1
|
Wei QQ, Xiao Y, Wu Q, Jing C, Dong ZQ, Chen P, Pan MH. The Natural Antherea pernyi Sericin Protein Suppresses Gastric Cancer Formation by Inhibiting Cell Proliferation and Inducing Cell Apoptosis. Int J Mol Sci 2025; 26:1890. [PMID: 40076516 PMCID: PMC11900216 DOI: 10.3390/ijms26051890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Sericin, a natural macromolecular protein and the main component of silkworm cocoons, exhibits biocompatibility, excellent mechanical properties, and biodegradability. Previous research has confirmed that the sericin protein possesses anticancer properties. Gastric cancer (GC) poses a serious hazard to human health, with a low rate of early diagnosis and a poor prognosis. Investigating the safety and effectiveness of drugs for their used in treatment is imperative. In this study, we confirmed that Antherea pernyi sericin (APS) inhibited the proliferation, migration, and clonal formation of GC cells and caused apoptosis in the cells by regulating the expression of Bcl2 and Bax. Moreover, our data show that APS did not exhibit significant toxicity in normal gastric mucosal cells and mice. Furthermore, the results show that APS suppressed the proliferation of cisplatin-resistant GC cells and promoted cellular apoptosis; however, it had no synergistic effects with cisplatin. All the results indicated that APS exhibits antitumor activity against GC and is a prospective medicinal agent for the clinical treatment of GC, with minimal toxicity and adverse side effects. This research can provide a theoretical basis for sericin in the field of tumor treatment, especially for the application of natural macromolecular polypeptide drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Peng Chen
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei District, Chongqing 400715, China; (Q.-Q.W.); (Y.X.); (Q.W.); (C.J.); (Z.-Q.D.)
| | - Min-Hui Pan
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei District, Chongqing 400715, China; (Q.-Q.W.); (Y.X.); (Q.W.); (C.J.); (Z.-Q.D.)
| |
Collapse
|
2
|
Chu J, Yang Y, Zhang K, Fu Y, Yuan B. Integration of transcriptomics and metabolomics reveal cytotoxic mechanisms of Polyethylene terephthalate microplastics in BEAS-2B cells. Food Chem Toxicol 2025; 195:115125. [PMID: 39580014 DOI: 10.1016/j.fct.2024.115125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Polyethylene terephthalate microplastics (PET-MPs) have emerged as significant environmental pollutants with potential health risks. This study investigates the cytotoxic effects of PET-MPs on BEAS-2B lung epithelial cells through integrated transcriptomic and metabolomic analyses. The results of the CCK8 assay showed a reduction in the viability of BEAS-2B cells following continuous exposure to PET-MPs. Transcriptomic analysis identified 1412 differentially expressed genes (DEGs) mainly enriched in apoptosis and extracellular matrix organization processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these DEGs are predominantly involved in the PI3K-Akt, TNF, and MAPK signaling pathways. Metabolomic analysis identified 2869 differentially expressed metabolites (DEMs), mainly associated with pyrimidine, arginine, proline, and β-alanine metabolism pathways. Multi-omics analysis indicated that PET-MPs primarily disrupt lipid metabolism, which may lead to an increased risk of apoptosis. We hypothesize that PET-MPs affect lipid metabolism by up-regulating the ANGPTL4 gene, thereby promoting cellular apoptosis. This study reveals the mechanisms of PET-MPs toxicity, emphasizing the potential risks they pose to human health.
Collapse
Affiliation(s)
- Jiangliang Chu
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Yifan Yang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Keyu Zhang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Yiping Fu
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Beilei Yuan
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
3
|
Liu W, Sun M, Wang WT, Song J, Wang CM, Mou NY, Shao TQ, Zhang ZH, Wang MY, Sun HM. Ginsenoside Rh4 Ameliorates Cisplatin-Induced Intestinal Toxicity via PGC-1[Formula: see text]-Mediated Mitochondrial Autophagy and Apoptosis Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2187-2209. [PMID: 39562293 DOI: 10.1142/s0192415x24500848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Cisplatin-evoked profound gastrointestinal symptomatology is one of the most common side effects of chemotherapy drugs, causing further gastrointestinal cell and intestinal mucosal injury. Ginsenoside Rh4 (G-Rh4), an active component extracted from red ginseng, possesses beneficial anti-oxidative and anti-apoptosis effects. This study aimed to assess the effectiveness of pharmacological intervention with G-Rh4 mitigating intestinal toxicity evoked by cisplatin in a murine model and in IEC-6 cells in vitro. Following oral administration for 10 days, G-Rh4 (10[Formula: see text]mg/kg and 20[Formula: see text]mg/kg) significantly increased the indicators of diamine oxidase (DAO) affected by cisplatin (20[Formula: see text]mg/kg) in mice, and histopathological analysis further indicated that G-Rh4 could effectively improve intestinal tissue morphology, as well as the expression of peroxisome proliferator-activated receptor-gamma coactivator 1 [Formula: see text] (PGC-1[Formula: see text] pathway and autophagy-related proteins. Moreover, in vitro experiments demonstrated that G-Rh4 exerted a concentration-dependent increase in cell viability, while also inhibiting cytotoxicity and abnormal rise of reactive oxygen species (ROS). Notably, ROS also activate PGC-1[Formula: see text] protein and mediate the occurrence of mitochondrial autophagy and apoptosis pathways. The molecular docking approach was employed to dock G-Rh4 with PGC-1[Formula: see text] and AMPK, revealing a binding energy of [Formula: see text]7.3[Formula: see text]kcal/mol and [Formula: see text]8.1[Formula: see text]kcal/mol and indicating a tight interaction between the components and the target. G-Rh4 could reduce the expression of autophagy-related protein p62/p53, reduce the accumulation of autophagy products, and promote the flow of autophagy. In conclusion, G-Rh4 exerted protective effects against cisplatin-induced intestinal toxicity, at least partially through PGC-1[Formula: see text]-mediated autophagy and apoptosis.
Collapse
Affiliation(s)
- Wei Liu
- College of Pharmacy, Beihua University, Jilin 132013, P. R. China
| | - Meng Sun
- College of Pharmacy, Beihua University, Jilin 132013, P. R. China
| | - Wen-Ting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, P. R. China
| | - Jian Song
- College of Pharmacy, Beihua University, Jilin 132013, P. R. China
| | - Chun-Mei Wang
- College of Pharmacy, Beihua University, Jilin 132013, P. R. China
| | - Neng-Yan Mou
- College of Pharmacy, Beihua University, Jilin 132013, P. R. China
| | - Tian-Qi Shao
- College of Pharmacy, Beihua University, Jilin 132013, P. R. China
| | - Zhi-Hong Zhang
- College of Pharmacy, Beihua University, Jilin 132013, P. R. China
| | - Meng-Yang Wang
- College of Pharmacy, Beihua University, Jilin 132013, P. R. China
| | - Hai-Ming Sun
- College of Pharmacy, Beihua University, Jilin 132013, P. R. China
| |
Collapse
|
4
|
Yang P, Zhu L, Wang S, Gong J, Selvaraj JN, Ye L, Chen H, Zhang Y, Wang G, Song W, Li Z, Cai L, Zhang H, Zhang D. Engineered model of heart tissue repair for exploring fibrotic processes and therapeutic interventions. Nat Commun 2024; 15:7996. [PMID: 39266508 PMCID: PMC11393355 DOI: 10.1038/s41467-024-52221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
Advancements in human-engineered heart tissue have enhanced the understanding of cardiac cellular alteration. Nevertheless, a human model simulating pathological remodeling following myocardial infarction for therapeutic development remains essential. Here we develop an engineered model of myocardial repair that replicates the phased remodeling process, including hypoxic stress, fibrosis, and electrophysiological dysfunction. Transcriptomic analysis identifies nine critical signaling pathways related to cellular fate transitions, leading to the evaluation of seventeen modulators for their therapeutic potential in a mini-repair model. A scoring system quantitatively evaluates the restoration of abnormal electrophysiology, demonstrating that the phased combination of TGFβ inhibitor SB431542, Rho kinase inhibitor Y27632, and WNT activator CHIR99021 yields enhanced functional restoration compared to single factor treatments in both engineered and mouse myocardial infarction model. This engineered heart tissue repair model effectively captures the phased remodeling following myocardial infarction, providing a crucial platform for discovering therapeutic targets for ischemic heart disease.
