1
|
Li X, Zhou Z, Tao Y, He L, Zhan F, Li J. Linking homocysteine and ferroptosis in cardiovascular disease: insights and implications. Apoptosis 2024; 29:1944-1958. [PMID: 39044092 DOI: 10.1007/s10495-024-01999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
Homocysteine (Hcy) is a metabolic intermediate product derived from methionine. Hyperhomocysteinemia is a condition associated with various diseases. Hcy is recognized as a risk factor for cardiovascular disease (CVD). Ferroptosis, a novel form of cell death, is primarily characterized by substantial iron accumulation and lipid peroxidation. Recent research indicates a close association between ferroptosis and the pathophysiological processes of tumors, neurological diseases, CVD, and other ailments. However, limited research has been conducted on the impact of Hcy on ferroptosis. Therefore, this paper aimed to investigate the potential roles and mechanisms of homocysteine and ferroptosis in the context of cardiovascular disease. By conducting comprehensive literature research and analysis, we aimed to summarize recent advancements in understanding the effects of homocysteine on ferroptosis in cardiovascular diseases. This research contributes to a profound understanding of this critical domain.
Collapse
Affiliation(s)
- Xiaozhong Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, 330006, China
| | - Zheng Zhou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, 330006, China
| | - Yu Tao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lei He
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Fenfang Zhan
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, 330006, China
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Juxiang Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
2
|
Sen A, Singh A, Roy A, Mohanty S, Naik N, Kalaivani M, Ramakrishnan L. Role of endothelial colony forming cells (ECFCs) Tetrahydrobiopterin (BH4) in determining ECFCs functionality in coronary artery disease (CAD) patients. Sci Rep 2022; 12:3076. [PMID: 35197509 PMCID: PMC8866483 DOI: 10.1038/s41598-022-06758-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/31/2022] [Indexed: 01/05/2023] Open
Abstract
Nitric oxide (NO.) is critical for functionality of endothelial colony forming cells (ECFCs). Dimerization of endothelial nitric oxide synthase (eNOS) is must to produce NO. and tetrahydrobiopterin (BH4) plays a crucial role in stabilizing this state. We investigated BH4 level in ECFCs and its effect on ECFCs functionality in CAD patients. Intracellular biopterin levels and ECFCs functionality in terms of cell viability, adhesion, proliferation, in vitro wound healing and angiogenesis were assessed. Guanosine Triphosphate Cyclohydrolase-1 (GTPCH-1) expression was studied in ECFCs. Serum total reactive oxygen/nitrogen species was measured and effect of nitrosative stress on ECFC's biopterins level and functionality were evaluated by treating with 3-morpholino sydnonimine (SIN-1). BH4 level was significantly lower in ECFCs from CAD patients. Cell proliferation, wound closure reflecting cellular migration as well as in vitro angiogenesis were impaired in ECFCs from CAD patients. Wound healing capacity and angiogenesis were positively correlated with ECFC's BH4. A negative effect of nitrosative stress on biopterins level and cell functionality was observed in SIN-1 treated ECFCs. ECFCs from CAD exhibited impaired functionality and lower BH4 level. Association of BH4 with wound healing capacity and angiogenesis suggest its role in maintaining ECFC's functionality. Oxidative stress may be a determinant of intracellular biopterin levels.
