1
|
Matthaiou EI, El-Hafeez AAA, Sharifi H, Chatterjee P, Zinter M, Johansson P, Dhillon E, Chiu W, Qian J, Shaller B, Chang J, Pasupneti S, Borges CH, Omar S, Enejder A, Dhillon G, Gaudilliere B, Fortwendel J, Vyas JM, Hsu JL. Macrophage ferroptosis inhibits Aspergillus conidial killing in lung transplantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643092. [PMID: 40161807 PMCID: PMC11952544 DOI: 10.1101/2025.03.13.643092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Immune suppression heightens the risk for fungal infections, but the mechanisms that result in clinical disease are poorly understood. Here we demonstrate that macrophage ferroptosis, an iron-dependent form of regulated cell death, inhibits Aspergillus fumigatus ( Af ) killing. In a mouse tracheal transplant model of Af infection, we observed an increase in macrophage lipid peroxidation, a decreased expression of negative ferroptosis regulators Gpx4 and Slc7a11 , and an increase in positive regulators Ptgs2 and Nox2 , relative to syntransplants. Depletion of macrophages in transplant recipients decreased Af invasion. In vitro , iron overload reduced macrophage viability and decreased their capability to kill Af spores, through a decrease in lysosomal acidification and lysosomal loss. Treatment with ferrostatin-1, a ferroptosis inhibitor, and deferasirox (an iron chelator) restored Af killing. Ferroptotic alveolar macrophages isolated from lung transplant patients also showed a decreased ability to kill Af spores and the patients' bronchoalveolar lavage was characterized by higher iron levels and markers of ferroptotic stress compared to non-lung transplants. These characteristics were strongly correlated with a clinical history of fungal infections, independent of immune suppressive medications. Our findings indicate that macrophage ferroptosis augments the risk of invasive aspergillosis, representing a novel mechanism for host immune dysfunction.
Collapse
|
2
|
Cui Y, Du X, Li Y, Wang D, Lv Z, Yuan H, Chen Y, Liu J, Sun Y, Wang W. Imbalanced and Unchecked: The Role of Metal Dyshomeostasis in Driving COPD Progression. COPD 2024; 21:2322605. [PMID: 38591165 DOI: 10.1080/15412555.2024.2322605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 04/10/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory condition characterized by persistent inflammation and oxidative stress, which ultimately leads to progressive restriction of airflow. Extensive research findings have cogently suggested that the dysregulation of essential transition metal ions, notably iron, copper, and zinc, stands as a critical nexus in the perpetuation of inflammatory processes and oxidative damage within the lungs of COPD patients. Unraveling the intricate interplay between metal homeostasis, oxidative stress, and inflammatory signaling is of paramount importance in unraveling the intricacies of COPD pathogenesis. This comprehensive review aims to examine the current literature on the sources, regulation, and mechanisms by which metal dyshomeostasis contributes to COPD progression. We specifically focus on iron, copper, and zinc, given their well-characterized roles in orchestrating cytokine production, immune cell function, antioxidant depletion, and matrix remodeling. Despite the limited number of clinical trials investigating metal modulation in COPD, the advent of emerging methodologies tailored to monitor metal fluxes and gauge responses to chelation and supplementation hold great promise in unlocking the potential of metal-based interventions. We conclude that targeted restoration of metal homeostasis represents a promising frontier for ameliorating pathological processes driving COPD progression.
Collapse
Affiliation(s)
- Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xinqian Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yunqi Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Dan Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Huihui Yuan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ying Sun
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
3
|
Hsu CS, Chang SH, Yang RC, Lee CH, Lee MS, Kao JK, Shieh JJ. Lipopolysaccharide-Induced Lysosomal Cell Death Through Reactive Oxygen Species in Rat Liver Cell Clone 9. ENVIRONMENTAL TOXICOLOGY 2024; 39:5008-5018. [PMID: 39031462 DOI: 10.1002/tox.24377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/03/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024]
Abstract
In sepsis, bacterial components, particularly lipopolysaccharide (LPS), trigger organ injuries such as liver dysfunction. Although sepsis induces hepatocyte damage, the mechanisms underlying sepsis-related hepatic failure remain unclear. In this study, we demonstrated that the LPS-treated rat hepatocyte cell line Clone 9 not only induced reactive oxygen species (ROS) generation and apoptosis but also increased the expression of the autophagy marker proteins LC3-II and p62, and decreased the expression of intact Lamp2A, a lysosomal membrane protein. Additionally, LPS increased lysosomal membrane permeability and galectin-3 puncta formation, and promoted lysosomal alkalization in Clone 9 cells. Pharmacological inhibition of caspase-8 and cathepsin D (CTSD) suppressed the activation of caspase-3 and rescued the viability of LPS-treated Clone 9 cells. Furthermore, LPS induced CTSD release associated with lysosomal leakage and contributed to caspase-8 activation. Pretreatment with the antioxidant N-acetylcysteine (NAC) not only diminished ROS generation and increased the cell survival rate, but also decreased the expression of activated caspase-8 and caspase-3 and increased the protein level of Lamp2A in LPS-treated Clone 9 cells. These results demonstrate that LPS-induced ROS causes lysosomal membrane permeabilization and lysosomal cell death, which may play a crucial role in hepatic failure in sepsis. Our results may facilitate the development of new strategies for sepsis management.
Collapse
Affiliation(s)
- Chien-Sheng Hsu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
| | - Shu-Hao Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Rei-Cheng Yang
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Cheng-Han Lee
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
| | - Ming-Sheng Lee
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
| | - Jun-Kai Kao
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jeng-Jer Shieh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
4
|
Grubwieser P, Brigo N, Seifert M, Grander M, Theurl I, Nairz M, Weiss G, Pfeifhofer-Obermair C. Quantification of Macrophage Cellular Ferrous Iron (Fe 2+) Content Using a Highly Specific Fluorescent Probe in a Plate Reader. Bio Protoc 2024; 14:e4929. [PMID: 38379830 PMCID: PMC10875354 DOI: 10.21769/bioprotoc.4929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/13/2023] [Accepted: 01/02/2024] [Indexed: 02/22/2024] Open
Abstract
Macrophages are at the center of innate immunity and iron metabolism. In the case of an infection, macrophages adapt their cellular iron metabolism to deprive iron from invading bacteria to combat intracellular bacterial proliferation. A concise evaluation of the cellular iron content upon an infection with bacterial pathogens and diverse cellular stimuli is necessary to identify underlying mechanisms concerning iron homeostasis in macrophages. For the characterization of cellular iron levels during infection, we established an in vitro infection model where the murine macrophage cell line J774A.1 is infected with Salmonella enterica serovar Typhimurium (S.tm), the mouse counterpart to S. enterica serovar Typhi, under normal and iron-overload conditions using ferric chloride (FeCl3) treatment. To evaluate the effect of infection and iron stimulation on cellular iron levels, the macrophages are stained with FerroOrange. This fluorescent probe specifically detects Fe2+ ions and its fluorescence can be quantified photometrically in a plate reader. Importantly, FerroOrange fluorescence does not increase with chelated iron or other bivalent metal ions. In this protocol, we present a simple and reliable method to quantify cellular Fe2+ levels in cultured macrophages by applying a highly specific fluorescence probe (FerroOrange) in a TECAN Spark microplate reader. Compared to already established techniques, our protocol allows assessing cellular iron levels in innate immune cells without the use of radioactive iron isotopes or extensive sample preparation, exposing the cells to stress. Key features • Easy quantification of Fe2+ in cultured macrophages with a fluorescent probe. • Analysis of iron in living cells without the need for fixation. • Performed on a plate reader capable of 540 nm excitation and 585 nm emission by trained employees for handling biosafety level 2 bacteria.
