1
|
Kotlyarov S, Kotlyarova A. Biological Functions and Clinical Significance of the ABCG1 Transporter. BIOLOGY 2024; 14:8. [PMID: 39857239 PMCID: PMC11760449 DOI: 10.3390/biology14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025]
Abstract
ATP-binding cassette (ABC) transporters are a large family of proteins that transport various substances across cell membranes using energy from ATP hydrolysis. ATP-binding cassette sub-family G member 1 (ABCG1) is a member of the ABCG subfamily of transporters and performs many important functions, such as the export of cholesterol and some other lipids across the membranes of various cells. Cholesterol transport is the mechanism that links metabolism and the innate immune system. Due to its lipid transport function, ABCG1 may contribute to the prevention of atherosclerosis and is involved in the functioning of the lung, pancreas, and other organs and systems. However, the full clinical significance of ABCG1 is still unknown and is a promising area for future research.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
2
|
Villa M, Wu J, Hansen S, Pahnke J. Emerging Role of ABC Transporters in Glia Cells in Health and Diseases of the Central Nervous System. Cells 2024; 13:740. [PMID: 38727275 PMCID: PMC11083179 DOI: 10.3390/cells13090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.
Collapse
Affiliation(s)
- Maria Villa
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Stefanie Hansen
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv IL-6997801, Israel
| |
Collapse
|
3
|
Yazdi MK, Alavi MS, Roohbakhsh A. The role of ATP-binding cassette transporter G1 (ABCG1) in Alzheimer's disease: A review of the mechanisms. Basic Clin Pharmacol Toxicol 2024; 134:423-438. [PMID: 38275217 DOI: 10.1111/bcpt.13981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
The maintenance of cholesterol homeostasis is essential for central nervous system function. Consequently, factors that affect cholesterol homeostasis are linked to neurological disorders and pathologies. Among them, ATP-binding cassette transporter G1 (ABCG1) plays a significant role in atherosclerosis. However, its role in Alzheimer's disease (AD) is unclear. There is inconsistent information regarding ABCG1's role in AD. It can increase or decrease amyloid β (Aβ) levels in animals' brains. Clinical studies show that ABCG1 is involved in AD patients' impairment of cholesterol efflux capacity (CEC) in the cerebrospinal fluid (CSF). Lower Aβ levels in the CSF are correlated with ABCG1-mediated CEC dysfunction. ABCG1 modulates α-, β-, and γ-secretase activities in the plasma membrane and may affect Aβ production in the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) cell compartment. Despite contradictory findings regarding ABCG1's role in AD, this review shows that ABCG1 has a role in Aβ generation via modulation of membrane secretases. It is, however, necessary to investigate the underlying mechanism(s). ABCG1 may also contribute to AD pathology through its role in apoptosis and oxidative stress. As a result, ABCG1 plays a role in AD and is a candidate for drug development.
Collapse
Affiliation(s)
- Mohsen Karbasi Yazdi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Gerard L, Duvivier L, Fourrez M, Salazar P, Sprimont L, Xia D, Ambudkar SV, Gottesman MM, Gillet JP. Identification of two novel heterodimeric ABC transporters in melanoma: ABCB5β/B6 and ABCB5β/B9. J Biol Chem 2024; 300:105594. [PMID: 38145744 PMCID: PMC10828454 DOI: 10.1016/j.jbc.2023.105594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/18/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023] Open
Abstract
ABCB5 is a member of the ABC transporter superfamily composed of 48 transporters, which have been extensively studied for their role in cancer multidrug resistance and, more recently, in tumorigenesis. ABCB5 has been identified as a marker of skin progenitor cells, melanoma, and limbal stem cells. It has also been associated with multidrug resistance in several cancers. The unique feature of ABCB5 is that it exists as both a full transporter (ABCB5FL) and a half transporter (ABCB5β). Several studies have shown that the ABCB5β homodimer does not confer multidrug resistance, in contrast to ABCB5FL. In this study, using three complementary techniques, (1) nanoluciferase-based bioluminescence resonance energy transfer, (2) coimmunoprecipitation, and (3) proximity ligation assay, we identified two novel heterodimers in melanoma: ABCB5β/B6 and ABCB5β/B9. Both heterodimers could be expressed in High-Five insect cells and ATPase assays revealed that both functional nucleotide-binding domains of homodimers and heterodimers are required for their basal ATPase activity. These results are an important step toward elucidating the functional role of ABCB5β in melanocytes and melanoma.
