1
|
Altamira-Algarra B, García J, Torres CAV, Reis MAM, Gonzalez-Flo E. Exploring simultaneous production of poly(3-hydroxybutyrate) and exopolysaccharides in cyanobacteria-rich microbiomes. N Biotechnol 2025; 87:82-92. [PMID: 40081759 DOI: 10.1016/j.nbt.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
The aim of this study was to explore the viability of the dual production of poly(3-hydroxybutyrate) (PHB) and exopolysaccharides (EPS) by seven microbiomes rich in cyanobacteria. Our initial experiments involved to screen for EPS-producing candidates and examine the impact of salinity and acetate on EPS synthesis. Salinity's known influence on EPS production and acetate's role in enhancing PHB production guided our parameter selection. Surprisingly, neither the introduction of an external carbon source (acetate) nor exposure to an abiotic stressor (salt) significantly altered EPS synthesis rates, which ranged from 25 to 150 mg·L-1, or its composition, with glucose being the dominant sugar component. Scaling up to a 3 L photobioreactor, we achieved simultaneous biopolymer production, reaching up to 205 mg·L-1 EPS and 87 mg·L-1 PHB. Additionally, the presence of uronic acid in the EPS facilitated biomass flocculation, streamlining the separation process, and potentially reducing associated time and costs.
Collapse
Affiliation(s)
- Beatriz Altamira-Algarra
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, Barcelona E-08019, Spain
| | - Joan García
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, Barcelona E-08034, Spain
| | - Cristiana A V Torres
- Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica 1099-085, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Maria A M Reis
- Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica 1099-085, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Eva Gonzalez-Flo
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, Barcelona E-08019, Spain.
| |
Collapse
|
2
|
Hendy MH, Shehabeldine AM, Hashem AH, El-Sayed AF, El-Sheikh HH. Optimization and characterization of polyhydroxybutyrate produced by Halomonas meridiana using orange peel waste. BMC Microbiol 2025; 25:304. [PMID: 40383787 PMCID: PMC12087205 DOI: 10.1186/s12866-025-04007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/28/2025] [Indexed: 05/20/2025] Open
Abstract
The production of bioplastics from marine microorganisms is significantly relevant in the field of biotechnological applications for sustainable ecological management. Nevertheless, the expense associated with PHB production is substantial and regarded as the primary obstacle to its industrialization. In this study, orange peel waste served as a carbon source to enhance PHB production efficiency. Among the 15 strains evaluated, MH 96 was selected for PHB production due to its high salt tolerance and efficient utilization of orange peel as a substrate. The highest producing PHB strain MH96 was genetically identified using 16S rRNA sequencing as Halomonas meridiana and submitted in the GenBank under accession numbers PP826284. The optimal fermentation conditions were evaluated through single-factor optimization. Upon completion of the response surface optimization, the Plackett-Burman and Box-Behnken design experiments were conducted utilizing the outcomes of the single-factor optimization. The final parameters were the inoculum size of 1.74, (NH4)2HPO4 concentration of 1.0 and pH 6.37, and PHB yield of 5.94 g/L. The characterization of the extracted biopolymer by NMR, FTIR, XRD, and thermal properties was used to examine the properties of the extracted PHB, and gas chromatography-mass spectrometry (GC-MS) proves the presence of 2-butenoic acid, 1-methyl ethyl ester, tetradecane, hexadecanoic acid, methyl ester, and docosanoic acid, 8,9,13-trihydroxy-. Methyl ester, which confirmed the structure of the polymer as PHB.
Collapse
Affiliation(s)
- Mahmoud H Hendy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Amr M Shehabeldine
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed F El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Hussein H El-Sheikh
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
3
|
Zamal MY, Subramanyam R. Poly-3-hydroxy butyrate production and it's characterization from a new species, Rhodobacter alkalitolerans strain JA916 T in different growth conditions. Int J Biol Macromol 2025; 309:142790. [PMID: 40185447 DOI: 10.1016/j.ijbiomac.2025.142790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/05/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Rhodobacter alkalitolerans strain JA916T (R. alkalitolerans) is a purple non‑sulfur photosynthetic bacterium that grows in alkaline conditions. It is metabolically versatile, and can produce polyhydroxy butyrate (PHB) as internal storage carbon. We observed higher expression of PHB-synthesizing genes and greater PHB production under normal pH (npH) conditions compared to high pH (hpH), along with increased biomass production. The purity of PHB was analyzed using fourier transformed infrared spectroscopy, gas chromatography-mass spectrometry, and proton and carbon nuclear magnetic resonance, confirming it as a polymer of 3-hydroxybutric acid. Furthermore, PHB was characterized using differential scanning calorimetry and thermogravimetric analysis, revealing a melting temperature (Tm) of 177.59 °C and the highest degradation rate at 282.02 °C. This is the first report of high-yield PHB production within 24-28 h of high light exposure to R. alkalitolerans, highlighting its potential as a biodegradable plastic alternative.
Collapse
Affiliation(s)
- Mohammad Yusuf Zamal
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana 500046, India.
| |
Collapse
|
4
|
Altamira-Algarra B, Garcia J, Gonzalez-Flo E. Cyanobacteria microbiomes for bioplastic production: Critical review of key factors and challenges in scaling from laboratory to industry set-ups. BIORESOURCE TECHNOLOGY 2025; 422:132231. [PMID: 39956522 DOI: 10.1016/j.biortech.2025.132231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/24/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Cyanobacteria are photoautotrophic microorganisms capable of accumulating polyhydroxybutyrate (PHB). A novel approach for PHB production involves the exploration of cyanobacterial microbiomes, potentially reducing costs through non-sterile cultivation with non-pure substrates. Although still in its early stages, this approach shows promise for high yields and sustained synthesis. However, managing microbiome population dynamics in non-sterile environments requires effective monitoring and control. This review covers PHB production by cyanobacteria microbiomes, from sample procurement to laboratory-scale production. It highlights recent insights into optimizing cultivation parameters for enhanced biopolymer yield. Strategies to overcome challenges in PHB production are evaluated, emphasizing integrated molecular biology techniques with quantitative and qualitative PHB analysis. Finally, key challenges in scaling up production to industrial-scale scenarios are discussed, along with potential solutions to support the development of sustainable industrial processes. Cyanobacteria microbiomes show promise PHB production but challenges like managing non-sterile conditions and scaling up require optimized strategies and integrated approaches.
Collapse
Affiliation(s)
- Beatriz Altamira-Algarra
- GEMMA-Group of Environmental Engineering and Microbiology. Department of Civil and Environmental Engineering. Escola d'Enginyeria de Barcelona Est (EEBE). Universitat Politècnica de Catalunya-BarcelonaTech. Av. Eduard Maristany 16. Building C5.1. E-, 08019 Barcelona. Spain.
| | - Joan Garcia
- GEMMA-Group of Environmental Engineering and Microbiology. Department of Civil and Environmental Engineering. Universitat Politècnica de Catalunya-BarcelonaTech. c/ Jordi Girona 1-3. Building, D1. E-08034 Barcelona. Spain.
| | - Eva Gonzalez-Flo
- GEMMA-Group of Environmental Engineering and Microbiology. Department of Civil and Environmental Engineering. Escola d'Enginyeria de Barcelona Est (EEBE). Universitat Politècnica de Catalunya-BarcelonaTech. Av. Eduard Maristany 16. Building C5.1. E-, 08019 Barcelona. Spain.
| |
Collapse
|
5
|
Fink P, Menzel C, Kwon JH, Forchhammer K. A novel recombinant PHB production platform in filamentous cyanobacteria avoiding nitrogen starvation while preserving cell viability. Microb Cell Fact 2025; 24:43. [PMID: 39979956 PMCID: PMC11844001 DOI: 10.1186/s12934-025-02650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
During the past decades, the importance of developing sustainable, carbon dioxide (CO2)-neutral and biodegradable alternatives to conventional plastic has become evident in the context of global pollution issues. Therefore, heterotrophic bacteria such as Cupriavidus sp. have been intensively explored for the synthesis of the biodegradable polymer polyhydroxybutyrate (PHB). PHB is also naturally produced by a variety of phototrophic cyanobacteria, which only need sunlight and CO2, thereby allowing a CO2 negative, eco-friendly synthesis of this polymer. However, a major drawback of the use of cyanobacteria is the need of a two-stage production process, since relevant amount of PHB synthesis only occurs after transferring the cultures to conditions of nitrogen starvation, which hinders continuous, large-scale production.This study aimed at generating, by means of genetic engineering, a cyanobacterium that continuously produces PHB in large amounts. We choose a genetically amenable filamentous cyanobacterium of the genus Nostoc sp., which is a diazotrophic cyanobacterium, capable of atmospheric nitrogen (N2) fixation but naturally does not produce PHB. We transformed this Nostoc strain with various constructs containing the constitutive promotor PpsbA and the PHB synthesis operon phaC1AB from Cupriavidus necator H16. In fact, while the transformants initially produced PHB, the PHB-producing strains rapidly lost cell viability. Therefore, we next attempted further optimization of the biosynthetic gene cluster. The PHB operon was expanded with phasin gene phaP1 from Cupriavidus necator H16 in combination with the native intergenic region of apcBA from Nostoc sp. 7120. Finally, we succeeded in stabilized PHB production, whilst simultaneously avoiding decreasing cell viability. In conclusion, the recombinant Nostoc strain constructed in the present work constitutes the first example of a continuous and stable PHB production platform in cyanobacteria, which has been decoupled from nitrogen starvation and, hence, harbours great potential for sustainable, industrial PHB production.
Collapse
Affiliation(s)
- Phillipp Fink
- Organismic Interactions Department, Tübingen University, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Claudia Menzel
- Organismic Interactions Department, Tübingen University, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Jong-Hee Kwon
- Division of Applied Life Sciences (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Department of Food Science & Technology, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Karl Forchhammer
- Organismic Interactions Department, Tübingen University, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
| |
Collapse
|
6
|
Nath P, Borah D, Paul P, Rout J. Integrated biorefinery approach for sustainable production of biodiesel, bioplastics and high value bioproducts from a bloom forming alga, Botryococcus braunii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178599. [PMID: 39855116 DOI: 10.1016/j.scitotenv.2025.178599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
The global shift towards sustainable energy and bioproducts has intensified research on algae. Renewable green biofuel can address and provide solutions to both energy crisis and climate change challenges. Botryococcus braunii, a bloom forming green microalga, known for its high lipid content and potential for biofuel production has been explored in the present study. The study envisages the utilisation of algal blooms in freshwater ecosystems for the production of biodiesel and high value bioproducts through an integrated biorefinery approach. During the peak bloom, the algal cell densities reached up to 3.3 × 106 colonies L-1 with significant shift in water quality due to high nutrient uptake. Gas chromatography-mass spectroscopic analysis revealed high concentration of saturated and monounsaturated fatty acids, particularly hexadecanoic acid (C16:0) and 9-octadecenoic acid (C18:1) which are essential for stable, energy-rich biodiesel production. Hydrocarbons including squalene, botryococcenes, and botryococcane, produced by this alga have significant industrial applications. The high polyhydroxybutyrate (PHB) content in the alga emphasises its potential for sustainable bioplastic production. Growth conditions, lipid content, and biochemical composition of B. braunii were investigated. Algal blooms can provide a sustainable and economically viable source of biofuel with high value co-products. This approach not only contributes to renewable energy solutions through valorising a waste bioresource but in combination with other mass cultivation strategies can also offer a means to sustainably manage the impact of algal blooms on aquatic ecosystems.