Collapse
Affiliation(s)
- Philipp Grubwieser
- Department of Internal Medicine II, Medical
University of Innsbruck, Innsbruck, Austria
| | - Natascha Brigo
- Department of Internal Medicine II, Medical
University of Innsbruck, Innsbruck, Austria
| | - Markus Seifert
- Department of Internal Medicine II, Medical
University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and
Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Manuel Grander
- Department of Internal Medicine II, Medical
University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and
Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine II, Medical
University of Innsbruck, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Medical
University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Medical
University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and
Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
5
|
Ullah I, Lang M. Key players in the regulation of iron homeostasis at the host-pathogen interface. Front Immunol 2023; 14:1279826. [PMID: 37942316 PMCID: PMC10627961 DOI: 10.3389/fimmu.2023.1279826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Iron plays a crucial role in the biochemistry and development of nearly all living organisms. Iron starvation of pathogens during infection is a striking feature utilized by a host to quell infection. In mammals and some other animals, iron is essentially obtained from diet and recycled from erythrocytes. Free iron is cytotoxic and is readily available to invading pathogens. During infection, most pathogens utilize host iron for their survival. Therefore, to ensure limited free iron, the host's natural system denies this metal in a process termed nutritional immunity. In this fierce battle for iron, hosts win over some pathogens, but others have evolved mechanisms to overdrive the host barriers. Production of siderophores, heme iron thievery, and direct binding of transferrin and lactoferrin to bacterial receptors are some of the pathogens' successful strategies which are highlighted in this review. The intricate interplay between hosts and pathogens in iron alteration systems is crucial for understanding host defense mechanisms and pathogen virulence. This review aims to elucidate the current understanding of host and pathogen iron alteration systems and propose future research directions to enhance our knowledge in this field.
Collapse
Affiliation(s)
- Inam Ullah
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- College of Life Science, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
6
|
Lyu B, Li J, Niemeyer B, Anderson DM, Beerntsen B, Song Q. Integrative analysis highlights molecular and immune responses of tick Amblyomma americanum to Escherichia coli challenge. Front Cell Infect Microbiol 2023; 13:1236785. [PMID: 37583446 PMCID: PMC10424933 DOI: 10.3389/fcimb.2023.1236785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Ticks are ectoparasites that can transmit various pathogens capable of causing life-threatening illnesses in people and animals, making them a severe public health threat. Understanding how ticks respond to bacterial infection is crucial for deciphering their immune defense mechanisms and identifying potential targets for controlling tick-borne diseases. In this study, an in-depth transcriptome analysis was used to investigate the molecular and immune responses of Amblyomma americanum to infection caused by the microinjection of Escherichia coli. With an abundance of differentially expressed genes discovered at different times, the analysis demonstrated significant changes in gene expression profiles in response to E. coli challenge. Notably, we found alterations in crucial immune markers, including the antimicrobial peptides defensin and microplusin, suggesting they may play an essential role in the innate immune response. Furthermore, KEGG analysis showed that following E. coli exposure, a number of key enzymes, including lysosomal alpha-glucosidase, fibroblast growth factor, legumain, apoptotic protease-activating factor, etc., were altered, impacting the activity of the lysosome, mitogen-activated protein kinase, antigen processing and presentation, bacterial invasion, apoptosis, and the Toll and immune deficiency pathways. In addition to the transcriptome analysis, we constructed protein interaction networks to elucidate the molecular interactions underlying the tick's response to E. coli challenge. Hub genes were identified, and their functional enrichment provided insights into the regulation of cytoskeleton rearrangement, apoptotic processes, and kinase activity that may occur in infected cells. Collectively, the findings shed light on the potential immune responses in A. americanum that control E. coli infection.
Collapse
Affiliation(s)
- Bo Lyu
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Jingjing Li
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Brigid Niemeyer
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Brenda Beerntsen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
7
|
Zhang KR, Jankowski CSR, Marshall R, Nair R, Más Gómez N, Alnemri A, Liu Y, Erler E, Ferrante J, Song Y, Bell BA, Baumann BH, Sterling J, Anderson B, Foshe S, Roof J, Fazelinia H, Spruce LA, Chuang JZ, Sung CH, Dhingra A, Boesze-Battaglia K, Chavali VRM, Rabinowitz JD, Mitchell CH, Dunaief JL. Oxidative stress induces lysosomal membrane permeabilization and ceramide accumulation in retinal pigment epithelial cells. Dis Model Mech 2023; 16:dmm050066. [PMID: 37401371 PMCID: PMC10399446 DOI: 10.1242/dmm.050066] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of age-related macular degeneration, the leading cause of blindness in older adults, with retinal pigment epithelium (RPE) cells playing a key role. To better understand the cytotoxic mechanisms underlying oxidative stress, we used cell culture and mouse models of iron overload, as iron can catalyze reactive oxygen species formation in the RPE. Iron-loading of cultured induced pluripotent stem cell-derived RPE cells increased lysosomal abundance, impaired proteolysis and reduced the activity of a subset of lysosomal enzymes, including lysosomal acid lipase (LIPA) and acid sphingomyelinase (SMPD1). In a liver-specific Hepc (Hamp) knockout murine model of systemic iron overload, RPE cells accumulated lipid peroxidation adducts and lysosomes, developed progressive hypertrophy and underwent cell death. Proteomic and lipidomic analyses revealed accumulation of lysosomal proteins, ceramide biosynthetic enzymes and ceramides. The proteolytic enzyme cathepsin D (CTSD) had impaired maturation. A large proportion of lysosomes were galectin-3 (Lgals3) positive, suggesting cytotoxic lysosomal membrane permeabilization. Collectively, these results demonstrate that iron overload induces lysosomal accumulation and impairs lysosomal function, likely due to iron-induced lipid peroxides that can inhibit lysosomal enzymes.
Collapse
Affiliation(s)
- Kevin R. Zhang
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connor S. R. Jankowski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rayna Marshall
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rohini Nair
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Néstor Más Gómez
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahab Alnemri
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingrui Liu
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth Erler
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia Ferrante
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brent A. Bell
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bailey H. Baumann
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacob Sterling
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brandon Anderson
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sierra Foshe
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Roof
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Hossein Fazelinia
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Lynn A. Spruce
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anuradha Dhingra
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Venkata R. M. Chavali
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua D. Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Claire H. Mitchell
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua L. Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Nasir NJM, Heemskerk H, Jenkins J, Hamadee NH, Bunte R, Tucker-Kellogg L. Myoglobin-derived iron causes wound enlargement and impaired regeneration in pressure injuries of muscle. eLife 2023; 12:85633. [PMID: 37267120 DOI: 10.7554/elife.85633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/25/2023] [Indexed: 06/04/2023] Open
Abstract
The reasons for poor healing of pressure injuries are poorly understood. Vascular ulcers are worsened by extracellular release of hemoglobin, so we examined the impact of myoglobin (Mb) iron in murine muscle pressure injuries (mPI). Tests used Mb-knockout or treatment with deferoxamine iron chelator (DFO). Unlike acute injuries from cardiotoxin, mPI regenerated poorly with a lack of viable immune cells, persistence of dead tissue (necro-slough), and abnormal deposition of iron. However, Mb-knockout or DFO-treated mPI displayed a reversal of the pathology: decreased tissue death, decreased iron deposition, decrease in markers of oxidative damage, and higher numbers of intact immune cells. Subsequently, DFO treatment improved myofiber regeneration and morphology. We conclude that myoglobin iron contributes to tissue death in mPI. Remarkably, a large fraction of muscle death in untreated mPI occurred later than, and was preventable by, DFO treatment, even though treatment started 12 hr after pressure was removed. This demonstrates an opportunity for post-pressure prevention to salvage tissue viability.
