 1.84 × 10-3), and the causal effect was independent of apolipoproteins and metabolic syndrome (IVW model: OR = 0.29; 95% CI, 0.14-0.60; P = 0.001 adjusted by ApoB and ApoA1; OR = 0.70; 95% CI, 0.52-0.95; P = 0.023 adjusted by BMI, HTN, and T2DM). Triglyceride (TG) was positively associated with NTG risk (IVW model: OR = 1.62; 95% CI, 1.15-2.29; P = 6.31 × 10-3), and the causal effect was independent of metabolic syndrome (IVW model: OR = 1.66; 95% CI, 1.18-2.34; P = 0.003 adjusted by BMI, HTN, and T2DM), but not apolipoproteins (IVW model: OR = 1.71; 95% CI, 0.99-2.95; P = 0.050 adjusted by ApoB and ApoA1). Genetic mimicry of apolipoprotein B (APOB) enhancement was associated with lower NTG risks (IVW model: OR = 0.09; 95% CI, 0.03-0.26; P = 9.32 × 10-6). Conclusions Our findings supported dyslipidemia as a predictive causal factor for NTG, independent of other factors such as metabolic comorbidities. Among seven lipid-related drug targets, APOB is a potential candidate drug target for preventing NTG. Personalized health profiles can be developed by integrating lipid metabolism with life styles, visual quality of life such as reading, driving, and walking. This comprehensive approach will aid in shifting from reactive medical services to PPPM in the management of NTG. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00373-5.
Collapse
Affiliation(s)
- Tianyi Kang
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Yi Zhou
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Cong Fan
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Yue Zhang
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Yu Yang
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Jian Jiang
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| |
Collapse
|
5
|
Polat E, Celik E, Togac M, Sahin A. Retinal neurodegeneration in metabolic syndrome: a spectral optical coherence tomography study. Int J Ophthalmol 2023; 16:224-232. [PMID: 36816217 PMCID: PMC9922630 DOI: 10.18240/ijo.2023.02.08] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 10/25/2022] [Indexed: 02/05/2023] Open
Abstract
AIM To evaluate the effects of metabolic syndrome (MetS) on retinal neurodegeneration by optical coherence tomography (OCT). METHODS Patients diagnosed as MetS were compared with the age and sex-matched healthy control group (CG). Waist circumference measurements, fasting serological biochemical tests, and systemic blood pressures of all participants were evaluated. The MetS group was divided into 3 subgroups according to the number of MetS components: hypertension, diabetes mellitus, dyslipidemia (low-, high-density lipoprotein, hypertriglyceridemia), and visceral obesity findings; 3-component MetS3, 4-component MetS4, and all-component MetS5. All patients underwent complete eye examination and spectral OCT retinal imaging. RESULTS Totally 58 eyes of 58 patients were included in the MetS group and 63 eyes of 63 age and sex-matched healthy subjects were included in CG. MetS group was composed of 22 subjects in MetS3, 21 subjects in MetS4, and 15 subjects in the MetS5 subgroup. Mean foveal thickness (MetS, 218.7±23.1 µm vs CG, 228.8±21.9 µm, P=0.015), mean inferior (MetS, 283.4±17.0 µm vs CG, 288.7±38.4 µm, P=0.002), superior (MetS, 287.0±18.5 µm vs CG 297.3±17.1 µm, P=0.001), nasal (MetS 287.3±16.7 µm vs CG 297.9±13.9 µm, P=0.000) and temporal (274.5±17.6 µm vs CG 285.6±13.6 µm, P=0.000) thickness in the 3 mm Early Treatment of Diabetic Retinopathy Study (ETDRS) circle was significantly lower in the MetS group. There was no statistically significant difference in the mean inferior, superior, nasal, and temporal thickness of 6 mm ETDRS circle, total macular volume, peripapillary and macular retinal nerve fiber layer, macular ganglion cell layer with inner plexiform layer, and ganglion cell complex. No statistically significant difference was found in these values between the MetS3, MetS4, and the MetS5 groups. CONCLUSION A significant reduction in central macular region thickness in MetS is detected and macular thickness is more susceptible to MetS induced neurodegeneration than peripapillary retinal nerve fiber layer.
