1
|
Hu W, Tang D, Zeng Z, Wang B, Zhou M, Mao Y, Zhou P, He S. Research progress on the molecular mechanism of immune escape of porcine reproductive and respiratory syndrome virus. Virology 2025; 602:110298. [PMID: 39631153 DOI: 10.1016/j.virol.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by the porcine reproductive and respiratory syndrome virus (PRRSV), is a severe and highly contagious disease that results in significant economic losses for the pig industry. Currently, vaccination is one of the most effective methods for controlling PRRS; however, due to the extensive genetic variation of PRRSV and the generation of homologous immunity, vaccines provide protective effects only against homologous strains and lack effective cross-protection against heterologous strains. Furthermore, PRRSV encodes a variety of proteins with immune escape functions, and the mechanisms underlying these functions are complex and not yet fully understood. This complexity presents substantial challenges to the prevention, control, and eradication of the disease. Therefore, this article reviews the various escape mechanisms of PRRSV identified in recent years, with the aim of providing insights into the pathogenic mechanisms of PRRSV and facilitating the development of safer and more effective vaccines and therapeutics.
Collapse
Affiliation(s)
- Wenwen Hu
- College of Animal Science, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Deyuan Tang
- College of Animal Science, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Zhiyong Zeng
- College of Animal Science, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bin Wang
- College of Animal Science, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Min Zhou
- College of Animal Science, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Yinming Mao
- College of Animal Science, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Piao Zhou
- College of Animal Science, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Song He
- College of Animal Science, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
2
|
Gao P, Zhou L, Wu J, Weng W, Wang H, Ye M, Qu Y, Hao Y, Zhang Y, Ge X, Guo X, Han J, Yang H. Riding apoptotic bodies for cell-cell transmission by African swine fever virus. Proc Natl Acad Sci U S A 2023; 120:e2309506120. [PMID: 37983498 PMCID: PMC10691326 DOI: 10.1073/pnas.2309506120] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
African swine fever virus (ASFV), a devastating pathogen to the worldwide swine industry, mainly targets macrophage/monocyte lineage, but how the virus enters host cells has remained unclear. Here, we report that ASFV utilizes apoptotic bodies (ApoBDs) for infection and cell-cell transmission. We show that ASFV induces cell apoptosis of primary porcine alveolar macrophages (PAMs) at the late stage of infection to productively shed ApoBDs that are subsequently swallowed by neighboring PAMs to initiate a secondary infection as evidenced by electron microscopy and live-cell imaging. Interestingly, the virions loaded within ApoBDs are exclusively single-enveloped particles that are devoid of the outer layer of membrane and represent a predominant form produced during late infection. The in vitro purified ApoBD vesicles are capable of mediating virus infection of naive PAMs, but the transmission can be significantly inhibited by blocking the "eat-me" signal phosphatidyserine on the surface of ApoBDs via Annexin V or the efferocytosis receptor TIM4 on the recipient PAMs via anti-TIM4 antibody, whereas overexpression of TIM4 enhances virus infection. The same treatment however did not affect the infection by intracellular viruses. Importantly, the swine sera to ASFV exert no effect on the ApoBD-mediated transmission but can partially act on the virions lacking the outer layer of membrane. Thus, ASFV has evolved to hijack a normal cellular pathway for cell-cell spread to evade host responses.
Collapse
Affiliation(s)
- Peng Gao
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| | - Jiajun Wu
- China Animal Disease Control Center, Beijing100125, People’s Republic of China
| | - Wenlian Weng
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| | - Hua Wang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| | - Miaomiao Ye
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| | - Yajin Qu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| | - Yuxin Hao
- China Animal Disease Control Center, Beijing100125, People’s Republic of China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| |
Collapse
|
3
|
Zou Y, Zhang M, Zhou J. Recent trends in STING modulators: Structures, mechanisms, and therapeutic potential. Drug Discov Today 2023; 28:103694. [PMID: 37393985 DOI: 10.1016/j.drudis.2023.103694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
The cyclic GMP-AMP synthase stimulator (cGAS)-stimulator of interferon gene (STING) signaling pathway has an integral role in the host immune response through DNA sensing followed by inducing a robust innate immune defense program. STING has become a promising therapeutic target associated with multiple diseases, including various inflammatory diseases, cancer, and infectious diseases, among others. Thus, modulators of STING are regarded as emerging therapeutic agents. Recent progress has been made in STING research, including recently identified STING-mediated regulatory pathways, the development of a new STING modulator, and the new association of STING with disease. In this review, we focus on recent trends in the development of STING modulators, including structures, mechanisms, and clinical application.
Collapse
Affiliation(s)
- Yan Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Min Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.