Collapse
Affiliation(s)
- Pengcheng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lihang Zhu
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Shiya Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jixing Gong
- Center of Translational Medicine, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
| | - Jonathan Nimal Selvaraj
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lincai Ye
- Shanghai Institute for Congenital Heart Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai, China
| | - Hanxiao Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yaoyao Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Gongxin Wang
- Henan SCOPE Research Institute of Electrophysiology Co. Ltd., Kaifeng, China
| | - Wanjun Song
- Beijing Geek Gene Technology Co. Ltd., Beijing, China
| | - Zilong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lin Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
| | - Hao Zhang
- Shanghai Institute for Congenital Heart Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai, China.
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
- Cardiovascular Research Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Li Y, Xu H, Wang Y, Zhu Y, Xu K, Yang Z, Li Y, Guo C. Epithelium-derived exosomes promote silica nanoparticles-induced pulmonary fibroblast activation and collagen deposition via modulating fibrotic signaling pathways and their epigenetic regulations. J Nanobiotechnology 2024; 22:331. [PMID: 38867284 PMCID: PMC11170844 DOI: 10.1186/s12951-024-02609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND In the context of increasing exposure to silica nanoparticles (SiNPs) and ensuing respiratory health risks, emerging evidence has suggested that SiNPs can cause a series of pathological lung injuries, including fibrotic lesions. However, the underlying mediators in the lung fibrogenesis caused by SiNPs have not yet been elucidated. RESULTS The in vivo investigation verified that long-term inhalation exposure to SiNPs induced fibroblast activation and collagen deposition in the rat lungs. In vitro, the uptake of exosomes derived from SiNPs-stimulated lung epithelial cells (BEAS-2B) by fibroblasts (MRC-5) enhanced its proliferation, adhesion, and activation. In particular, the mechanistic investigation revealed SiNPs stimulated an increase of epithelium-secreted exosomal miR-494-3p and thereby disrupted the TGF-β/BMPR2/Smad pathway in fibroblasts via targeting bone morphogenetic protein receptor 2 (BMPR2), ultimately resulting in fibroblast activation and collagen deposition. Conversely, the inhibitor of exosomes, GW4869, can abolish the induction of upregulated miR-494-3p and fibroblast activation in MRC-5 cells by the SiNPs-treated supernatants of BEAS-2B. Besides, inhibiting miR-494-3p or overexpression of BMPR2 could ameliorate fibroblast activation by interfering with the TGF-β/BMPR2/Smad pathway. CONCLUSIONS Our data suggested pulmonary epithelium-derived exosomes serve an essential role in fibroblast activation and collagen deposition in the lungs upon SiNPs stimuli, in particular, attributing to exosomal miR-494-3p targeting BMPR2 to modulate TGF-β/BMPR2/Smad pathway. Hence, strategies targeting exosomes could be a new avenue in developing therapeutics against lung injury elicited by SiNPs.
Collapse
Affiliation(s)
- Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Hailin Xu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Ying Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Yurou Zhu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
| |
Collapse
|
6
|
Perez-Garcia J, Pino-Yanes M, Plender EG, Everman JL, Eng C, Jackson ND, Moore CM, Beckman KB, Medina V, Sharma S, Winnica DE, Holguin F, Rodríguez-Santana J, Villar J, Ziv E, Seibold MA, Burchard EG. Epigenomic response to albuterol treatment in asthma-relevant airway epithelial cells. Clin Epigenetics 2023; 15:156. [PMID: 37784136 PMCID: PMC10546710 DOI: 10.1186/s13148-023-01571-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Albuterol is the first-line asthma medication used in diverse populations. Although DNA methylation (DNAm) is an epigenetic mechanism involved in asthma and bronchodilator drug response (BDR), no study has assessed whether albuterol could induce changes in the airway epithelial methylome. We aimed to characterize albuterol-induced DNAm changes in airway epithelial cells, and assess potential functional consequences and the influence of genetic variation and asthma-related clinical variables. RESULTS We followed a discovery and validation study design to characterize albuterol-induced DNAm changes in paired airway epithelial cultures stimulated in vitro with albuterol. In the discovery phase, an epigenome-wide association study using paired nasal epithelial cultures from Puerto Rican children (n = 97) identified 22 CpGs genome-wide associated with repeated-use albuterol treatment (p < 9 × 10-8). Albuterol predominantly induced a hypomethylation effect on CpGs captured by the EPIC array across the genome (probability of hypomethylation: 76%, p value = 3.3 × 10-5). DNAm changes on the CpGs cg23032799 (CREB3L1), cg00483640 (MYLK4-LINC01600), and cg05673431 (KSR1) were validated in nasal epithelia from 10 independent donors (false discovery rate [FDR] < 0.05). The effect on the CpG cg23032799 (CREB3L1) was cross-tissue validated in bronchial epithelial cells at nominal level (p = 0.030). DNAm changes in these three CpGs were shown to be influenced by three independent genetic variants (FDR < 0.05). In silico analyses showed these polymorphisms regulated gene expression of nearby genes in lungs and/or fibroblasts including KSR1 and LINC01600 (6.30 × 10-14 ≤ p ≤ 6.60 × 10-5). Additionally, hypomethylation at the CpGs cg10290200 (FLNC) and cg05673431 (KSR1) was associated with increased gene expression of the genes where they are located (FDR < 0.05). Furthermore, while the epigenetic effect of albuterol was independent of the asthma status, severity, and use of medication, BDR was nominally associated with the effect on the CpG cg23032799 (CREB3L1) (p = 0.004). Gene-set enrichment analyses revealed that epigenomic modifications of albuterol could participate in asthma-relevant processes (e.g., IL-2, TNF-α, and NF-κB signaling pathways). Finally, nine differentially methylated regions were associated with albuterol treatment, including CREB3L1, MYLK4, and KSR1 (adjusted p value < 0.05). CONCLUSIONS This study revealed evidence of epigenetic modifications induced by albuterol in the mucociliary airway epithelium. The epigenomic response induced by albuterol might have potential clinical implications by affecting biological pathways relevant to asthma.
Collapse
Grants
- R01 ES015794 NIEHS NIH HHS
- R01 HL120393 NHLBI NIH HHS
- R01ES015794, R21ES24844 NIEHS NIH HHS
- UM1 HG008901 NHGRI NIH HHS
- R01MD010443, R56MD013312 NIMHD NIH HHS
- R01 HL135156 NHLBI NIH HHS
- R01 HL128439 NHLBI NIH HHS
- R01 HL117004 NHLBI NIH HHS
- R21 ES024844 NIEHS NIH HHS
- R01 HL117626 NHLBI NIH HHS
- R56 MD013312 NIMHD NIH HHS
- R01 MD010443 NIMHD NIH HHS
- R01 HL155024 NHLBI NIH HHS
- R01HL155024-01, HHSN268201600032I, 3R01HL-117626-02S1, HHSN268201800002I, 3R01HL117004-02S3, 3R01HL-120393-02S1, R01HL117004, R01HL128439, R01HL135156, X01HL134589 NHLBI NIH HHS
- HHSN268201600032C NHLBI NIH HHS
- U24 HG008956 NHGRI NIH HHS
- Ministerio de Universidades
- Ministerio de Ciencia e Innovación
- Instituto de Salud Carlos III
- National Heart, Lung, and Blood Institute
- National Human Genome Research Institute
- National Institute of Environmental Health Sciences
- National Institute on Minority Health and Health Disparities
- The Centers for Common Disease Genomics of the Genome Sequencing Program
- Tobacco-Related Disease Research Program
- Sandler Family Foundation
- American Asthma Foundation
- Amos Medical Faculty Development Program from the Robert Wood Johnson Foundation
- Harry Wm. and Diana V. Hind Distinguished Professor in Pharmaceutical Sciences II
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Canary Islands, Spain.
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Canary Islands, Spain.