Collapse
Affiliation(s)
- Atanu Sen
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ambuj Roy
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Mohanty
- Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, India
| | - Nitish Naik
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Mani Kalaivani
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Endothelial Progenitor Cells and Rheumatoid Arthritis: Response to Endothelial Dysfunction and Clinical Evidences. Int J Mol Sci 2021; 22:ijms222413675. [PMID: 34948469 PMCID: PMC8708779 DOI: 10.3390/ijms222413675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune inflammatory disease characterized by the swelling of multiple joints, pain and stiffness, and accelerated atherosclerosis. Sustained immune response and chronic inflammation, which characterize RA, may induce endothelial activation, damage and dysfunction. An equilibrium between endothelial damage and repair, together with the preservation of endothelial integrity, is of crucial importance for the homeostasis of endothelium. Endothelial Progenitor Cells (EPCs) represent a heterogenous cell population, characterized by the ability to differentiate into mature endothelial cells (ECs), which contribute to vascular homeostasis, neovascularization and endothelial repair. A modification of the number and function of EPCs has been described in numerous chronic inflammatory and auto-immune conditions; however, reports that focus on the number and functions of EPCs in RA are characterized by conflicting results, and discrepancies exist among different studies. In the present review, the authors describe EPCs' role and response to RA-related endothelial modification, with the aim of illustrating current evidence regarding the level of EPCs and their function in this disease, to summarize EPCs' role as a biomarker in cardiovascular comorbidities related to RA, and finally, to discuss the modulation of EPCs secondary to RA therapy.
Collapse
|
4
|
Endothelial Progenitor Cells Dysfunctions and Cardiometabolic Disorders: From Mechanisms to Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22136667. [PMID: 34206404 PMCID: PMC8267891 DOI: 10.3390/ijms22136667] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of several disorders, such as hypertension, central obesity, dyslipidemia, hyperglycemia, insulin resistance and non-alcoholic fatty liver disease. Despite health policies based on the promotion of physical exercise, the reduction of calorie intake and the consumption of healthy food, there is still a global rise in the incidence and prevalence of MetS in the world. This phenomenon can partly be explained by the fact that adverse events in the perinatal period can increase the susceptibility to develop cardiometabolic diseases in adulthood. Individuals born after intrauterine growth restriction (IUGR) are particularly at risk of developing cardiovascular diseases (CVD) and metabolic disorders later in life. It has been shown that alterations in the structural and functional integrity of the endothelium can lead to the development of cardiometabolic diseases. The endothelial progenitor cells (EPCs) are circulating components of the endothelium playing a major role in vascular homeostasis. An association has been found between the maintenance of endothelial structure and function by EPCs and their ability to differentiate and repair damaged endothelial tissue. In this narrative review, we explore the alterations of EPCs observed in individuals with cardiometabolic disorders, describe some mechanisms related to such dysfunction and propose some therapeutical approaches to reverse the EPCs dysfunction.
Collapse
|
5
|
Török M, Merkely P, Monori-Kiss A, Horváth EM, Sziva RE, Péterffy B, Jósvai A, Sayour AA, Oláh A, Radovits T, Merkely B, Ács N, Nádasy GL, Várbíró S. Network analysis of the left anterior descending coronary arteries in swim-trained rats by an in situ video microscopic technique. Biol Sex Differ 2021; 12:37. [PMID: 34039432 PMCID: PMC8152314 DOI: 10.1186/s13293-021-00379-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/04/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND We aimed to identify sex differences in the network properties and to recognize the geometric alteration effects of long-term swim training in a rat model of exercise-induced left ventricular (LV) hypertrophy. METHODS Thirty-eight Wistar rats were divided into four groups: male sedentary, female sedentary, male exercised and female exercised. After training sessions, LV morphology and function were checked by echocardiography. The geometry of the left coronary artery system was analysed on pressure-perfused, microsurgically prepared resistance artery networks using in situ video microscopy. All segments over > 80 μm in diameter were studied using divided 50-μm-long cylindrical ring units of the networks. Oxidative-nitrative (O-N) stress markers, adenosine A2A and estrogen receptor (ER) were investigated by immunohistochemistry. RESULTS The LV mass index, ejection fraction and fractional shortening significantly increased in exercised animals. We found substantial sex differences in the coronary network in the control groups and in the swim-trained animals. Ring frequency spectra were significantly different between male and female animals in both the sedentary and trained groups. The thickness of the wall was higher in males as a result of training. There were elevations in the populations of 200- and 400-μm vessel units in males; the thinner ones developed farther and the thicker ones closer to the orifice. In females, a new population of 200- to 250-μm vessels appeared unusually close to the orifice. CONCLUSIONS Physical activity and LV hypertrophy were accompanied by a remodelling of coronary resistance artery network geometry that was different in both sexes.