| |
Collapse
|
4
|
Li J, Zhou Y, Zhao W, Liu J, Ullah R, Fang P, Fang L, Xiao S. Porcine reproductive and respiratory syndrome virus degrades DDX10 via SQSTM1/p62-dependent selective autophagy to antagonize its antiviral activity. Autophagy 2023; 19:2257-2274. [PMID: 36779599 PMCID: PMC10351467 DOI: 10.1080/15548627.2023.2179844] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a typical immunosuppressive virus devastating the global swine industry. DEAD-box helicases (DDXs) are a family of ATP-dependent RNA helicases that are predominantly implicated in modulating cellular RNA metabolism. Meanwhile, a growing number of studies have suggested that some DDXs are associated with innate immunity and virus infection, so they are considered potential antiviral targets. Herein, we screened 40 DDXs and found that ectopic expression of DDX10 exhibited a significant anti-PRRSV effect, while DDX10 knockdown promoted PRRSV proliferation. Further analysis revealed that DDX10 positively regulates type I interferon production, which may contribute to its anti-PRRSV effect. Interestingly, PRRSV infection promoted DDX10 translocation from the nucleus to the cytoplasm for macroautophagic/autophagic degradation to block the antiviral effect of DDX10. By screening PRRSV-encoded proteins, we found that the viral envelope (E) protein interacted with DDX10. In line with the autophagic degradation of DDX10 during PRRSV infection, E protein could induce autophagy and reduce DDX10 expression in wild-type cells, but not in ATG5 or ATG7 knockout (KO) cells. When further screening the cargo receptors for autophagic degradation, we found that SQSTM1/p62 (sequestosome 1) interacted with both DDX10 and E protein, and E protein-mediated DDX10 degradation was almost entirely blocked in SQSTM1 KO cells, demonstrating that E protein degrades DDX10 by promoting SQSTM1-mediated selective autophagy. Our study reveals a novel mechanism by which PRRSV escapes host antiviral innate immunity through selective autophagy, providing a new target for developing anti-PRRSV drugs.Abbreviations: ACTB: actin beta; ATG: autophagy related; co-IP: co-immunoprecipitation; CQ: chloroquine; DDX10: DEAD-box helicase 10; E: envelope; EGFP: enhanced green fluorescent protein; hpi: hours post infection; hpt: hours post transfection; IFA: indirect immunofluorescence assay; IFN-I: type I IFN; IFNB/IFN-β: interferon beta; IRF3: interferon regulatory factor 3; ISGs: interferon-stimulated genes; KO: knockout; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; mAb: monoclonal antibody; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NFKB/NF-κB: nuclear factor kappa B; OPTN: optineurin; ORF: open reading frame; PRRSV: porcine reproductive and respiratory syndrome virus; SeV: sendai virus; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TCID50: 50% tissue culture infective dose; WT: wild type.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Wenkai Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Jiao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Rizwan Ullah
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
5
|
Zhu Z, Xu Y, Chen L, Zhang M, Li X. Bergamottin Inhibits PRRSV Replication by Blocking Viral Non-Structural Proteins Expression and Viral RNA Synthesis. Viruses 2023; 15:1367. [PMID: 37376666 DOI: 10.3390/v15061367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) causes economic losses in the swine industry worldwide. However, current vaccines cannot provide effective protection against PRRSV, and PRRSV-specific treatments for infected herds are still unavailable. In this study, we found that bergamottin showed strong inhibitory effects against PRRSV replication. Bergamottin inhibited PRRSV at the stage of the replication cycle. Mechanically, bergamottin promoted the activation of IRF3 and NF-κB signaling, leading to the increased expression of proinflammatory cytokines and interferon, which inhibited viral replication to some extent. In addition, bergamottion could reduce the expression of the non-structural proteins (Nsps), leading to the interruption of replication and transcription complex (RTC) formation and viral dsRNA synthesis, ultimately restraining PRRSV replication. Our study identified that bergamottin possesses potential value as an antiviral agent against PRRSV in vitro.
Collapse
Affiliation(s)
- Zhenbang Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuqian Xu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Lulu Chen
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Meng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Chen XX, Qiao S, Li R, Wang J, Li X, Zhang G. Evasion strategies of porcine reproductive and respiratory syndrome virus. Front Microbiol 2023; 14:1140449. [PMID: 37007469 PMCID: PMC10063791 DOI: 10.3389/fmicb.2023.1140449] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
During the co-evolution of viruses and their hosts, viruses have developed various strategies for overcoming host immunological defenses so that they can proliferate efficiently. Porcine reproductive and respiratory syndrome virus (PRRSV), a significant virus to the swine industry across the world, typically establishes prolonged infection via diverse and complicated mechanisms, which is one of the biggest obstacles for controlling the associated disease, porcine reproductive and respiratory syndrome (PRRS). In this review, we summarize the latest research on how PRRSV circumvents host antiviral responses from both the innate and adaptive immune systems and how this virus utilizes other evasion mechanisms, such as the manipulation of host apoptosis and microRNA. A thorough understanding of the exact mechanisms of PRRSV immune evasion will help with the development of novel antiviral strategies against PRRSV.
Collapse
Affiliation(s)
- Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Jing Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xuewu Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Li X, Sun R, Guo Y, Zhang H, Xie R, Fu X, Zhang L, Zhang L, Li Z, Huang J. N-Acetyltransferase 9 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Proliferation by N-Terminal Acetylation of the Structural Protein GP5. Microbiol Spectr 2023; 11:e0244222. [PMID: 36695606 PMCID: PMC9927549 DOI: 10.1128/spectrum.02442-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a serious threat to the global swine industry. As a typical immunosuppressive virus, PRRSV has developed a variety of complex mechanisms to escape the host innate immunity. In this study, we uncovered a novel immune escape mechanism of PRRSV infection. Here, we demonstrate for the first time that the endoplasmic reticulum (ER)-resident N-acetyltransferase Nat9 is an important host restriction factor for PRRSV infection. Nat9 inhibited PRRSV proliferation in an acetyltransferase activity-dependent manner. Mechanistically, glycoprotein 5 (GP5) of PRRSV was identified as interacting with Nat9 and being N-terminally acetylated by it, which generates a GP5 degradation signal, promoting the K27-linked-ubiquitination degradation of GP5 to decrease virion assembly. Meanwhile, the expression of Nat9 was inhibited during PRRSV infection. In detail, two transcription factors, ETV5 and SP1, were screened out as the key transcription factors binding to the core promoter region of Nat9, and the PRRSV nonstructural protein 1β (Nsp1β), Nsp4, Nsp9, and nucleocapsid (N) proteins were found to interfere significantly with the expression of ETV5 and SP1, thereby regulating the transcription activity of Nat9 and inhibiting the expression of Nat9. The findings suggest that PRRSV decreases the N-terminal acetylation of GP5 to support virion assembly by inhibiting the expression of Nat9. Taken together, our findings showed that PRRSV has developed complex mechanisms to inhibit Nat9 expression and trigger virion assembly. IMPORTANCE To ensure efficient replication, a virus must hijack or regulate multiple host factors for its own benefit. Understanding virus-host interactions and the molecular mechanisms of host resistance to PRRSV infection is necessary to develop effective strategies to control PRRSV. The N-acetyltransferase Nat9 plays important roles during virus infection. Here, we demonstrate that Nat9 exhibits an antiviral effect on PRRSV proliferation. The GP5 protein of PRRSV is targeted specifically by Nat9, which mediates GP5 N-terminal acetylation and degradation via a ubiquitination-dependent proteasomal pathway. However, PRRSV manipulates the transcription factors ETV5 and SP1 to inhibit the expression of Nat9 and promote virion assembly. Thus, we report a novel function of Nat9 in PRRSV infection and elucidate a new mechanism by which PRRSV can escape the host innate immunity, which may provide novel insights for the development of antiviral drugs.