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Spain.
| | - Elizabeth G Plender
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Jamie L Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Celeste Eng
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Nathan D Jackson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Camille M Moore
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
- Department of Biomedical Research, National Jewish Health, Denver, CO, USA
- Department of Biostatistics and Informatics, University of Colorado, Denver, CO, USA
| | - Kenneth B Beckman
- University of Minnesota Genomics Center (UMNGC), Minneapolis, MN, USA
| | | | - Sunita Sharma
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel Efrain Winnica
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Fernando Holguin
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Multidisciplinary Organ Dysfunction Evaluation Research Network (MODERN), Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Li Ka Shing Knowledge Institute at the St. Michael's Hospital, Toronto, ON, Canada
| | - Elad Ziv
- Institute for Human Genetics, University of California San Francisco (UCSF), San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
7
|
Soltysova A, Begerova P, Jakic K, Kozics K, Sramkova M, Meese E, Smolkova B, Gabelova A. Genome-wide DNA methylome and transcriptome changes induced by inorganic nanoparticles in human kidney cells after chronic exposure. Cell Biol Toxicol 2023; 39:1939-1956. [PMID: 34973136 PMCID: PMC10547624 DOI: 10.1007/s10565-021-09680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/11/2021] [Indexed: 11/02/2022]
Abstract
The unique physicochemical properties make inorganic nanoparticles (INPs) an exciting tool in diagnosis and disease management. However, as INPs are relatively difficult to fully degrade and excrete, their unintended accumulation in the tissue might result in adverse health effects. Herein, we provide a methylome-transcriptome framework for chronic effects of INPs, commonly used in biomedical applications, in human kidney TH-1 cells. Renal clearance is one of the most important routes of nanoparticle excretion; therefore, a detailed evaluation of nanoparticle-mediated nephrotoxicity is an important task. Integrated analysis of methylome and transcriptome changes induced by INPs (PEG-AuNPs, Fe3O4NPs, SiO2NPs, and TiO2NPs) revealed significantly deregulated genes with functional classification in immune response, DNA damage, and cancer-related pathways. Although most deregulated genes were unique to individual INPs, a relatively high proportion of them encoded the transcription factors. Interestingly, FOS hypermethylation inversely correlating with gene expression was associated with all INPs exposures. Our study emphasizes the need for a more comprehensive investigation of INPs' biological safety, especially after chronic exposure.
Collapse
Affiliation(s)
- Andrea Soltysova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 04, Bratislava, Slovakia
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Patricia Begerova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Kristina Jakic
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Katarina Kozics
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Monika Sramkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Alena Gabelova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
8
|
Valente A, Vieira L, Silva MJ, Ventura C. The Effect of Nanomaterials on DNA Methylation: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1880. [PMID: 37368308 DOI: 10.3390/nano13121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
DNA methylation is an epigenetic mechanism that involves the addition of a methyl group to a cytosine residue in CpG dinucleotides, which are particularly abundant in gene promoter regions. Several studies have highlighted the role that modifications of DNA methylation may have on the adverse health effects caused by exposure to environmental toxicants. One group of xenobiotics that is increasingly present in our daily lives are nanomaterials, whose unique physicochemical properties make them interesting for a large number of industrial and biomedical applications. Their widespread use has raised concerns about human exposure, and several toxicological studies have been performed, although the studies focusing on nanomaterials' effect on DNA methylation are still limited. The aim of this review is to investigate the possible impact of nanomaterials on DNA methylation. From the 70 studies found eligible for data analysis, the majority were in vitro, with about half using cell models related to the lungs. Among the in vivo studies, several animal models were used, but most were mice models. Only two studies were performed on human exposed populations. Global DNA methylation analyses was the most frequently applied approach. Although no trend towards hypo- or hyper-methylation could be observed, the importance of this epigenetic mechanism in the molecular response to nanomaterials is evident. Furthermore, methylation analysis of target genes and, particularly, the application of comprehensive DNA methylation analysis techniques, such as genome-wide sequencing, allowed identifying differentially methylated genes after nanomaterial exposure and affected molecular pathways, contributing to the understanding of their possible adverse health effects.
Collapse
Affiliation(s)
- Ana Valente
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Luís Vieira
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - Célia Ventura
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| |
Collapse
|
9
|
A review on the epigenetics modifications to nanomaterials in humans and animals: novel epigenetic regulator. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
In the nanotechnology era, nanotechnology applications have been intensifying their prospects to embrace all the vigorous sectors persuading human health and animal. The safety and concerns regarding the widespread use of engineered nanomaterials (NMA) and their potential effect on human health still require further clarification. Literature elucidated that NMA exhibited significant adverse effects on various molecular and cellular alterations. Epigenetics is a complex process resulting in the interactions between an organism’s environment and genome. The epigenetic modifications, including histone modification and DNA methylation, chromatin structure and DNA accessibility alteration, regulate gene expression patterns. Disturbances of epigenetic markers induced by NMA might promote the sensitivity of humans and animals to several diseases. Also, this paper focus on the epigenetic regulators of some dietary nutrients that have been confirmed to stimulate the epigenome and, more exactly, DNA histone modifications and non-histone proteins modulation by acetylation, and phosphorylation inhibition, which counteracts oxidative stress generations. The present review epitomizes the recent evidence of the potential effects of NMA on histone modifications, in addition to in vivo and in vitro cytosine DNA methylation and its toxicity. Furthermore, the part of epigenetic fluctuations as possible translational biomarkers for uncovering untoward properties of NMA is deliberated.
Collapse
|
10
|
Sun Q, Li T, Yu Y, Li Y, Sun Z, Duan J. The critical role of epigenetic mechanisms involved in nanotoxicology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1789. [PMID: 35289073 DOI: 10.1002/wnan.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Over the past decades, nanomaterials (NMs) have been widely applied in the cosmetic, food, engineering, and medical fields. Along with the prevalence of NMs, the toxicological characteristics exhibited by these materials on health and the environment have gradually attracted attentions. A growing number of evidences have indicated that epigenetics holds an essential role in the onset and development of various diseases. NMs could cause epigenetic alterations such as DNA methylation, noncoding RNA (ncRNA) expression, and histone modifications. NMs might alternate either global DNA methylation or the methylation of specific genes to affect the biological function. Abnormal upregulation or downregulation of ncRNAs might also be a potential mechanism for the toxic effects caused by NMs. In parallel, the phosphorylation, acetylation, and methylation of histones also take an important part in the process of NMs-induced toxicity. As the adverse effects of NMs continue to be explored, mechanisms such as chromosomal remodeling, genomic imprinting, and m6 A modification are also gradually coming into the limelight. Since the epigenetic alterations often occur in the early development of diseases, thus the relevant studies not only provide insight into the pathogenesis of diseases, but also screen for the prospective biomarkers for early diagnosis and prevention. This review summarizes the epigenetic alterations elicited by NMs, hoping to provide a clue for nanotoxicity studies and security evaluation of NMs. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Zhao X, Xu H, Li X, Li Y, Lv S, Liu Y, Guo C, Sun Z, Li Y. Myocardial toxicity induced by silica nanoparticles in a transcriptome profile. NANOSCALE 2022; 14:6094-6108. [PMID: 35388865 DOI: 10.1039/d2nr00582d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The deleterious effects of silica nanoparticles (SiNPs) on human health and the ecological system have gradually gained attention owing to their heavy annual output and extensive global flux. The updated epidemiological or experimental investigations have demonstrated the potential myocardial toxicity triggered by SiNPs, but the underlying mechanisms and long-lasting cardiac effects are still poorly understood. Here, a rat model of sub-chronic respiratory exposure to SiNPs was conducted, and the histopathological analysis and ultrastructural investigation of heart tissues were carried out. More importantly, a comprehensive analysis of whole-genome transcription was utilized in rat heart to uncover key biological and cellular mechanisms triggered by SiNPs. The widening of myocardial space and partial fiber rupture were clearly manifested in rat heart after prolonged SiNPs exposure, particularly accompanied by mitochondrial swelling and cristae rupture. With the aid of Affymetrix GeneChips, 3153 differentially expressed genes (DEGs) were identified after SiNPs exposure, including 1916 down- and 1237 up-regulated genes. GO and KEGG analysis illustrated many important biological processes and pathways perturbed by SiNPs, mainly specializing in cellular stress, energy metabolism, actin filament dynamics and immune response. Signal-net analysis revealed that Prkaca (PKA) plays a core role in the cardiac toxification process of prolonged exposure of SiNPs to rats. Furthermore, qRT-PCR verified that PKA-mediated calcium signaling is probably responsible for SiNPs-induced cardiac injury. Conclusively, our study revealed that SiNPs caused myocardial injury, and particularly, provided transcriptomic insight into the role of PKA-calcium signaling triggered by SiNPs, which would facilitate SiNPs-based nanosafety assessment and biomedicine development.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Hailin Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Xueyan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Songqing Lv
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Yufan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
12
|
Carotenuto R, Tussellino M, Ronca R, Benvenuto G, Fogliano C, Fusco S, Netti PA. Toxic effects of SiO 2NPs in early embryogenesis of Xenopuslaevis. CHEMOSPHERE 2022; 289:133233. [PMID: 34896176 DOI: 10.1016/j.chemosphere.2021.133233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The exposure of organisms to the nanoparticulate is potentially hazardous, particularly when it occurs during embryogenesis. The effects of commercial SiO2NPs in early development were studied, using Xenopus laevis as a model to investigate their possible future employment by means of the Frog Embryo Teratogenesis Assay-Xenopus test (FETAX). The SiO2NPs did not change the survival but produced several abnormalities in developing embryos, in particular, the dorsal pigmentation, the cartilages of the head and branchial arches were modified; the encephalon, spinal cord and nerves are anomalous and the intestinal brush border show signs of suffering; these embryos are also bradycardic. In addition, the expression of genes involved in the early pathways of embryo development was modified. Treated embryos showed an increase of reactive oxygen species. This study suggests that SiO2NPs are toxic but non-lethal and showed potential teratogenic effects in Xenopus. The latter may be due to their cellular accumulation and/or to the effect caused by the interaction of SiO2NPs with cytoplasmic and/or nuclear components. ROS production could contribute to the observed effects. In conclusion, the data indicates that the use of SiO2NPs requires close attention and further studies to better clarify their activity in animals, including humans.