Collapse
Affiliation(s)
- Nurul Jannah Mohamed Nasir
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Hans Heemskerk
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- BioSyM and CAMP Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, CREATE, Singapore, Singapore
| | - Julia Jenkins
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | | | - Ralph Bunte
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Lisa Tucker-Kellogg
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
- BioSyM and CAMP Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, CREATE, Singapore, Singapore
| |
Collapse
|
9
|
Nassar AY, Meligy FY, Abd-Allah GM, Khallil WA, Sayed GA, Hanna RT, Nassar GA, Bakkar SM. Oral acetylated whey peptides (AWP) as a potent antioxidant, anti-inflammatory, and chelating agent in iron-overloaded rats' spleen. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
10
|
Faherty L, Kenny S, Cloonan SM. Iron and mitochondria in the susceptibility, pathogenesis and progression of COPD. Clin Sci (Lond) 2023; 137:219-237. [PMID: 36729089 DOI: 10.1042/cs20210504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 02/03/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease characterised by airflow limitation, chronic bronchitis, emphysema and airway remodelling. Cigarette smoke is considered the primary risk factor for the development of COPD; however, genetic factors, host responses and infection also play an important role. Accumulating evidence highlights a role for iron dyshomeostasis and cellular iron accumulation in the lung as a key contributing factor in the development and pathogenesis of COPD. Recent studies have also shown that mitochondria, the central players in cellular iron utilisation, are dysfunctional in respiratory cells in individuals with COPD, with alterations in mitochondrial bioenergetics and dynamics driving disease progression. Understanding the molecular mechanisms underlying the dysfunction of mitochondria and cellular iron metabolism in the lung may unveil potential novel investigational avenues and therapeutic targets to aid in the treatment of COPD.
Collapse
Affiliation(s)
- Lynne Faherty
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Sarah Kenny
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Suzanne M Cloonan
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, NY, U.S.A
| |
Collapse
|
11
|
Piyajaroenkij T, Tantiworawit A, Khikhuntod J, Piriyakhuntorn P, Rattanathammethee T, Hantrakool S, Chai-Adisaksopha C, Rattarittamrong E, Norasetthada L, Fanhchaksai K, Charoenkwan P, Thananchai H. Alteration of monocyte subsets and their functions in thalassemia patients. Int J Hematol 2023; 117:188-197. [PMID: 36323999 PMCID: PMC9889407 DOI: 10.1007/s12185-022-03484-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Infection is one of the leading causes of mortality in thalassemia patients. This study aimed to examine qualitative and quantitative changes in monocytes in thalassemia patients. Monocytes were isolated from peripheral blood mononuclear cells and separated into subpopulations by flow cytometry. Cytokine levels were measured using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) and sandwich enzyme-linked immunosorbent assay (ELISA). The primary endpoint was monocyte-derived TNF-α expression. A total of 78 patients and 26 controls were included. The mean log (TNF-α fold-change) by qRT-PCR was significantly lower in all thalassemia groups, at 1.27 in controls, versus 0.97 (p = 0.0014) in non-transfusion-dependent thalassemia (NTDT), 0.96 (p = 0.0004) in non-splenectomized transfusion-dependent thalassemia (TDT-NS), and 0.87 (p < 0.0001) in splenectomized transfusion-dependent thalassemia (TDT-S). Similarly, the mean 2-h TNF-α level measured by sandwich ELISA assay was significantly lower in all thalassemia groups, at 98.16 pg/mL in controls, versus 56.45 pg/mL (p = 0.0093) in NTDT, 39.05 pg/mL (p = 0.0001) in TDT-NS and 32.37 pg/mL (p < 0.0001) in TDT-S. Likewise, TDT patients had a significantly decreased percentage of non-classical monocytes, by approximately half compared to controls. Our results show that thalassemia major patients have clearly impaired monocyte counts and function.
Collapse
Affiliation(s)
- Thanakrit Piyajaroenkij
- grid.7132.70000 0000 9039 7662Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, 110 Intravaroros Road, A. Muang50200, Chiang Mai, Thailand ,grid.10223.320000 0004 1937 0490Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Tantiworawit
- grid.7132.70000 0000 9039 7662Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, 110 Intravaroros Road, A. Muang50200, Chiang Mai, Thailand
| | - Jeeraphong Khikhuntod
- grid.7132.70000 0000 9039 7662Division of Immunology, Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pokpong Piriyakhuntorn
- grid.7132.70000 0000 9039 7662Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, 110 Intravaroros Road, A. Muang50200, Chiang Mai, Thailand
| | - Thanawat Rattanathammethee
- grid.7132.70000 0000 9039 7662Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, 110 Intravaroros Road, A. Muang50200, Chiang Mai, Thailand
| | - Sasinee Hantrakool
- grid.7132.70000 0000 9039 7662Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, 110 Intravaroros Road, A. Muang50200, Chiang Mai, Thailand
| | - Chatree Chai-Adisaksopha
- grid.7132.70000 0000 9039 7662Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, 110 Intravaroros Road, A. Muang50200, Chiang Mai, Thailand
| | - Ekarat Rattarittamrong
- grid.7132.70000 0000 9039 7662Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, 110 Intravaroros Road, A. Muang50200, Chiang Mai, Thailand
| | - Lalita Norasetthada
- grid.7132.70000 0000 9039 7662Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, 110 Intravaroros Road, A. Muang50200, Chiang Mai, Thailand
| | - Kanda Fanhchaksai
- grid.7132.70000 0000 9039 7662Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pimlak Charoenkwan
- grid.7132.70000 0000 9039 7662Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hathairat Thananchai
- grid.7132.70000 0000 9039 7662Division of Immunology, Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
12
|
Wu J, Zhao X, Xiao C, Xiong G, Ye X, Li L, Fang Y, Chen H, Yang W, Du X. The role of lung macrophages in chronic obstructive pulmonary disease. Respir Med 2022; 205:107035. [PMID: 36343504 DOI: 10.1016/j.rmed.2022.107035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) as a common, preventable and treatable chronic respiratory disease in clinic, gets continuous deterioration and we can't take effective intervention at present. Lung macrophages (LMs) are closely related to the occurrence and development of COPD, but the specific mechanism is not completely clear. In this review we will focus on the role of LMs and potential avenues for therapeutic targeting for LMs in COPD.