Collapse
Affiliation(s)
- Xiaoyang Li
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Ruiqi Sun
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Yanyu Guo
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Huixia Zhang
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Ruyu Xie
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Xubin Fu
- Tianjin Ringpu Bio-technology Co., Ltd., Tianjin, China
| | - Lei Zhang
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Zexing Li
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Jinhai Huang
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| |
Collapse
|
8
|
Signaling Lymphocytic Activation Molecule Family Member 1 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication. Animals (Basel) 2022; 12:ani12243542. [PMID: 36552462 PMCID: PMC9774311 DOI: 10.3390/ani12243542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) causes a highly contagious disease in domestic swine. Signaling lymphocytic activation molecule family member 1 (SLAMF1) is a costimulatory factor that is involved in innate immunity, inflammation, and infection. Here, we demonstrate that overexpression of the SLAMF1 gene inhibited PRRSV replication significantly and reduced the levels of key signaling pathways, including MyD88, RIG-I, TLR2, TRIF, and inflammatory factors IL-6, IL-1β, IL-8, TNF-β, TNF-α, and IFN-α in vitro. However, the knockdown of the SLAMF1 gene could enhance replication of the PRRSV and the levels of key signaling pathways and inflammatory factors. Overall, our results identify a new, to our knowledge, antagonist of the PRRSV, as well as a novel antagonistic mechanism evolved by inhibiting innate immunity and inflammation, providing a new reference and direction for PRRSV disease resistance breeding.
Collapse
|
9
|
Rukarcheep D, Lothong M, Wattanaphansak S, Deachapunya C, Poonyachoti S. Porcine reproductive and respiratory syndrome virus induces tight junction barrier dysfunction and cell death in porcine glandular endometrial epithelial cells. Theriogenology 2022; 185:34-42. [DOI: 10.1016/j.theriogenology.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
|
10
|
Ke W, Zhou Y, Lai Y, Long S, Fang L, Xiao S. Porcine reproductive and respiratory syndrome virus nsp4 positively regulates cellular cholesterol to inhibit type I interferon production. Redox Biol 2021; 49:102207. [PMID: 34911669 PMCID: PMC8758914 DOI: 10.1016/j.redox.2021.102207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular cholesterol plays an important role in the life cycles of enveloped viruses. Previous studies by our group and other groups have demonstrated that the depletion of cellular cholesterol by methyl-β-cyclodextrin (MβCD) reduces the proliferation of porcine reproductive and respiratory syndrome virus (PRRSV), a porcine Arterivirus that has been devastating the swine industry worldwide for over two decades. However, how PRRSV infection regulates cholesterol synthesis is not fully understood. In this study, we showed that PRRSV infection upregulated the activity of protein phosphatase 2 (PP2A), which subsequently activated 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the rate-limiting enzyme in the cholesterol synthesis pathway, to increase the levels of cellular cholesterol. By screening the PRRSV-encoded proteins, we showed that nsp4 dominated the upregulation of cellular cholesterol, independently of the 3C-like protease activity of nsp4. A mutation analysis showed that domain I (amino acids 1–80) of PRRSV nsp4 interacted with PR65 alpha (PR65α), the structural subunit, and PP2Ac, the catalytic subunit, of PP2A. Importantly, domain I of nsp4 inhibited Sendai virus-induced interferon β production, and this inhibitory effect was eliminated by Lovastatin, an HMGCR inhibitor, indicating that the upregulation of cellular cholesterol by nsp4 is a strategy used by PRRSV to suppress the antiviral innate immunity of its host. Collectively, we here demonstrated the mechanism by which PRRSV regulates cellular cholesterol synthesis and reported a novel strategy by which PRRSV evades its host's antiviral innate immune response. PRRSV nsp4 up-regulates cellular cholesterol via the PP2A-HMGCR pathway. Nsp4 domain I (amino acids 1–80) interacts with A and C subunits of PP2A. Nsp4 domain I inhibits IFN-I production by upregulating cellular cholesterol. The HMGCR inhibitor Lovastatin inhibits PRRSV proliferation.
Collapse
Affiliation(s)
- Wenting Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yinan Lai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Siwen Long
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
11
|
The Innate Immune DNA Sensing cGAS-STING Signaling Pathway Mediates Anti-PRRSV Function. Viruses 2021; 13:v13091829. [PMID: 34578409 PMCID: PMC8473166 DOI: 10.3390/v13091829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) modulates host innate immunity which plays a key role against PRRSV infection. As a RNA virus, PRRSV is mainly sensed by innate immune RNA receptors, whereas the role of innate immune DNA sensors in the PRRSV infection has not been elucidated. Here, we investigated the roles of DNA sensing cGAS-STING pathway in both PRRSV infected Marc-145 cells and porcine macrophages. The results show that in Marc-145 cells, the stable expression of STING with or without stimulations exhibited anti-PRRSV activity, and STING knockout heightened PRRSV infection. In CD163-3D4/21 porcine macrophages, either expression of STING or stimulation of cGAS-STING signaling obviously suppressed PRRSV infection, whereas in STING knockdown macrophages, the PRRSV infection was upregulated. Our results clearly demonstrate that the host cGAS-STING signal exerts an important antiviral role in PRRSV infection.