Collapse
Affiliation(s)
- Rosa Carotenuto
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | | | - Raffaele Ronca
- Institute of Biostructures and Bioimaging (IBB)-CNR, Naples, Italy
| | | | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (CABHC), Italian Institute of Technology, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy; Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
13
|
Epigenetic Mechanisms in Understanding Nanomaterial-Induced Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:195-223. [DOI: 10.1007/978-3-030-88071-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Sang Y, Liu J, Li X, Zhou G, Zhang Y, Gao L, Zhao Y, Zhou X. The effect of SiNPs on DNA methylation of genome in mouse spermatocytes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43684-43697. [PMID: 33840017 DOI: 10.1007/s11356-021-13459-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Silica nanoparticles (SiNPs), which are the main inorganic components of atmospheric particulate matter, have been proved to have certain male reproductive toxicity in previous studies. Spermatogenesis involves complex epigenetic regulation, but it is still unclear if SiNPs exposure will interfere with the DNA methylation patterns in mouse spermatocytes. The present study was designed to investigate the effects of SiNPs on DNA methylation in the mouse spermatocyte GC-2spd(ts). GC-2 cells were treated with 0 and 20 μg/mL SiNPs for 24 h. MeDIP-seq assay was then performed to analyze the differentially methylated genes related to spermatogenesis. The results showed that SiNPs induced extensive methylation changes in the genome of GC-2 cells, and 24a total of 428 hyper-methylated genes and 398 hypo-methylated genes were identified. Gene Ontology and pathway analysis showed that differential DNA methylation induced by SiNPs was probably involved with abnormal transcription and translation, mitochondrial damage, and cell apoptosis. Results from qRT-PCR verification showed that the expression of spermatogenesis-related genes Akap1, Crem, Spz1, and Tex11 were dysregulated by SiNPs exposure, which was consistent with the MeDIP-seq assay. In general, this study suggested that SiNPs caused genome-wide DNA methylation changes in GC-2 cells, providing valuable reference for the future epigenetic studies in SiNPs-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Yujian Sang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Leqiang Gao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yanzhi Zhao
- Yanjing Medical College, Capital Medical University, Beijing, 100069, China.
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
15
|
Moreira L, Costa C, Pires J, Teixeira JP, Fraga S. How can exposure to engineered nanomaterials influence our epigenetic code? A review of the mechanisms and molecular targets. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108385. [PMID: 34893164 DOI: 10.1016/j.mrrev.2021.108385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 06/14/2023]
Abstract
Evidence suggests that engineered nanomaterials (ENM) can induce epigenetic modifications. In this review, we provide an overview of the epigenetic modulation of gene expression induced by ENM used in a variety of applications: titanium dioxide (TiO2), silver (Ag), gold (Au), silica (SiO2) nanoparticles and carbon-based nanomaterials (CNM). Exposure to these ENM can trigger alterations in cell patterns of DNA methylation, post-transcriptional histone modifications and expression of non-coding RNA. Such effects are dependent on ENM dose and physicochemical properties including size, shape and surface chemistry, as well as on the cell/organism sensitivity. The genes affected are mostly involved in the regulation of the epigenetic machinery itself, as well as in apoptosis, cell cycle, DNA repair and inflammation related pathways, whose long-term alterations might lead to the onset or progression of certain pathologies. In addition, some DNA methylation patterns may be retained as a form of epigenetic memory. Prenatal exposure to ENM may impair the normal development of the offspring by transplacental effects and/or putative transmission of epimutations in imprinting genes. Thus, understanding the impact of ENM on the epigenome is of paramount importance and epigenetic evaluation must be considered when assessing the risk of ENM to human health.
Collapse
Affiliation(s)
- Luciana Moreira
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | - Carla Costa
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | - Joana Pires
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Porto, Portugal.
| | - João Paulo Teixeira
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | - Sónia Fraga
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| |
Collapse
|
16
|
Engin AB. Combined Toxicity of Metal Nanoparticles: Comparison of Individual and Mixture Particles Effect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:165-193. [PMID: 33539016 DOI: 10.1007/978-3-030-49844-3_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Toxicity of metal nanoparticles (NPs) are closely associated with increasing intracellular reactive oxygen species (ROS) and the levels of pro-inflammatory mediators. However, NP interactions and surface complexation reactions alter the original toxicity of individual NPs. To date, toxicity studies on NPs have mostly been focused on individual NPs instead of the combination of several species. It is expected that the amount of industrial and highway-acquired NPs released into the environment will further increase in the near future. This raises the possibility that various types of NPs could be found in the same medium, thereby, the adverse effects of each NP either could be potentiated, inhibited or remain unaffected by the presence of the other NPs. After uptake of NPs into the human body from various routes, protein kinases pathways mediate their toxicities. In this context, family of mitogen-activated protein kinases (MAPKs) is mostly efficient. Despite each NP activates almost the same metabolic pathways, the toxicity induced by a single type of NP is different than the case of co-exposure to the combined NPs. The scantiness of toxicological data on NPs combinations displays difficulties to determine, if there is any risk associated with exposure to combined nanomaterials. Currently, in addition to mathematical analysis (Response surface methodology; RSM), the quantitative-structure-activity relationship (QSAR) is used to estimate the toxicity of various metal oxide NPs based on their physicochemical properties and levels applied. In this chapter, it is discussed whether the coexistence of multiple metal NPs alter the original toxicity of individual NP. Additionally, in the part of "Toxicity of diesel emission/exhaust particles (DEP)", the known individual toxicity of metal NPs within the DEP is compared with the data regarding toxicity of total DEP mixture.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
17
|
Pogribna M, Hammons G. Epigenetic Effects of Nanomaterials and Nanoparticles. J Nanobiotechnology 2021; 19:2. [PMID: 33407537 PMCID: PMC7789336 DOI: 10.1186/s12951-020-00740-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
The rise of nanotechnology and widespread use of engineered nanomaterials in everyday human life has led to concerns regarding their potential effect on human health. Adverse effects of nanomaterials and nanoparticles on various molecular and cellular alterations have been well-studied. In contrast, the role of epigenetic alterations in their toxicity remains relatively unexplored. This review summarizes current evidence of alterations in cytosine DNA methylation and histone modifications in response to nanomaterials and nanoparticles exposures in vivo and in vitro. This review also highlights existing knowledge gaps regarding the role of epigenetic alterations in nanomaterials and nanoparticles toxicity. Additionally, the role of epigenetic changes as potential translational biomarkers for detecting adverse effects of nanomaterials and nanoparticles is discussed.