Collapse
Affiliation(s)
- Jianli Wu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xia Zhao
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Chuang Xiao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Guosheng Xiong
- Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xiulin Ye
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Lin Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yan Fang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Hong Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Xiaohua Du
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
13
|
Ba T, Zhao D, Chen Y, Zeng C, Zhang C, Niu S, Dai H. L-Citrulline Supplementation Restrains Ferritinophagy-Mediated Ferroptosis to Alleviate Iron Overload-Induced Thymus Oxidative Damage and Immune Dysfunction. Nutrients 2022; 14:4549. [PMID: 36364817 PMCID: PMC9655478 DOI: 10.3390/nu14214549] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 09/14/2023] Open
Abstract
L-citrulline (L-cit) is a key intermediate in the urea cycle and is known to possess antioxidant and anti-inflammation characteristics. However, the role of L-cit in ameliorating oxidative damage and immune dysfunction against iron overload in the thymus remains unclear. This study explored the underlying mechanism of the antioxidant and anti-inflammation qualities of L-cit on iron overload induced in the thymus. We reported that L-cit administration could robustly alleviate thymus histological damage and reduce iron deposition, as evidenced by the elevation of the CD8+ T lymphocyte number and antioxidative capacity. Moreover, the NF-κB pathway, NCOA4-mediated ferritinophagy, and ferroptosis were attenuated. We further demonstrated that L-cit supplementation significantly elevated the mTEC1 cells' viability and reversed LDH activity, iron levels, and lipid peroxidation caused by FAC. Importantly, NCOA4 knockdown could reduce the intracellular cytoplasmic ROS, which probably relied on the Nfr2 activation. The results subsequently indicated that NCOA4-mediated ferritinophagy was required for ferroptosis by showing that NCOA4 knockdown reduced ferroptosis and lipid ROS, accompanied with mitochondrial membrane potential elevation. Intriguingly, L-cit treatment significantly inhibited the NF-κB pathway, which might depend on restraining ferritinophagy-mediated ferroptosis. Overall, this study indicated that L-cit might target ferritinophagy-mediated ferroptosis to exert antioxidant and anti-inflammation capacities, which could be a therapeutic strategy against iron overload-induced thymus oxidative damage and immune dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, China
| |
Collapse
|
14
|
ADAM-10 Regulates MMP-12 during Lipopolysaccharide-Induced Inflammatory Response in Macrophages. J Immunol Res 2022; 2022:3012218. [PMID: 36157882 PMCID: PMC9507754 DOI: 10.1155/2022/3012218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
A disintegrin and metalloprotease 10 (ADAM-10), a member of the ADAM protease family, has biological activities related to TNF-α activation, cell adhesion, and migration, among other functions. Macrophages are important immune cells that are involved in the inflammatory response of the body. ADAM-10 is involved in inflammatory responses, but the specific regulatory mechanisms are not fully understood. In this study, we investigated the regulatory mechanism of ADAM-10 in the lipopolysaccharide-promoted proliferation (LPS) of the macrophage inflammatory response. Differentially expressed or regulated proteins were identified in interfered ADAM-10 (sh ADAM-10) macrophages using tandem mass tag (TMT) proteomics. The changes and regulatory role of ADAM-10 during LPS-induced inflammatory response in normal, interfering, and overexpressing ADAM-10 (EX ADAM-10) cells were determined. Results indicated that ADAM-10 interference affected inflammation-related pathways and reduced matrix metalloproteinase 12 (MMP-12) protein levels, as identified by TMT proteomics. In normal cells, LPS decreased ADAM-10 gene expression, but promoted ADAM-10 secretion, MMP-12 and TNF-α gene expression, and MMP-12, iNOS, IL-10, and cyclinD1 protein expression. Additionally, ADAM-10 knockdown decreased macrophage viability in sh-ADAM-10 cells. Moreover, an MMP-12 inhibitor had no impact on the viability effect of LPS on cells or the expression of ADAM-10. iNOS expression decreased, whereas IL-10 expression increased after ADAM-10 depletion. ADAM-10 knockdown decreased MMP-12, iNOS, TNF-α, IL-1β, and FKN, while overexpression had an opposite effect. ADAM-10 overexpression further increased MMP-12, iNOS, and TNF-α gene expression in response to LPS. Cell viability was increased in EX ADAM-10 cells, and ADAM-10 secretion was further increased in the EX and LPS groups. Flow cytometry and immunofluorescence staining revealed that EX-ADAM 10 cells had increased iNOS expression, which acted as an IL-6 expression driver. In summary, we found that ADAM-10 is activated by LPS and positively participates in LPS-stimulated macrophage inflammatory responses by positively regulating MMP-12 during the inflammatory process.
Collapse
|
15
|
Baranov MV, Ioannidis M, Balahsioui S, Boersma A, de Boer R, Kumar M, Niwa M, Hirayama T, Zhou Q, Hopkins TM, Grijpstra P, Thutupalli S, Sacanna S, van den Bogaart G. Irregular particle morphology and membrane rupture facilitate ion gradients in the lumen of phagosomes. BIOPHYSICAL REPORTS 2022; 2:100069. [PMID: 36425330 PMCID: PMC9680789 DOI: 10.1016/j.bpr.2022.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Localized fluxes, production, and/or degradation coupled to limited diffusion are well known to result in stable spatial concentration gradients of biomolecules in the cell. In this study, we demonstrate that this also holds true for small ions, since we found that the close membrane apposition between the membrane of a phagosome and the surface of the cargo particle it encloses, together with localized membrane rupture, suffice for stable gradients of protons and iron cations within the lumen of the phagosome. Our data show that, in phagosomes containing hexapod-shaped silica colloid particles, the phagosomal membrane is ruptured at the positions of the tips of the rods, but not at other positions. This results in the confined leakage at these positions of protons and iron from the lumen of the phagosome into the cytosol. In contrast, acidification and iron accumulation still occur at the positions of the phagosomes nearer to the cores of the particles. Our study strengthens the concept that coupling metabolic and signaling reaction cascades can be spatially confined by localized limited diffusion.
Collapse
Affiliation(s)
- Maksim V. Baranov
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Melina Ioannidis
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Sami Balahsioui
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Auke Boersma
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Rinse de Boer
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Manoj Kumar
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Masato Niwa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1–25–4, Daigaku-nishi, Gifu 201–1196, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1–25–4, Daigaku-nishi, Gifu 201–1196, Japan
| | - Qintian Zhou
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, United States
| | - Terrence M. Hopkins
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, United States
| | - Pieter Grijpstra
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- nternational Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Stefano Sacanna
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, United States
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
- Department of Medical Biology and Pathology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Wang Y, Wang M, Liu Y, Tao H, Banerjee S, Srinivasan S, Nemeth E, Czaja MJ, He P. Integrated regulation of stress responses, autophagy and survival by altered intracellular iron stores. Redox Biol 2022; 55:102407. [PMID: 35853304 PMCID: PMC9294649 DOI: 10.1016/j.redox.2022.102407] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
Iron is a mineral essential for blood production and a variety of critical cellular functions. Altered iron metabolism has been increasingly observed in many diseases and disorders, but a comprehensive and mechanistic understanding of the cellular impact of impaired iron metabolism is still lacking. We examined the effects of iron overload or iron deficiency on cellular stress responses and autophagy which collectively regulate cell homeostasis and survival. Acute iron loading led to increased mitochondrial ROS (mtROS) production and damage, lipid peroxidation, impaired autophagic flux, and ferroptosis. Iron-induced mtROS overproduction is the mechanism of increased lipid peroxidation, impaired autophagy, and the induction of ferroptosis. Iron excess-induced ferroptosis was cell-type dependent and regulated by activating transcription factor 4 (ATF4). Upregulation of ATF4 mitigated iron-induced autophagic dysfunction and ferroptosis, whereas silencing of ATF4 expression impaired autophagy and resulted in increased mtROS production and ferroptosis. Employing autophagy-deficient hepatocytes and different autophagy inhibitors, we further showed that autophagic impairment sensitized cells to iron-induced ferroptosis. In contrast, iron deficiency activated the endoplasmic reticulum (ER) stress response, decreased autophagy, and induced apoptosis. Decreased autophagy associated with iron deficiency was due to ER stress, as reduction of ER stress by 4-phenylbutyric acid (4-PBA) improved autophagic flux. The mechanism of decreased autophagy in iron deficiency is a disruption in lysosomal biogenesis due to impaired posttranslational maturation of lysosomal membrane proteins. In conclusion, iron excess and iron deficiency cause different forms of cell stress and death in part through the common mechanism of impaired autophagic function.