Collapse
|
12
|
Wen X, Ge X, Zhou L, Zhang Y, Guo X, Yang H. PRRSV Promotes MARC-145 Cells Entry Into S Phase of the Cell Cycle to Facilitate Viral Replication via Degradation of p21 by nsp11. Front Vet Sci 2021; 8:642095. [PMID: 33869322 PMCID: PMC8044838 DOI: 10.3389/fvets.2021.642095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) remains one of the most economically significant pathogens that seriously affect the global swine industry. Despite sustained efforts, the factors that affect PRRSV replication in host cells are far from being fully elucidated and thus warrants further investigation. In this study, we first demonstrated that PRRSV infection can cause downregulation of endogenous p21 protein in MARC-145 cells in a virus dose-dependent manner. Next, we analyzed the effect of p21 knockdown by RNA interference on cell cycle progression using flow cytometric analysis, and found that knockdown of p21 promotes MARC-145 cells entry into S phase of the cell cycle. Interestingly, we further discovered PRRSV infection is also able to promote MARC-145 cells entry into the S phase. Subsequently, we synchronized MARC-145 cells into G0/G1, S and G2/M phases, respectively, and then determined PRRSV replication in these cells. Results here show that the MARC-145 cells synchronized into the S phase exhibited the highest viral titer among the cells synchronized to different phases. Additionally, to reliably analyze the potential role of endogenous p21 protein in PRRSV replication, we constructed a p21 gene-knockout MARC-145 cell line (p21-/-) using CRISPR/Cas9 technology and evaluated its capability to support PRRSV replication. Our results indicate that knockout of p21 is conducive to PRRSV replication in MARC-145 cells. Furthermore, through construction of a series of eukaryotic plasmids expressing each of individual PRRSV proteins combined with cell transfection, we demonstrated that the nonstructural protein 11 (nsp11) of PRRSV mediates p21 degradation, which was further confirmed by generating a stable MARC-145 cell line constitutively expressing nsp11 using a lentivirus system. Notably, we further demonstrated that the endoribonuclease activity rather than the deubiquitinating activity of nsp11 is essential for p21 degradation via mutagenic analysis. Finally, we demonstrated that nsp11 mediates p21 degradation via a ubiquitin-independent proteasomal degradation manner. Altogether, our study not only uncovers a new pathogenesis of PRRSV, but also provides new insights into development of novel antiviral strategies.
Collapse
Affiliation(s)
- Xuexia Wen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Sánchez-Carvajal JM, Ruedas-Torres I, Carrasco L, Pallarés FJ, Mateu E, Rodríguez-Gómez IM, Gómez-Laguna J. Activation of regulated cell death in the lung of piglets infected with virulent PRRSV-1 Lena strain occurs earlier and mediated by cleaved Caspase-8. Vet Res 2021; 52:12. [PMID: 33482914 PMCID: PMC7821682 DOI: 10.1186/s13567-020-00882-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
PRRSV-1 virulent strains cause high fever, marked respiratory disease and severe lesions in lung and lymphoid organs. Regulated cell death (RCD), such as apoptosis, necroptosis and pyroptosis, is triggered by the host to interrupt viral replication eliminating infected cells, however, although it seems to play a central role in the immunopathogenesis of PRRSV, there are significant gaps regarding their sequence and activation upon PRRSV-infection. The present study evaluated RCD events by means of caspases expression in the lung of PRRSV-1-infected pigs and their impact on pulmonary macrophage subpopulations and lung lesion. Conventional piglets were intranasally inoculated with the virulent subtype 3 Lena strain or the low virulent subtype 1 3249 strain and euthanised at 1, 3, 6, 8 and 13 dpi. Lena-infected piglets showed severe and early lung damage with a high frequency of PRRSV-N-protein+ cells, depletion of CD163+ cells and high viral load in the lung. The number of TUNEL+ cells was significantly higher than cCasp3+ cells in Lena-infected piglets during the first week post-infection. cCasp8 and to a lesser extent cCasp9 were activated by both PRRSV-1 strains after one week post-infection together with a replenishment of both CD163+ and Arg-1+ pulmonary macrophages. These results highlight the induction of other forms of RCD beyond apoptosis, such as, necroptosis and pyroptosis during the first week post-infection followed by the activation of, mainly, extrinsic apoptosis during the second week post-infection. The recovery of CD163+ macrophages at the end of the study represents an attempt to restore pulmonary macrophage subpopulations lost during the early stages of the infection but also a macrophage polarisation into M2 macrophages.
Collapse
Affiliation(s)
- Jose María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain.
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain.
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Francisco José Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Enric Mateu
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona, 08193, Bellaterra, Spain.,Institut de Recerca i Tecnologia Agroalimentàries - Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| |
Collapse
|
14
|
Cui C, Liang Q, Tang X, Xing J, Sheng X, Zhan W. Differential Apoptotic Responses of Hemocyte Subpopulations to White Spot Syndrome Virus Infection in Fenneropenaeus chinensis. Front Immunol 2020; 11:594390. [PMID: 33365030 PMCID: PMC7750459 DOI: 10.3389/fimmu.2020.594390] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/05/2020] [Indexed: 11/13/2022] Open
Abstract
The apoptosis of hemocytes plays an essential function in shrimp immune defense against pathogen invasions. In order to further elucidate the differential apoptotic responses of the granulocytes and the hyalinocytes in Fenneropenaeus chinensis post WSSV infection, the characteristics of apoptotic dynamics and viral proliferation in total hemocytes and hemocyte subpopulations were respectively investigated in the present work. The results showed that the apoptotic rate of hemocytes changed significantly, and the apoptosis-related genes also showed significantly differential expression responses during WSSV infection. Interestingly, we found that the apoptotic rate of virus-negative hemocytes was significantly higher than that of virus-positive hemocytes in the early stage of WSSV infection, while it was significantly lower than that of virus-positive cells in the middle and late infection stages. The difference of apoptosis between virus-positive and virus-negative hemocytes seems to be an important way for the WSSV to destroy the host’s immune system and facilitate the virus spread at different infection stages. It was further found that the apoptosis rate of granulocytes was always significantly higher than that of hyalinocytes during WSSV infection, indicating that granulocytes have a stronger apoptotic response to WSSV infection. Moreover, a higher viral load was detected in granulocytes, and the density of granulocytes decreased more rapidly post WSSV infection, indicating that the granulocytes are more susceptible and vulnerable to WSSV infection compared with the hyalinocytes. These results collectively demonstrated that the apoptotic response in shrimp hemocytes was significantly influenced by the WSSV infection, and the differential apoptotic response of granulocytes and hyalinocytes to WSSV indicated the differences of antiviral mechanisms between the two hemocyte subpopulations.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Qianrong Liang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