Collapse
Affiliation(s)
- Pushpita Nath
- Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam, India
| | - Dharitri Borah
- Department of Environmental Science, Arunachal University of Studies, Namsai 792103, Arunachal Pradesh, India
| | - Puja Paul
- Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam, India
| | - Jayashree Rout
- Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
7
|
Altamira-Algarra B, Lage A, Meléndez AL, Arnau M, Gonzalez-Flo E, García J. Bioplastic production by harnessing cyanobacteria-rich microbiomes for long-term synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176136. [PMID: 39255940 DOI: 10.1016/j.scitotenv.2024.176136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Departing from the conventional axenic and heterotrophic cultures, our research ventures into unexplored territory by investigating the potential of photosynthetic microbiomes for polyhydroxybutyrate (PHB) synthesis, a biodegradable polyester that presents a sustainable alternative to conventional plastics. Our investigation focused on a cyanobacteria-enriched microbiome, dominated by Synechocystis sp. and Synechococcus sp., cultivated in a 3 L photobioreactor under non-sterile conditions, achieving significant PHB production-up to 28 % dry cell weight (dcw) over a span of 108 days through alternating cycles of biomass growth and PHB accumulation. Nile Blue staining and Transmission Electron Microscope visualization allowed to successfully confirm the presence of PHB granules within cyanobacteria cells. Furthermore, the overexpression of PHA synthase during the accumulation phase directly correlated with the increased PHB production. Also, gene expression changes revealed glycogen as the primary storage compound, but under prolonged macronutrient stress, there was a shift of the carbon flux towards favoring PHB synthesis. Finally, analysis through Raman, Fourier- transform infrared spectroscopy and proton Nuclear Magnetic Resonance further validated the extracted polymer as PHB. Overall, it was demonstrated for the first time the feasibility of using phototrophic microbiomes to continuous production of PHB in a non-sterile system. This study also offers valuable insights into the metabolic pathways involved.
Collapse
Affiliation(s)
- Beatriz Altamira-Algarra
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1., E-08019 Barcelona, Spain
| | - Artai Lage
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1., E-08019 Barcelona, Spain
| | - Ana Lucía Meléndez
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1., E-08019 Barcelona, Spain
| | - Marc Arnau
- IMEM-Innovation in Materials and Molecular Engineering, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Barcelona, Spain
| | - Eva Gonzalez-Flo
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1., E-08019 Barcelona, Spain
| | - Joan García
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain.
| |
Collapse
|
8
|
Hassan H, Ansari FA, Rawat I, Bux F. Drying strategies for maximizing polyhydroxybutyrate recovery from microalgae cultivated in a raceway pond: A comparative study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124821. [PMID: 39197645 DOI: 10.1016/j.envpol.2024.124821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/06/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Polyhydroxybutyrate (PHB) derived from microalgae are considered a promising alternative bioplastic material to replace synthetic plastics. This study evaluated the effects of various drying techniques (sun, freeze, oven and air drying) on PHB recovery from microalgae. Freeze drying recovered the maximum PHBs (6.2%) followed by sun drying (5.2%), air drying (2.3%), oven drying (2%), and the lowest in wet biomass (1.2%). The most energy-intensive drying method was freeze drying (26.83 kW) followed by oven drying (3 kW) while the other methods did not require energy. The minimum time requirement for drying was oven drying (6 h), followed by freeze drying (24 h), sun drying (48-72 h), and air drying (96-120 h) while wet biomass did not require time. In terms of PHB yield per unit time, oven (0.33%/h) is a more effective drying technique than freeze drying (0.25%/h) which produces 24.24% higher PHB yield per unit time. Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) confirmed PHB structure and thermal stability up to 300 °C from dried biomasses compared to wet biomass at 200 °C. This study indicated that drying techniques significantly influence the PHB recovery from microalgae biomass. Findings also revealed that the oven dried technique can be efficiently scaled up for PHB recovery.
Collapse
Affiliation(s)
- Humeira Hassan
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Faiz Ahmad Ansari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
9
|
Wang S, Zhang C, Liu H, Fan X, Fu S, Li W, Zhang H. Targeted PHA Microsphere-Loaded Triple-Drug System with Sustained Drug Release for Synergistic Chemotherapy and Gene Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1657. [PMID: 39452993 PMCID: PMC11510473 DOI: 10.3390/nano14201657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
The combination of paclitaxel (PTX) with other chemotherapy drugs (e.g., gemcitabine, GEM) or genetic drugs (e.g., siRNA) has been shown to enhance therapeutic efficacy against tumors, reduce individual drug dosages, and prevent drug resistance associated with single-drug treatments. However, the varying solubility of chemotherapy drugs and genetic drugs presents a challenge in co-delivering these agents. In this study, nanoparticles loaded with PTX were prepared using the biodegradable polymer material poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). These nanoparticles were surface-modified with target proteins (Affibody molecules) and RALA cationic peptides to create core-shell structured microspheres with targeted and cationic functionalization. A three-drug co-delivery system (PTX@PHBHHx-ARP/siRNAGEM) were developed by electrostatically adsorbing siRNA chains containing GEM onto the microsphere surface. The encapsulation efficiency of PTX in the nanodrug was found to be 81.02%, with a drug loading of 5.09%. The chemogene adsorption capacity of siRNAGEM was determined to be 97.3%. Morphological and size characterization of the nanodrug revealed that PTX@PHBHHx-ARP/siRNAGEM is a rough-surfaced microsphere with a particle size of approximately 150 nm. This nanodrug exhibited targeting capabilities toward BT474 cells with HER2 overexpression while showing limited targeting ability toward MCF-7 cells with low HER2 expression. Results from the MTT assay demonstrated that PTX@PHBHHx-ARP/siRNAGEM exhibits high cytotoxicity and excellent combination therapy efficacy compared to physically mixed PTX/GEM/siRNA. Additionally, Western blot analysis confirmed that siRNA-mediated reduction of Bcl-2 expression significantly enhanced cell apoptosis mediated by PTX or GEM in tumor cells, thereby increasing cell sensitivity to PTX and GEM. This study presents a novel targeted nanosystem for the co-delivery of chemotherapy drugs and genetic drugs.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (S.W.); (H.L.); (X.F.); (S.F.)
| | - Chao Zhang
- Department of Life Science, Hengshui University, Hengshui 053000, China;
| | - Huandi Liu
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (S.W.); (H.L.); (X.F.); (S.F.)
| | - Xueyu Fan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (S.W.); (H.L.); (X.F.); (S.F.)
| | - Shuangqing Fu
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (S.W.); (H.L.); (X.F.); (S.F.)
| | - Wei Li
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (S.W.); (H.L.); (X.F.); (S.F.)
| | - Honglei Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (S.W.); (H.L.); (X.F.); (S.F.)
| |
Collapse
|
10
|
Getino L, Martín JL, Chamizo-Ampudia A. A Review of Polyhydroxyalkanoates: Characterization, Production, and Application from Waste. Microorganisms 2024; 12:2028. [PMID: 39458337 PMCID: PMC11510099 DOI: 10.3390/microorganisms12102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
The search for alternatives to petrochemical plastics has intensified, with increasing attention being directed toward bio-based polymers (bioplastics), which are considered healthier and more environmentally friendly options. In this review, a comprehensive overview of polyhydroxyalkanoates (PHAs) is provided, including their characterization, applications, and the mechanisms underlying their biosynthesis. PHAs are natural polyesters produced by a wide range of prokaryotic and some eukaryotic organisms, positioning them as a significant and widely studied type of bioplastic. Various strategies for the production of PHAs from agroindustrial waste, such as cacao shells, cheese whey, wine, wood, and beet molasses, are reviewed, emphasizing their potential as sustainable feedstocks. Industrial production processes for PHAs, including the complexities associated with extraction and purification, are also examined. Although the use of waste materials offers promise in reducing costs and environmental impact, challenges remain in optimizing these processes to enhance efficiency and cost-effectiveness. The need for continued research and development to improve the sustainability and economic viability of PHA production is emphasized, positioning PHAs as a viable and eco-friendly alternative to conventional petroleum-based plastics.
Collapse
Affiliation(s)
- Luis Getino
- Área de Genética, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain;
| | - José Luis Martín
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain;
| | - Alejandro Chamizo-Ampudia
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain;
- Institute of Molecular Biology, Genomics and Proteomics (INBIOMIC), Universidad de León, Campus de Vegazana, 24071 León, Spain
| |
Collapse
|
11
|
Jaffur BN, Kumar G, Khadoo P. Production and functionalization strategies for superior polyhydroxybutyrate blend performance. Int J Biol Macromol 2024; 278:134907. [PMID: 39173809 DOI: 10.1016/j.ijbiomac.2024.134907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
This study investigates the effects of blending poly(3-hydroxybutyrate) (PHB) with microcrystalline cellulose (MCC), polylactic acid (PLA), lignin, and polyethylene glycol (PEG) on the properties of the resulting composite materials. Using a melt blending method, the composites were characterized by scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and thermogravimetric analysis (TGA). The results reveal that blending PHB with MCC, PLA, lignin, and PEG significantly enhances the thermal stability, mechanical strength, and biodegradability of the composites compared to pure PHB. Specifically, the tensile strength of PHB-PLA blends increased by up to 47.77 MPa, compared to 27.16 MPa for pure PHB. The blend with 50 % cellulose content showed the highest tensile strength of 54.91 MPa. TGA results show that the PHB-MCC and PHB-lignin blends exhibit improved thermal stability, with onset degradation temperatures rising to 294.8 °C, compared to 275 °C for pure PHB. Moreover, the PHB-lignin blend demonstrated a gradual weight loss starting at 200 °C and continuing until about 350 °C. SEM images of the blends indicate a uniform microstructure, contributing to the improved mechanical properties. The PHB-PEG blend demonstrated an elongation at break of 4.34 %, significantly higher than the 2.15 % for pure PHB, highlighting its suitability for applications requiring pliable materials. The biodegradability tests showed that PHB-PLA blends maintained consistent degradation rates, making them advantageous for applications needing controlled biodegradability. These findings suggest that blending PHB with MCC, PLA, lignin, and PEG can produce materials with enhanced properties suitable for applications in packaging, biomedical devices, and other areas where both performance and sustainability are essential.
Collapse
Affiliation(s)
- Bibi Nausheen Jaffur
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius.