Collapse
Affiliation(s)
- Louise Gerard
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Laurent Duvivier
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Marie Fourrez
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Paula Salazar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lindsay Sprimont
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium.
| |
Collapse
|
5
|
Bydlowski SP, Levy D. Association of ABCG5 and ABCG8 Transporters with Sitosterolemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:31-42. [PMID: 38036873 DOI: 10.1007/978-3-031-43883-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Sitosterolemia is a rare genetic lipid disorder, mainly characterized by the accumulation of dietary xenosterols in plasma and tissues. It is caused by inactivating mutations in either ABCG5 or ABCG8 subunits, a subfamily-G ATP-binding cassette (ABCG) transporters. ABCG5/G8 encodes a pair of ABC half transporters that form a heterodimer (G5G8). This heterodimeric ATP-binding cassette (ABC) sterol transporter, ABCG5/G8, is responsible for the hepatobiliary and transintestinal secretion of cholesterol and dietary plant sterols to the surface of hepatocytes and enterocytes, promoting the secretion of cholesterol and xenosterols into the bile and the intestinal lumen. In this way, ABCG5/G8 function in the reverse cholesterol transport pathway and mediate the efflux of cholesterol and xenosterols to high-density lipoprotein and bile salt micelles, respectively. Here, we review the biological characteristics and function of ABCG5/G8, and how the mutations of ABCG5/G8 can cause sitosterolemia, a loss-of-function disorder characterized by plant sterol accumulation and premature atherosclerosis, among other features.
Collapse
Affiliation(s)
- Sergio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil.
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera) CNPq, Rio de Janeiro, Brazil.
| | - Debora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
6
|
Abstract
ABC transporters are essential for cellular physiology. Humans have 48 ABC genes organized into seven distinct families. Of these genes, 44 (in five distinct families) encode for membrane transporters, of which several are involved in drug resistance and disease pathways resulting from transporter dysfunction. Over the last decade, advances in structural biology have vastly expanded our mechanistic understanding of human ABC transporter function, revealing details of their molecular arrangement, regulation, and interactions, facilitated in large part by advances in cryo-EM that have rendered hitherto inaccessible targets amenable to high-resolution structural analysis. As a result, experimentally determined structures of multiple members of each of the five families of ABC transporters in humans are now available. Here we review this recent progress, highlighting the physiological relevance of human ABC transporters and mechanistic insights gleaned from their direct structure determination. We also discuss the impact and limitations of model systems and structure prediction methods in understanding human ABC transporters and discuss current challenges and future research directions.
Collapse
Affiliation(s)
- Amer Alam
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland;
| |
Collapse
|
7
|
Miotelo L, Ferro M, Maloni G, Otero IVR, Nocelli RCF, Bacci M, Malaspina O. Transcriptomic analysis of Malpighian tubules from the stingless bee Melipona scutellaris reveals thiamethoxam-induced damages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158086. [PMID: 35985603 DOI: 10.1016/j.scitotenv.2022.158086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/21/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The concern about pesticide exposure to neotropical bees has been increasing in the last few years, and knowledge gaps have been identified. Although stingless bees, (e.g.: Melipona scutellaris), are more diverse than honeybees and they stand out in the pollination of several valuable economical crops, toxicity assessments with stingless bees are still scarce. Nowadays new approaches in ecotoxicological studies, such as omic analysis, were pointed out as a strategy to reveal mechanisms of how bees deal with these stressors. To date, no molecular techniques have been applied for the evaluation of target and/or non-target organs in stingless bees, such as the Malpighian tubules (Mt). Therefore, in the present study, we evaluated the differentially expressed genes (DEGs) in the Mt of M. scutellaris after one and eight days of exposure to LC50/100 (0.000543 ng a.i./μL) of thiamethoxam (TMX). Through functional annotation analysis of four transcriptome libraries, the time course line approach revealed 237 DEGs (nine clusters) associated with carbon/energy metabolism and cellular processes (lysosomes, autophagy, and glycan degradation). The expression profiles of Mt were altered by TMX in processes, such as detoxification, excretion, tissue regeneration, oxidative stress, apoptosis, and DNA repair. Transcriptome analysis showed that cell metabolism in Mt was mainly affected after 8 days of exposure. Nine genes were selected from different clusters and validated by RT-qPCR. According to our findings, TMX promotes several types of damage in Mt cells at the molecular level. Therefore, interference of different cellular processes directly affects the health of M. scutellaris by compromising the function of Mt.