15
|
Crisci E, Moroldo M, Vu Manh TP, Mohammad A, Jourdren L, Urien C, Bouguyon E, Bordet E, Bevilacqua C, Bourge M, Pezant J, Pléau A, Boulesteix O, Schwartz I, Bertho N, Giuffra E. Distinctive Cellular and Metabolic Reprogramming in Porcine Lung Mononuclear Phagocytes Infected With Type 1 PRRSV Strains. Front Immunol 2020; 11:588411. [PMID: 33365028 PMCID: PMC7750501 DOI: 10.3389/fimmu.2020.588411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/19/2020] [Indexed: 01/17/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has an extensive impact on pig production. The causative virus (PRRSV) is divided into two species, PRRSV-1 (European origin) and PRRSV-2 (North American origin). Within PRRSV-1, PRRSV-1.3 strains, such as Lena, are more pathogenic than PRRSV-1.1 strains, such as Flanders 13 (FL13). To date, the molecular interactions of PRRSV with primary lung mononuclear phagocyte (MNP) subtypes, including conventional dendritic cells types 1 (cDC1) and 2 (cDC2), monocyte-derived DCs (moDC), and pulmonary intravascular macrophages (PIM), have not been thoroughly investigated. Here, we analyze the transcriptome profiles of in vivo FL13-infected parenchymal MNP subpopulations and of in vitro FL13- and Lena-infected parenchymal MNP. The cell-specific expression profiles of in vivo sorted cells correlated with their murine counterparts (AM, cDC1, cDC2, moDC) with the exception of PIM. Both in vivo and in vitro, FL13 infection altered the expression of a low number of host genes, and in vitro infection with Lena confirmed the higher ability of this strain to modulate host response. Machine learning (ML) and gene set enrichment analysis (GSEA) unraveled additional relevant genes and pathways modulated by FL13 infection that were not identified by conventional analyses. GSEA increased the cellular pathways enriched in the FL13 data set, but ML allowed a more complete comprehension of functional profiles during FL13 in vitro infection. Data indicates that cellular reprogramming differs upon Lena and FL13 infection and that the latter might keep antiviral and inflammatory macrophage/DC functions silent. Although the slow replication kinetics of FL13 likely contribute to differences in cellular gene expression, the data suggest distinct mechanisms of interaction of the two viruses with the innate immune system during early infection.
Collapse
Affiliation(s)
- Elisa Crisci
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Marco Moroldo
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | - Ammara Mohammad
- Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Laurent Jourdren
- Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Celine Urien
- Virologie et Immunologie Moléculaire, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Edwige Bouguyon
- Virologie et Immunologie Moléculaire, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elise Bordet
- Virologie et Immunologie Moléculaire, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Claudia Bevilacqua
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Mickael Bourge
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jérémy Pezant
- Plate-Forme d'Infectiologie Expérimentale-PFIE-UE1277, Centre Val de Loire, INRAE, Nouzilly, France
| | - Alexis Pléau
- Plate-Forme d'Infectiologie Expérimentale-PFIE-UE1277, Centre Val de Loire, INRAE, Nouzilly, France
| | - Olivier Boulesteix
- Plate-Forme d'Infectiologie Expérimentale-PFIE-UE1277, Centre Val de Loire, INRAE, Nouzilly, France
| | - Isabelle Schwartz
- Virologie et Immunologie Moléculaire, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nicolas Bertho
- Virologie et Immunologie Moléculaire, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elisabetta Giuffra
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| |
Collapse
|
16
|
Chaudhari J, Liew CS, Workman AM, Riethoven JJM, Steffen D, Sillman S, Vu HLX. Host Transcriptional Response to Persistent Infection with a Live-Attenuated Porcine Reproductive and Respiratory Syndrome Virus Strain. Viruses 2020; 12:v12080817. [PMID: 32731586 PMCID: PMC7474429 DOI: 10.3390/v12080817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Both virulent and live-attenuated porcine reproductive and respiratory syndrome virus (PRRSV) strains can establish persistent infection in lymphoid tissues of pigs. To investigate the mechanisms of PRRSV persistence, we performed a transcriptional analysis of inguinal lymphoid tissue collected from pigs experimentally infected with an attenuated PRRSV strain at 46 days post infection. A total of 6404 differentially expressed genes (DEGs) were detected of which 3960 DEGs were upregulated and 2444 DEGs were downregulated. Specifically, genes involved in innate immune responses and chemokines and receptors associated with T-cell homing to lymphoid tissues were down regulated. As a result, homing of virus-specific T-cells to lymphoid tissues seems to be ineffective, evidenced by the lower frequencies of virus-specific T-cell in lymphoid tissue than in peripheral blood. Genes associated with T-cell exhaustion were upregulated. Likewise, genes involved in the anti-apoptotic pathway were upregulated. Collectively, the data suggested that the live-attenuated PRRSV strain establishes a pro-survival microenvironment in lymphoid tissue by suppressing innate immune responses, T-cell homing, and preventing cell apoptosis.
Collapse
Affiliation(s)
- Jayeshbhai Chaudhari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (D.S.); (S.S.)
| | - Chia-Sin Liew
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (C.-S.L.); (J.-J.M.R.)
| | - Aspen M. Workman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA;
| | - Jean-Jack M. Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (C.-S.L.); (J.-J.M.R.)
| | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (D.S.); (S.S.)
| | - Sarah Sillman
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (D.S.); (S.S.)
| | - Hiep L. X. Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: ; Tel.: +1-402-472-4528
| |
Collapse
|
17
|
Molecular and Cellular Mechanisms for PRRSV Pathogenesis and Host Response to Infection. Virus Res 2020; 286:197980. [PMID: 32311386 PMCID: PMC7165118 DOI: 10.1016/j.virusres.2020.197980] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
PRRSV has evolved to arm with various strategies to modify host antiviral response. Viral modulation of homeostatic cellular processes provides favorable conditions for PRRSV survival during infection. PRRSV modulation of cellular processes includes pathways for interferons, apoptosis, microRNAs, cytokines, autophagy, and viral genome recombination.