Collapse
Affiliation(s)
- Yunyang Wang
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Mo Wang
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yunshan Liu
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Hui Tao
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Somesh Banerjee
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Gastroenterology Research, Atlanta VA Health Care System, Decatur, GA, USA
| | - Elizabeta Nemeth
- Department of Medicine, Center for Iron Disorders, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Mark J Czaja
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
17
|
Ho T, Nichols M, Nair G, Radford K, Kjarsgaard M, Huang C, Bhalla A, Lavigne N, Mukherjee M, Surette M, Macri J, Nair P. Iron in airway macrophages and infective exacerbations of chronic obstructive pulmonary disease. Respir Res 2022; 23:8. [PMID: 35022042 PMCID: PMC8756761 DOI: 10.1186/s12931-022-01929-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/04/2022] [Indexed: 12/31/2022] Open
Abstract
Background Excess pulmonary iron has been implicated in the pathogenesis of lung disease, including asthma and COPD. An association between higher iron content in sputum macrophages and infective exacerbations of COPD has previously been demonstrated. Objectives To assess the mechanisms of pulmonary macrophage iron sequestration, test the effect of macrophage iron-loading on cellular immune function, and prospectively determine if sputum hemosiderin index can predict infectious exacerbations of COPD. Methods Intra- and extracellular iron was measured in cell-line-derived and in freshly isolated sputum macrophages under various experimental conditions including treatment with exogenous IL-6 and hepcidin. Bacterial uptake and killing were compared in the presence or absence of iron-loading. A prospective cohort of COPD patients with defined sputum hemosiderin indices were monitored to determine the annual rate of severe infectious exacerbations. Results Gene expression studies suggest that airway macrophages have the requisite apparatus of the hepcidin-ferroportin axis. IL-6 and hepcidin play roles in pulmonary iron sequestration, though IL-6 appears to exert its effect via a hepcidin-independent mechanism. Iron-loaded macrophages had reduced uptake of COPD-relevant organisms and were associated with higher growth rates. Infectious exacerbations were predicted by sputum hemosiderin index (β = 0.035, p = 0.035). Conclusions We demonstrate in-vitro and population-level evidence that excess iron in pulmonary macrophages may contribute to recurrent airway infection in COPD. Specifically, IL-6-dependent iron sequestration by sputum macrophages may result in immune cell dysfunction and ultimately lead to increased frequency of infective exacerbation. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01929-7.
Collapse
Affiliation(s)
- Terence Ho
- Department of Medicine, McMaster University, Hamilton, Canada. .,Firestone Institute for Respiratory Health, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada.
| | - Matthew Nichols
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| | - Gayatri Nair
- Department of Medicine, McMaster University, Hamilton, Canada
| | | | | | - Chynna Huang
- St. Joseph's Healthcare Hamilton, Hamilton, Canada
| | - Anurag Bhalla
- Department of Medicine, McMaster University, Hamilton, Canada.,Firestone Institute for Respiratory Health, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | | | | | - Michael Surette
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Joseph Macri
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Parameswaran Nair
- Department of Medicine, McMaster University, Hamilton, Canada.,Firestone Institute for Respiratory Health, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| |
Collapse
|
18
|
Baker JM, Hammond M, Dungwa J, Shah R, Montero-Fernandez A, Higham A, Lea S, Singh D. Red Blood Cell-Derived Iron Alters Macrophage Function in COPD. Biomedicines 2021; 9:biomedicines9121939. [PMID: 34944755 PMCID: PMC8698324 DOI: 10.3390/biomedicines9121939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/27/2022] Open
Abstract
Lung macrophage iron levels are increased in COPD patients. Lung macrophage iron levels are thought to be increased by cigarette smoke, but the role of red blood cells (RBCs) as a source of iron has not been investigated. We investigate RBCs as a potential source of alveolar iron in COPD, and determine the effect of RBC-derived iron on macrophage function. We used lung tissue sections to assess RBC coverage of the alveolar space, iron and ferritin levels in 11 non-smokers (NS), 15 smokers (S) and 32 COPD patients. Lung macrophages were isolated from lung resections (n = 68) and treated with hemin or ferric ammonium citrate (50, 100 or 200 μM). Lung macrophage phenotype marker gene expression was measured by qPCR. The phagocytosis of Non-typeable Haemophilus influenzae (NTHi) was measured by flow cytometry. Cytokine production in response to NTHi in iron-treated macrophages was measured by ELISA. Lung macrophage iron levels were significantly correlated with RBC coverage of the alveolar space (r = 0.31, p = 0.02). Furthermore, RBC coverage and lung macrophage iron were significantly increased in COPD patients and correlated with airflow obstruction. Hemin treatment downregulated CD36, CD163, HLA-DR, CD38, TLR4, CD14 and MARCO gene expression. Hemin-treated macrophages also impaired production of pro-inflammatory cytokines in response to NTHi exposure, and decreased phagocytosis of NTHi (200 μM: 35% decrease; p = 0.03). RBCs are a plausible source of pulmonary iron overload in COPD. RBC-derived iron dysregulates macrophage phenotype and function.
Collapse
Affiliation(s)
- James M. Baker
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester M13 9PL, UK; (A.H.); (S.L.); (D.S.)
- Correspondence: ; Tel.: +44-16-1219-5920
| | - Molly Hammond
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester M23 9QZ, UK; (M.H.); (J.D.)
| | - Josiah Dungwa
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester M23 9QZ, UK; (M.H.); (J.D.)
| | - Rajesh Shah
- Department of Thoracic Surgery, Manchester University Hospital NHS Foundation Trust, Manchester M13 9WL, UK;
| | - Angeles Montero-Fernandez
- Department of Histopathology, Manchester University Hospital NHS Foundation Trust, Manchester M13 9WL, UK;
| | - Andrew Higham
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester M13 9PL, UK; (A.H.); (S.L.); (D.S.)
| | - Simon Lea
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester M13 9PL, UK; (A.H.); (S.L.); (D.S.)
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester M13 9PL, UK; (A.H.); (S.L.); (D.S.)
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester M23 9QZ, UK; (M.H.); (J.D.)
| |
Collapse
|
19
|
Kumar P, Saini K, Saini V, Mitchell T. Oxalate Alters Cellular Bioenergetics, Redox Homeostasis, Antibacterial Response, and Immune Response in Macrophages. Front Immunol 2021; 12:694865. [PMID: 34745086 PMCID: PMC8566947 DOI: 10.3389/fimmu.2021.694865] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Individuals with calcium oxalate (CaOx) kidney stones can have secondarily infected calculi which may play a role in the development of recurrent urinary tract infection (UTI). Uropathogenic Escherichia coli (UPEC) is the most common causative pathogen of UTIs. Macrophages play a critical role in host immune defense against bacterial infections. Our previous study demonstrated that oxalate, an important component of the most common type of kidney stone, impairs monocyte cellular bioenergetics and redox homeostasis. The objective of this study was to investigate whether oxalate compromises macrophage metabolism, redox status, anti-bacterial response, and immune response. Monocytes (THP-1, a human monocytic cell line) were exposed to sodium oxalate (soluble oxalate; 50 µM) for 48 hours prior to being differentiated into macrophages. Macrophages were subsequently exposed to calcium oxalate crystals (50 µM) for 48 hours followed by UPEC (MOI 1:2 or 1:5) for 2 hours. Peritoneal macrophages and bone marrow-derived macrophages (BMDM) from C57BL/6 mice were also exposed to oxalate. THP-1 macrophages treated with oxalate had decreased cellular bioenergetics, mitochondrial complex I and IV activity, and ATP levels compared to control cells. In addition, these cells had a significant increase in mitochondrial and total reactive oxygen species levels, mitochondrial gene expression, and pro-inflammatory cytokine (i.e. Interleukin-1β, IL-1β and Interleukin-6, IL-6) mRNA levels and secretion. In contrast, oxalate significantly decreased the mRNA levels and secretion of the anti-inflammatory cytokine, Interleukin-10 (IL-10). Further, oxalate increased the bacterial burden of primary macrophages. Our findings demonstrate that oxalate compromises macrophage metabolism, redox homeostasis, and cytokine signaling leading to a reduction in anti-bacterial response and increased infection. These data highlight a novel role of oxalate on macrophage function.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kanchan Saini
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Vikram Saini
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Tanecia Mitchell
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
20
|
d'Arqom A, G Putri M, Savitri Y, Rahul Alfaidin AM. Vitamin and mineral supplementation for β-thalassemia during COVID-19 pandemic. Future Sci OA 2020; 6:FSO628. [PMID: 33230422 PMCID: PMC7434224 DOI: 10.2144/fsoa-2020-0110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/31/2020] [Indexed: 01/22/2023] Open
Abstract
AIM Low levels of immune-related micronutrients have been identified in β-thalassemia samples. Moreover, the excess amount of iron, contributing to oxidative stress in the pathogenesis of the disease, alters the immune system in β-thalassemia, which is important during the COVID-19 pandemic. MATERIALS & METHODS Searches of PUBMED and EMBASE were conducted to identify the level and supplementation of micronutrients in β-thalassemia, published from 2001-May 2020. RESULTS The review found six observational and five interventional studies supporting the importance of supplementing vitamins and minerals among patients with β-thalassemia. CONCLUSION Supplementation of immune-related vitamins and minerals might bring benefits to the immune system, especially in reducing oxidative stress in β-thalassemia.