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea
| | - Pratima Khadoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| |
Collapse
|
12
|
Fleischhacker-Daffert C, Zerobin A, Hummel F, Slaninova E, Kroupová Z, Obruca S, Mrazova K, Hrubanova K, Krzyzanek V, Nebesarova J, Ludwig K, Fritz I. A Comparison of the Effects of Continuous Illumination and Day/Night Regimes on PHB Accumulation in Synechocystis Cells. Life (Basel) 2024; 14:907. [PMID: 39063660 PMCID: PMC11278245 DOI: 10.3390/life14070907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Poly(3-hydroxybutyrate) (PHB) is a biobased and biodegradable polymer with properties comparable to polypropylene and therefore has the potential to replace conventional plastics. PHB is intracellularly accumulated by prokaryotic organisms. For the cells PHB functions manly as carbon and energy source, but all possible functions of PHB are still not known. Synechocystis (cyanobacteria) accumulates PHB using light as energy and CO2 as carbon source. The main trigger for PHB accumulation in cyanobacteria is nitrogen and phosphorous depletion with simultaneous surplus of carbon and energy. For the above reasons, obtaining knowledge about external factors influencing PHB accumulation is of highest interest. This study compares the effect of continuous light exposure and day/night (16/8 h) cycles on selected physiology parameters of three Synechocystis strains. We show that continuous illumination at moderate light intensities leads to an increased PHB accumulation in Synechocystis salina CCALA 192 (max. 14.2% CDW - cell dry weight) compared to day/night cycles (3.7% CDW). In addition to PHB content, glycogen and cell size increased, while cell density and cell viability decreased. The results offer new approaches for further studies to gain deeper insights into the role of PHB in cyanobacteria to obtain bioplastics in a more sustainable and environmentally friendly way.
Collapse
Affiliation(s)
- Christina Fleischhacker-Daffert
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz Straße 20, 3430 Tulln, Austria; (C.F.-D.); (F.H.); (I.F.)
| | - Antonia Zerobin
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz Straße 20, 3430 Tulln, Austria; (C.F.-D.); (F.H.); (I.F.)
| | - Ferdinand Hummel
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz Straße 20, 3430 Tulln, Austria; (C.F.-D.); (F.H.); (I.F.)
| | - Eva Slaninova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 61200 Brno, Czech Republic; (E.S.); (Z.K.); (S.O.); (K.M.)
| | - Zuzana Kroupová
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 61200 Brno, Czech Republic; (E.S.); (Z.K.); (S.O.); (K.M.)
| | - Stanislav Obruca
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 61200 Brno, Czech Republic; (E.S.); (Z.K.); (S.O.); (K.M.)
| | - Katerina Mrazova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 61200 Brno, Czech Republic; (E.S.); (Z.K.); (S.O.); (K.M.)
- Institute of Scientific Instruments, The Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic; (K.H.); (V.K.)
| | - Kamila Hrubanova
- Institute of Scientific Instruments, The Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic; (K.H.); (V.K.)
| | - Vladislav Krzyzanek
- Institute of Scientific Instruments, The Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic; (K.H.); (V.K.)
| | - Jana Nebesarova
- Institute of Parasitology, Biology Centre, The Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic;
- Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Katharina Ludwig
- BEST—Bioenergy and Sustainable Technologies GmbH, Inffeldgasse 21b, 8010 Graz, Austria
| | - Ines Fritz
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz Straße 20, 3430 Tulln, Austria; (C.F.-D.); (F.H.); (I.F.)
| |
Collapse
|
13
|
Santin A, Collura F, Singh G, Morlino MS, Bizzotto E, Bellan A, Gupte AP, Favaro L, Campanaro S, Treu L, Morosinotto T. Deciphering the genetic landscape of enhanced poly-3-hydroxybutyrate production in Synechocystis sp. B12. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:101. [PMID: 39014484 PMCID: PMC11253406 DOI: 10.1186/s13068-024-02548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Microbial biopolymers such as poly-3-hydroxybutyrate (PHB) are emerging as promising alternatives for sustainable production of biodegradable bioplastics. Their promise is heightened by the potential utilisation of photosynthetic organisms, thus exploiting sunlight and carbon dioxide as source of energy and carbon, respectively. The cyanobacterium Synechocystis sp. B12 is an attractive candidate for its superior ability to accumulate high amounts of PHB as well as for its high-light tolerance, which makes it extremely suitable for large-scale cultivation. Beyond its practical applications, B12 serves as an intriguing model for unravelling the molecular mechanisms behind PHB accumulation. RESULTS Through a multifaceted approach, integrating physiological, genomic and transcriptomic analyses, this work identified genes involved in the upregulation of chlorophyll biosynthesis and phycobilisome degradation as the possible candidates providing Synechocystis sp. B12 an advantage in growth under high-light conditions. Gene expression differences in pentose phosphate pathway and acetyl-CoA metabolism were instead recognised as mainly responsible for the increased Synechocystis sp. B12 PHB production during nitrogen starvation. In both response to strong illumination and PHB accumulation, Synechocystis sp. B12 showed a metabolic modulation similar but more pronounced than the reference strain, yielding in better performances. CONCLUSIONS Our findings shed light on the molecular mechanisms of PHB biosynthesis, providing valuable insights for optimising the use of Synechocystis in economically viable and sustainable PHB production. In addition, this work supplies crucial knowledge about the metabolic processes involved in production and accumulation of these molecules, which can be seminal for the application to other microorganisms as well.
Collapse
Grants
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- Ministero dell’Istruzione, dell’Università e della Ricerca
- Università degli Studi di Padova
Collapse
Affiliation(s)
- Anna Santin
- Department of Biology, University of Padova, 35131, Padua, Italy.
| | - Flavio Collura
- Department of Biology, University of Padova, 35131, Padua, Italy
| | - Garima Singh
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | | - Edoardo Bizzotto
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | | - Ameya Pankaj Gupte
- Waste to Bioproducts Lab, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova - Agripolis, 35020, Legnaro, PD, Italy
| | - Lorenzo Favaro
- Waste to Bioproducts Lab, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova - Agripolis, 35020, Legnaro, PD, Italy
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | | | - Laura Treu
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | |
Collapse
|
14
|
Baltacı NG, Baltacı MÖ, Görmez A, Örtücü S. Green alternatives to petroleum-based plastics: production of bioplastic from Pseudomonas neustonica strain NGB15 using waste carbon source. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31149-31158. [PMID: 38625463 PMCID: PMC11096215 DOI: 10.1007/s11356-024-33309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Polyhydroxyalkanoates have attracted great interest as a suitable alternative to petrochemical based plastics due to their outstanding properties such as biodegradability and biocompatibility. However, the biggest problem in the production of microbial polyhydroxyalkanoates is low cost-effectiveness. In this study, polyhydroxyalkanoate production was carried out using waste substrates with local isolates. Culture conditions were optimized to increase the polyhydroxyalkanoate production potential. The produced polyhydroxyalkanoate was characterized by FTIR analyses, and its metabolic pathway was determined by real-time PCR. According to the results, the best polyhydroxyalkanoate producer bacteria was characterized as Pseudomonas neustonica NGB15. The optimal culture conditions were detected as 30 g/L banana peel powder, 25 °C temperature, pH 8, and 4-day incubation time. Under the optimized conditions, 3.34 g/L PHA production was achieved. As a result of FTIR analyses, major peaks were obtained at 1723, 1277, 1261, 1097, 1054, and 993 cm-1. These peaks represent that the type of produced polyhydroxyalkanoate was poly-β-hydroxybutyrate. According to gene expression profile of NGB15, it was determined that Pseudomonas neustonica NGB15 produces PHA using the de novo fatty acid synthesis metabolic pathway. In conclusion, poly-β-hydroxybutyrate production by Pseudomonas neustonica NGB15 using a low-cost fermentation medium has been shown to be biotechnologically promising.
Collapse
Affiliation(s)
- Nurdan Gönül Baltacı
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey.
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Mustafa Özkan Baltacı
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey
| | - Arzu Görmez
- Department of Biology, Faculty of Science, Dokuz Eylul University, 35390, Izmir, Turkey
| | - Serkan Örtücü
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| |
Collapse
|
15
|
Mandragutti T, Jarso TS, Godi S, Begum SS, K B. Physicochemical characterization of polyhydroxybutyrate (PHB) produced by the rare halophile Brachybacterium paraconglomeratum MTCC 13074. Microb Cell Fact 2024; 23:59. [PMID: 38388436 PMCID: PMC10882773 DOI: 10.1186/s12934-024-02324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Polyhydroxybutyrate is a biopolymer produced by bacteria and archaea under nitrogen-limiting conditions. PHB is an essential polymer in the bioplastic sector because of its biodegradability, eco-friendliness, and adaptability. The characterization of PHB is a multifaceted process for studying the structure and its properties. This entire aspect can assure the long-term viability and performance attributes of the PHB. The characteristics of PHB extracted from the halophile Brachybacterium paraconglomeratum were investigated with the objective of making films for application in healthcare. RESULTS This was the first characterization study on PHB produced by a rare halophile, Brachybacterium paraconglomeratum (MTCC 13074). In this study, the strain produced 2.72 g/l of PHB for.5.1 g/l of biomass under optimal conditions. Methods are described for the determination of the physicochemical properties of PHB. The prominent functional groups CH3 and C = O were observed by FT-IR and the actual chemical structure of the PHB was deduced by NMR. GCMS detects the confirmation of four methyl ester derivatives of the extracted PHB in the sample. Mass spectrometry revealed the molecular weight of methyl 3-hydroxybutyric acid (3HB) present in the extract. The air-dried PHB films were exposed to TGA, DSC and a universal testing machine to determine the thermal profile and mechanical stability. Additionally, the essential property of biopolymers like viscosity was also assessed for the extracted PHB. CONCLUSIONS The current study demonstrated the consistency and quality of B. paraconglomeratum PHB. Therefore, Brachybacterium sps are also a considerable source of PHB with desired characteristics for industrial production.