Collapse
Affiliation(s)
- Lucas Miotelo
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| | - Milene Ferro
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Geovana Maloni
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Igor Vinicius Ramos Otero
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | | | - Mauricio Bacci
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Osmar Malaspina
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| |
Collapse
|
8
|
Hegyi Z, Hegedűs T, Homolya L. The Reentry Helix Is Potentially Involved in Cholesterol Sensing of the ABCG1 Transporter Protein. Int J Mol Sci 2022; 23:ijms232213744. [PMID: 36430223 PMCID: PMC9698493 DOI: 10.3390/ijms232213744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
ABCG1 has been proposed to play a role in HDL-dependent cellular sterol regulation; however, details of the interaction between the transporter and its potential sterol substrates have not been revealed. In the present work, we explored the effect of numerous sterol compounds on the two isoforms of ABCG1 and ABCG4 and made efforts to identify the molecular motifs in ABCG1 that are involved in the interaction with cholesterol. The functional readouts used include ABCG1-mediated ATPase activity and ABCG1-induced apoptosis. We found that both ABCG1 isoforms and ABCG4 interact with several sterol compounds; however, they have selective sensitivities to sterols. Mutational analysis of potential cholesterol-interacting motifs in ABCG1 revealed altered ABCG1 functions when F571, L626, or Y586 were mutated. L430A and Y660A substitutions had no functional consequence, whereas Y655A completely abolished the ABCG1-mediated functions. Detailed structural analysis of ABCG1 demonstrated that the mutations modulating ABCG1 functions are positioned either in the so-called reentry helix (G-loop/TM5b,c) (Y586) or in its close proximity (F571 and L626). Cholesterol molecules resolved in the structure of ABCG1 are also located close to Y586. Based on the experimental observations and structural considerations, we propose an essential role for the reentry helix in cholesterol sensing in ABCG1.
Collapse
Affiliation(s)
- Zoltán Hegyi
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary
- ELKH-SE Biophysical Virology Research Group, Eötvös Loránd Research Network, H-1094 Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-3826608
| |
Collapse
|
9
|
Wada M. Role of ABC Transporters in Cancer Development and Malignant Alteration. YAKUGAKU ZASSHI 2022; 142:1201-1225. [DOI: 10.1248/yakushi.22-00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Structure and transport mechanism of the human cholesterol transporter ABCG1. Cell Rep 2022; 38:110298. [PMID: 35081353 DOI: 10.1016/j.celrep.2022.110298] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/13/2021] [Accepted: 01/04/2022] [Indexed: 12/31/2022] Open
Abstract
The reverse cholesterol transport pathway is responsible for the maintenance of human cholesterol homeostasis, an imbalance of which usually leads to atherosclerosis. As a key component of this pathway, the ATP-binding cassette transporter ABCG1 forwards cellular cholesterol to the extracellular acceptor nascent high-density lipoprotein (HDL). Here, we report a 3.26-Å cryo-electron microscopy structure of cholesterol-bound ABCG1 in an inward-facing conformation, which represents a turnover condition upon ATP binding. Structural analyses combined with functional assays reveals that a cluster of conserved hydrophobic residues, in addition to two sphingomyelins, constitute a well-defined cholesterol-binding cavity. The exit of this cavity is closed by three pairs of conserved Phe residues, which constitute a hydrophobic path for the release of cholesterol in an acceptor concentration-dependent manner. Overall, we propose an ABCG1-driven cholesterol transport cycle initiated by sphingomyelin-assisted cholesterol recruitment and accomplished by the release of cholesterol to HDL.
Collapse
|
11
|
Brandt JN, Voss L, Rambo FM, Nicholson K, Thein JR, Fairchild L, Seabrook L, Lewis D, Guevara-Hernandez L, White ML, Sax L, Eichten V, Harper L, Hermann GJ. Asymmetric organelle positioning during epithelial polarization of C. elegans intestinal cells. Dev Biol 2022; 481:75-94. [PMID: 34597675 PMCID: PMC8665101 DOI: 10.1016/j.ydbio.2021.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/11/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
While the epithelial cell cortex displays profound asymmetries in protein distribution and morphology along the apico-basal axis, the extent to which the cytoplasm is similarly polarized within epithelial cells remains relatively unexplored. We show that cytoplasmic organelles within C. elegans embryonic intestinal cells develop extensive apico-basal polarity at the time they establish cortical asymmetry. Nuclei and conventional endosomes, including early endosomes, late endosomes, and lysosomes, become polarized apically. Lysosome-related gut granules, yolk platelets, and lipid droplets become basally enriched. Removal of par-3 activity does not disrupt organelle positioning, indicating that cytoplasmic apico-basal asymmetry is independent of the PAR polarity pathway. Blocking the apical migration of nuclei leads to the apical positioning of gut granules and yolk platelets, whereas the asymmetric localization of conventional endosomes and lipid droplets is unaltered. This suggests that nuclear positioning organizes some, but not all, cytoplasmic