Collapse
Affiliation(s)
- Marianna Török
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082 Hungary
| | - Petra Merkely
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082 Hungary
| | - Anna Monori-Kiss
- Institute of Clinical Experimental Research, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094 Hungary
| | - Eszter Mária Horváth
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094 Hungary
| | - Réka Eszter Sziva
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082 Hungary
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094 Hungary
| | - Borbála Péterffy
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094 Hungary
| | - Attila Jósvai
- Department of Neurosurgery, Military Hospital, Róbert Károly körút 44, Budapest, 1134 Hungary
| | - Alex Ali Sayour
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122 Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122 Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122 Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122 Hungary
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082 Hungary
| | - György László Nádasy
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094 Hungary
| | - Szabolcs Várbíró
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082 Hungary
| |
Collapse
|
6
|
Bjørklund G, Peana M, Dadar M, Lozynska I, Chirumbolo S, Lysiuk R, Lenchyk L, Upyr T, Severin B. The role of B vitamins in stroke prevention. Crit Rev Food Sci Nutr 2021; 62:5462-5475. [PMID: 33724098 DOI: 10.1080/10408398.2021.1885341] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Elevated plasma levels of homocysteine (Hcy) are a recognized risk factor for stroke. This relationship represents one aspect of the debated `Hcy hypothesis'. Elevated Hcy may be an independent and treatable cause of atherosclerosis and thrombotic vascular diseases. Further observations indicate that proper dietary supplementation with B-vitamins decreases total plasma Hcy concentrations and may be an effective intervention for stroke prevention. Metabolic vitamin B12 deficiency is a nutritional determinant of total Hcy and stroke risk. Genetic factors may link B vitamins with stroke severity due to the impact on Hcy metabolism of polymorphism in the genes coding for methylenetetrahydrofolate reductase, methionine-synthase, methionine synthase reductase, and cystathionine β-synthase. Several meta-analyses of large randomized controlled trials exist. However, they are not completely in agreement about B vitamins' role, particularly folic acid levels, vitamin B12, and B6, in lowering the homocysteine concentrations in people at high stroke risk. A very complex relationship exists between Hcy and B vitamins, and several factors appear to modify the preventive effects of B vitamins in stroke. This review highlights the regulating factors of the active role of B vitamins active in stroke prevention. Also, inputs for further large, well-designed studies, for specific, particularly sensitive subgroups are given.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | | | - Maryam Dadar
- Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Agricultural Research, Karaj, Iran
| | - Iryna Lozynska
- Department of Biochemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.,CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CONEM Scientific Secretary, Verona, Italy
| | - Roman Lysiuk
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.,Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Larysa Lenchyk
- Department of Quality, Standardization and Certification of Medicines of IATPS, National University of Pharmacy, Kharkiv, Ukraine.,CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group National University of Pharmacy, Kharkiv, Ukraine
| | - Taras Upyr
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group National University of Pharmacy, Kharkiv, Ukraine.,Department of Pharmacognosy, National University of Pharmacy, Kharkiv, Ukraine
| | - Beatrice Severin
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| |
Collapse
|
7
|
Rejuvenated Circulating Endothelial Progenitor Cells and Nitric Oxide in Premenopausal Women with Hyperhomocysteinemia. Cardiol Res Pract 2020; 2020:5010243. [PMID: 33204526 PMCID: PMC7657675 DOI: 10.1155/2020/5010243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) induced endothelial dysfunction is associated with disturbance in circulating endothelial progenitor cells (EPCs). Nevertheless, whether this unfavorable effect of HHcy on circulating EPCs also exists in premenopausal women is still unknown. Therefore, this leaves an area for the investigation of the difference on the number and activity of circulating EPCs in premenopausal women with hyperhomocysteinemia and its underlying mechanism. The number of circulating EPCs was measured by fluorescence-activated cell sorter analysis, as well as DiI-acLDL and lectin fluorescent staining. The migration and proliferation of circulating were evaluated by the Transwell chamber assay and MTT. Additionally, the endothelial function and levels of nitric oxide (NO), VEGF, and GM-CSF in plasma and culture medium were determined. The number or activity of circulating EPCs and flow-mediated dilatation (FMD) in premenopausal women with or without HHcy were higher than those in postmenopausal women. However, no significant effect of HHcy on the number or activity of circulating EPCs in premenopausal women was observed. A similar alteration in NO level between the four groups was observed. There was a correlation between FMD and the number or activity of EPCs, as well as NO level in plasma or secretion by EPCs. For the first time, our findings illuminated the quantitive or qualitative alterations of circulating EPCs and endothelial function in premenopausal patients with HHcy are preserved, which was associated with retained NO production. The recuperated endothelial repair capacity is possibly the potential mechanism interpreting cardiovascular protection in premenopausal women with HHcy.