Collapse
Affiliation(s)
- Evrim Polat
- Department of Ophthalmology, Tekirdag City Hospital, Tekirdag 59100, Turkey
| | - Ekrem Celik
- Department of Ophthalmology, Tekirdag Namik Kemal University, Faculty of Medicine, Tekirdag 59100, Turkey
| | - Mesut Togac
- Department of Ophthalmology, Tekirdag City Hospital, Tekirdag 59100, Turkey
| | - Afsun Sahin
- Department of Ophthalmology, Koc University Medical School, Istanbul 34010, Turkey,Research Center for Translational Medicine, Koc University, Istanbul 34450, Turkey
| | | | | |
Collapse
|
6
|
Peña JS, Vazquez M. Harnessing the Neuroprotective Behaviors of Müller Glia for Retinal Repair. FRONT BIOSCI-LANDMRK 2022; 27:169. [PMID: 35748245 PMCID: PMC9639582 DOI: 10.31083/j.fbl2706169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Progressive and irreversible vision loss in mature and aging adults creates a health and economic burden, worldwide. Despite the advancements of many contemporary therapies to restore vision, few approaches have considered the innate benefits of gliosis, the endogenous processes of retinal repair that precede vision loss. Retinal gliosis is fundamentally driven by Müller glia (MG) and is characterized by three primary cellular mechanisms: hypertrophy, proliferation, and migration. In early stages of gliosis, these processes have neuroprotective potential to halt the progression of disease and encourage synaptic activity among neurons. Later stages, however, can lead to glial scarring, which is a hallmark of disease progression and blindness. As a result, the neuroprotective abilities of MG have remained incompletely explored and poorly integrated into current treatment regimens. Bioengineering studies of the intrinsic behaviors of MG hold promise to exploit glial reparative ability, while repressing neuro-disruptive MG responses. In particular, recent in vitro systems have become primary models to analyze individual gliotic processes and provide a stepping stone for in vivo strategies. This review highlights recent studies of MG gliosis seeking to harness MG neuroprotective ability for regeneration using contemporary biotechnologies. We emphasize the importance of studying gliosis as a reparative mechanism, rather than disregarding it as an unfortunate clinical prognosis in diseased retina.
Collapse
Affiliation(s)
- Juan S. Peña
- Department of Biomedical Engineering, Rutgers, The State
University of New Jersey, Piscataway (08854), New Jersey, USA
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State
University of New Jersey, Piscataway (08854), New Jersey, USA
| |
Collapse
|
7
|
Arafat EA, Youssef EMI, Khalaf HA. The possible alleviating effect of garlic supplement on the neural retina in a rat model of hypercholesterolemia: a histological and immunohistochemical study. Eur J Histochem 2021; 65:3322. [PMID: 34911286 PMCID: PMC8696193 DOI: 10.4081/ejh.2021.3322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
The purpose of this work was to prove that oxidative stress is the main mechanism responsible for retinal neurodegenerative changes, subsequent apoptosis, and inflammatory cytokine release in rats fed with a high cholesterol diet (HCD) and determine the role of garlic in alleviating these changes. Forty rats were equally divided into four groups: control, garlic-treated (positive control), HCD, and HCD + garlic-treated (HCD + G). By the end of the experiment (24 weeks) blood samples were collected for assessment of serum lipid profile, oxidative stress parameters, and plasma levels of IL-6 and TNF-α. Both eyes of the rats were enucleated; one was used for light microscopic examination and the other for electron microscopic examination. There was a significant increase in the levels of serum lipids, oxidative stress parameters, IL-6 and TNF-α, and area of expression of caspase-3 in the HCD group compared to both the control and HCD + G groups. Histological examination revealed degenerative changes in all layers of the neural retina in the HCD group. Garlic administration resulted in a significant improvement in the biochemical, immunohistochemical, and histological characteristics of hypercholesterolemic rats. These findings support the hypotheses that garlic has strong antioxidant, anti-apoptotic, and anti-inflammatory properties. Garlic ameliorates the neurodegenerative changes in the neural retina of hypercholesteremic rats.
Collapse
Affiliation(s)
- Eetmad A Arafat
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura.
| | - Eman M I Youssef
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Cairo.
| | - Hanaa A Khalaf
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura.