Collapse
Affiliation(s)
- Annette d'Arqom
- Department of Pharmacology & Therapy, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia
| | - Melvanda G Putri
- Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia
| | - Yovani Savitri
- Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia
| | | |
Collapse
|
21
|
Michels KR, Lambrecht NJ, Carson WF, Schaller MA, Lukacs NW, Bermick JR. The Role of Iron in the Susceptibility of Neonatal Mice to Escherichia coli K1 Sepsis. J Infect Dis 2020; 220:1219-1229. [PMID: 31136646 DOI: 10.1093/infdis/jiz282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/24/2019] [Indexed: 12/23/2022] Open
Abstract
Sepsis from Escherichia coli expressing the K1 antigen is a leading cause of death in neonates. In a murine model, E. coli K1 grew rapidly in the peritoneal cavity of neonatal mice, causing fatal disease. In contrast, adult mice cleared the infection. Neonatal mice mounted a rapid and equivalent antimicrobial immune response compared to adult mice. Interestingly, peritoneal fluid from neonatal mice contained significantly more total iron than that of adult mice, which was sufficient to support enhanced E. coli growth. Transient iron overload in adult mice infected with E. coli resulted in 100% mortality. Maternal diet-induced mild iron deficiency decreased offspring peritoneal iron, decreased bacterial growth, and conferred protection against sepsis. Taken together, neonatal susceptibility to E. coli K1 sepsis is enhanced by a localized excess of peritoneal iron that allows for unchecked bacterial growth. Targeting this excess iron may provide a new therapeutic target in human patients.
Collapse
Affiliation(s)
- Kathryn R Michels
- Department of Pathology, Michigan Medicine, School of Public Health, University of Michigan, Ann Arbor
| | - Nathalie J Lambrecht
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor
| | - William F Carson
- Department of Pathology, Michigan Medicine, School of Public Health, University of Michigan, Ann Arbor
| | - Matthew A Schaller
- Department of Pathology, Michigan Medicine, School of Public Health, University of Michigan, Ann Arbor
| | - Nicholas W Lukacs
- Department of Pathology, Michigan Medicine, School of Public Health, University of Michigan, Ann Arbor.,Mary H. Weiser Food Allergy Center, Department of Pediatrics, Michigan Medicine, Ann Arbor
| | - Jennifer R Bermick
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Michigan Medicine, Ann Arbor
| |
Collapse
|
22
|
Hui L, Soliman ML, Geiger NH, Miller NM, Afghah Z, Lakpa KL, Chen X, Geiger JD. Acidifying Endolysosomes Prevented Low-Density Lipoprotein-Induced Amyloidogenesis. J Alzheimers Dis 2020; 67:393-410. [PMID: 30594929 DOI: 10.3233/jad-180941] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholesterol dyshomeostasis has been linked to the pathogenesis of sporadic Alzheimer's disease (AD). In furthering the understanding of mechanisms by which increased levels of circulating cholesterol augments the risk of developing sporadic AD, others and we have reported that low-density lipoprotein (LDL) enters brain parenchyma by disrupting the blood-brain barrier and that endolysosome de-acidification plays a role in LDL-induced amyloidogenesis in neurons. Here, we tested the hypothesis that endolysosome de-acidification was central to amyloid-β (Aβ) generation and that acidifying endolysosomes protects against LDL-induced increases in Aβ levels in neurons. We demonstrated that LDL, but not HDL, de-acidified endolysosomes and increased intraneuronal and secreted levels of Aβ. ML-SA1, an agonist of endolysosome-resident TRPML1 channels, acidified endolysosomes, and TRPML1 knockdown attenuated ML-SA1-induced endolysosome acidification. ML-SA1 blocked LDL-induced increases in intraneuronal and secreted levels of Aβ as well as Aβ accumulation in endolysosomes, prevented BACE1 accumulation in endolysosomes, and decreased BACE1 activity levels. LDL downregulated TRPML1 protein levels, and TRPML1 knockdown worsens LDL-induced increases in Aβ. Our findings suggest that endolysosome acidification by activating TRPML1 may represent a protective strategy against sporadic AD.
Collapse
Affiliation(s)
- Liang Hui
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Mahmoud L Soliman
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nicholas H Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Koffi L Lakpa
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
23
|
Kao JK, Wang SC, Ho LW, Huang SW, Lee CH, Lee MS, Yang RC, Shieh JJ. M2-like polarization of THP-1 monocyte-derived macrophages under chronic iron overload. Ann Hematol 2020; 99:431-441. [PMID: 32006153 DOI: 10.1007/s00277-020-03916-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Macrophages are characterized by phenotypical and functional heterogeneity. In different microenvironments, macrophages can polarize into two types: classically activated macrophages (M1) or alternatively activated macrophages (M2). M1 macrophages are a well-known bacteriostatic macrophage, and conversely, M2 macrophages may play an important role in tumor growth and tissue remodeling. M1 macrophages have been reported to have high intracellular iron stores, while M2 macrophages contain lower intracellular iron. It has been well-described that disturbances of iron homeostasis are associated with altered immune function. Thus, it is important to investigate if chronic iron overload is capable of polarizing macrophages. Human monocytic leukemia THP-1 cells were maintained in culture medium that contained 100 μM ferrous sulfate heptahydrate (FeSO4) (I-THP-1) and differentiated into THP-1-derived macrophages (I-TDMs) by induction with phorbol 12-myristate 13-acetate (PMA). We characterized that I-TDMs not only enhanced the surface expression of CD163 and CD206 but also increased arginase and decreased iNOS protein expression. I-TDMs enhanced pSTAT6 expression and decreased pSTAT1 and NF-κB expressions. Furthermore, the gene expression profile of I-TDMs was comparable with M2 macrophages by performing human oligonucleotide DNA microarray analysis. Finally, functional assays demonstrated I-TDMs secreted higher levels of IL-10 but not M1 cytokines. Additionally, the conditional medium of I-TDMs had enhanced migration and increased invasion of A375 melanoma cells which was similar to the characteristics of tumor-associated macrophages. Taken together, we demonstrated that THP-1-derived macrophages polarized to a phenotype of M2-like characteristics when subjected to chronic iron overload.