Collapse
Affiliation(s)
- Marta Pogribna
- FDA/National Center for Toxicological Research, NCTR, HFT-110, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| | - George Hammons
- FDA/National Center for Toxicological Research, NCTR, HFT-110, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| |
Collapse
|
18
|
Yu J, Loh XJ, Luo Y, Ge S, Fan X, Ruan J. Insights into the epigenetic effects of nanomaterials on cells. Biomater Sci 2019; 8:763-775. [PMID: 31808476 DOI: 10.1039/c9bm01526d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With the development of nanotechnology, nanomaterials are increasingly being applied in health fields, such as biomedicine, pharmaceuticals, and cosmetics. Concerns have therefore been raised over their toxicity and numerous studies have been carried out to assess their safety. Most studies on the toxicity and therapeutic mechanisms of nanomaterials have revealed the effects of nanomaterials on cells at the transcriptome and proteome levels. However, epigenetic modifications, for example DNA methylation, histone modification, and noncoding RNA expression induced by nanomaterials, which play an important role in the regulation of gene expression, have not received sufficient attention. In this review, we therefore state the importance of studying epigenetic effects induced by nanomaterials; then we review the progress of nanomaterial epigenetic research in the assessment of toxicity, therapeutic, and other mechanisms. We also clarify the possible study directions for future nanomaterial epigenetic research. Finally, we discuss the future development and challenges of nanomaterial epigenetics that must still be addressed. We hope to understand the potential toxicity of nanomaterials and clearly understand the therapeutic mechanism through a thorough investigation of nanomaterial epigenetics.
Collapse
Affiliation(s)
- Jie Yu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China. and Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Yifei Luo
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China. and Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China. and Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Jing Ruan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China. and Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
19
|
Zhang Y, Zhang Y, Xiao Y, Zhong C, Xiao F. Expression of Clusterin suppresses Cr(VI)-induced premature senescence through activation of PI3K/AKT pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109465. [PMID: 31376806 DOI: 10.1016/j.ecoenv.2019.109465] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/18/2019] [Accepted: 07/22/2019] [Indexed: 05/28/2023]
Abstract
Our group found that long-term low-dose exposure to hexavalent chromium [Cr(VI)] in L-02 hepatocytes resulted in premature senescence, which accompanied by the increased expression of Clusterin (CLU), but the functional role of CLU in premature senescence has never been explored. In the present study, the CLU overexpressed or silenced L-02 hepatocytes were established by lentiviral vector transfection. Cell viability assay, cell cycle analysis, western blotting, plate clone formation assay, and confocal microcopy were performed. The results indicated that Cr(VI)-induced premature senescence was associated with phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway inhibition, and high expression of CLU in the senescent cells exerted its functional role of promoting cell proliferation. CLU could complex with eukaryotic translation initiation factor 3 subunit I (EIF3I) and prevent its degradation, leading to the increase of AKT activity in Cr(VI)-exposed senescent hepatocytes. Blockage of the PI3K/AKT pathway with its inhibitor LY294002 eliminated the inhibitory effect of CLU on Cr(VI)-induced premature senescence. We concluded that high expression of CLU suppressed Cr(VI)-induced premature senescence through activation of PI3K/AKT pathway, which will provide the experimental basis for the study of Cr(VI)-induced liver cancer, especially for the elucidation of the mechanism of liver cancer cells escaping from senescence.
Collapse
Affiliation(s)
- Yujing Zhang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Yiyuan Zhang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Yuanyuan Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Caigao Zhong
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China.
| |
Collapse
|
20
|
Gedda MR, Babele PK, Zahra K, Madhukar P. Epigenetic Aspects of Engineered Nanomaterials: Is the Collateral Damage Inevitable? Front Bioeng Biotechnol 2019; 7:228. [PMID: 31616663 PMCID: PMC6763616 DOI: 10.3389/fbioe.2019.00228] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022] Open
Abstract
The extensive application of engineered nanomaterial (ENM) in various fields increases the possibilities of human exposure, thus imposing a huge risk of nanotoxicity. Hence, there is an urgent need for a detailed risk assessment of these ENMs in response to their toxicological profiling, predominantly in biomedical and biosensor settings. Numerous "toxico-omics" studies have been conducted on ENMs, however, a specific "risk assessment paradigm" dealing with the epigenetic modulations in humans owing to the exposure of these modern-day toxicants has not been defined yet. This review aims to address the critical aspects that are currently preventing the formation of a suitable risk assessment approach for/against ENM exposure and pointing out those researches, which may help to develop and implement effective guidance for nano-risk assessment. Literature relating to physicochemical characterization and toxicological behavior of ENMs were analyzed, and exposure assessment strategies were explored in order to extrapolate opportunities, challenges, and criticisms in the establishment of a baseline for the risk assessment paradigm of ENMs exposure. Various challenges, such as uncertainty in the relation of the physicochemical properties and ENM toxicity, the complexity of the dose-response relationships resulting in difficulty in its extrapolation and measurement of ENM exposure levels emerged as issues in the establishment of a traditional risk assessment. Such an appropriate risk assessment approach will provide adequate estimates of ENM exposure risks and will serve as a guideline for appropriate risk communication and management strategies aiming for the protection and the safety of humans.
Collapse
Affiliation(s)
- Mallikarjuna Rao Gedda
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Piyoosh Kumar Babele
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Kulsoom Zahra
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Prasoon Madhukar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
21
|
Different Methylation of CpG-SNPs in Behcet's Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3489305. [PMID: 31223615 PMCID: PMC6541967 DOI: 10.1155/2019/3489305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 01/08/2023]
Abstract
Purpose We recently performed an Epigenome-Wide Association Studies (EWAS) study in Behcet's disease (BD) and identified various cytosine–phosphate–guanine (CpG) loci that were aberrantly methylated. In the current study, we wanted to investigate whether these sites contained genetic polymorphisms and whether the frequency of these polymorphisms was altered in BD. Methods A two-stage study was performed. The first stage involved 358 BD patients and 704 healthy controls to investigate genetic variants of 10 CpG-SNPs (rs10454134, rs176249, rs3808620, rs10176517, rs11247118, rs78016579, rs9461624, rs10492166, rs34929465, and rs6507921) using an iPLEX Gold genotyping assay and a Sequenom MassARRAY. In the second stage, an additional 172 independent BD patients and 330 healthy individuals are to confirm trends found in the first stage. Results A higher frequency of both the rs10454134 AG genotypes (p = 0.008, OR = 1.413, 95% CI = 1.094-1.826) and a lower GG genotype frequency (p = 0.003, OR = 0.630, 95% CI = 0.465-0.854) were found in BD patients compared to the controls in the first stage. However, after correcting for multiple comparisons, all associations identified in the first stage lost statistical significance. The frequencies of the other CpG-SNPs investigated were not different between BD patients and controls. The second stage was designed using an additional cohort to confirm the association with CpG-SNP, rs10454134. The data failed to confirm the association between this CpG-SNP and BD. Conclusions This study did not show an association between BD and CpG-SNPs in gene sites that were earlier shown to be aberrantly methylated.
Collapse
|
22
|
Xing JJ, Hou JG, Ma ZN, Wang Z, Ren S, Wang YP, Liu WC, Chen C, Li W. Ginsenoside Rb3 provides protective effects against cisplatin-induced nephrotoxicity via regulation of AMPK-/mTOR-mediated autophagy and inhibition of apoptosis in vitro and in vivo. Cell Prolif 2019; 52:e12627. [PMID: 31094028 PMCID: PMC6668974 DOI: 10.1111/cpr.12627] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/05/2019] [Accepted: 03/21/2019] [Indexed: 12/28/2022] Open
Abstract
Objectives Based on previous reports that ginsenosides have been shown to exert better preventive effects on cisplatin‐induced kidney injury, the present work aims to evaluate the protective effects of ginsenoside Rb3 (G‐Rb3) on cisplatin‐induced renal damage and underlying mechanisms in vivo and in vitro. Materials and methods The protective effect of G‐Rb3 on cisplatin‐induced acute renal failure in ICR mouse model and HEK293 cell model was investigated, and the underlying possible mechanisms were also explored. For animal experiment, renal function, kidney histology, inflammation, oxidative stress, relative protein molecules involved in apoptosis and autophagy signalling pathways were assessed. In addition, rapamycin (a specific inhibitor of mTOR), compound C (a specific inhibitor of AMPK) and acetylcysteine (NAC, a specific ROS scavenger) were employed to testify the effects of AMPK/mTOR signal pathway on the protective effects of G‐Rb3 in HEK293 cells. Results Pre‐treatment with G‐Rb3 at doses of 10 and 20 mg/kg for ten days significantly reversed the increases in serum creatinine (CRE), blood urea nitrogen (BUN) and malondialdehyde (MDA), and decrease in glutathione (GSH) content and superoxide dismutase (SOD) activity. Histopathological examination further revealed that G‐Rb3 inhibited cisplatin‐induced nephrotoxicity. G‐Rb3 diminished cisplatin‐induced increase in protein expression levels of p62, Atg3, Atg5 and Atg7, and decrease in protein expression level of p‐mTOR and the ratio of LC3‐I/LC3‐II, indicating that G‐Rb3 suppressed cisplatin‐induced activation of autophagy. Inhibition of autophagy induced inactivation of apoptosis, which suggested that autophagy played an adverse effect on cisplatin‐evoked renal damage. Further, we found that G‐Rb3 might potentially modulate the expressions of AMPK‐related signal pathways. Conclusions These findings clearly suggested that G‐Rb3‐mediated alleviation of cisplatin‐induced nephrotoxicity was in part due to regulation of AMPK‐/mTOR‐mediated autophagy and inhibition of apoptosis in vitro and in vivo.