Collapse
Affiliation(s)
- Teja Mandragutti
- Department of Biotechnology, Andhra University, Visakhapatnam, 530 003, India.
| | - Tura Safawo Jarso
- Department of Biology (Applied Genetics and Biotechnology Stream), College of Natural Sciences, Salale University, Fiche, Ethiopia
| | - Sudhakar Godi
- Department of Biotechnology, Andhra University, Visakhapatnam, 530 003, India
| | - S Sharmila Begum
- Department of Biotechnology, Dr Lankapalli Bullayya College, Visakhapatnam, 530013, India
| | - Beulah K
- Department of Biotechnology, Dr Lankapalli Bullayya College, Visakhapatnam, 530013, India
| |
Collapse
|
16
|
Mudtham NA, Promariya A, Duangsri C, Maneeruttanarungroj C, Ngamkala S, Akrimajirachoote N, Powtongsook S, Salminen TA, Raksajit W. Exogenous Trehalose Improves Growth, Glycogen and Poly-3-Hydroxybutyrate (PHB) Contents in Photoautotrophically Grown Arthrospira platensis under Nitrogen Deprivation. BIOLOGY 2024; 13:127. [PMID: 38392345 PMCID: PMC10886759 DOI: 10.3390/biology13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Glycogen and poly-3-hydroxybutyrate (PHB) are excellent biopolymer products from cyanobacteria. In this study, we demonstrate that nitrogen metabolism is positively influenced by the exogenous application of trehalose (Tre) in Arthrospira platensis under nitrogen-deprived (-N) conditions. Cells were cultivated photoautotrophically for 5 days under -N conditions, with or without the addition of exogenous Tre. The results revealed that biomass and chlorophyll-a content of A. platensis experienced enhancement with the addition of 0.003 M and 0.03 M Tre in the -N medium after one day, indicating relief from growth inhibition caused by nitrogen deprivation. The highest glycogen content (54.09 ± 1.6% (w/w) DW) was observed in cells grown for 2 days under the -N + 0.003 M Tre condition (p < 0.05), while the highest PHB content (15.2 ± 0.2% (w/w) DW) was observed in cells grown for 3 days under the -N + 0.03 M Tre condition (p < 0.05). The RT-PCR analysis showed a significant increase in glgA and phaC transcript levels, representing approximately 1.2- and 1.3-fold increases, respectively, in A. platensis grown under -N + 0.003 M Tre and -N + 0.03 M Tre conditions. This was accompanied by the induction of enzyme activities, including glycogen synthase and PHA synthase with maximal values of 89.15 and 0.68 µmol min-1 mg-1 protein, respectively. The chemical structure identification of glycogen and PHB from A. platensis was confirmed by FTIR and NMR analysis. This research represents the first study examining the performance of trehalose in promoting glycogen and PHB production in cyanobacteria under nitrogen-deprived conditions.
Collapse
Affiliation(s)
- Nat-Anong Mudtham
- Program of Animal Health Technology, Department of Veterinary Nursing, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Authen Promariya
- Program of Animal Health Technology, Department of Veterinary Nursing, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Chanchanok Duangsri
- Department of Animal Science, Faculty of Agricultural Technology and Agro-Industry, Rajamangala University of Technology Suvarnabhumi, Phranakhon Si Ayutthaya 13000, Thailand
| | - Cherdsak Maneeruttanarungroj
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Suchanit Ngamkala
- Program of Animal Health Technology, Department of Veterinary Nursing, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | | | - Sorawit Powtongsook
- Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, FI-20520 Turku, Finland
| | - Wuttinun Raksajit
- Program of Animal Health Technology, Department of Veterinary Nursing, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
17
|
Tran MH, Choi TR, Yang YH, Lee OK, Lee EY. An efficient and eco-friendly approach for the sustainable recovery and properties characterization of polyhydroxyalkanoates produced by methanotrophs. Int J Biol Macromol 2024; 257:128687. [PMID: 38101655 DOI: 10.1016/j.ijbiomac.2023.128687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Synthetic biodegradable and bio-based polymers have emerged as sustainable alternatives to nonrenewable petroleum-derived polymers which cause serious environmental issues. In particular, polyhydroxyalkanoates (PHA) are promising biopolymers owing to their outstanding biodegradability and biocompatibility. The production of the homopolymer poly(3-hydroxybutyrate) (PHB) and copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from type II methanotrophs via microbial fermentation was presented. For the efficient extraction and recovery of intracellular PHA from methanotrophs, different extraction approaches were investigated including solvent extraction using 1,3-dioxolane as a green solvent, integrated cell lysis and solvent extraction, and cell digestion without the use of organic solvents. Among various extraction approaches, the integrated method exhibited the highest extraction performance, with PHA recovery and purity exceeding 91 % and 93 %, respectively, even when the PHA content of the cells was low. Furthermore, the molecular weight, thermal stability, and mechanical properties of the recovered PHA were comprehensively analyzed to suggest its suitable practical applications. The obtained properties were comparable to that of the commercial PHA products and PHA produced from other microbial species, indicating an efficient recovery of high-quality PHA produced from methanotrophs.
Collapse
Affiliation(s)
- My Ha Tran
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ok Kyung Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
18
|
Barbosa JL, de Melo MIA, da Silva Cunha P, de Miranda MC, Barrioni BR, Moreira CDF, da Fonseca Ferreira A, Arantes RME, de Sá MA, de Magalhães Pereira M, Rodrigues MA, Novikoff S, Gomes DA, de Goes AM. Development of a membrane and a bilayer of chitosan, gelatin, and polyhydroxybutyrate to be used as wound dressing for the regeneration of rat excisional wounds. J Biomed Mater Res A 2024; 112:82-98. [PMID: 37795871 DOI: 10.1002/jbm.a.37616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
The skin is the largest organ in the human body that acts as a protective barrier from the outside environment. Certain dermatological pathologies or significant skin lesions can result in serious complications. Several studies have focused on the development of tissue-engineered skin substitutes. In this study, a new bilayer scaffold composed of a chitosan-gelatin membrane and a chitosan-polyhydroxybutyrate (PHB) porous matrix was synthesized and populated with human adipose-derived mesenchymal stem cells (hASCs) to be potentially used for wound dressing applications. By combining this membrane and porous matrix with the stem cells, we aimed to provide immunomodulation and differentiation capabilities for the wound environment, as well as mechanical strength and biocompatibility for the underlying tissue. The membrane was prepared from the mixture of chitosan and gelatin in a 2:1 ratio and the porous matrix was prepared from the mixture of chitosan and PHB, in equal proportions to form a final solution at 2.5% (m/v). Fourier transform infrared spectroscopy analysis showed the formation of blends, and micro-computed tomography, scanning electron microscopy and atomic force microscopy images demonstrated membrane roughness and matrix porosity. The MTT assay showed that the scaffolds were biocompatible with hASC. The membrane and the bilayer were used as dressing and support for cell migration in the dorsal excisional wound model in Wistar rats. Histological and gene transcriptional analyses showed that the animals that received the scaffolds regenerated the hair follicles in the deep dermis in the central region of the wound. Our results demonstrate the potential of these new biomaterials as dressings in wound healing studies, favoring tissue regeneration.
Collapse
Affiliation(s)
- Joana Lobato Barbosa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariane Izabella Abreu de Melo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Serviço de Radiofármacos, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, Brazil
| | - Pricila da Silva Cunha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Muriaé, Brazil
| | - Marcelo Coutinho de Miranda
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Rosa Maria Esteves Arantes
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcos Augusto de Sá
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Michele Angela Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Serviço de Radiofármacos, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, Brazil
| | - Silviene Novikoff
- Transplants Immunobiology Laboratory, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alfredo Miranda de Goes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
19
|
Altamira-Algarra B, Rueda E, Lage A, San León D, Martínez-Blanch JF, Nogales J, García J, Gonzalez-Flo E. New strategy for bioplastic and exopolysaccharides production: Enrichment of field microbiomes with cyanobacteria. N Biotechnol 2023; 78:141-149. [PMID: 37852438 DOI: 10.1016/j.nbt.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 09/29/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Seven photosynthethic microbiomes were collected from field environmental samples to test their potential in polyhydroxybutyrate (PHB) and exopolysaccharides (EPS) production, both alternatives to chemical-based polymers. Microscope observations together with microbial sequence analysis revealed the microbiome enrichment in cyanobacteria after culture growth under phosphorus limitation. PHB and EPS production were studied under three culture factors (phototrophy, mixotrophy and heterotrophy) by evaluating and optimizing the effect of three parameters (organic and inorganic carbon and days under light:dark cycles) by Box-Behnken design. Results showed that optimal conditions for both biopolymers synthesis were microbiome-dependent; however, the addition of organic carbon boosted PHB production in all the tested microbiomes, producing up to 14 %dcw PHB with the addition of 1.2 g acetate·L-1 and seven days under light:dark photoperiods. The highest EPS production was 59 mg·L-1 with the addition of 1.2 g acetate·L-1 and four days under light:dark photoperiods. The methodology used is suitable for enriching microbiomes in cyanobacteria, and for testing the best conditions for bioproduct synthesis for further scale up.
Collapse
Affiliation(s)
- Beatriz Altamira-Algarra
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain
| | - Estel Rueda
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain
| | - Artai Lage
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain
| | - David San León
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Juan F Martínez-Blanch
- Department of preventive medicine, public health, food sciences, toxicology and forensic medicine, Universitat de Valencia, Valencia, Spain; Biopolis S.L., ADM, Parc Cientifc Universidad De Valencia, Edif. 2, C/ Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Joan García
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Eva Gonzalez-Flo
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain.
| |
Collapse
|
20
|
Mishra P, Panda B. Polyhydroxybutyrate (PHB) accumulation by a mangrove isolated cyanobacteria Limnothrix planktonica using fruit waste. Int J Biol Macromol 2023; 252:126503. [PMID: 37633558 DOI: 10.1016/j.ijbiomac.2023.126503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Cyanobacterial polyhydroxybutyrate (PHB) is preferred over bacteria for low-cost production due to its photoautotrophic nature and lower carbon requirement. Considering its impact on the environment and circular economy, the valorization of fruit waste is the need of the hour. In the present study, fruit peels of banana, orange, pea, jackfruit, watermelon and waste flowers were tried as carbon sources for mangrove-isolated cyanobacteria Limnothrix planktonica to accumulate PHB. Alterations in the ASN-III culture medium and the introduction of untreated and pre-treated (acid/alkali-treated) peels as carbon sources are tried to enhance PHB. Banana peel showed the maximum PHB accumulation potential of 25.73 mg/L on the 12th day of incubation, followed by jackfruit (22.46 mg/L) and watermelon peels (20.72 mg/L); whereas, commercial carbon sources showed lower PHB accumulation up to 19.26 mg/L and 18.21 mg/L with fructose and glucose respectively. PHB accumulation was boosted to 5-fold higher (39.39 mg/L) in NP deficiency medium along with banana peel supplement, as compared to photoautotrophic conditions (8.49 mg/L) after the 9th day of incubation. Additionally, the PHB obtained by using the fruit wastes has a higher molecular weight than the PHB accumulated during photoautotrophic conditions. Optimization of parameters using fruit wastes and characterization of PHB would lead to its potential use.