asymmetries in this cell type. We show that gut granules become apically enriched when WHT-2 and WHT-7 function is disrupted, identifying a novel role for ABCG transporters in gut granule positioning during epithelial polarization. Analysis of WHT-2 and WHT-7 ATPase mutants is consistent with a WHT-2/WHT-7 heterodimer acting as a transporter in gut granule positioning. In wht-2(-) mutants, the polarized distribution of other organelles is not altered and gut granules do not take on characteristics of conventional endosomes that could have explained their apical mispositioning. During epithelial polarization wht-2(-) gut granules exhibit a loss of the Rab32/38 family member GLO-1 and ectopic expression of GLO-1 is sufficient to rescue the basal positioning of wht-2(-) and wht-7(-) gut granules. Furthermore, depletion of GLO-1 causes the mislocalization of the endolysosomal RAB-7 to gut granules and RAB-7 drives the apical mispositioning of gut granules when GLO-1, WHT-2, or WHT-7 function is disrupted. We suggest that ABC transporters residing on gut granules can regulate Rab dynamics to control organelle positioning during epithelial polarization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Greg J. Hermann
- Corresponding author. Department of Biology, Lewis & Clark College, Portland, OR, USA, (G.J. Hermann)
| |
Collapse
|
12
|
Skarda L, Kowal J, Locher KP. Structure of the Human Cholesterol Transporter ABCG1. J Mol Biol 2021; 433:167218. [PMID: 34461069 DOI: 10.1016/j.jmb.2021.167218] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/04/2023]
Abstract
ABCG1 is an ATP binding cassette (ABC) transporter that removes excess cholesterol from peripheral tissues. Despite its role in preventing lipid accumulation and the development of cardiovascular and metabolic disease, the mechanism underpinning ABCG1-mediated cholesterol transport is unknown. Here we report a cryo-EM structure of human ABCG1 at 4 Å resolution in an inward-open state, featuring sterol-like density in the binding cavity. Structural comparison with the multidrug transporter ABCG2 and the sterol transporter ABCG5/G8 reveals the basis of mechanistic differences and distinct substrate specificity. Benzamil and taurocholate inhibited the ATPase activity of liposome-reconstituted ABCG1, whereas the ABCG2 inhibitor Ko143 did not. Based on the structural insights into ABCG1, we propose a mechanism for ABCG1-mediated cholesterol transport.
Collapse
Affiliation(s)
- Liga Skarda
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Julia Kowal
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland.
| |
Collapse
|
13
|
Wang JQ, Wu ZX, Yang Y, Teng QX, Li YD, Lei ZN, Jani KA, Kaushal N, Chen ZS. ATP-binding cassette (ABC) transporters in cancer: A review of recent updates. J Evid Based Med 2021; 14:232-256. [PMID: 34388310 DOI: 10.1111/jebm.12434] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is one of the largest membrane protein families existing in wide spectrum of organisms from prokaryotes to human. ABC transporters are also known as efflux pumps because they mediate the cross-membrane transportation of various endo- and xenobiotic molecules energized by ATP hydrolysis. Therefore, ABC transporters have been considered closely to multidrug resistance (MDR) in cancer, where the efflux of structurally distinct chemotherapeutic drugs causes reduced itherapeutic efficacy. Besides, ABC transporters also play other critical biological roles in cancer such as signal transduction. During the past decades, extensive efforts have been made in understanding the structure-function relationship, transportation profile of ABC transporters, as well as the possibility to overcome MDR via targeting these transporters. In this review, we discuss the most recent knowledge regarding ABC transporters and cancer drug resistance in order to provide insights for the development of more effective therapies.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Khushboo A Jani
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Neeraj Kaushal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| |
Collapse
|
14
|
Ristovski M, Farhat D, Bancud SEM, Lee JY. Lipid Transporters Beam Signals from Cell Membranes. MEMBRANES 2021; 11:562. [PMID: 34436325 PMCID: PMC8399137 DOI: 10.3390/membranes11080562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
Lipid composition in cellular membranes plays an important role in maintaining the structural integrity of cells and in regulating cellular signaling that controls functions of both membrane-anchored and cytoplasmic proteins. ATP-dependent ABC and P4-ATPase lipid transporters, two integral membrane proteins, are known to contribute to lipid translocation across the lipid bilayers on the cellular membranes. In this review, we will highlight current knowledge about the role of cholesterol and phospholipids of cellular membranes in regulating cell signaling and how lipid transporters participate this process.
Collapse
Affiliation(s)
- Miliça Ristovski
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.R.); (D.F.); (S.E.M.B.)
- Translational and Molecular Medicine Program, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Danny Farhat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.R.); (D.F.); (S.E.M.B.)
- Biomedical Sciences Program, Faculty of Science, University of Ottawa, Ottawa, ON K1H 6N5, Canada
| | - Shelly Ellaine M. Bancud
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.R.); (D.F.); (S.E.M.B.)