Collapse
|
8
|
Kumar M, Sandhir R. Hydrogen sulfide attenuates hyperhomocysteinemia-induced mitochondrial dysfunctions in brain. Mitochondrion 2019; 50:158-169. [PMID: 31751655 DOI: 10.1016/j.mito.2019.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/04/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022]
Abstract
Hyperhomocysteinemia (HHcy) has been implicated in the development of neurodegenerative conditions and mild cognitive disorders. Mitochondrial dysfunctions are the major mechanisms involved in homocysteine (Hcy)-induced neurotoxicity. Although, hydrogen sulfide has been reported as potent antioxidant, its effects on Hcy-induced mitochondrial dysfunctions have not been studied. Therefore, the present study has been designed to evaluate the protective effect of NaHS on Hcy-induced mitochondrial dysfunctions in brain. NaHS supplementation decreased reactive oxygen species and nitrite levels in the cortex and hippocampus of animals with HHcy. NaHS supplementation increased the activity of mitochondrial electron transport chain components; NADH dehydrogenase, cytochrome c oxidase and F0-F1 ATPase in the cortex and hippocampus of HHcy animals along with in-gel activity of complex I - complex V in the mitochondria isolated from the cortex and hippocampus of HHcy animals. Moreover, NaHS supplementation also increased the mitochondrial complex I, II and IV mediated oxygen consumption rate in Hcy treated mitochondria. NaHS administration prevented the Hcy-induced mitochondrial damage as suggested by the decreased mitochondrial swelling in the cortex and hippocampus of HHcy animals. NaHS supplementation decreased the activity of lactate dehydrogenase isozymes (1-5) in the brain regions of HHcy animals. The expression of protein kinase c δ was also decreased in the brain regions of HHcy animals following NaHS supplementation. This was accompanied by reduced activity of caspase-3 indicating anti-apoptotic effect of H2S. Taken together, the findings suggest that H2S supplementation ameliorates Hcy-induced oxidative stress and mitochondrial dysfunctions suggesting H2S releasing drugs may be a novel therapeutic approach to treat HHcy associated neurological disorders.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
9
|
Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function. PLoS One 2018; 13:e0202919. [PMID: 30204759 PMCID: PMC6133366 DOI: 10.1371/journal.pone.0202919] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/07/2018] [Indexed: 01/22/2023] Open
Abstract
Background During normal pregnancy, placental oxidative stress (OS) is present during all three trimesters and is necessary to obtain normal cell function. However, if OS reaches a certain level, pregnancy complications might arise. In preeclampsia (PE), a dangerous pregnancy specific hypertensive disorder, OS induced in the ischemic placenta causes a systemic inflammatory response and activates maternal endothelial cells. In this study, we aimed to quantify superoxide concentrations (as a measure of systemic OS) using electron paramagnetic resonance (EPR) and correlate them to markers of systemic inflammation, iron status and vascular function. Methods Fifty-nine women with a healthy pregnancy (HP), 10 non-pregnant controls (NP) and 28 PE patients (32±3.3weeks) were included. During HP, blood samples for superoxide, neutrophil to lymphocyte ratio (NLR), mean platelet volume (MPV) and iron status were taken at 10, 25 and 39 weeks. Vascular measurements for arterial stiffness (carotid-femoral pulse wave velocity (CF-PWV), augmentation index (AIx), augmentation Pressure (AP)) and microvascular endothelial function (reactive hyperemia index (RHI)) were performed at 35 weeks. In PE, all