Collapse
Affiliation(s)
- Jun-Kai Kao
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan (Republic of China)
- Pediatric Department, Children's Hospital, Changhua Christian Hospital, No. 320, Xuguang Rd., Changhua City, Changhua County, 500, Taiwan (Republic of China)
- School of Medicine, Kaohsiung Medical University, No.100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung City, Taiwan (Republic of China)
| | - Shih-Chung Wang
- Pediatric Department, Children's Hospital, Changhua Christian Hospital, No. 320, Xuguang Rd., Changhua City, Changhua County, 500, Taiwan (Republic of China)
| | - Li-Wei Ho
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan (Republic of China)
- Pediatric Department, Children's Hospital, Changhua Christian Hospital, No. 320, Xuguang Rd., Changhua City, Changhua County, 500, Taiwan (Republic of China)
| | - Shi-Wei Huang
- Center for Cell Therapy, China Medical University Hospital, No. 2, Yude Road, North District, Taichung City, 40447, Taiwan
| | - Cheng-Han Lee
- Pediatric Department, Children's Hospital, Changhua Christian Hospital, No. 320, Xuguang Rd., Changhua City, Changhua County, 500, Taiwan (Republic of China)
| | - Ming-Sheng Lee
- Pediatric Department, Children's Hospital, Changhua Christian Hospital, No. 320, Xuguang Rd., Changhua City, Changhua County, 500, Taiwan (Republic of China)
| | - Rei-Cheng Yang
- Pediatric Department, Children's Hospital, Changhua Christian Hospital, No. 320, Xuguang Rd., Changhua City, Changhua County, 500, Taiwan (Republic of China)
| | - Jeng-Jer Shieh
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan (Republic of China).
- Department of Education and Research, Taichung Veterans General Hospital, 650 Taiwan Boulevard Sect. 4, Taichung, 40705, Taiwan (Republic of China).
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan (Republic of China).
| |
Collapse
|
24
|
Jahng JWS, Alsaadi RM, Palanivel R, Song E, Hipolito VEB, Sung HK, Botelho RJ, Russell RC, Sweeney G. Iron overload inhibits late stage autophagic flux leading to insulin resistance. EMBO Rep 2019; 20:e47911. [PMID: 31441223 PMCID: PMC6776927 DOI: 10.15252/embr.201947911] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Iron overload, a common clinical occurrence, is implicated in the metabolic syndrome although the contributing pathophysiological mechanisms are not fully defined. We show that prolonged iron overload results in an autophagy defect associated with accumulation of dysfunctional autolysosomes and loss of free lysosomes in skeletal muscle. These autophagy defects contribute to impaired insulin-stimulated glucose uptake and insulin signaling. Mechanistically, we show that iron overload leads to a decrease in Akt-mediated repression of tuberous sclerosis complex (TSC2) and Rheb-mediated mTORC1 activation on autolysosomes, thereby inhibiting autophagic-lysosome regeneration. Constitutive activation of mTORC1 or iron withdrawal replenishes lysosomal pools via increased mTORC1-UVRAG signaling, which restores insulin sensitivity. Induction of iron overload via intravenous iron-dextran delivery in mice also results in insulin resistance accompanied by abnormal autophagosome accumulation, lysosomal loss, and decreased mTORC1-UVRAG signaling in muscle. Collectively, our results show that chronic iron overload leads to a profound autophagy defect through mTORC1-UVRAG inhibition and provides new mechanistic insight into metabolic syndrome-associated insulin resistance.
Collapse
Affiliation(s)
| | | | | | - Erfei Song
- Department of BiologyYork UniversityTorontoONCanada
| | | | | | - Roberto Jorge Botelho
- Department of Chemistry and Biology and the Molecular Science Graduate ProgramRyerson UniversityTorontoONCanada
| | | | - Gary Sweeney
- Department of BiologyYork UniversityTorontoONCanada
| |
Collapse
|
25
|
Fattizzo B, Levati G, Cassin R, Barcellini W. Eltrombopag in Immune Thrombocytopenia, Aplastic Anemia, and Myelodysplastic Syndrome: From Megakaryopoiesis to Immunomodulation. Drugs 2019; 79:1305-1319. [PMID: 31292909 DOI: 10.1007/s40265-019-01159-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eltrombopag is an orally available thrombopoietin receptor agonist indicated for the treatment of immune thrombocytopenia (ITP). Beyond the effect on megakaryopoiesis, the drug also showed a stimulating effect on the hematopoietic stem cell with consistent clinical efficacy in aplastic anemia (AA) and myelodysplastic syndromes (MDS). Eltrombopag is highly effective in ITP and less so in AA and MDS. This observation underlines the importance of residual normal hematopoiesis, which is maximal in ITP, minimal/absent in AA, and dysregulated in MDS. In ITP, the drug at 50-75 mg daily induced up to 85% responses both in clinical trials and real-life studies, with the possibility of tapering and discontinuation. In AA, eltrombopag at 150 mg daily was effective in about 40% of cases relapsed/refractory to standard immunosuppression or ineligible for bone marrow transplant. In MDS, the drug seems less effective, with responses in about a quarter of patients at various schedules. The efficacy of eltrombopag in ITP, AA, and MDS suggests the existence of common immune-pathological mechanisms in these diseases, including autoimmunity against peripheral blood cells and bone marrow precursors, as well as a possible evolution of one condition into the other. Additional mechanisms of action emerging from the clinical use of eltrombopag include modulation of T-regulatory cells, restoration of Fc-γ receptor balance in phagocytes, and an iron-mobilizing effect. In this review, we analyzed the most recent literature on eltrombopag use and efficacy in patients with ITP, AA, and MDS, exploring the basis for different dosing, combined treatments, and discontinuation in each context.
Collapse
Affiliation(s)
- Bruno Fattizzo
- UO Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Giorgia Levati
- UO Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,University of Milan, Milan, Italy
| | - Ramona Cassin
- UO Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Wilma Barcellini
- UO Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
26
|
Baumann BH, Shu W, Song Y, Sterling J, Kozmik Z, Lakhal-Littleton S, Dunaief JL. Liver-Specific, but Not Retina-Specific, Hepcidin Knockout Causes Retinal Iron Accumulation and Degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1814-1830. [PMID: 31287995 PMCID: PMC6723216 DOI: 10.1016/j.ajpath.2019.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022]
Abstract
The liver secretes hepcidin (Hepc) into the bloodstream to reduce blood iron levels. Hepc accomplishes this by triggering degradation of the only known cellular iron exporter ferroportin in the gut, macrophages, and liver. We previously demonstrated that systemic Hepc knockout (HepcKO) mice, which have high serum iron, develop retinal iron overload and degeneration. However, it was unclear whether this is caused by high blood iron levels or, alternatively, retinal iron influx that would normally be regulated by retina-produced Hepc. To address this question, retinas of liver-specific and retina-specific HepcKO mice were studied. Liver-specific HepcKO mice had elevated blood and retinal pigment epithelium (RPE) iron levels and increased free (labile) iron levels in the retina, despite an intact blood-retinal barrier. This led to RPE hypertrophy associated with lipofuscin-laden lysosome accumulation. Photoreceptors also degenerated focally. In contrast, there was no change in retinal or RPE iron levels or degeneration in the retina-specific HepcKO mice. These data indicate that high blood iron levels can lead to retinal iron accumulation and degeneration. High blood iron levels can occur in patients with hereditary hemochromatosis or result from use of iron supplements or multiple blood transfusions. Our results suggest that high blood iron levels may cause or exacerbate retinal disease.