| |
Collapse
|
8
|
Bradley AE, Wancket LM, Rinke M, Gruebbel MM, Saladino BH, Schafer K, Katsuta O, Garcia B, Chanut F, Hughes K, Nelson K, Himmel L, McInnes E, Schucker A, Uchida K. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Nonproliferative and Proliferative Lesions of the Rabbit. J Toxicol Pathol 2021; 34:183S-292S. [PMID: 34712007 PMCID: PMC8544166 DOI: 10.1293/tox.34.183s] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for
Lesions Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of
Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North
America (STP) to develop an internationally accepted nomenclature for proliferative and
non-proliferative lesions in laboratory animals. The purpose of this publication is to
provide a standardized nomenclature for classifying microscopic lesions observed in most
tissues and organs from the laboratory rabbit used in nonclinical safety studies. Some of
the lesions are illustrated by color photomicrographs. The standardized nomenclature
presented in this document is also available electronically on the internet
(http://www.goreni.org/). Sources of material included histopathology databases from
government, academia, and industrial laboratories throughout the world. Content includes
spontaneous lesions as well as lesions induced by exposure to test materials. Relevant
infectious and parasitic lesions are included as well. A widely accepted and utilized
international harmonization of nomenclature for lesions in laboratory animals will provide
a common language among regulatory and scientific research organizations in different
countries and increase and enrich international exchanges of information among
toxicologists and pathologists.
Collapse
Affiliation(s)
- Alys E Bradley
- Charles River Laboratories Edinburgh Ltd, Tranent, Scotland, UK
| | | | | | | | | | | | | | - Begonya Garcia
- Charles River Laboratories Edinburgh Ltd, Tranent, Scotland, UK
| | - Franck Chanut
- Sanofi, 1 Avenue Pierre Brosselette, 91380 Chilly-Mazarin, France
| | | | | | - Lauren Himmel
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Adrienne Schucker
- American Preclinical Services, LLC, 8945 Evergreen Blvd, Minneapolis, MN 55433
| | | |
Collapse
|
9
|
Wang M, Wang J, Liu M, Chen G. Fluvastatin protects neuronal cells from hydrogen peroxide-induced toxicity with decreasing oxidative damage and increasing PI3K/Akt/mTOR signalling. J Pharm Pharmacol 2021; 73:515-521. [PMID: 33793833 DOI: 10.1093/jpp/rgaa058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/09/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Statins, the most effective lipoprotein-cholesterol lowering drugs, are widely used for patients with cardiovascular disease. The pleiotropic effects of statins have been recently gained attention for their both beneficial and deleterious effects on neurons. We investigated the effects and molecular mechanisms of fluvastatin at clinically relevant concentrations on neuronal cells after induction of oxidative stress. MATERIALS AND METHODS Both SH-SY5Y, a representative cell line for in vitro neurone model, and human primary neuronal cells were applied. Cellular and biochemical assays were used to investigate the effects of fluvastatin in neurone cells. RESULTS Fluvastatin significantly restored H2O2-induced neuronal death in a dose-dependent manner (P < 0.05) and reversed H2O2-induced oxidative stress and damage via restoring mitochondrial function in neuronal cells (P < 0.05). Although fluvastatin inhibited prenylation in neuronal cells, the protective effects of fluvastatin against H2O2-induced neuronal cytotoxicity are not associated with prenylation inhibition or AMPK activation. In contrast, PI3K/Akt/mTOR activation mediated fluvastatin's neuroprotective activity (P < 0.05). CONCLUSIONS Our work demonstrates the beneficial effects of fluvastatin in neuronal cells under pathological conditions, and, furthermore, this is via prenylation-independent activation of PI3K/Akt/mTOR pathway. Our data highlights the functional significance of the PI3K/Akt/mTOR pathway in neuronal cells in response to oxidative stress.