Collapse
Affiliation(s)
- Jing-Jing Xing
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Jin-Gang Hou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,Intelligent Synthetic Biology Center, Daejeon, Korea
| | - Zhi-Na Ma
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Wen-Cong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| |
Collapse
|
23
|
Silk fibroin peptide suppresses proliferation and induces apoptosis and cell cycle arrest in human lung cancer cells. Acta Pharmacol Sin 2019; 40:522-529. [PMID: 29921888 DOI: 10.1038/s41401-018-0048-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/20/2018] [Indexed: 12/21/2022]
Abstract
Silkworm cocoon was recorded to cure carbuncle in the Compendium of Materia Medica. Previous studies have demonstrated that the supplemental silk protein sericin exhibits anticancer activity. In the present study, we investigated the effects of silk fibroin peptide (SFP) extracted from silkworm cocoons against human lung cancer cells in vitro and in vivo and its possible anticancer mechanisms. SFP that we prepared had high content of glycine (~ 30%) and showed a molecular weight of ~ 10 kDa. Intragastric administration of SFP (30 g/kg/d) for 14 days did not affect the weights, vital signs, routine blood indices, and blood biochemical parameters in mice. MTT assay showed that SFP dose-dependently inhibited the growth of human lung cancer A549 and H460 cells in vitro with IC50 values of 9.921 and 9.083 mg/mL, respectively. SFP also dose-dependently suppressed the clonogenic activity of the two cell lines. In lung cancer H460 xenograft mice, intraperitoneal injection of SFP (200 or 500 mg/kg/d) for 40 days significantly suppressed the tumor growth, but did not induce significant changes in the body weight. We further examined the effects of SFP on cell cycle and apoptosis in H460 cells using flow cytometry, which revealed that SFP-induced cell cycle arrest at the S phase, and then promoted cell apoptosis. We demonstrated that SFP (20-50 mg/mL) dose-dependently downregulates Bcl-2 protein expression and upregulates Bax protein in H460 cells during cell apoptosis. The results suggest that SFP should be studied further as a novel therapeutic agent for the treatment of lung cancer.
Collapse
|
24
|
Brzóska K, Grądzka I, Kruszewski M. Silver, Gold, and Iron Oxide Nanoparticles Alter miRNA Expression but Do Not Affect DNA Methylation in HepG2 Cells. MATERIALS 2019; 12:ma12071038. [PMID: 30934809 PMCID: PMC6479689 DOI: 10.3390/ma12071038] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022]
Abstract
The increasing use of nanoparticles (NPs) in various applications entails the need for reliable assessment of their potential toxicity for humans. Originally, studies concerning the toxicity of NPs focused on cytotoxic and genotoxic effects, but more recently, attention has been paid to epigenetic changes induced by nanoparticles. In the present research, we analysed the DNA methylation status of genes related to inflammation and apoptosis as well as the expression of miRNAs related to these processes in response to silver (AgNPs), gold (AuNPs), and superparamagnetic iron oxide nanoparticles (SPIONs) at low cytotoxic doses in HepG2 cells. There were no significant differences between treated and control cells in the DNA methylation status. We identified nine miRNAs, the expression of which was significantly altered by treatment with nanoparticles. The highest number of changes was induced by AgNPs (six miRNAs), followed by AuNPs (four miRNAs) and SPIONs (two miRNAs). Among others, AgNPs suppressed miR-34a expression, which is of particular interest since it may be responsible for the previously observed AgNPs-mediated HepG2 cells sensitisation to tumour necrosis factor (TNF). Most of the miRNAs affected by NP treatment in the present study have been previously shown to inhibit cell proliferation and tumourigenesis. However, based on the observed changes in miRNA expression we cannot draw definite conclusions regarding the pro- or anti-tumour nature of the NPs under study. Further research is needed to fully elucidate the relation between observed changes in miRNA expression and the effect of NPs observed at the cellular level. The results of the present study support the idea of including epigenetic testing during the toxicological assessment of the biological interaction of nanomaterials.
Collapse
Affiliation(s)
- Kamil Brzóska
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland.
| | - Iwona Grądzka
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland.
| | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland.
- University of Information Technology and Management, Faculty of Medicine, Department of Medical Biology and Translational Research, Sucharskiego 2, 35-225 Rzeszów, Poland.
- Institute of Rural Health, Department of Molecular Biology and Translational Research, Jaczewskiego 2, 20-090 Lublin, Poland.
| |
Collapse
|
25
|
Yazdimamaghani M, Moos PJ, Dobrovolskaia MA, Ghandehari H. Genotoxicity of amorphous silica nanoparticles: Status and prospects. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 16:106-125. [PMID: 30529789 PMCID: PMC6455809 DOI: 10.1016/j.nano.2018.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022]
Abstract
Amorphous silica nanoparticles (SNPs) are widely used in biomedical applications and consumer products. Little is known, however, about their genotoxicity and potential to induce gene expression regulation. Despite recent efforts to study the underlying mechanisms of genotoxicity of SNPs, inconsistent results create a challenge. A variety of factors determine particle-cell interactions and underlying mechanisms. Further, high-throughput studies are required to carefully assess the impact of silica nanoparticle physicochemical properties on induction of genotoxic response in different cell lines and animal models. In this article, we review the strategies available for evaluation of genotoxicity of nanoparticles (NPs), survey current status of silica nanoparticle gene alteration and genotoxicity, discuss particle-mediated inflammation as a contributing factor to genotoxicity, identify existing gaps and suggest future directions for this research.
Collapse
Affiliation(s)
- Mostafa Yazdimamaghani
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, United States; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, United States
| | - Philip J Moos
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, United States; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, United States
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, United States; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, United States; Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States.