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused tremendous amounts of economic losses to the swine industry for more than three decades, but its control is still unsatisfactory. A significant amount of information is available for host cell-virus interactions during infection, and it is evident that PRRSV has evolved to equip various strategies to disrupt the host antiviral system and provide favorable conditions for survival. The current study reviews viral strategies for modulations of cellular processes including innate immunity, apoptosis, microRNAs, inflammatory cytokines, and other cellular pathways.
Collapse
|
18
|
Ruedas-Torres I, Rodríguez-Gómez IM, Sánchez-Carvajal JM, Pallares FJ, Barranco I, Carrasco L, Gómez-Laguna J. Activation of the extrinsic apoptotic pathway in the thymus of piglets infected with PRRSV-1 strains of different virulence. Vet Microbiol 2020; 243:108639. [PMID: 32273018 DOI: 10.1016/j.vetmic.2020.108639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 11/17/2022]
Abstract
In the last decade, the outbreaks caused by virulent porcine reproductive and respiratory syndrome virus (PRRSV) strains from both PRRSV-1 and PRRSV-2 have considerably increased. PRRSV is able to modulate the host's immune response through the induction of apoptosis of cells in lymphoid organs like thymus, increasing the susceptibility to secondary infectious agents. The present study aimed to compare the impact of two PRRSV-1 strains, a field low virulent strain (3249 strain) and a virulent strain (Lena strain), in the thymus of infected pigs, focusing on clinical signs, histological analysis, viraemia, thymus viral load and the study of the different routes of apoptosis phenomena by immunohistochemistry. Sera and thymus samples were collected from infected animals with 3249 strain, Lena strain and mock-infected animals at 1, 3, 6, 8 and 13 days post-infection (dpi). Lena-infected animals showed severe clinical disease, high sera and thymus viral loads with evident thymic atrophy since 6 dpi, matching with PRRSV-N protein, TUNEL and cCasp3 expression in the thymic cortex. In both infected groups, there was an increase in the number of cells expressing molecules related to the extrinsic pathway of apoptosis (cCasp8 and Fas) in cortex and medulla, showing an important role in the apoptosis induction produced in thymus of PRRSV-infected piglets. The extensive apoptosis in the thymus through this pathway would lead to a decrease in the number of mature T lymphocytes and the sustained release of viral particles, which may explain the greater severity of the clinical signs observed in Lena-infected pigs.
Collapse
Affiliation(s)
- Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain.
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Jose María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Francisco José Pallares
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Murcia, 30100, Murcia, Spain
| | - Inmaculada Barranco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| |
Collapse
|
19
|
Suleman M, Malgarin CM, Detmer SE, Harding JCS, MacPhee DJ. The porcine trophoblast cell line PTr2 is susceptible to porcine reproductive and respiratory syndrome virus-2 infection. Placenta 2019; 88:44-51. [PMID: 31670096 DOI: 10.1016/j.placenta.2019.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/05/2019] [Accepted: 10/04/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Porcine reproductive and respiratory syndrome virus-2 (PRRSV-2) breaches the maternal-fetal interface (MFI) to infect porcine fetuses, yet the exact mechanism(s) of transmission is not understood. The objective of this study was to determine the susceptibility of porcine trophoblast cell line (PTr2) to PRRSV-2 infection to understand the potential role of the trophoblast in viral transmission to fetuses in vivo. METHODS PTr2 cells were exposed in vitro to PRRSV-2 and then subjected to immunofluorescence analysis (IF), flow cytometry (FCM), real-time quantitative PCR (RT-qPCR), transmission electron microscopy (TEM) and immunogold electron microscopy (IEM) to assess viral infection. The effects of PRRSV-2 on PTr2 cell cycle progression and apoptosis, as well as the ability of PTr2 cells to produce infectious viral particles were also examined. RESULTS PRRSV-2 was readily detected in PTr2 cells by IF, FCM, RT-qPCR, TEM and IEM techniques. RT-qPCR and FCM results of a time course of infection of PTr2 cells indicated PRRSV-2 load decreased over time after initial infection up to 72 h. PRRSV-2 infection altered PTr2 cell cycle with a selective increase of cells within the G2/M phase and also induced apoptosis. TEM and IEM demonstrated PRRSV-2 within and on the surface of PTr2 cells and PRRSV-2 virions released from PTr2 cells infected naïve MARC-145 cells inducing cytopathic effects. DISCUSSION Trophoblast cells are susceptible to PRRSV-2 infection and release live virions capable of inducing cytopathic effects in naïve cells. This suggests a possible mechanism by which PRRSV-2 can breach the MFI resulting in fetal infection and death.
Collapse
Affiliation(s)
- M Suleman
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Department of Microbiology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - C M Malgarin
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - S E Detmer
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - J C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - D J MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
20
|
Fan L. Signaling pathways involved in regulating apoptosis induction in host cells upon PRRSV infection. Virus Genes 2019; 55:433-439. [PMID: 31004277 DOI: 10.1007/s11262-019-01665-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/14/2019] [Indexed: 12/11/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the etiologic agent of porcine reproductive and respiratory syndrome (PRRS), a devastating disease of swine that poses a serious threat to the swine industry worldwide. The induction of apoptosis in host cells is suggested to be the key cellular mechanism that contributes to the pathogenesis of PRRS. Various signaling pathways have been identified to be involved in regulating PRRSV-induced apoptosis. In this review, we summarize the potential signaling pathways that contribute to PRRSV-induced apoptosis, and propose the issues that need to be addressed in future studies for a better understanding of the molecular basis underlying the pathogenesis of PRRS.