- Translational and Molecular Medicine Program, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jyh-Yeuan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.R.); (D.F.); (S.E.M.B.)
| |
Collapse
|
15
|
Khunweeraphong N, Kuchler K. Multidrug Resistance in Mammals and Fungi-From MDR to PDR: A Rocky Road from Atomic Structures to Transport Mechanisms. Int J Mol Sci 2021; 22:4806. [PMID: 33946618 PMCID: PMC8124828 DOI: 10.3390/ijms22094806] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Multidrug resistance (MDR) can be a serious complication for the treatment of cancer as well as for microbial and parasitic infections. Dysregulated overexpression of several members of the ATP-binding cassette transporter families have been intimately linked to MDR phenomena. Three paradigm ABC transporter members, ABCB1 (P-gp), ABCC1 (MRP1) and ABCG2 (BCRP) appear to act as brothers in arms in promoting or causing MDR in a variety of therapeutic cancer settings. However, their molecular mechanisms of action, the basis for their broad and overlapping substrate selectivity, remains ill-posed. The rapidly increasing numbers of high-resolution atomic structures from X-ray crystallography or cryo-EM of mammalian ABC multidrug transporters initiated a new era towards a better understanding of structure-function relationships, and for the dynamics and mechanisms driving their transport cycles. In addition, the atomic structures offered new evolutionary perspectives in cases where transport systems have been structurally conserved from bacteria to humans, including the pleiotropic drug resistance (PDR) family in fungal pathogens for which high resolution structures are as yet unavailable. In this review, we will focus the discussion on comparative mechanisms of mammalian ABCG and fungal PDR transporters, owing to their close evolutionary relationships. In fact, the atomic structures of ABCG2 offer excellent models for a better understanding of fungal PDR transporters. Based on comparative structural models of ABCG transporters and fungal PDRs, we propose closely related or even conserved catalytic cycles, thus offering new therapeutic perspectives for preventing MDR in infectious disease settings.
Collapse
Affiliation(s)
| | - Karl Kuchler
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Medical University of Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria;
| |
Collapse
|
16
|
Analysis of Sequence Divergence in Mammalian ABCGs Predicts a Structural Network of Residues That Underlies Functional Divergence. Int J Mol Sci 2021; 22:ijms22063012. [PMID: 33809494 PMCID: PMC8001107 DOI: 10.3390/ijms22063012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
The five members of the mammalian G subfamily of ATP-binding cassette transporters differ greatly in their substrate specificity. Four members of the subfamily are important in lipid transport and the wide substrate specificity of one of the members, ABCG2, is of significance due to its role in multidrug resistance. To explore the origin of substrate selectivity in members 1, 2, 4, 5 and 8 of this subfamily, we have analysed the differences in conservation between members in a multiple sequence alignment of ABCG sequences from mammals. Mapping sets of residues with similar patterns of conservation onto the resolved 3D structure of ABCG2 reveals possible explanations for differences in function, via a connected network of residues from the cytoplasmic to transmembrane domains. In ABCG2, this network of residues may confer extra conformational flexibility, enabling it to transport a wider array of substrates.
Collapse
|
17
|
Medically Important Alterations in Transport Function and Trafficking of ABCG2. Int J Mol Sci 2021; 22:ijms22062786. [PMID: 33801813 PMCID: PMC8001156 DOI: 10.3390/ijms22062786] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Several polymorphisms and mutations in the human ABCG2 multidrug transporter result in reduced plasma membrane expression and/or diminished transport function. Since ABCG2 plays a pivotal role in uric acid clearance, its malfunction may lead to hyperuricemia and gout. On the other hand, ABCG2 residing in various barrier tissues is involved in the innate defense mechanisms of the body; thus, genetic alterations in ABCG2 may modify the absorption, distribution, excretion of potentially toxic endo- and exogenous substances. In turn, this can lead either to altered therapy responses or to drug-related toxic reactions. This paper reviews the various types of mutations and polymorphisms in ABCG2, as well as the ways how altered cellular processing, trafficking, and transport activity of the protein can contribute to phenotypic manifestations. In addition, the various methods used for the identification of the impairments in ABCG2 variants and the different approaches to correct these defects are overviewed.
Collapse
|
18
|
Mammalian ABCG-transporters, sterols and lipids: To bind perchance to transport? Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158860. [PMID: 33309976 DOI: 10.1016/j.bbalip.2020.158860] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/15/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
Members of the ATP binding cassette (ABC) transporter family perform a critical function in maintaining lipid homeostasis in cells as well as the transport of drugs. In this review, we provide an update on the ABCG-transporter subfamily member proteins, which include the homodimers ABCG1, ABCG2 and ABCG4 as well as the heterodimeric complex formed between ABCG5 and ABCG8. This review focusses on progress made in this field of research with respect to their function in health and disease and the recognised transporter substrates. We also provide an update on post-translational regulation, including by transporter substrates, and well as the involvement of microRNA as regulators of transporter expression and activity. In addition, we describe progress made in identifying structural elements that have been recognised as important for transport activity. We furthermore discuss the role of lipids such as cholesterol on the transport function of ABCG2, traditionally thought of as a drug transporter, and provide a model of potential cholesterol binding sites for ABCG2.