| |
Collapse
|
26
|
Mohammadinejad R, Moosavi MA, Tavakol S, Vardar DÖ, Hosseini A, Rahmati M, Dini L, Hussain S, Mandegary A, Klionsky DJ. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy 2019; 15:4-33. [PMID: 30160607 PMCID: PMC6287681 DOI: 10.1080/15548627.2018.1509171] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 07/19/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022] Open
Abstract
Nanomaterials have gained a rapid increase in use in a variety of applications that pertain to many aspects of human life. The majority of these innovations are centered on medical applications and a range of industrial and environmental uses ranging from electronics to environmental remediation. Despite the advantages of NPs, the knowledge of their toxicological behavior and their interactions with the cellular machinery that determines cell fate is extremely limited. This review is an attempt to summarize and increase our understanding of the mechanistic basis of nanomaterial interactions with the cellular machinery that governs cell fate and activity. We review the mechanisms of NP-induced necrosis, apoptosis and autophagy and potential implications of these pathways in nanomaterial-induced outcomes. Abbreviations: Ag, silver; CdTe, cadmium telluride; CNTs, carbon nanotubes; EC, endothelial cell; GFP, green fluorescent protein; GO, graphene oxide; GSH, glutathione; HUVECs, human umbilical vein endothelial cells; NP, nanoparticle; PEI, polyethylenimine; PVP, polyvinylpyrrolidone; QD, quantum dot; ROS, reactive oxygen species; SiO2, silicon dioxide; SPIONs, superparamagnetic iron oxide nanoparticles; SWCNT, single-walled carbon nanotubes; TiO2, titanium dioxide; USPION, ultra-small super paramagnetic iron oxide; ZnO, zinc oxide.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Deniz Özkan Vardar
- Sungurlu Vocational High School, Health Programs, Hitit University, Corum, Turkey
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Salik Hussain
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, School of Medicine, Morgantown, WV, USA
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
27
|
Guo C, Ma R, Liu X, Xia Y, Niu P, Ma J, Zhou X, Li Y, Sun Z. Silica nanoparticles induced endothelial apoptosis via endoplasmic reticulum stress-mitochondrial apoptotic signaling pathway. CHEMOSPHERE 2018; 210:183-192. [PMID: 29990757 DOI: 10.1016/j.chemosphere.2018.06.170] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Along with their extensively application, human exposure to amorphous silica nanoparticles (SiNPs) has highly increased. Accumulative toxicological researches have provided the scientific correlation between SiNPs exposure and cardiovascular diseases. Endothelial apoptosis is vital in the initiation and progression of atherosclerosis. However, molecular details between SiNPs and endothelial apoptosis remain unidentified. Here, we investigated the uptake and toxic mechanism of SiNPs using HUVECs (Human umbilical vein endothelial cells). Consequently, at 24-h exposure, SiNPs were located freely or within membrane-bound agglomerates in the cytosol, especially in mitochondrial and endoplasmic reticulum (ER) regions with swelled mitochondria, cristae rupture or aggregated ER. Further, we demonstrated that SiNPs induced endothelial apoptosis as evidenced by the Annexin V/PI staining and flow cytometry determination. In line with the ultrastructure alterations, SiNPs triggered mitochondrial ROS generation, ΔΨm collapse, cytosolic Ca2+ overload, as well as ER stress confirmed by enhanced ER staining, up-regulated GRP78/BiP and XBP1 splicing. More notably, in line with the induction of apoptosis, SiNPs-induced ER stress-associated activation of CHOP, caspase-12, and IRE1α/JNK pathways, which may regulate the BCL2 family member as evidenced by a increased proapoptotic BAX while a decline of anti-apoptotic Bcl-2, ultimately facilitate the mitochondria-mediated apoptotic caspase cascade as confirmed by the upregulated expressions of cytochrome c, Caspase-9 and -3. Altogether, our results indicated the activation of ER stress-mitochondria cascade-mediated apoptotic pathways may be a key mechanism among the SiNPs-induced endothelial apoptosis.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ru Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiaoying Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yinye Xia
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Junxiang Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xianqing Zhou
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
28
|
Wu Y, Liu X, Qin Z, Hu L, Wang X. Low-frequency ultrasound enhances chemotherapy sensitivity and induces autophagy in PTX-resistant PC-3 cells via the endoplasmic reticulum stress-mediated PI3K/Akt/mTOR signaling pathway. Onco Targets Ther 2018; 11:5621-5630. [PMID: 30254455 PMCID: PMC6141110 DOI: 10.2147/ott.s176744] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Sonodynamic therapy (SDT) is an emerging tumor-inhibiting method that has gained attention in cancer therapy in the last several years. Although autophagy has been observed in SDT-treated cancer cells, its role and mechanism of action remain unclear. This study aimed to investigate the effects of low-frequency ultrasound on autophagy and drug-resistance of paclitaxel (PTX)-resistant PC-3 cells via the endoplasmic reticulum stress (ERs)-mediated PI3K/AT/mTOR signaling pathway. Methods CCK-8 assay was conducted to select the appropriate exposure time for PTX-resistant PC-3 cells under low-frequency ultrasound. PTX-resistant PC-3 cells were divided into a control group, PTX group, ultrasound group, ultrasound + PTX group, ultrasound + PTX + autophagy-related gene 5 (Atg5) siRNA group, and ultrasound + 4-PBA (an ERs inhibitor) group. Autophagy was observed by transmission electron microscopy (TEM) and fluorescence microscopy. Cell proliferation was evaluated using CCK-8 assay; apoptosis was detected by flow cytometry. Expression of multiple drug-resistance genes was detected by qRT-PCR. Western blotting was used to detect the expression of ERS-related proteins, autophagy-related proteins, apoptosis-related proteins, and PI3K/AKT/mTOR pathway-related proteins. Results Ten-second exposure was selected as optimal for all experiments. Compared to the PTX group, the level of autophagy, inhibition rate, apoptosis rate, and expression of ERS-related proteins (GRP78) increased, whereas the expression of multiple drug-resistance genes (MRP3, MRP7, and P-glycoprotein), PI3K/AKT/mTOR pathway-related proteins (PI3K, p-AKT, mTORC1), and apoptosis-related proteins (Bcl-2, NF-κB) decreased in PTX-resistant PC-3 cells after low-frequency ultrasound and PTX treatment for 24 h. These trends were more obvious after treatment with Atg5 siRNA, excluding the autophagy level. Post 4-PBA-treatment, the expression of GRP78 and LC3II proteins decreased, whereas that of PI3K, p-AKT, and mTORC1 increased. Conclusion Results indicated that ultrasound induces autophagy by ERs-mediated PI3K/AKT/mTOR signaling pathway in PTX-resistant PC-3 cells; this autophagy acts as a cytoprotector during low-frequency ultrasound-mediated reversal of drug resistance.
Collapse
Affiliation(s)
- Yuqi Wu
- Department of Urology, Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People's Republic of China,
| | - Xiaobing Liu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Zizhen Qin
- Department of Urology, Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People's Republic of China,
| | - Li Hu
- Department of Urology, Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People's Republic of China,
| | - Xiangwei Wang
- Department of Urology, Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People's Republic of China,
| |
Collapse
|
29
|
Liu J, Yang M, Jing L, Ren L, Wei J, Zhang J, Zhang F, Duan J, Zhou X, Sun Z. Silica nanoparticle exposure inducing granulosa cell apoptosis and follicular atresia in female Balb/c mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3423-3434. [PMID: 29151191 DOI: 10.1007/s11356-017-0724-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Given that the effects of ultrafine fractions (< 0.1 μm) on reproductive diseases are gaining attention, this study aimed to explore the influence of silica nanoparticle (SiNP)-induced female reproductive dysfunction. In this study, 80 female mice were randomly divided into four groups including a control group and three concentrations of SiNP groups (7, 21, 35 mg/kg). Mice were exposed to the vehicle control and silica nanoparticles by tracheal perfusion every 3 days a total of five times in 15 days. Then, half of the mice in each group were sacrificed on 15 and 30 days after the first dose, respectively. Our findings indicated that SiNPs can result in ovarian damage, cause an imbalance of sex hormones, increase the number of atretic and primary follicles, and induce oxidative stress and DNA strand breaks in ovary by day 15. The protein expressions of ATM, CHK-2, P53, E2F1, P73, BAX, Caspase-9, and Caspase-3 were significantly increased, while expressions of RAD51 were down-regulated after SiNP exposure by days 15. Estradiol increased, while progesterone increased in low dose and decreased in high dose after SiNP exposure by 15 days. However, these changes were recovered by 30 days. The results suggest that SiNPs can cause reversible damage to follicles in mice. SiNPs could primarily cause DNA damage and DNA damage response through oxidative stress, while DNA damage repair failure because of severe DNA damage activated the mitochondrial apoptosis pathway and therefore resulted in apoptosis of granulosa cell. In addition, the disorder of reproductive endocrine function caused by SiNPs could be another reason for SiNP-induced reproductive dysfunction in mice. These events in turn induce the follicles to undergo atresia.
Collapse
Affiliation(s)
- Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Man Yang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Lihua Ren
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jialiu Wei
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jin Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Feng Zhang
- College of Life Science, Qilu Normal University, Jinan, 250013, China
| | - Junchao Duan
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
30
|
Wang W, Zeng C, Feng Y, Zhou F, Liao F, Liu Y, Feng S, Wang X. The size-dependent effects of silica nanoparticles on endothelial cell apoptosis through activating the p53-caspase pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:218-225. [PMID: 29096294 DOI: 10.1016/j.envpol.2017.10.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/24/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
With the growing production and applications of silica nanoparticles (SiNPs), human exposure to these nanoparticles continues to increase. However, the possible hazards that SiNP exposure may pose to human cardiovascular system and the underlying mechanisms remain unclear. In the present study, the flow cytometry was employed to investigate the potential of four sizes (10, 25, 50, 100 nm) of SiNPs to induce the apoptosis of human umbilical vein endothelial cells (HUVECs) in culture. The apoptotic pathway was also explored through the determination of the protein expression and/or activation of p53, Bcl-2, Bax, caspases-9, -7, -3, and PARP by western blot. The results showed that all the four sizes of SiNPs could significantly elicit apoptosis in HUVECs at the tested concentrations (1, 5, 25 μg/mL), compared with the negative control (p < 0.05, p < 0.01). Moreover, the apoptotic rates were increased with the elevating levels and decreasing sizes of administrative SiNPs, showing both dose- and size-dependent effect relationships. Interestingly, the enhancing phosphorylation of p53 protein (Ser15), decreasing ratio of Bcl-2/Bax protein, and elevating activation of the downstream proteins, caspase-9, -7, -3 and PARP, were also observed with the decreasing sizes of tested SiNPs, indicating that the p53-caspase pathway is the main way of the SiNP-mediated apoptosis in HUVECs and that the size is an important parameter that determines the SiNPs' potential to induce cellular response.