Collapse
Affiliation(s)
- Prateeksha Mishra
- Environmental Biology Research Laboratory, Department of Botany, Utkal University, Bhubaneswar, Odisha, India
| | - Bhabatarini Panda
- Environmental Biology Research Laboratory, Department of Botany, Utkal University, Bhubaneswar, Odisha, India; Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India.
| |
Collapse
|
21
|
Huang Z, Liang B, Wang F, Ji Y, Gu P, Fan X, Li Q. Response surface optimization of poly-β-hydroxybutyrate synthesized by Bacillus cereus L17 using acetic acid as carbon source. Int J Biol Macromol 2023; 247:125628. [PMID: 37392926 DOI: 10.1016/j.ijbiomac.2023.125628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
A strain of Bacillus that can tolerate 10 g/L acetic acid and use the volatile fatty acids produced by the hydrolysis and acidification of activated sludge to produce polyhydroxyalkanoate was screened from the activated sludge of propylene oxide saponification wastewater. The strain was identified by 16S rRNA sequencing and phylogenetic tree analysis and was named Bacillus cereus L17. Various characterization methods showed that the polymer synthesized by strain L17 is poly-β-hydroxybutyrate, which has low crystallinity, good ductility and toughness, high thermal stability and a low polydispersity coefficient. It has wide thermoplastic material operating space as well as industrial and medicinal applications. The optimal fermentation conditions were determined by single factor optimization. Then, Plackett-Burman and Box-Behnken design experiments were carried out according to the single factor optimization results, and the response surface optimization was completed. The final results were: initial pH 6.7, temperature 25 °C, and loading volume 124 mL. The verification experiment showed that the yield of poly-β-hydroxybutyrate after optimization increased by 35.2 % compared to that before optimization.
Collapse
Affiliation(s)
- Zhaosong Huang
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| | - Boya Liang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fang Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yan Ji
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| |
Collapse
|
22
|
Rodge SP, Shende KS, Patil NP. Polyhydroxyalkanoate biosynthesis and optimisation of thermophilic Geobacillus stearothermophilus strain K4E3_SPR_NPP. Extremophiles 2023; 27:13. [PMID: 37349574 DOI: 10.1007/s00792-023-01300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/04/2023] [Indexed: 06/24/2023]
Abstract
Polyhydroxyalkanoates (PHA) can be used to combat the challenges associated with plastic because it is biodegradable and can be produced from renewable resources. Extremophiles are considered to be potential PHA producers. An initial screening for the PHA synthesizing ability of a thermophilic bacteria Geobacillus stearothermophilus strain K4E3_SPR_NPP was carried out using Sudan black B staining. Nile red viable colony staining was used to further verify that the isolates produced PHA. Crotonic acid assays were used to determine the concentrations of PHA. The bacteria showed 31% PHA accumulation per dry cell weight (PHA/DCW) when glucose was used as a carbon source for growth. The molecule was identified to be medium chain length PHA, A copolymer of PHA containing poly(3-hydroxybutyrate)-poly(3-hydroxyvalerate)-poly(3-hydroxyhexanoate) (PHB-PHV-PHHX) using 1H-NMR. Six carbon sources and four nitrogen sources were screened for the synthesis of maximum PHA content, of which lactose and ammonium nitrate showed 45% and 53% PHA/DCW respectively. The important factors in the experiment are identified using the Plackett-Burman design, and optimization is performed using the response surface method. Response surface methodology was used to optimize the three important factors, and the maximum biomass and PHA productions were discovered. Optimal concentrations yielded a maximum of 0.48 g/l biomass and 0.32 g/l PHA, measuring 66.66% PHA accumulation. Dairy industry effluent was employed for the synthesis of PHA, yielding 0.73 g/l biomass and 0.33 g/l PHA, measuring 45% PHA accumulation. These findings add credibility to the possibility of adopting thermophilic isolates for PHA production using low-cost substrates.
Collapse
|
23
|
Ishikawa T, Takano S, Tanikawa R, Fujihara T, Atsuzawa K, Kaneko Y, Hihara Y. Acylated plastoquinone is a novel neutral lipid accumulated in cyanobacteria. PNAS NEXUS 2023; 2:pgad092. [PMID: 37152674 PMCID: PMC10156143 DOI: 10.1093/pnasnexus/pgad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/13/2023] [Indexed: 05/09/2023]
Abstract
Although cyanobacteria do not possess bacterial triacylglycerol (TAG)-synthesizing enzymes, the accumulation of TAGs and/or lipid droplets has been repeatedly reported in a wide range of species. In most cases, the identification of TAG has been based on the detection of the spot showing the mobility similar to the TAG standard in thin-layer chromatography (TLC) of neutral lipids. In this study, we identified monoacyl plastoquinol (acyl PQH) as the predominant molecular species in the TAG-like spot from the unicellular Synechocystis sp. PCC 6803 (S.6803) as well as the filamentous Nostocales sp., Nostoc punctiforme PCC 73102, and Anabaena sp. PCC 7120. In S.6803, the accumulation level of acyl PQH but not TAG was affected by deletion or overexpression of slr2103, indicating that acyl PQH is the physiological product of Slr2103 having homology with the eukaryotic diacylglycerol acyltransferase-2 (DGAT2). Electron microscopy revealed that cyanobacterial strains used in this study do not accumulate lipid droplet structures such as those observed in oleaginous microorganisms. Instead, they accumulate polyhydroxybutyrate (PHB) granules and/or aggregates of alkane, free C16 and C18 saturated fatty acids, and low amounts of TAG in the cytoplasmic area, which can be detected by staining with a fluorescent dye specific to neutral lipids. Unlike these lipophilic materials, acyl PQH is exclusively localized in the membrane fraction. There must be DGAT2-like enzymatic activity esterifying de novo-synthesized C16 and C18 fatty acids to PQH2 in the thylakoid membranes.
Collapse
Affiliation(s)
- Toshiki Ishikawa
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Shunya Takano
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Riko Tanikawa
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama 338-8570, Japan
| | - Takashi Fujihara
- Comprehensive Analysis Center for Science, Saitama University, Saitama 338-8570, Japan
| | - Kimie Atsuzawa
- Comprehensive Analysis Center for Science, Saitama University, Saitama 338-8570, Japan
| | - Yasuko Kaneko
- Department of Natural Science, Faculty of Education, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | | |
Collapse
|
24
|
Tharasirivat V, Jantaro S. Increased Biomass and Polyhydroxybutyrate Production by Synechocystis sp. PCC 6803 Overexpressing RuBisCO Genes. Int J Mol Sci 2023; 24:ijms24076415. [PMID: 37047389 PMCID: PMC10094337 DOI: 10.3390/ijms24076415] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
The overexpression of the RuBisCO (rbc) gene has recently become an achievable strategy for increasing cyanobacterial biomass and overcoming the biocompound production restriction. We successfully constructed two rbc-overexpressing Synechocystis sp. PCC 6803 strains (OX), including a strain overexpressing a large subunit of RuBisCO (OXrbcL) and another strain overexpressing all large, chaperone, and small subunits of RuBisCO (OXrbcLXS), resulting in higher and faster growth than wild type under sodium bicarbonate supplementation. This increased biomass of OX strains significantly contributed to the higher polyhydroxybutyrate (PHB) production induced by nutrient-deprived conditions, in particular nitrogen (N) and phosphorus (P). As a result of higher PHB contents in OX strains occurring at days 7 and 9 of nutrient deprivation, this enhancement was apparently made possible by cells preferentially maintaining their internal lipids while accumulating less glycogen. The OXrbcLXS strain, with the highest level of PHB at about 39 %w/dry cell weight (DCW) during 7 days of BG11-NP treatment, contained a lower glycogen level (31.9 %w/DCW) than wild type control (40 %w/DCW). In contrast, the wild type control strain exposed to N- and NP-stresses tended to retain lipid levels and store more glycogen than PHB. In this model, we, for the first time, implemented a RuBisCO-overexpressing cyanobacterial factory for overproducing PHB, destined for biofuel and biomaterial biotechnology.
Collapse
|
25
|
Cassuriaga APA, Moraes L, Morais MG, Costa JAV. Use of exogenous substrate in Chlorella cultivation: Strategy for biomass and polyhydroxybutyrate production. Int J Biol Macromol 2023; 231:123193. [PMID: 36634805 DOI: 10.1016/j.ijbiomac.2023.123193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
The aim of this study was to investigate the influence of exogenous carbon supplementation and nitrogen source reduction on Chlorella fusca LEB 111 growth, biomass composition, and polyhydroxybutyrate accumulation. First, assays were performed with 50 % and 25 % reduced nitrogen source concentrations (NaNO3). In the second stage, the influence of culture supplementation with 10, 20, and 30 mg L-1 D-xylose, associated with 50 and 25 % reductions in NaNO3, was evaluated. The experiments conducted with a 25 % reduction in NaNO3 and supplementation with 10 mg L-1 D-xylose resulted in a positive effect on the biomass productivity of C. fusca LEB 111, with production as high as 354.4 mg L-1 d-1. The maximum concentration of PHB extracted from C. fusca LEB 111 was 3.7 % (w w-1) and was obtained when the microalgae were cultivated with a 25 % of reduction in NaNO3 and supplementation of D-xylose at 20 mg L-1. Therefore, this study brings new perspectives regarding reducing the use of nutritional sources and using exogenous carbon sources in using microalgae to produce molecules of high biotechnological potential.
Collapse
Affiliation(s)
- Ana Paula Aguiar Cassuriaga
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Luiza Moraes
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Michele Greque Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, Brazil.
| |
Collapse
|
26
|
Baracho DH, Lombardi AT. Study of the growth and biochemical composition of 20 species of cyanobacteria cultured in cylindrical photobioreactors. Microb Cell Fact 2023; 22:36. [PMID: 36823519 PMCID: PMC9951496 DOI: 10.1186/s12934-023-02035-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Cyanobacteria are prokaryotic organisms with wide morphological and metabolic diversity. By means of photosynthesis, they convert inorganic compounds into biomolecules, which may have commercial interest. In this work, we evaluated 20 cyanobacterial strains regarding their physiological aspects such as growth, photosynthesis and biochemical composition, some of which are revealed here for the first time. The organisms were cultivated in cylindrical photobioreactors (CPBR) for 144 h and the biomass was obtained. The light inside cultures was constant throughout experimental time and maintained at the saturation irradiance (Ik) of each species. Culture pH was maintained within 7.8 and 8.4 by automatic CO2 bubbling. Growth rate, dry biomass, chlorophyll a, carotenoids, phycocyanin, proteins, carbohydrates, lipids, polyhydroxyalkanoate (PHA) and antioxidant activity were determined. RESULTS The proportionality of the biochemical composition varied among species, as well as the growth rates. Leptolyngbya sp. and Nostoc sp. (CCIBt3249) showed growth rates in the range of 0.7-0.8 d-1, followed by Rhabdorderma sp. (~ 0.6 d-1), and Phormidium sp. (~ 0.5 d-1). High carotenoid content was obtained in Rhabdoderma sp. (4.0 μg mL-1) and phycocyanin in Leptolyngbya sp. (60 μg mL-1). Higher total proteins were found in the genus Geitlerinema (75% DW), carbohydrates in Microcystis navacekii (30% DW) and lipids in Phormidium sp. (15% DW). Furthermore, Aphanocapsa holsatica showed the highest antioxidant activity (65%) and Sphaerocavum brasiliense, Microcystis aeruginosa, Nostoc sp. (CCIBt3249) and A. holsatica higher levels of PHA (~ 2% DW). CONCLUSIONS This study reports on the biochemical composition of cyanobacteria that can impact the biotechnology of their production, highlighting potential strains with high productivity of specific biomolecules.