Collapse
|
19
|
Khunweeraphong N, Kuchler K. The first intracellular loop is essential for the catalytic cycle of the human ABCG2 multidrug resistance transporter. FEBS Lett 2020; 594:4059-4075. [PMID: 33169382 PMCID: PMC7756363 DOI: 10.1002/1873-3468.13994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
The human multidrug transporter ABCG2 is required for physiological detoxification and mediates anticancer drug resistance. Here, we identify pivotal residues in the first intracellular loop (ICL1), constituting an intrinsic part of the transmission interface. The architecture includes a triple helical bundle formed by the hot spot helix of the nucleotide‐binding domain, the elbow helix, and ICL1. We show here that the highly conserved ICL1 residues G462, Y463, and Y464 are essential for the proper cross talk of the closed nucleotide‐binding domain dimer with the transmembrane domains. Hence, ICL1 acts as a molecular spring, triggering the conformational switch of ABCG2 before substrate extrusion. These data suggest that the ABCG2 transmission interface may offer therapeutic options for the treatment of drug‐resistant malignancies.
Collapse
Affiliation(s)
- Narakorn Khunweeraphong
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Campus Vienna Biocenter, Medical University of Vienna, Austria.,St. Anna Children's Cancer Research Institute-CCRI, Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Campus Vienna Biocenter, Medical University of Vienna, Austria
| |
Collapse
|
20
|
Yang A, Alrosan AZ, Sharpe LJ, Brown AJ, Callaghan R, Gelissen IC. Regulation of ABCG4 transporter expression by sterols and LXR ligands. Biochim Biophys Acta Gen Subj 2020; 1865:129769. [PMID: 33141061 DOI: 10.1016/j.bbagen.2020.129769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Oxysterols, which are derivatives of cholesterol produced by enzymic or non-enzymic pathways, are potent regulators of cellular lipid homeostasis. Sterol homeostasis in the brain is an important area of interest with regards to neurodegenerative conditions like Alzheimer's disease (AD). Brain cells including neurons and astrocytes express sterol transporters belonging to the ABC transporter family of proteins, including ABCA1, ABCG1 and ABCG4, and these transporters are considered of interest as therapeutic targets. Although regulation of ABCA1 and ABCG1 is well established, regulation of ABCG4 is still controversial, in particular whether the transporter is an Liver X receptor (LXR) target. ABCG4 is thought to transport cholesterol, oxysterols and cholesterol synthesis intermediates, and was recently found on the blood brain barrier (BBB), implicated in amyloid-beta export. In this study, we investigate the regulation of ABCG4 by oxysterols, cholesterol-synthesis intermediates and cholesterol itself. METHODS ABC transporter expression was measured in neuroblastoma and gliablastoma cell lines and cells overexpressing ABCG4 in response to synthetic LXR ligands, oxysterols and cholesterol-synthesis intermediates. RESULTS In contrast to previous reports, ABCG4 expression was induced by a synthetic LXR ligand in U87-MG astrocytes but not in neuroblastoma and BBB endothelial cell lines. In addition, ABCG4 protein was stabilized by cholesterol as was previously shown for ABCG1. ABCG4 protein was furthermore stabilized by cholesterol-synthesis intermediates, desmosterol, lathosterol and lanosterol. CONCLUSIONS These results identify new aspects of the post-translational control of ABCG4 that warrant further exploration into the role of this transporter in the maintenance of sterol homeostasis in the brain.