measurements were performed at diagnosis. CMH (1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine) was used as spin probe for EPR, since the formed CM radical corresponds to the amount of superoxide. Results Superoxide concentration remains stable during pregnancy (p = 0.92), but is significantly higher compared to the NP controls (p<0.0001). At 25 weeks, there is a significant positive correlation between superoxide and ferritin concentration. (p = 0.04) In PE, superoxide, systemic inflammation and iron status are much higher compared to HP (all p<0.001). During HP, superoxide concentrations correlate significantly with arterial stiffness (all p<0.04), while in PE superoxide is significantly correlated to microvascular endothelial function (p = 0.03). Conclusions During HP there is an increased but stable oxidative environment, which is correlated to ferritin concentration. If superoxide levels increase, there is an augmentation in arterial stiffness. In PE pregnancies, systemic inflammation and superoxide concentrations are higher and result in a deterioration of endothelial function. Together, these findings support the hypothesis that vascular function is directly linked to the amount of OS and that measurement of OS in combination with vascular function tests might be used in the prediction of PE.
Collapse
|
10
|
Vascular endothelium dysfunction: a conservative target in metabolic disorders. Inflamm Res 2018; 67:391-405. [PMID: 29372262 DOI: 10.1007/s00011-018-1129-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 12/27/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022] Open
Abstract
AIM Vascular endothelium plays a role in capillary transport of nutrients and drugs and regulates angiogenesis, homeostasis, as well as vascular tone and permeability as a major regulator of local vascular homeostasis. The present study has been designed to investigate the role of endothelium in metabolic disorders. METHODS The endothelium maintains the balance between vasodilatation and vasoconstriction, procoagulant and anticoagulant, prothrombotic and antithrombotic mechanisms. RESULTS Diabetes mellitus causes the activation of aldose reductase, polyol pathway and advanced glycation-end-product formation that collectively affect the phosphorylation status and expression of endothelial nitric oxide synthatase (eNOS) and causes vascular endothelium dysfunction. Elevated homocysteine levels have been associated with increase in LDL oxidation, generation of hydrogen peroxides, superoxide anions that increased oxidative degradation of nitric oxide. Hyperhomocysteinemia has been reported to increase the endogenous competitive inhibitors of eNOS viz L-N-monomethyl arginine (L-NMMA) and asymmetric dimethyl arginine (ADMA) that may contribute to vascular endothelial dysfunction. Hypercholesterolemia stimulates oxidation of LDL cholesterol, release of endothelins, and generation of ROS. The increased cholesterol and triglyceride level and decreased protective HDL level, decreases the activity and expression of eNOS and disrupts the integrity of vascular endothelium, due to oxidative stress. Hypertension also stimulates release of endothelins, vasoconstrictor prostanoids, angiotensin II, inflammatory cytokines, xanthine oxidase and, thereby, reduces bioavailability of nitric oxide. CONCLUSION Thus, the cellular and molecular mechanisms underlying diabetes mellitus, hyperhomocysteinemia, hypercholesterolemia hypertension and hyperuricemia leads to an imbalance of phosphorylation and dephosphorylation status of lipid and protein kinase that cause modulation of vascular endothelial L-arginine/nitric oxide synthetase (eNOS), to produce vascular endothelium dysfunction.