Collapse
Affiliation(s)
- Miaoxia Wang
- Department of Neurology, Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha, People's Republic of China
| | - Jia Wang
- Clinical Epidemiology Laboratory, Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha, People's Republic of China
| | - Meirong Liu
- Intensive Care Unit (Stroke Division), Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha, People's Republic of China
| | - Gang Chen
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha, People's Republic of China
| |
Collapse
|
10
|
Ishibashi F, Tavakoli M. Thinning of Macular Neuroretinal Layers Contributes to Sleep Disorder in Patients With Type 2 Diabetes Without Clinical Evidences of Neuropathy and Retinopathy. Front Endocrinol (Lausanne) 2020; 11:69. [PMID: 32184758 PMCID: PMC7058995 DOI: 10.3389/fendo.2020.00069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/03/2020] [Indexed: 12/15/2022] Open
Abstract
Aims: To investigate the impact of thinning at individual grids of macular neuroretinal layers, clinical factors, and inadequate light exposure on the specific components of sleep disorder in patients with type 2 diabetes. Methods: One hundred twenty-four patients with type 2 diabetes without clinical evidences of diabetic retinopathy and neuropathy (HbA1c: 8.3%, diabetes duration; 8.7 years) and 54 age- and sex-matched control subjects (HbA1c: 5.6%) underwent detailed clinical, neurological, and ophthalmological examinations. The sleep disorder was assessed by the Pittsburgh Sleep Quality Index Japanese Version (PSQI-J). The temporal structures of daily life were assessed by the Munich Chronotype Questionnaire Japanese Version. The thickness at nine grids defined by the Early Treatment Diabetic Retinopathy Study of nine macular neuroretinal layers was determined by swept-source optical coherence tomography and OCT-Explorer. The associations between the individual components of sleep disorders and the thickness at each grid of macular neuroretinal layers, clinical factors, or the temporal structures of daily life were examined. Results: The prevalence of the sleep disorder, global score, and four individual PSQI-J scores in patients with type 2 diabetes were higher than control subjects. The thickness of two and five grids of two inner retinal layers and four to seven grids of four outer retinal layers in patients with type 2 diabetes was thinner than those in control subjects. The thickness at one to eight grids of four outer retinal layers in type 2 diabetic patients was inversely associated with global score and five individual scores of sleep disorder. The thinning at one to two grids of the inner plexiform layer was related to three high individual scores of sleep disorder. The inappropriate light exposure was associated with the sleep disorder and altered macular neuroretinal layers. The high HbA1c and LDL-cholesterol levels were related to the high global score and two individual scores of sleep disorder, respectively. Conclusion: In patients with type 2 diabetes, the thinning at grids of the inner plexiform layer and outer retinal layers was associated with the high scores of specific components of the sleep disorder. The sleep disorder was also related to hyperglycemia, dyslipidemia, and inappropriate light exposure.
Collapse
Affiliation(s)
| | - Mitra Tavakoli
- University of Exeter Medical School, Exeter, United Kingdom
- *Correspondence: Mitra Tavakoli
| |
Collapse
|
11
|
Mast N, Bederman IR, Pikuleva IA. Retinal Cholesterol Content Is Reduced in Simvastatin-Treated Mice Due to Inhibited Local Biosynthesis Albeit Increased Uptake of Serum Cholesterol. Drug Metab Dispos 2018; 46:1528-1537. [PMID: 30115644 PMCID: PMC6193214 DOI: 10.1124/dmd.118.083345] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022] Open
Abstract
Statins, a class of cholesterol-lowering drugs, are currently being investigated for treatment of age-related macular degeneration, a retinal disease. Herein, retinal and serum concentrations of four statins (atorvastatin, simvastatin, pravastatin, and rosuvastatin) were evaluated after mice were given a single drug dose of 60 mg/kg body weight. All statins, except rosuvastatin, were detected in the retina: atorvastatin and pravastatin at 1.6 pmol and simvastatin at 4.1 pmol. Serum statin concentrations (pmol/ml) were 223 (simvastatin), 1401 (atorvastatin), 2792 (pravastatin), and 9050 (rosuvastatin). Simvastatin was then administered to mice daily for 6 weeks at 60 mg/kg body weight. Simvastatin treatment reduced serum cholesterol levels by 18% and retinal content of cholesterol and lathosterol (but not desmosterol) by 24% and 21%, respectively. The relative contributions of retinal cholesterol biosynthesis and retinal uptake of serum cholesterol to total retinal cholesterol input were changed as well. These contributions were 79% and 21%, respectively, in vehicle-treated mice and 69% and 31%, respectively, in simvastatin-treated mice. Thus, simvastatin treatment lowered retinal cholesterol because a compensatory upregulation of retinal uptake of serum cholesterol was not sufficient to overcome the effect of inhibited retinal biosynthesis. Simultaneously, simvastatin-treated mice had a 2.9-fold increase in retinal expression of Cd36, the major receptor clearing oxidized low-density lipoproteins from Bruch's membrane. Notably, simvastatin treatment essentially did not affect brain cholesterol homeostasis. Our results reveal the statin effect on the retinal and brain cholesterol input and are of value for future clinical investigations of statins as potential therapeutics for age-related macular degeneration.