Collapse
Affiliation(s)
- Alryel Yang
- Sydney Pharmacy School, Faculty of Medicine and Health, Pharmacy Bank Building A15, Science Road, The University of Sydney, Sydney, NSW 2006, Australia
| | - Amjad Z Alrosan
- Sydney Pharmacy School, Faculty of Medicine and Health, Pharmacy Bank Building A15, Science Road, The University of Sydney, Sydney, NSW 2006, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, Chancellery Walk, The University of New South Wales, Kensington, NSW 2033, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, Chancellery Walk, The University of New South Wales, Kensington, NSW 2033, Australia
| | - Richard Callaghan
- Research School of Biology and Medical School, Linnaeus Way, Australian National University, ACT 2600, Australia
| | - Ingrid C Gelissen
- Sydney Pharmacy School, Faculty of Medicine and Health, Pharmacy Bank Building A15, Science Road, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
21
|
Khunweeraphong N, Mitchell-White J, Szöllősi D, Hussein T, Kuchler K, Kerr ID, Stockner T, Lee JY. Picky ABCG5/G8 and promiscuous ABCG2 - a tale of fatty diets and drug toxicity. FEBS Lett 2020; 594:4035-4058. [PMID: 32978801 PMCID: PMC7756502 DOI: 10.1002/1873-3468.13938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
Structural data on ABCG5/G8 and ABCG2 reveal a unique molecular architecture for subfamily G ATP‐binding cassette (ABCG) transporters and disclose putative substrate‐binding sites. ABCG5/G8 and ABCG2 appear to use several unique structural motifs to execute transport, including the triple helical bundles, the membrane‐embedded polar relay, the re‐entry helices, and a hydrophobic valve. Interestingly, ABCG2 shows extreme substrate promiscuity, whereas ABCG5/G8 transports only sterol molecules. ABCG2 structures suggest a large internal cavity, serving as a binding region for substrates and inhibitors, while mutational and pharmacological analyses support the notion of multiple binding sites. By contrast, ABCG5/G8 shows a collapsed cavity of insufficient size to hold substrates. Indeed, mutational analyses indicate a sterol‐binding site at the hydrophobic interface between the transporter and the lipid bilayer. In this review, we highlight key differences and similarities between ABCG2 and ABCG5/G8 structures. We further discuss the relevance of distinct and shared structural features in the context of their physiological functions. Finally, we elaborate on how ABCG2 and ABCG5/G8 could pave the way for studies on other ABCG transporters.
Collapse
Affiliation(s)
- Narakorn Khunweeraphong
- Max Perutz Labs Vienna, Campus Vienna Biocenter, Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria.,CCRI-St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - James Mitchell-White
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Dániel Szöllősi
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Toka Hussein
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Karl Kuchler
- Max Perutz Labs Vienna, Campus Vienna Biocenter, Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Ian D Kerr
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jyh-Yeuan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
22
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
23
|
Mallappa S, Neeli PK, Karnewar S, Kotamraju S. Doxorubicin induces prostate cancer drug resistance by upregulation of ABCG4 through GSH depletion and CREB activation: Relevance of statins in chemosensitization. Mol Carcinog 2019; 58:1118-1133. [DOI: 10.1002/mc.22996] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/02/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Sreevidya Mallappa
- Centre for Chemical Biology; CSIR-Indian Institute of Chemical Technology; Hyderabad India
- Academy of Scientific and Innovative Research, Training and Development Complex; Chennai India
| | - Praveen K. Neeli
- Centre for Chemical Biology; CSIR-Indian Institute of Chemical Technology; Hyderabad India
- Academy of Scientific and Innovative Research, Training and Development Complex; Chennai India
| | - Santosh Karnewar
- Centre for Chemical Biology; CSIR-Indian Institute of Chemical Technology; Hyderabad India
- Academy of Scientific and Innovative Research, Training and Development Complex; Chennai India
| | - Srigiridhar Kotamraju
- Centre for Chemical Biology; CSIR-Indian Institute of Chemical Technology; Hyderabad India
- Academy of Scientific and Innovative Research, Training and Development Complex; Chennai India
| |
Collapse
|
24
|
LCCC 1025: a phase II study of everolimus, trastuzumab, and vinorelbine to treat progressive HER2-positive breast cancer brain metastases. Breast Cancer Res Treat 2018; 171:637-648. [PMID: 29938395 DOI: 10.1007/s10549-018-4852-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 01/09/2023]
Abstract
PURPOSE HER2 + breast cancer (BC) is an aggressive subtype with high rates of brain metastases (BCBM). Two-thirds of HER2 + BCBM demonstrate activation of the PI3K/mTOR pathway driving resistance to anti-HER2 therapy. This phase II study evaluated everolimus (E), a brain-permeable mTOR inhibitor, trastuzumab (T), and vinorelbine (V) in patients with HER2 + BCBM. PATIENTS AND METHODS Eligible patients had progressive HER2 + BCBM. The primary endpoint was intracranial response rate (RR); secondary objectives were CNS clinical benefit rate (CBR), extracranial RR, time to progression (TTP), overall survival (OS), and targeted sequencing of tumors from enrolled patients. A two-stage design distinguished intracranial RR of 5% versus 20%. RESULTS 32 patients were evaluable for toxicity, 26 for efficacy. Intracranial RR was 4% (1 PR). CNS CBR at 6 mos was 27%; at 3 mos 65%. Median intracranial TTP was 3.9 mos (95% CI 2.2-5). OS was 12.2 mos (95% CI 0.6-20.2). Grade 3-4 toxicities included neutropenia (41%), anemia (16%), and stomatitis (16%). Mutations in TP53 and PIK3CA were common in BCBM. Mutations in the PI3K/mTOR pathway were not associated with response. ERBB2 amplification was higher in BCBM compared to primary BC; ERBB2 amplification in the primary BC trended toward worse OS. CONCLUSION While intracranial RR to ETV was low in HER2 + BCBM patients, one-third achieved CNS CBR; TTP/OS was similar to historical control. No new toxicity signals were observed. Further analysis of the genomic underpinnings of BCBM to identify tractable prognostic and/or predictive biomarkers is warranted. CLINICAL TRIAL (NCT01305941).