Collapse
|
11
|
Piao L, Zhao G, Zhu E, Inoue A, Shibata R, Lei Y, Hu L, Yu C, Yang G, Wu H, Xu W, Okumura K, Ouchi N, Murohara T, Kuzuya M, Cheng XW. Chronic Psychological Stress Accelerates Vascular Senescence and Impairs Ischemia-Induced Neovascularization: The Role of Dipeptidyl Peptidase-4/Glucagon-Like Peptide-1-Adiponectin Axis. J Am Heart Assoc 2017; 6:e006421. [PMID: 28963101 PMCID: PMC5721852 DOI: 10.1161/jaha.117.006421] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Exposure to psychosocial stress is a risk factor for cardiovascular disease, including vascular aging and regeneration. Given that dipeptidyl peptidase-4 (DPP4) regulates several intracellular signaling pathways associated with the glucagon-like peptide-1 (GLP-1) metabolism, we investigated the role of DPP4/GLP-1 axis in vascular senescence and ischemia-induced neovascularization in mice under chronic stress, with a special focus on adiponectin -mediated peroxisome proliferator activated receptor-γ/its co-activator 1α (PGC-1α) activation. METHODS AND RESULTS Seven-week-old mice subjected to restraint stress for 4 weeks underwent ischemic surgery and were kept under immobilization stress conditions. Mice that underwent ischemic surgery alone served as controls. We demonstrated that stress impaired the recovery of the ischemic/normal blood-flow ratio throughout the follow-up period and capillary formation. On postoperative day 4, stressed mice showed the following: increased levels of plasma and ischemic muscle DPP4 and decreased levels of GLP-1 and adiponectin in plasma and phospho-AMP-activated protein kinase α (p-AMPKα), vascular endothelial growth factor, peroxisome proliferator activated receptor-γ, PGC-1α, and Sirt1 proteins and insulin receptor 1 and glucose transporter 4 genes in the ischemic tissues, vessels, and/or adipose tissues and numbers of circulating endothelial CD31+/c-Kit+ progenitor cells. Chronic stress accelerated aortic senescence and impaired aortic endothelial sprouting. DPP4 inhibition and GLP-1 receptor activation improved these changes; these benefits were abrogated by adiponectin blocking and genetic depletion. CONCLUSIONS These results indicate that the DPP4/GLP-1-adiponectin axis is a novel therapeutic target for the treatment of vascular aging and cardiovascular disease under chronic stress conditions.
Collapse
MESH Headings
- Adiponectin/metabolism
- Animals
- Cells, Cultured
- Cellular Senescence
- Chronic Disease
- Dipeptidyl Peptidase 4/deficiency
- Dipeptidyl Peptidase 4/genetics
- Dipeptidyl Peptidase 4/metabolism
- Disease Models, Animal
- Endothelial Progenitor Cells/enzymology
- Endothelial Progenitor Cells/pathology
- Glucagon-Like Peptide 1/metabolism
- Ischemia/enzymology
- Ischemia/genetics
- Ischemia/pathology
- Ischemia/physiopathology
- Male
- Mice, Inbred C57BL
- Neovascularization, Physiologic
- PPAR gamma/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Proteolysis
- Rats, Inbred F344
- Rats, Transgenic
- Receptors, Adiponectin/metabolism
- Signal Transduction
- Stress, Psychological/enzymology
- Stress, Psychological/genetics
- Stress, Psychological/pathology
- Stress, Psychological/physiopathology
- Time Factors
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Limei Piao
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Guangxian Zhao
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Enbo Zhu
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Aiko Inoue
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rei Shibata
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yanna Lei
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Lina Hu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Public Health, Guilin Medical College, Guilin, Guangxi Province, China
| | - Chenglin Yu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Guang Yang
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Hongxian Wu
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Cardiology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhu Xu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Kenji Okumura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noriyuki Ouchi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masafumi Kuzuya
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
12
|
Hybrid Nitric Oxide Donor and its Carrier for the Treatment of Peripheral Arterial Diseases. Sci Rep 2017; 7:8692. [PMID: 28821752 PMCID: PMC5562917 DOI: 10.1038/s41598-017-08441-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/12/2017] [Indexed: 01/20/2023] Open
Abstract
Nitric oxide (NO) has been known to promote physiological angiogenesis to treat peripheral arterial diseases (PAD) by increasing the vascular endothelial growth factor (VEGF) level in endothelial cells (ECs) and preventing platelet adherence and leukocyte chemotaxis. However, the ongoing ischemic event during peripheral ischemia produces superoxide and diminishes the NO bioavailability by forming toxic peroxynitrite anion. Here we disclose an efficacious hybrid molecule 4-(5-Amino-1,2,3-oxadiazol-3-yl)-2,2,6,6-tetramethyl-1-piperidinol (SA-2) containing both antioxidant and NO donor functionalities that provide a therapeutic level of NO necessary to promote angiogenesis and to protect ECs against hydrogen peroxide-induced oxidative stress. Compound SA-2 scavenged reactive oxygen species, inhibited proliferation and migration of smooth muscle cells (SMCs) and promoted the tube formation from ECs. Copolymer poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with SA-2 provided a sustained release of NO over days, improved aqueous stability in serum, protected ECs against oxidative stress, and enhanced angiogenesis under stress conditions as compared to that of the control in the in vitro matrigel tube formation assay. These results indicated the potential use of SA-2 nanoparticles as an alternative therapy to treat PAD.