Collapse
Affiliation(s)
- Douglas Henrique Baracho
- Programa de Pós-Graduação em Ecologia e Recursos Naturais (PPGERN), Universidade Federal de São Carlos (UFSCar), Rod. Washington Luís km 235, São Carlos, São Paulo, CEP 13565-905, Brazil.
| | - Ana Teresa Lombardi
- grid.411247.50000 0001 2163 588XDepartamento de Botânica (DB), Universidade Federal de São Carlos (UFSCar), Rod. Washington Luís km 235, São Carlos, São Paulo CEP 13565-905 Brazil
| |
Collapse
|
27
|
Two-stage cultivation of Spirulina sp. LEB 18: a strategy to increase biomass productivity and synthesis of macromolecules. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1007/s43153-022-00279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
28
|
Samadhiya K, Ghosh A, Bhatnagar A, Bala K. Effect of acute vs chronic stress on Polyhydroxybutyrate production by indigenous cyanobacterium. Int J Biol Macromol 2023; 227:416-423. [PMID: 36563801 DOI: 10.1016/j.ijbiomac.2022.12.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Fossil-based plastic has become a global-threat due to its high stability and transformation into more lethal forms such as micro plastics with time. An alternative should be found to combat this global enemy. Polyhydroxybutyrate or PHB can be such an alternative to plastic. Present study explores the synthesis of PHB in Neowollea manoromense, using two different cultivation-approaches: acute and chronic stress. This study has used 6 carbon sources and 3 different level of phosphate to study the accumulation of PHB along with lipid, carbohydrate, and proteins. Highest PHB in chronic-stress was achieved under glucose supplementation without phosphate at 21st day (156.5 ± 22.5 μg/mg), whereas in acute-stress, it was achieved under acetate without phosphate (91.0 ± 2.7 μg/mg). Despite higher accumulation in chronic-stress, high PHB productivity was achieved in acute-stress. Principal Component Analysis suggests that all the variables were positively correlated with each other. Here we first report PHB accumulation in Neowollea manoromense. This study highlights that acute-stress can be a powerful tool in establishment of a sustainable cyanobacteria based bio refinery for PHB production.
Collapse
Affiliation(s)
- Kanchan Samadhiya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, 453552, India
| | - Atreyee Ghosh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, 453552, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Finland
| | - Kiran Bala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, 453552, India.
| |
Collapse
|
29
|
Banu JR, Kumar G, Gunasekaran M. Augmentation in polyhydroxybutyrate and biogas production from waste activated sludge through mild sonication induced thermo-fenton disintegration. BIORESOURCE TECHNOLOGY 2023; 369:128376. [PMID: 36414138 DOI: 10.1016/j.biortech.2022.128376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
In this study, an innovative approach was developed to enhance the hydrolysis through phase-separated pretreatment by removing exopolymeric substances via mild sonication followed by thermo-Fenton disintegration. The exopolymeric substances fragmentation was enhanced at the sonic specific energy input of 2.58 kJ/kg total solids. After exopolymeric substance removal, the disintegration of biomass by thermo-Fenton yield the solubilization of 29.8 % at Fe2+:H2O2 dosage and temperature of 0.009:0.036 g/g suspended solids and 80 °C as compared to thermo-Fenton alone disintegration. The polyhydroxybutyrate content of 93.1 % was accumulated by Bacillus aryabhattai at the optimum time of 42 h, while providing 70 % (v/v) pre-treated supernatant as a carbon source under nutrient-limiting condition. Moreover, the biogas generation of 0.187 L/g chemical oxygen demand was achieved using settled pretreated sludge. The pretreated sludge sample thus served as a carbon source for polyhydroxybutyrate producers as well as substrate for biogas production.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, TamilNadu 627007, India.
| |
Collapse
|
30
|
Hung CM, Chen CW, Huang CP, Sheu DS, Dong CD. Microbial community structure and potential function associated with poly-3-hydroxybutyrate biopolymer-boosted activation of peroxymonosulfate for waste-activated sludge decontamination. BIORESOURCE TECHNOLOGY 2023; 369:128450. [PMID: 36496120 DOI: 10.1016/j.biortech.2022.128450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Excess waste-activated sludge (WAS) is a major biosolid management problem due to its biohazardous and recalcitrant content of phthalate esters (PAEs). This study aimed to assess the combined use of biopolymer, poly-3-hydroxybutyrate and peroxymonosulfate to degrade PAEs and decontaminate WAS. Poly-3-hydroxybutyrate was biosynthesized by Cupriavidus sp. L7L. The combined poly-3-hydroxybutyrate and peroxymonosulfate process removed 86 % of PAEs from WAS in 12 h. The carbonyl groups of poly-3-hydroxybutyrate were conducive to peroxymonosulfate activation leading to PAE degradation followed the radical pathway and surface-mediated electron transfer. Poly-3-hydroxybutyrate and peroxymonosulfate also enriched the PAE-biodegrading microbes in WAS. The microbial population and the functional composition in response to peroxymonosultate treatment was identified, with the genus Sulfurisoma being the most abundant. This synergistic treatment, i.e., advanced oxidation process, was augmented by highly promising microbial polyesters, exhibited important implications for WAS pretreatment toward circular bioeconomy that encompasses carbon-neutral biorefinery and mitigate pollution.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Der-Shyan Sheu
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
31
|
Cultivation of the PHB-producing cyanobacterium Synechococcus leopoliensis in a pilot-scale open system using nitrogen from waste streams. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
32
|
Aragosa A, Saccomanno B, Specchia V, Frigione M. A Novel Sphingomonas sp. Isolated from Argan Soil for the Polyhydroxybutyrate Production from Argan Seeds Waste. Polymers (Basel) 2023; 15:polym15030512. [PMID: 36771813 PMCID: PMC9921021 DOI: 10.3390/polym15030512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable bio-based polymer synthesized by microorganisms under unfavorable conditions from agro-industrial residues as a source of carbon. These aspects make the bio-based polymer attractive for the mass production of biodegradable plastics, and a definitive replacement for petroleum-based plastics. The aim of this work was to characterize the putative PHB-producing bacterium 1B isolated from the argan soil, to identify the polymer produced, and quantify the PHB production using argan seeds waste. DNA extraction, PCR, and Sanger sequencing were conducted for the molecular identification of strain 1B; the residual biomass and the PHB quantification were measured and compared in the presence of simple sugars and pretreated argan seeds waste. The 1B growth and PHB synthesis were optimized by selecting physical and nutritional parameters: temperature, incubation time, pH, NaCl concentration, and nitrogen sources concentrations. A preliminary characterization of the bio-based polymer extracted was conducted by UV-Visible spectrophotometry and FTIR analysis. The strain 1B was identified as belonging to the genus Sphingomonas. The PHB final yield was higher in a growth culture enriched with argan waste (3.06%) than with simple sugars. The selected conditions for the bacterial optimal growth incremented the PHB final yield to 6.13%, while the increase in the argan residue concentration from 1 to 3% in a larger culture volume led to the PHB final yield of 8.16%. UV-Visible spectrophotometry of the extracted sample reported a remarkable peak at 248 nm, as well as FTIR spectra analysis, showed peaks at 1728 and 1282 wavenumber/cm. Both preliminary characterizations demonstrated that the extracted sample is the bio-based polymer polyhydroxybutyrate. The results reported in this work reveal how the costless available argan seeds can be used for polyhydroxybutyrate production using a novel Sphingomonas species.
Collapse
Affiliation(s)
- Amina Aragosa
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
- School of Science and Engineering, Al Akhawayn University, Ifrane 53000, Morocco
| | - Benedetta Saccomanno
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Valeria Specchia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Mariaenrica Frigione
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
- Correspondence: ; Tel.: +39-0832-297215
| |
Collapse
|
33
|
Acharjee SA, Bharali P, Gogoi B, Sorhie V, Walling B. PHA-Based Bioplastic: a Potential Alternative to Address Microplastic Pollution. WATER, AIR, AND SOIL POLLUTION 2022; 234:21. [PMID: 36593989 PMCID: PMC9797907 DOI: 10.1007/s11270-022-06029-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/14/2022] [Indexed: 06/01/2023]
Abstract
Petroleum-derived plastics are linked to a variety of growing environmental issues throughout their lifecycle, including emission of greenhouse gases, accumulation in terrestrial and marine habitats, pollution, among others. There has been a lot of attention over the last decade in industrial and research communities in developing and producing eco-friendly polymers to deal with the current environmental issues. Bioplastics preferably are a fast-developing family of polymeric substances that are frequently promoted as substitutes to petroleum-derived plastics. Polyhydroxyalkanoates (PHAs) have a number of appealing properties that make PHAs a feasible source material for bioplastics, either as a direct replacement of petroleum-derived plastics or as a blend with elements derived from natural origin, fabricated biodegradable polymers, and/or non-biodegradable polymers. Among the most promising PHAs, polyhydroxybutyrates (PHBs) are the most well-known and have a significant potential to replace traditional plastics. These biodegradable plastics decompose faster after decomposing into carbon dioxide, water, and inorganic chemicals. Bioplastics have been extensively utilized in several sectors such as food-processing industry, medical, agriculture, automobile industry, etc. However, it is also associated with disadvantages like high cost, uneconomic feasibility, brittleness, and hydrophilic nature. A variety of tactics have been explored to improve the qualities of bioplastics, with the most prevalent being the development of gas and water barrier properties. The prime objective of this study is to review the current knowledge on PHAs and provide a brief introduction to PHAs, which have drawn attention as a possible potential alternative to conventional plastics due to their biological origin, biocompatibility, and biodegradability, thereby reducing the negative impact of microplastics in the environment. This review may help trigger further scientific interest to thoroughly research on PHAs as a sustainable option to greener bioplastics.
Collapse
Affiliation(s)
- Shiva Aley Acharjee
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Hq- Lumami, Zunheboto-798627, Nagaland, India
| | - Pranjal Bharali
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Hq- Lumami, Zunheboto-798627, Nagaland, India
| | - Bhagyudoy Gogoi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Hq- Lumami, Zunheboto-798627, Nagaland, India
| | - Viphrezolie Sorhie
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Hq- Lumami, Zunheboto-798627, Nagaland, India
| | - Bendangtula Walling
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Hq- Lumami, Zunheboto-798627, Nagaland, India
| |
Collapse
|
34
|
Emerging Trends of Nanotechnology and Genetic Engineering in Cyanobacteria to Optimize Production for Future Applications. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122013. [PMID: 36556378 PMCID: PMC9781209 DOI: 10.3390/life12122013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Nanotechnology has the potential to revolutionize various fields of research and development. Multiple nanoparticles employed in a nanotechnology process are the magic elixir that provides unique features that are not present in the component's natural form. In the framework of contemporary research, it is inappropriate to synthesize microparticles employing procedures that include noxious elements. For this reason, scientists are investigating safer ways to produce genetically improved Cyanobacteria, which has many novel features and acts as a potential candidate for nanoparticle synthesis. In recent decades, cyanobacteria have garnered significant interest due to their prospective nanotechnological uses. This review will outline the applications of genetically engineered cyanobacteria in the field of nanotechnology and discuss its challenges and future potential. The evolution of cyanobacterial strains by genetic engineering is subsequently outlined. Furthermore, the recombination approaches that may be used to increase the industrial potential of cyanobacteria are discussed. This review provides an overview of the research undertaken to increase the commercial avenues of cyanobacteria and attempts to explain prospective topics for future research.