Collapse
Affiliation(s)
- Bailey H Baumann
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, Philadelphia, Pennsylvania
| | - Wanting Shu
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, Philadelphia, Pennsylvania; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, Philadelphia, Pennsylvania
| | - Jacob Sterling
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, Philadelphia, Pennsylvania
| | - Zbynek Kozmik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Academy of Sciences of the Czech Republic (ASCR), Prague, Czech Republic
| | - Samira Lakhal-Littleton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Joshua L Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, Philadelphia, Pennsylvania.
| |
Collapse
|
27
|
Zhao Y, Gao F, Shi J, Luo Y, Tan Y, Lai X, Yu J, Huang H. Incidence, Risk Factors, and Outcomes of Primary Poor Graft Function after Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2019; 25:1898-1907. [DOI: 10.1016/j.bbmt.2019.05.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/21/2019] [Accepted: 05/29/2019] [Indexed: 12/23/2022]
|
28
|
Excessive Reactive Iron Impairs Hematopoiesis by Affecting Both Immature Hematopoietic Cells and Stromal Cells. Cells 2019; 8:cells8030226. [PMID: 30857202 PMCID: PMC6468739 DOI: 10.3390/cells8030226] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Iron overload is the accumulation of excess iron in the body that may occur as a result of various genetic disorders or as a consequence of repeated blood transfusions. The surplus iron is then stored in the liver, pancreas, heart and other organs, which may lead to chronic liver disease or cirrhosis, diabetes and heart disease, respectively. In addition, excessive iron may impair hematopoiesis, although the mechanisms of this deleterious effect is not entirely known. In this study, we found that ferrous ammonium sulfate (FeAS), induced growth arrest and apoptosis in immature hematopoietic cells, which was mediated via reactive oxygen species (ROS) activation of p38MAPK and JNK pathways. In in vitro hematopoiesis derived from embryonic stem cells (ES cells), FeAS enhanced the development of dysplastic erythroblasts but inhibited their terminal differentiation; in contrast, it had little effect on the development of granulocytes, megakaryocytes, and B lymphocytes. In addition to its directs effects on hematopoietic cells, iron overload altered the expression of several adhesion molecules on stromal cells and impaired the cytokine production profile of these cells. Therefore, excessive iron would affect whole hematopoiesis by inflicting vicious effects on both immature hematopoietic cells and stromal cells.
Collapse
|
29
|
Schmidt IHE, Gildhorn C, Böning MAL, Kulow VA, Steinmetz I, Bast A. Burkholderia pseudomallei modulates host iron homeostasis to facilitate iron availability and intracellular survival. PLoS Negl Trop Dis 2018; 12:e0006096. [PMID: 29329289 PMCID: PMC5785036 DOI: 10.1371/journal.pntd.0006096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 01/25/2018] [Accepted: 11/04/2017] [Indexed: 02/07/2023] Open
Abstract
Background The control over iron homeostasis is critical in host-pathogen-interaction. Iron plays not only multiple roles for bacterial growth and pathogenicity, but also for modulation of innate immune responses. Hepcidin is a key regulator of host iron metabolism triggering degradation of the iron exporter ferroportin. Although iron overload in humans is known to increase susceptibility to Burkholderia pseudomallei, it is unclear how the pathogen competes with the host for the metal during infection. This study aimed to investigate whether B. pseudomallei, the causative agent of melioidosis, modulates iron balance and how regulation of host cell iron content affects intracellular bacterial proliferation. Principal findings Upon infection of primary macrophages with B. pseudomallei, expression of ferroportin was downregulated resulting in higher iron availability within macrophages. Exogenous modification of iron export function by hepcidin or iron supplementation by ferric ammonium citrate led to increased intracellular iron pool stimulating B. pseudomallei growth, whereas the iron chelator deferoxamine reduced bacterial survival. Iron-loaded macrophages exhibited a lower expression of NADPH oxidase, iNOS, lipocalin 2, cytokines and activation of caspase-1. Infection of mice with the pathogen caused a diminished hepatic ferroportin expression, higher iron retention in the liver and lower iron levels in the serum (hypoferremia). In vivo administration of ferric ammonium citrate tended to promote the bacterial growth and inflammatory response, whereas limitation of iron availability significantly ameliorated bacterial clearance, attenuated serum cytokine levels and improved survival of infected mice. Conclusions Our data indicate that modulation of the cellular iron balance is likely to be a strategy of B. pseudomallei to improve iron acquisition and to restrict antibacterial immune effector mechanisms and thereby to promote its intracellular growth. Moreover, we provide evidence that changes in host iron homeostasis can influence susceptibility to melioidosis, and suggest that iron chelating drugs might be an additional therapeutic option. Iron is an essential nutrient for many bacterial pathogens. A sufficient availability is linked to bacterial proliferation and pathogenicity. The host requires iron for cellular functions including innate immune defense mechanisms. Consequently, the control over iron homeostasis plays an important role in the course of infection. Burkholderia pseudomallei is an environmental bacterium ubiquitous in soil and water surfaces causing the disease melioidosis with a wide range of signs and symptoms including localized, pulmonary, or bloodstream infections. Conditions with increased iron stores, such as thalassemia, are considered to increase the risk to acquire melioidosis. Here we show that infection with the pathogen triggers downregulation of the major cellular iron exporter inducing intracellular iron retention and stimulation of bacterial proliferation. Experimental iron overload appears to predispose to infection with B. pseudomallei, whereas iron deficiency confers relative resistance to melioidosis. These effects of changed iron metabolism on the course of infection may be ascribed to modifications in the host immune response and direct effects on bacterial growth, respectively. Thus, the B. pseudomallei-driven alteration of cellular iron traffic leading to increased iron availability can promote its intracellular growth, and treatment with iron chelators together with antibiotics might be an appropriate strategy to control infection.
Collapse
Affiliation(s)
- Imke H. E. Schmidt
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Claudia Gildhorn
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Martha A. L. Böning
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Vera A. Kulow
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Ivo Steinmetz
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- * E-mail:
| | - Antje Bast
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
30
|
Fernández-Ruiz M, Parra P, Ruiz-Merlo T, López-Medrano F, San Juan R, Polanco N, González E, Andrés A, Aguado JM. Association between baseline serum hepcidin levels and infection in kidney transplant recipients: Potential role for iron overload. Transpl Infect Dis 2018; 20. [PMID: 29120522 DOI: 10.1111/tid.12807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/23/2017] [Accepted: 07/13/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND The liver-synthesized peptide hepcidin is a key regulator of iron metabolism and correlates with total iron stores. We analyzed the association between pre-transplant hepcidin-25 levels and infection after kidney transplantation (KT). METHODS Serum hepcidin-25 levels were measured at baseline by high-sensitivity ELISA in 91 patients undergoing KT at our institution between December 2011 and March 2013. The impact of this biomarker on the incidence of post-transplant infection (excluding lower urinary tract infection) during the first year was assessed by Cox regression. RESULTS Mean hepcidin-25 level was 82.3 ± 67.4 ng/mL and strongly correlated with serum ferritin (Spearman's rho = 0.703; P < .001). There were no significant differences in hepcidin-25 levels between patients with or without overall infection (96.4 ± 67.5 vs 72.6 ± 66.7 ng/mL; P = .101). Such difference was evident for opportunistic (128.9 ± 75.0 vs 73.0 ± 62.3 ng/mL; P = .003) and, to a lesser extent, surgical-site infection (107.5 ± 73.3 vs 76.5 ± 65.2 ng/mL; P = .087). Patients with hepcidin-25 levels ≥72.5 ng/mL had higher 12-month cumulative incidence of overall infection (51.2% vs 29.2%; P = .032). After multivariate adjustment, hepcidin-25 ≥72.5 ng/mL acted as an independent risk factor for overall (adjusted hazard ratio [aHR] 3.86; 95% confidence interval [CI] 1.49-9.96; P = .005) and opportunistic infection (aHR 4.32; 95% CI 1.18-15.75; P = .027). CONCLUSION Elevated baseline serum hepcidin-25 levels were associated with increased risk of infection after KT, suggesting a role for iron overload in the individual susceptibility to post-transplant infection.
Collapse
Affiliation(s)
- Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Patricia Parra
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Tamara Ruiz-Merlo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Rafael San Juan
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Natalia Polanco
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Esther González
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Amado Andrés
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
31
|
|