Collapse
|
25
|
Expression and function of Abcg4 in the mouse blood-brain barrier: role in restricting the brain entry of amyloid-β peptide. Sci Rep 2017; 7:13393. [PMID: 29042617 PMCID: PMC5645361 DOI: 10.1038/s41598-017-13750-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/27/2017] [Indexed: 12/04/2022] Open
Abstract
ABCG4 is an ATP-binding cassette transmembrane protein which has been shown, in vitro, to participate in the cellular efflux of desmosterol and amyloid-β peptide (Aβ). ABCG4 is highly expressed in the brain, but its localization and function at the blood-brain barrier (BBB) level remain unknown. We demonstrate by qRT-PCR and confocal imaging that mouse Abcg4 is expressed in the brain capillary endothelial cells. Modelling studies of the Abcg4 dimer suggested that desmosterol showed thermodynamically favorable binding at the putative sterol-binding site, and this was greater than for cholesterol. Additionally, unbiased docking also showed Aβ binding at this site. Using a novel Abcg4-deficient mouse model, we show that Abcg4 was able to export Aβ and desmosterol at the BBB level and these processes could be inhibited by probucol and L-thyroxine. Our assay also showed that desmosterol antagonized the export of Aβ, presumably as both bind at the sterol-binding site on Abcg4. We show for the first time that Abcg4 may function in vivo to export Aβ at the BBB, in a process that can be antagonized by its putative natural ligand, desmosterol (and possibly cholesterol).
Collapse
|
26
|
Critical Role of the Human ATP-Binding Cassette G1 Transporter in Cardiometabolic Diseases. Int J Mol Sci 2017; 18:ijms18091892. [PMID: 28869506 PMCID: PMC5618541 DOI: 10.3390/ijms18091892] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
ATP-binding cassette G1 (ABCG1) is a member of the large family of ABC transporters which are involved in the active transport of many amphiphilic and lipophilic molecules including lipids, drugs or endogenous metabolites. It is now well established that ABCG1 promotes the export of lipids, including cholesterol, phospholipids, sphingomyelin and oxysterols, and plays a key role in the maintenance of tissue lipid homeostasis. Although ABCG1 was initially proposed to mediate cholesterol efflux from macrophages and then to protect against atherosclerosis and cardiovascular diseases (CVD), it becomes now clear that ABCG1 exerts a larger spectrum of actions which are of major importance in cardiometabolic diseases (CMD). Beyond a role in cellular lipid homeostasis, ABCG1 equally participates to glucose and lipid metabolism by controlling the secretion and activity of insulin and lipoprotein lipase. Moreover, there is now a growing body of evidence suggesting that modulation of ABCG1 expression might contribute to the development of diabetes and obesity, which are major risk factors of CVD. In order to provide the current understanding of the action of ABCG1 in CMD, we here reviewed major findings obtained from studies in mice together with data from the genetic and epigenetic analysis of ABCG1 in the context of CMD.
Collapse
|
27
|
The ATP binding cassette transporter, ABCG1, localizes to cortical actin filaments. Sci Rep 2017; 7:42025. [PMID: 28165022 PMCID: PMC5292732 DOI: 10.1038/srep42025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022] Open
Abstract
The ATP-binding cassette sub-family G member 1 (ABCG1) exports cellular cholesterol to high-density lipoproteins (HDL). However, a number of recent studies have suggested ABCG1 is predominantly localised to intracellular membranes. In this study, we found that ABCG1 was organized into two distinct cellular pools: one at the plasma membrane and the other associated with the endoplasmic reticulum (ER). The plasma membrane fraction was organized into filamentous structures that were associated with cortical actin filaments. Inhibition of actin polymerization resulted in complete disruption of ABCG1 filaments. Cholesterol loading of the cells increased the formation of the filamentous ABCG1, the proximity of filamentous ABCG1 to actin filaments and the diffusion rate of membrane associated ABCG1. Our findings suggest that the actin cytoskeleton plays a critical role in the plasma membrane localization of ABCG1.
Collapse
|