Collapse
|
35
|
Sarıipek FB, Özaytekin İ, Erci F. Effect of ultrasound treatment on bacteriostatic activity of piezoelectric
PHB‐TiO
2
hybrid biodegradable scaffolds prepared by electrospinning technique. J Appl Polym Sci 2022. [DOI: 10.1002/app.53437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - İlkay Özaytekin
- Department of Chemical Engineering Konya Technical University Konya Turkey
| | - Fatih Erci
- Department of Biotechnology Necmettin Erbakan University Konya Turkey
| |
Collapse
|
36
|
Hagagy N, Saddiq AA, Tag HM, Selim S, AbdElgawad H, Martínez-Espinosa RM. Characterization of Polyhydroxybutyrate, PHB, Synthesized by Newly Isolated Haloarchaea Halolamina spp. Molecules 2022; 27:7366. [PMID: 36364191 PMCID: PMC9655102 DOI: 10.3390/molecules27217366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2023] Open
Abstract
This work aims to characterize the haloarchaeal diversity of unexplored environmental salty samples from a hypersaline environment on the southern coast of Jeddah, Saudi Arabia, looking for new isolates able to produce polyhydroxyalkanoates (PHAs). Thus, the list of PHA producers has been extended by describing two species of Halolamina; Halolamina sediminis sp. strain NRS_35 and unclassified Halolamina sp. strain NRS_38. The growth and PHA-production were investigated in the presence of different carbon sources, (glucose, sucrose, starch, carboxymethyl cellulose (CMC), and glycerol), pH values, (5-9), temperature ranges (4-65 °C), and NaCl concentrations (100-350 g L-1). Fourier-transform infra-red analysis (FT-IR) and Liquid chromatography-mass spectrometry (LC-MS) were used for qualitative identification of the biopolymer. The highest yield of PHB was 33.4% and 27.29% by NRS_35 and NRS_38, respectively, using starch as a carbon source at 37 °C, pH 7, and 25% NaCl (w/v). The FT-IR pattern indicated sharp peaks formed around 1628.98 and 1629.28 cm-1, which confirmed the presence of the carbonyl group (C=O) on amides and related to proteins, which is typical of PHB. LC-MS/MS analysis displayed peaks at retention times of 5.2, 7.3, and 8.1. This peak range indicates the occurrence of PHB and its synthetic products: Acetoacetyl-CoA and PHB synthase (PhaC). In summary, the two newly isolated Halolamina species showed a high capacity to produce PHB using different sources of carbon. Further research using other low-cost feedstocks is needed to improve both the quality and quantity of PHB production. With these results, the use of haloarchaea as cell factories to produce PHAs is reinforced, and light is shed on the global concern about replacing plastics with biodegradable polymers.
Collapse
Affiliation(s)
- Nashwa Hagagy
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Amna A. Saddiq
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Hend M. Tag
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni–Suef University, Beni–Suef 62521, Egypt
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, E-03690 Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
37
|
Optimization of Production of Polyhydroxyalkanoates (PHAs) from Newly Isolated Ensifer sp. Strain HD34 by Response Surface Methodology. Processes (Basel) 2022. [DOI: 10.3390/pr10081632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Petroleum-based plastics have become a big problem in many countries because of their non-degradability and that they become microplastics in the environment. This study focused on the optimization of production medium and conditions of polyhydroxyalkanoates (PHAs), which are biodegradable bioplastics and are accumulated in microbial cells. Among 341 isolates from 40 composted soil samples, the best isolate was the HD34 strain, which was identified using morphological, molecular, and biochemical methods. The results showed that the strain was most closely related to Ensifer adhaerens LMG20216T, with 99.6% similarity. For optimization of production medium and conditions using response surface methodology, it exhibited an optimal medium containing 3.99% (w/v) of potato dextrose broth (PDB) and 1.54% (w/v) of D-glucose with an adjusted initial pH of 9.0. The optimum production was achieved under culture conditions of a temperature of 28 °C, inoculum size of 2.5% (v/v), and a shaking speed of 130 rpm for 5 days. The results showed the highest PHA content, total cell dry weight, and PHA yield as 72.96% (w/w) of cell dry weight, 9.30 g/L, and 6.78 g/L, respectively. The extracted PHA characterization was studied using gas chromatography, 1H NMR, FTIR, and XRD. The results found that the polymer was a polyhydroxybutyrate (PHB) with a melting temperature (Tm) and degradation temperature (Td) of 173.5 °C and 260.8 °C, respectively.
Collapse
|
38
|
Mai J, Chan CM, Colwell J, Pratt S, Laycock B. Characterisation of end groups of hydroxy-functionalised scl-PHAs prepared by transesterification using ethylene glycol. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Djebaili R, Mignini A, Vaccarelli I, Pellegrini M, Spera DM, Del Gallo M, D’Alessandro AM. Polyhydroxybutyrate-producing cyanobacteria from lampenflora: The case study of the “Stiffe” caves in Italy. Front Microbiol 2022; 13:933398. [PMID: 35966678 PMCID: PMC9366245 DOI: 10.3389/fmicb.2022.933398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to estimate the green formation lampenflora of “Stiffe” caves in order to evaluate their suitability as an isolation source of cyanobacteria useful for the production of polyhydroxyalkanoates (PHAs). The cave system was chosen as the sampling site due to its touristic use and the presence of high-impact illuminations. The biofilms and the mats of the illuminated walls were sampled. Samples were investigated by 16S rRNA gene analysis and culturable cyanobacteria isolation. The isolated strains were then screened for the production of PHAs under typical culturing and nutritional starvation. Cultures were checked for PHA accumulation, poly-β-hydroxybutyrate (PHB) presence (infrared spectroscopy), and pigment production. The 16S rRNA gene metabarcoding. Highlighted a considerable extent of the pressure exerted by anthropogenic activities. However, the isolation yielded eleven cyanobacteria isolates with good PHA (mainly PHB)-producing abilities and interesting pigment production rates (chlorophyll a and carotenoids). Under normal conditions (BG110), the accumulation abilities ranged from 266 to 1,152 ng mg dry biomass–1. The optimization of bioprocesses through nutritional starvation resulted in a 2.5-fold increase. Fourier transform infrared (FTIR) studies established the occurrence of PHB within PHAs extracted by cyanobacteria isolates. The comparison of results with standard strains underlined good production rates. For C2 and C8 strains, PHA accumulation rates under starvation were higher than Azospirillum brasilense and similar to Synechocystis cf. salina 192. This study broadened the knowledge of the microbial communities of mats and biofilms on the lightened walls of the caves. These findings suggested that these structures, which are common in tourist caves, could be used to isolate valuable strains before remediation measures are adopted.
Collapse
Affiliation(s)
- Rihab Djebaili
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Amedeo Mignini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Ilaria Vaccarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- *Correspondence: Marika Pellegrini,
| | | | - Maddalena Del Gallo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Anna Maria D’Alessandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Anna Maria D’Alessandro,
| |
Collapse
|
40
|
Nanda N, Bharadvaja N. Algal bioplastics: current market trends and technical aspects. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY 2022; 24:2659-2679. [PMID: 35855786 PMCID: PMC9281343 DOI: 10.1007/s10098-022-02353-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Abstract Plastics are undebatably a hot topic of discussion across international forums due to their huge ecological footprint. The onset of COVID-19 pandemic has exacerbated the issue in an irreversible manner. Bioplastics produced from renewable sources are a result of lookout for sustainable alternatives. Replacing a ton of synthetic plastics with biobased ones reduces 1.8 tons CO2 emissions. Here, we begin with highlighting the problem statement-Plastic accumulation and its associated negative impacts. Microalgae outperforms plants and microbes, when used to produce bioplastic due to superior growth rate, non-competitive nature to food, and simultaneous wastewater remediation. They have minimal nutrient requirements and less dependency on climatic conditions for cultivation. These are the reasons for current boom in the algal bioplastic market. However, it is still not at par in price with the petroleum-based plastics. A brief market research has been done to better evaluate the current global status and future scope of algal bioplastics. The objective of this review is to propose possible solutions to resolve the challenges in scale up of bioplastic industry. Various bioplastic production technologies have been comprehensively discussed along with their optimization strategies. Overall studies discussed show that in order to make it cost competitive adopting a multi-dimensional approach like algal biorefinery is the best way out. A holistic comparison of any bio-based alternative with its conventional counterpart is imperative to assess its impact upon commercialization. Therefore, the review concludes with the life cycle assessment of bioplastics and measures to improve their inclusivity in a circular economy. Graphical Abstract
Collapse
Affiliation(s)
- Neha Nanda
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042 India
| | - Navneeta Bharadvaja
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042 India
| |
Collapse
|
41
|
Etxabide A, Kilmartin PA, Guerrero P, de la Caba K, Hooks DO, West M, Singh T. Polyhydroxybutyrate (PHB) produced from red grape pomace: Effect of purification processes on structural, thermal and antioxidant properties. Int J Biol Macromol 2022; 217:449-456. [PMID: 35841959 DOI: 10.1016/j.ijbiomac.2022.07.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 11/05/2022]
Abstract
Red grape pomace was used as a source for poly(3-hydroxybutyrate) (PHB) production, which was then subject to a range of purification processes. The different PHB biopolymers were characterized for chemical structure, crystallinity, thermal properties, colour, release of compounds into different food simulants and antioxidant inhibition, and comparisons were made with a commercially available PHB. An increase in purification steps did not have a significant effect on the high thermal stability of the extracted biopolymer, but it decreased the degree of crystallinity and the presence of amino acids and aromatic compounds. With additional purification, the PHB powders also whitened and the number of components released from the biopolymer into food simulants decreased. The released compounds presented antioxidant inhibition, which has not been previously reported in the literature or with commercially available polyhydroxyalkanoates. This is of great interest for food packaging and biomedical industries where the addition of antioxidant additives to improve PHB functional properties may not be necessary and could be avoided.