Collapse
Affiliation(s)
- Wuxiang Wang
- The School of Public Health, University of South China, Hengyang 421001, China
| | - Can Zeng
- The School of Public Health, University of South China, Hengyang 421001, China
| | - Yuqin Feng
- The College of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Furong Zhou
- The School of Public Health, University of South China, Hengyang 421001, China
| | - Fen Liao
- The School of Public Health, University of South China, Hengyang 421001, China
| | - Yuanfeng Liu
- The School of Public Health, University of South China, Hengyang 421001, China
| | - Shaolong Feng
- The School of Public Health, University of South China, Hengyang 421001, China.
| | - Xinming Wang
- The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
31
|
Guo C, Wang J, Yang M, Li Y, Cui S, Zhou X, Li Y, Sun Z. Amorphous silica nanoparticles induce malignant transformation and tumorigenesis of human lung epithelial cells via P53 signaling. Nanotoxicology 2017; 11:1176-1194. [DOI: 10.1080/17435390.2017.1403658] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Caixia Guo
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Ji Wang
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Man Yang
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Yang Li
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Shuxiang Cui
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Xianqing Zhou
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Yanbo Li
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| |
Collapse
|
32
|
Wong BSE, Hu Q, Baeg GH. Epigenetic modulations in nanoparticle-mediated toxicity. Food Chem Toxicol 2017; 109:746-752. [DOI: 10.1016/j.fct.2017.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 07/04/2017] [Indexed: 12/14/2022]
|
33
|
Mebert AM, Baglole CJ, Desimone MF, Maysinger D. Nanoengineered silica: Properties, applications and toxicity. Food Chem Toxicol 2017; 109:753-770. [DOI: 10.1016/j.fct.2017.05.054] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023]
|
34
|
Xu T, Pang Q, Wang Y, Yan X. Betulinic acid induces apoptosis by regulating PI3K/Akt signaling and mitochondrial pathways in human cervical cancer cells. Int J Mol Med 2017; 40:1669-1678. [PMID: 29039440 PMCID: PMC5716432 DOI: 10.3892/ijmm.2017.3163] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 09/19/2017] [Indexed: 12/29/2022] Open
Abstract
Betulinic acid (BA), a potential anticancer compound, could induce apoptosis in human cervical cancer (HeLa) cells, but its mechanism has yet to be fully elucidated. The present study was focused on deciphering the detailed molecular mechanism of BA-induced apoptosis. In the present study, results indicated that BA was highly effective against HeLa cells via induction of time-dependent apoptosis, and the authors demonstrated that the BA treatment acted through downregulating a phosphatidylinositol 3-kinase (PI3K) subunit and suppressing the Akt phosphorylation at Thr308 and Ser473 after increasing the generation of intracellular reactive oxygen species. Then, BA induced cell cycle arrest at the G0/G1 phase, which was consistent with the cell cycle-related protein results in which BA significantly enhanced the expression of p27Kip and p21Waf1/Cip1 in HeLa cells. This target-specific inhibition was associated with mitochondrial apoptosis, as reflected by the increased expression of Bad and caspase-9, the generation of reactive oxygen species (ROS) and the decline in mitochondrial membrane potential. Moreover, preincubation of the cells with glutathione (antioxidant) blocked the process of apoptosis, prevented the phosphorylation of downstream substrates. These results established that ROS acted as a key factor to effect apoptosis by BA treatment in HeLa cells. Therefore, these findings demonstrated that BA induced apoptosis in HeLa cells by downregulating the expression of PI3K/Akt signaling molecules via ROS, and triggering a mitochondrial pathway.
Collapse
Affiliation(s)
- Tao Xu
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Qiuying Pang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Yang Wang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Xiufeng Yan
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
35
|
Smolkova B, Dusinska M, Gabelova A. Nanomedicine and epigenome. Possible health risks. Food Chem Toxicol 2017; 109:780-796. [PMID: 28705729 DOI: 10.1016/j.fct.2017.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023]
Abstract
Nanomedicine is an emerging field that combines knowledge of nanotechnology and material science with pharmaceutical and biomedical sciences, aiming to develop nanodrugs with increased efficacy and safety. Compared to conventional therapeutics, nanodrugs manifest higher stability and circulation time, reduced toxicity and improved targeted delivery. Despite the obvious benefit, the accumulation of imaging agents and nanocarriers in the body following their therapeutic or diagnostic application generates concerns about their safety for human health. Numerous toxicology studies have demonstrated that exposure to nanomaterials (NMs) might pose serious risks to humans. Epigenetic modifications, representing a non-genotoxic mechanism of toxicant-induced health effects, are becoming recognized as playing a potential causative role in the aetiology of many diseases including cancer. This review i) provides an overview of recent advances in medical applications of NMs and ii) summarizes current evidence on their possible epigenetic toxicity. To discern potential health risks of NMs, since current data are mostly based upon in vitro and animal models, a better understanding of functional relationships between NM exposure, epigenetic deregulation and phenotype is required.
Collapse
Affiliation(s)
- Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia.
| | - Maria Dusinska
- Health Effects Laboratory MILK, NILU- Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Alena Gabelova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
36
|
Liao P, Sun G, Zhang C, Wang M, Sun Y, Zhou Y, Sun X, Jian J. Bauhinia championii Flavone Attenuates Hypoxia-Reoxygenation Induced Apoptosis in H9c2 Cardiomyocytes by Improving Mitochondrial Dysfunction. Molecules 2016; 21:molecules21111469. [PMID: 27827932 PMCID: PMC6273835 DOI: 10.3390/molecules21111469] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/22/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022] Open
Abstract
This study aimed to determine the effects of Bauhinia championii flavone (BCF) on hypoxia-reoxygenation (H/R) induced apoptosis in H9c2 cardiomyocytes and to explore potential mechanisms. The H/R model in H9c2 cardiomyocytes was established by 6 h of hypoxia and 12 h of reoxygenation. Cell viability was detected by CCK-8 assay. Apoptotic rate was measured by Annexin V/PI staining. Levels of mitochondria-associated ROS, mitochondrial transmembrane potential (∆Ψm) and mitochondrial permeability transition pores (MPTP) opening were assessed by fluorescent probes. ATP production was measured by ATP assay kit. The release of cytochrome c, translocation of Bax, and related proteins were measured by western blotting. Our results showed that pretreatment with BCF significantly improved cell viability and attenuated the cardiomyocyte apoptosis caused by H/R. Furthermore, BCF increased ATP production and inhibited ROS-generating mitochondria, depolarization of ΔΨm, and MPTP opening. Moreover, BCF pretreatment decreased Bax mitochondrial translocation, cytochrome c release, and activation of caspase-3, as well as increased the expression of p-PI3K, p-Akt, and the ratio of Bcl-2 to Bax. Interestingly, a specific inhibitor of phosphatidylinositol 3-kinase, LY294002, partly reversed the anti-apoptotic effect of BCF. These observations indicated that BCF pretreatment attenuates H/R-induced myocardial apoptosis strength by improving mitochondrial dysfunction via PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Ping Liao
- Department of Pharmacology, Guilin Medical University, Huan Cheng North 2nd Road, Guilin 541004, Guangxi, China.
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Chan Zhang
- Department of Pharmacology, Guilin Medical University, Huan Cheng North 2nd Road, Guilin 541004, Guangxi, China.
| | - Min Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Yao Sun
- Department of Pharmacology, Guilin Medical University, Huan Cheng North 2nd Road, Guilin 541004, Guangxi, China.
| | - Yuehan Zhou
- Department of Pharmacology, Guilin Medical University, Huan Cheng North 2nd Road, Guilin 541004, Guangxi, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Jie Jian
- Department of Pharmacology, Guilin Medical University, Huan Cheng North 2nd Road, Guilin 541004, Guangxi, China.
| |
Collapse
|