Collapse
Affiliation(s)
- Natalia Mast
- Departments of Ophthalmology and Visual Sciences (N.M., I.A.P.) and Pediatrics (I.R.B.), Case Western Reserve University, Cleveland, Ohio
| | - Ilya R Bederman
- Departments of Ophthalmology and Visual Sciences (N.M., I.A.P.) and Pediatrics (I.R.B.), Case Western Reserve University, Cleveland, Ohio
| | - Irina A Pikuleva
- Departments of Ophthalmology and Visual Sciences (N.M., I.A.P.) and Pediatrics (I.R.B.), Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
12
|
Nägele MP, Barthelmes J, Ludovici V, Cantatore S, Frank M, Ruschitzka F, Flammer AJ, Sudano I. Retinal microvascular dysfunction in hypercholesterolemia. J Clin Lipidol 2018; 12:1523-1531.e2. [PMID: 30219640 DOI: 10.1016/j.jacl.2018.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/18/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Hypercholesterolemia is one of the most important contributors to atherosclerosis. Whether hypercholesterolemia also affects the retinal microcirculation is unclear. OBJECTIVE The goal of our study was to assess the association of cholesterol levels with retinal microvascular function using dynamic and static retinal vessel analysis (RVA) in a primary prevention setting. METHODS This cross-sectional, observational study prospectively recruited 67 patients with hypercholesterolemia without known cardiovascular disease (mean age 64.4 ± 10.4 years; 45% female) and 78 healthy controls (mean age 61.8 ± 11.2 years; 45% female). The primary end point of the study was flicker-induced dilatation of retinal arterioles (FIDart) with secondary exploratory outcomes including venular FID (FIDven), arteriovenous ratio, flow-mediated dilatation and arterial stiffness as measured with augmentation index and pulse wave velocity. Multiple regression analysis was performed to study the association of cholesterol levels with retinal microvascular function. RESULTS FIDart was significantly impaired in patients with hypercholesterolemia compared with healthy controls (mean FIDart 2.1 ± 1.8 vs 3.1 ± 1.8%, P = .001). This association remained when analysis was restricted to dyslipidemic patients without coexisting hypertension or lipid-lowering therapy. No significant differences remained for FIDven, flow-mediated dilatation, arteriovenous ratio, or arterial stiffness between the groups. Low-density lipoprotein, but not high-density lipoprotein, cholesterol was a significant negative predictor of FIDart in multiple regression analysis. CONCLUSION Hypercholesterolemia is associated with significant retinal microvascular dysfunction as evidenced by a reduction in flicker-induced dilatation of retinal arterioles. Dynamic RVA may be a promising method for the study of retinal microvascular dysfunction in populations at elevated cardiovascular risk.
Collapse
Affiliation(s)
- Matthias P Nägele
- Cardiology, University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Jens Barthelmes
- Cardiology, University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Valeria Ludovici
- Cardiology, University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland; Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silviya Cantatore
- Cardiology, University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Michelle Frank
- Cardiology, University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Frank Ruschitzka
- Cardiology, University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Andreas J Flammer
- Cardiology, University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Isabella Sudano
- Cardiology, University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Lakk M, Vazquez-Chona F, Yarishkin O, Križaj D. Dyslipidemia modulates Müller glial sensing and transduction of ambient information. Neural Regen Res 2018; 13:207-210. [PMID: 29557361 PMCID: PMC5879883 DOI: 10.4103/1673-5374.226383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Unesterified cholesterol controls the fluidity, permeability and electrical properties of eukaryotic cell membranes. Consequently, cholesterol levels in the retina and the brain are tightly regulated whereas depletion or oversupply caused by diet or heredity contribute to neurodegenerative diseases and vision loss. Astroglia play a central role in the biosynthesis, uptake and transport of cholesterol and also drive inflammatory signaling under hypercholesterolemic conditions associated with high-fat diet (diabetes) and neurodegenerative disease. A growing body of evidence shows that unesterified membrane cholesterol modulates the ability of glia to sense and transduce ambient information. Cholesterol-dependence of Müller glia - which function as retinal sentinels for metabolic, mechanical, osmotic and inflammatory signals - is mediated in part by transient receptor potential V4 (TRPV4) channels. Cholesterol supplementation facilitates, whereas depletion suppresses, TRPV4-mediated transduction of temperature and lipid agonists in Müller cells. Acute effects of cholesterol supplementation/depletion on plasma membrane ion channels and calcium homeostasis differ markedly from the effects of chronic dyslipidemia, possibly due to differential modulation of modality-dependent energy barriers associated with the functionality of polymodal channels embedded within lipid rafts. Understanding of cholesterol-dependence of TRP channels is thus providing insight into dyslipidemic pathologies associated with diabetic retinopathy, glaucoma and macular degeneration.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Felix Vazquez-Chona
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - David Križaj
- Department of Ophthalmology & Visual Sciences; Department of Bioengineering; Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|