Collapse
Affiliation(s)
- Alaitz Etxabide
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain.; School of Chemical Sciences 302, University of Auckland, 23 Symonds Street, Private Bag 92019, 1010 Auckland, New Zealand..
| | - Paul A Kilmartin
- School of Chemical Sciences 302, University of Auckland, 23 Symonds Street, Private Bag 92019, 1010 Auckland, New Zealand
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain.; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain.; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - David O Hooks
- Wood Science Design Scion, 49 Sala Street, Private Bag 3020, 3010 Rotorua, New Zealand
| | - Mark West
- Wood Science Design Scion, 49 Sala Street, Private Bag 3020, 3010 Rotorua, New Zealand
| | - Tripti Singh
- Wood Science Design Scion, 49 Sala Street, Private Bag 3020, 3010 Rotorua, New Zealand
| |
Collapse
|
42
|
Rueda E, Altamira-Algarra B, García J. Process optimization of the polyhydroxybutyrate production in the cyanobacteria Synechocystis sp. and Synechococcus sp. BIORESOURCE TECHNOLOGY 2022; 356:127330. [PMID: 35589041 DOI: 10.1016/j.biortech.2022.127330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The effect of four parameters (acetate, NaCl, inorganic carbon and days in darkness) affecting the polyhydroxybutyrate (PHB) production were tested and optimized for Synechococcus sp. and Synechocystis sp. using a Box-Behnken design. The optimal conditions for Synechocystis sp. were found to be 1.2 g L-1 of acetate, 4 gC L-1 of NaHCO3, 18 g L-1 of NaCl and 0 days in darkness. For Synechococcus sp., equal acetate concentration and days in darkness, and lower inorganic carbon and NaCl concentrations than those for Synechocystis sp. were needed (0.05 g L-1 inorganic carbon and 9 g L-1 NaCl). Optimal conditions were scaled up to 3 L photobioreactors. Using Synechocystis sp., 5.6 %dcw of PHB was obtained whether adding or not acetate. In opposition, a maximum of 26.1 %dcw by using acetate was reached with Synechococcus sp. These results provide an easy method to optimize the cultivation conditions to enhance PHB production with cyanobacteria.
Collapse
Affiliation(s)
- Estel Rueda
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain
| | - Beatriz Altamira-Algarra
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain
| | - Joan García
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona. Spain.
| |
Collapse
|
43
|
Mastropetros SG, Pispas K, Zagklis D, Ali SS, Kornaros M. Biopolymers production from microalgae and cyanobacteria cultivated in wastewater: Recent advances. Biotechnol Adv 2022; 60:107999. [DOI: 10.1016/j.biotechadv.2022.107999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022]
|
44
|
Kumari P, Ravi Kiran B, Venkata Mohan S. Polyhydroxybutyrate production by Chlorella sorokiniana SVMIICT8 under Nutrient-deprived mixotrophy. BIORESOURCE TECHNOLOGY 2022; 354:127135. [PMID: 35405214 DOI: 10.1016/j.biortech.2022.127135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Polyhydroxybutyrates (PHBs) are naturally occurring biopolymeric compounds that accumulate in a variety of microorganisms, including microalgae as energy and carbon storage sources. The present study was designed to evaluate nature-based PHB production using microalgae (Chlorella sorokiniana SVMIICT8) in biphasic (growth (GP) and stress phase (SP)) nutritional mode of cultivation. Microalgal PHB accumulation was driven by nutrient constraint, with a maximal production of 29.5% of PHB from 0.94 gm L-1 of biomass. Fluorescence microscopy revealed PHB granules in the cell cytoplasm, while NMR (1H and 13C), XRD and TGA analysis confirmed the structure. The biopolymer obtained was homopolymer of PHB with carbonyl (C=O) stretch of the aliphatic ester moiety. In GC-MS analysis, major peak representing butyric acid methyl ester also confirmed the PHB. Chlorophyll a fluorescence transients inferred through OJIP, exhibited significant variation in photosynthetic process during growth and nutrient limiting conditions. Mining of bio-based products from microalgae cultivation embrace nature-based approach addressing climate change and sustainability inclusively.
Collapse
Affiliation(s)
- Poonam Kumari
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Boda Ravi Kiran
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
45
|
Yurchenko A, Golub N, Jinping L. Development of a New Method for Obtaining the Bioplastics Based on Microbial Biopolymers and Lignin. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2022. [DOI: 10.20535/ibb.2022.6.1.253658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Background. The ever-increasing demand for plastic polymer products with simultaneous depleting fossil fuels such as oil and natural gas, as well as the growing problem of waste disposal, creates a need to find alternative technologies that meet current trends in both environmental and economic development. Bioplastic materials that are synthesized from renewable sources and have the ability to biodegrade are considered as such an alternative. The main obstacle of modern bioplastics which makes it impossible to completely replace traditional plastics is the high cost of production. In order to reduce the cost of existing biopolymers, production waste is added to the polymer matrix. One such waste is lignin – the second most common biopolymer. An additional way to reduce the cost of production is to find more cost-effective producers. Thus, although the classical microbial synthesis has fairly high productivity, the source of carbon for the cultivation of microorganisms are sugars obtained from agricultural raw materials which could cause a threat for food industry. The new producer for production of polyhydroxyalkanoates (PHA) is cyanobacteria, the carbon source of which is carbon (IV) oxide or gas emissions from enterprises, which reduces the cost of the target product.
Objective. Development of a method for obtaining bioplastics using products of microbial synthesis and lignin.
Methods. Cyanobacteria Nostoc commune was grown using a nutrient medium BG-11 with subsequent limitation of Nitrogen for the synthesis of PHA. Hydrolyzed lignin from hardwoods was combined with polylactic acid (PLA) or cyanobacteria-synthesized PHA in different ratios with further casting of the solution to determine the ability of lignin and polymer matrix to form polymer films.
Results. The content of PHA in the cells of cyanobacteria Nostoc commune, when grown in a nutrient medium limited to Nitrogen, reached 7.8%. The synthesized polymer films based on PLA and lignin were not homogeneous, and films based on PHA and lignin were fragile.
Conclusions. The possibility of obtaining PHA by using cyanobacteria of the Nostoc commune species under environmental conditions that differ from the optimal ones for both cultivation and PHA production is shown. The possibility of obtaining a biopolymer based on lignin and PLA is shown. To form homogeneous films, it is necessary to change the standard conditions for obtaining a mixture of components. The interaction of lignin with PHA forms a homogeneous polymer mixture, which is fragile and requires the addition of plasticizers to obtain the necessary properties.
Collapse
Affiliation(s)
| | | | - Li Jinping
- Qilu University of Technology (Shandong Academy of Sciences), China
| |
Collapse
|
46
|
Kervran M, Vagner C, Cochez M, Ponçot M, Saeb M, Vahabi H. A review on thermal degradation of polylactic acid (PLA)/polyhydroxybutyrate (PHB) blends. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Kettner A, Noll M, Griehl C. Leptolyngbya sp. NIVA-CYA 255, a Promising Candidate for Poly(3-hydroxybutyrate) Production under Mixotrophic Deficiency Conditions. Biomolecules 2022; 12:biom12040504. [PMID: 35454093 PMCID: PMC9030801 DOI: 10.3390/biom12040504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/01/2022] Open
Abstract
Cyanobacteria are a promising source for the sustainable production of biodegradable bioplastics such as poly(3-hydroxybutyrate) (PHB). The auto-phototrophic biomass formation is based on light and CO2, which is an advantage compared to heterotrophic PHB-producing systems. So far, only a handful of cyanobacterial species suitable for the high-yield synthesis of PHB have been reported. In the present study, the PHB formation, biomass, and elemental composition of Leptolyngbya sp. NIVA-CYA 255 were investigated. Therefore, a three-stage cultivation process was applied, consisting of a growth stage; an N-, P-, and NP-depleted phototrophic stage; and a subsequent mixotrophic deficiency stage, initiated by sodium acetate supplementation. The extracted cyanobacterial PHB was confirmed by FTIR- and GC-MS analyses. Furthermore, the fluorescent dyes LipidGreen2 and Nile red were used for fluorescence-based monitoring and the visualization of PHB. LipidGreen2 was well suited for PHB quantification, while the application of Nile red was limited by fluorescence emission crosstalk with phycocyanin. The highest PHB yields were detected in NP- (325 mg g−1) and N-deficiency (213 mg g−1). The glycogen pool was reduced in all cultures during mixotrophy, while lipid composition was not affected. The highest glycogen yield was formed under N-deficiency (217 mg g−1). Due to the high carbon storage capacity and PHB formation, Leptolyngbya sp. NIVA-CYA 255 is a promising candidate for PHB production. Further work will focus on upscaling to a technical scale and monitoring the formation by LipidGreen2-based fluorometry.
Collapse
Affiliation(s)
- Alexander Kettner
- Competence Center Algal Biotechnology, Department of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Strasse 55, 06366 Koethen, Germany;
| | - Matthias Noll
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Friedrich-Streib-Str. 2, 96450 Coburg, Germany;
| | - Carola Griehl
- Competence Center Algal Biotechnology, Department of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Strasse 55, 06366 Koethen, Germany;
- Correspondence: ; Tel.: +49-(0)-3496-67-2526
| |
Collapse
|
48
|
Bioreactor scale co-production of poly(hydroxyalkanoate) and rhamnolipids with distinct nitrogen sources. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01014-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
Bejagam KK, Lalonde J, Iverson CN, Marrone BL, Pilania G. Machine Learning for Melting Temperature Predictions and Design in Polyhydroxyalkanoate-Based Biopolymers. J Phys Chem B 2022; 126:934-945. [DOI: 10.1021/acs.jpcb.1c08354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karteek K. Bejagam
- Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jessica Lalonde
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Carl N. Iverson
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Babetta L. Marrone
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ghanshyam Pilania
- Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
50
|
Pawłowska A, Stepczyńska M. Natural Biocidal Compounds of Plant Origin as Biodegradable Materials Modifiers. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 30:1683-1708. [PMID: 34720776 PMCID: PMC8541817 DOI: 10.1007/s10924-021-02315-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 05/07/2023]
Abstract
The article presents a literature review of the plant origin natural compounds with biocidal properties. These compounds could be used as modifiers of biodegradable materials. Modification of polymer material is one of the basic steps in its manufacturing process. Biodegradable materials play a key role in the current development of materials engineering. Natural modifiers are non-toxic, environmentally friendly, and renewable. The substances contained in natural modifiers exhibit biocidal properties against bacteria and/or fungi. The article discusses polyphenols, selected phenols, naphthoquinones, triterpenoids, and phytoncides that are natural antibiotics. Due to the increasing demand for biodegradable materials and the protection of the natural environment against the negative effects of toxic substances, it is crucial to replace synthetic modifiers with plant ones. This work mentions industries where materials containing natural modifying additives could find potential applications. Moreover, the probable examples of the final products are presented. Additionally, the article points out the current world's pandemic state and the use of materials with biocidal properties considering the epidemiological conditions.
Collapse
Affiliation(s)
- Alona Pawłowska
- Department of Materials Engineering, Kazimierz Wielki University, J.K. Chodkiewicza 30 street, 85-064 Bydgoszcz, Poland
| | - Magdalena Stepczyńska
- Department of Materials Engineering, Kazimierz Wielki University, J.K. Chodkiewicza 30 street, 85-064 Bydgoszcz, Poland
| |
Collapse
|