Collapse
Affiliation(s)
- Lihong Fan
- Department of Preventive Medicine, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
21
|
Li W, Chen H, Deng H, Kuang Z, Long M, Chen D, Liao X, Li M, Rock DL, Luo S, Hao W. Orf Virus Encoded Protein ORFV119 Induces Cell Apoptosis Through the Extrinsic and Intrinsic Pathways. Front Microbiol 2018; 9:1056. [PMID: 29896166 PMCID: PMC5986898 DOI: 10.3389/fmicb.2018.01056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022] Open
Abstract
Apoptosis, a significant form of cell death, has a leading role in the host cell defense against virus infection. Viruses have evolved a series of strategies that block apoptosis during the early stage of viral infection to enhance viral replication, and induce apoptosis in the late stages to facilitate viral particle release from the cells. Here we show that orf virus (ORFV), the causative agent of orf, encodes an apoptosis-inducing protein ORFV119. ORFV119 targets the mitochondria in host cells, inhibits cell proliferation, and induces cell apoptosis. Protein array data indicated that ORFV119 could induce apoptosis via up-regulation of Smac, Bak, and Bax and down-regulation of anti-apoptotic proteins Bcl-2 and cIAP-2. Activation of caspase-9 and caspase-3, and consequent PARP cleavage, ultimately lead to apoptosis. ORFV119 could also directly activate caspase-8 and induce Bid, involved in the extrinsic pathway, to achieve cell death. Furthermore, sequence analysis and experiments with mutants of ORFV119 introduced revealed that ORFV119 contains a key N-terminal domain that is necessary and sufficient to direct the protein to the mitochondria. Together, we report, for the first time, the identification of the novel apoptosis-inducing protein ORFV119 encoded by a parapoxvirus. This provides an important reference for the study of pathogenesis, identification of immunomodulation mechanisms of ORFV, and may lead to new strategies for orf disease control.
Collapse
Affiliation(s)
- Wei Li
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Huiqin Chen
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Hao Deng
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhenzhan Kuang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Mingjian Long
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Daxiang Chen
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiaoqing Liao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Ming Li
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Daniel L Rock
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Champaign-Urbana, Urbana, IL, United States
| | - Shuhong Luo
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Wenbo Hao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Li Y, Wu Z, Liu K, Qi P, Xu J, Wei J, Li B, Shao D, Shi Y, Qiu Y, Ma Z. Proteomic Analysis of the Secretome of Porcine Alveolar Macrophages Infected with Porcine Reproductive and Respiratory Syndrome Virus. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/31/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Yuming Li
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| | - Zhuanchang Wu
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| | - Ke Liu
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| | - Pengfei Qi
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| | - Jinpeng Xu
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| | - Beibei Li
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| | - Donghua Shao
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| | - Yuanyuan Shi
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Science; Shanghai PR China
| |
Collapse
|
23
|
ZHANG F, GAO P, GE XN, ZHOU L, GUO X, YANG HC. Critical role of cytochrome c1 and its cleavage in porcine reproductive and respiratory syndrome virus nonstructural protein 4-induced cell apoptosis via interaction with nsp4. JOURNAL OF INTEGRATIVE AGRICULTURE : JIA 2017; 16:2573-2585. [PMID: 32288954 PMCID: PMC7129397 DOI: 10.1016/s2095-3119(17)61670-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/12/2017] [Indexed: 06/11/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) actively induces cell apoptosis both in vitro and in vivo, which can contribute critically to viral pathogenesis. Previous studies have shown that the PRRSV nonstructural protein 4 (nsp4) is an important mediator of this process, but the underlying molecular details remain poorly understood. In this study, we found that the PRRSV nsp4 interacted with the mitochondrial inner membrane protein cytochrome c1 (cyto.c1) and induced its proteolytic cleavage. Interestingly, the cleaved N-terminal fragment of cyto.c1 was found to exert apoptotic activity, which could cause mitochondrial fragmentation, resulting in apoptotic cell death. And RNA interference (RNAi) silencing experiments further confirmed the crucial role which cyto.c1 played in nsp4- and PRRSV-induced cell apoptosis. Thus, our data provide an important piece of mechanistic clues for PRRSV-induced cell apoptosis and also elucidate a novel mechanism for the 3C-like proteases in this finding.
Collapse
Affiliation(s)
| | | | | | | | | | - Han-chun YANG
- Correspondence YANG Han-chun, Tel/Fax: +86-10-62731296
| |
Collapse
|
24
|
Chen X, Zhang Q, Bai J, Zhao Y, Wang X, Wang H, Jiang P. The Nucleocapsid Protein and Nonstructural Protein 10 of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Enhance CD83 Production via NF-κB and Sp1 Signaling Pathways. J Virol 2017; 91:e00986-17. [PMID: 28659471 PMCID: PMC5571251 DOI: 10.1128/jvi.00986-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/14/2017] [Indexed: 12/31/2022] Open
Abstract
Porcine reproductive and respiratory syndrome, caused by porcine reproductive and respiratory syndrome virus (PRRSV), is a panzootic disease that is one of the most economically costly diseases to the swine industry. A key aspect of PRRSV virulence is that the virus suppresses the innate immune response and induces persistent infection, although the underlying mechanisms are not well understood. The dendritic cell (DC) marker CD83 belongs to the immunoglobulin superfamily and is associated with DC activation and immunosuppression of T cell proliferation when expressed as soluble CD83 (sCD83). In this study, we show that PRRSV infection strongly stimulates CD83 expression in porcine monocyte-derived DCs (MoDCs) and that the nucleocapsid (N) protein and nonstructural protein 10 (nsp10) of PRRSV enhance CD83 promoter activity via the NF-κB and Sp1 signaling pathways. R43A and K44A amino acid substitution mutants of the N protein suppress the N protein-mediated increase of CD83 promoter activity. Similarly, P192-5A and G214-3A mutants of nsp10 (with 5 and 3 alanine substitutions beginning at residues P192 and G214, respectively) abolish the nsp10-mediated induction of the CD83 promoter. Using reverse genetics, four mutant viruses (rR43A, rK44A, rP192-5A, and rG214-3A) and four revertants [rR43A(R), rK44A(R), rP192-5A(R), and rG214-3A(R)] were generated. Decreased induction of CD83 in MoDCs was observed after infection by mutants rR43A, rK44A, rP192-5A, and rG214-3A, in contrast to the results obtained using rR43A(R), rK44A(R), rP192-5A(R), and rG214-3A(R). These findings suggest that PRRSV N and nsp10 play important roles in modulating CD83 signaling and shed light on the mechanism by which PRRSV modulates host immunity.IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically costly pathogens affecting the swine industry. It is unclear how PRRSV inhibits the host's immune response and induces persistent infection. The dendritic cell (DC) marker CD83 belongs to the immunoglobulin superfamily and has previously been associated with DC activation and immunosuppression of T cell proliferation and differentiation when expressed as soluble CD83 (sCD83). In this study, we found that PRRSV infection induces sCD83 expression in porcine MoDCs via the NF-κB and Sp1 signaling pathways. The viral nucleocapsid protein, nonstructural protein 1 (nsp1), and nsp10 were shown to enhance CD83 promoter activity. Amino acids R43 and K44 of the N protein, as well as residues 192 to 196 (P192-5) and 214 to 216 (G214-3) of nsp10, play important roles in CD83 promoter activation. These findings provide new insights into the molecular mechanism of immune suppression by PRRSV.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiaoya Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yongxiang Zhao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xianwei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haiyan Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
25
|
Ji L, Zhou X, Liang W, Liu J, Liu B. Porcine Interferon Stimulated Gene 12a Restricts Porcine Reproductive and Respiratory Syndrome Virus Replication in MARC-145 Cells. Int J Mol Sci 2017; 18:ijms18081613. [PMID: 28757561 PMCID: PMC5578005 DOI: 10.3390/ijms18081613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 01/11/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe losses in the global pig industry. In the present study, we investigated the molecular characterization of porcine interferon stimulated gene 12a (ISG12A) and confirmed its anti-PRRSV ability for the first time. We found that porcine ISG12A was localized in mitochondria and significantly decreased the number of cells in G2/S phase. Porcine ISG12A mRNA was up-regulated in cells/tissues of Tongcheng (TC) pigs and Large White (LW) pigs after PRRSV challenge. More importantly, the ectopic overexpression of ISG12A could significantly suppress PRRSV replication at 24, 36 and 48 h post challenge (hpc), which was confirmed by detecting PRRSV ORF7 mRNA with quantitative reverse transcription polymerase chain reaction (qRT-PCR) and PRRSV N protein with indirect immunofluorescence assay (IFA) in MARC-145 cells. Meanwhile, knockdown of endogenic ISG12A could obviously facilitate PRRSV replication in MARC-145 cells at 36 hpc. The results will lead to a better understanding of the interaction between host immune system and PRRSV, which may help us develop novel therapeutic tools to control PRRSV.
Collapse
Affiliation(s)
- Likai Ji
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiang Zhou
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wan Liang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jianjian Liu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bang Liu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
26
|
Zhang Z, Wen X, Dong J, Ge X, Zhou L, Yang H, Guo X. Epitope mapping and characterization of a novel Nsp10-specific monoclonal antibody that differentiates genotype 2 PRRSV from genotype 1 PRRSV. Virol J 2017. [PMID: 28629383 PMCID: PMC5477253 DOI: 10.1186/s12985-017-0782-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV), the causative agent of PRRS, has two distinct and highly diverse genotypes (genotype 1 and genotype 2) in the field. Accurate diagnosis and differentiation of the two genotypes of PRRSV are critical to the effective prevention and control of PRRS. The non-structural protein 10 (Nsp10) plays a vital role in viral replication and is one of the most conserved proteins of PRRSV, thus constituting a good candidate for PRRSV diagnosis. Results In this study, we generated a monoclonal antibody (mAb) 4D9 against Nsp10 by immunizing BALB/c mice with purified recombinant Nsp10 expressed by an Escherichia coli system. Through fine epitope mapping of mAb 4D9 using a panel of eukaryotic expressed polypeptides with GFP-tags, we identified the motif 286AIQPDYRDKL295 as the minimal unit of the linear B-cell epitope recognized by mAb 4D9. Protein sequence alignment indicated that 286AIQPDYRDKL295 was highly conserved in genotype 2 PRRSV strains, whereas genotype 1 PRRSV strains had variable amino acids in this motif. Furthermore, a mutant of the motif carrying two constant amino acids of genotype 1 PRRSV, Cys290 and Glu293, failed to react with mAb 4D9. More importantly, the mAb 4D9 could differentiate genotype 2 PRRSV strains from genotype 1 PRRSV strains using Western blotting and immunofluorescence analysis. Conclusion Our findings suggest that Nsp10-specific mAb generated in this study could be a useful tool for basic research and may facilitate the establishment of diagnostic methods to discriminate between genotype 1 and genotype 2 PRRSV infection.
Collapse
Affiliation(s)
- Zhibang Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Xuexia Wen
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jianguo Dong
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| | - Xin Guo
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
27
|
Whitworth KM, Prather RS. Gene editing as applied to prevention of reproductive porcine reproductive and respiratory syndrome. Mol Reprod Dev 2017; 84:926-933. [DOI: 10.1002/mrd.22811] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/23/2017] [Accepted: 04/03/2017] [Indexed: 11/11/2022]
Affiliation(s)
| | - Randall S. Prather
- Division of Animal Science; University of Missouri-Columbia; Columbia Missouri
| |
Collapse
|
28
|
Han J, Zhou L, Ge X, Guo X, Yang H. Pathogenesis and control of the Chinese highly pathogenic porcine reproductive and respiratory syndrome virus. Vet Microbiol 2017; 209:30-47. [PMID: 28292547 DOI: 10.1016/j.vetmic.2017.02.020] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/24/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has remained a major threat to the worldwide swine industry ever since its first discovery in the early 1990s. Under the selective pressures in the field, this positive-stranded RNA virus undergoes rapid genetic evolution that eventually leads to emergence in 2006 of the devastating Chinese highly pathogenic PRRSV (HP-PRRSV). The atypical nature of HP-PRRSV has caused colossal economic losses to the swine producers in China and the surrounding countries. In this review, we summarize the recent advances in our understanding of the pathogenesis, evolution and ongoing field practices on the control of this troubling virus in China.
Collapse
Affiliation(s)
- Jun Han
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China.
| |
Collapse
|