Collapse
|
13
|
Xiao X, Li L, Xu S, Mao M, Pan R, Li Y, Wu J, Huang L, Zheng X. Evaluation of velvet antler total protein effect on bone marrow‑derived endothelial progenitor cells. Mol Med Rep 2017; 16:3161-3168. [PMID: 28714033 PMCID: PMC5547914 DOI: 10.3892/mmr.2017.7019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/03/2017] [Indexed: 01/25/2023] Open
Abstract
Lu Rong, velvet antler (VA), is a traditional Chinese medicine, which is used as a food supplement and therapeutic drug in China, Japan, Russia, New Zealand and Southeast Asia. The regenerative characteristics of VA have resulted in great research interest, particularly regarding the fields of organ grafting and stem cell differentiation. Various VA proteomic studies verified that proteins act as the primary bioactive components of VA. The present study aimed to investigate if VA proteins (VA-pro) influence endothelial progenitor cell (EPC) viability. Various methods have previously been used to investigate VA-pro, including freeze-drying technology, ultrasonic wave methods, high performance liquid chromatography-mass spectrometry, EPCs extraction and culture. Results demonstrated that VA-pro promoted EPCs proliferation and migration, particularly at a concentration of 1 mg/ml. Furthermore, VA-pro increased the activation level of Notch1 intracellular domain and Hes1, and the level of phosphorylated-Akt and phosphorylated-mechanistic target of rapamycin. VA-pro may therefore affect EPC viability via regulation of the Notch and Akt signaling pathways. The present study revealed the effects and potential molecular mechanism of VA-pro on EPCs, and suggested an association between VA regeneration characteristics and the optimization of EPC viability. These findings may contribute to EPC transplantation research and aid in providing a novel treatment method for vascular diseases in the future.
Collapse
Affiliation(s)
- Xiang Xiao
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Lin Li
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Shuqiang Xu
- Emergency Office, National Health and Family Planning Commission of the People's Republic of China, Beijing 100044, P.R. China
| | - Min Mao
- Pharmaceutical Department, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Ruiyan Pan
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Yanjun Li
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Jiayun Wu
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Li Huang
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Xiaoyun Zheng
- Department of Senior Official Ward, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
14
|
Intrauterine growth restriction-induced deleterious adaptations in endothelial progenitor cells: possible mechanism to impair endothelial function. J Dev Orig Health Dis 2017; 8:665-673. [PMID: 28689502 DOI: 10.1017/s2040174417000484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intrauterine growth restriction (IUGR) can induce deleterious changes in the modulatory ability of the vascular endothelium, contributing to an increased risk of developing cardiovascular diseases in the long term. However, the mechanisms involved are not fully understood. Emerging evidence has suggested the potential role of endothelial progenitor cells (EPCs) in vascular health and repair. Therefore, we aimed to evaluate the effects of IUGR on vascular reactivity and EPCs derived from the peripheral blood (PB) and bone marrow (BM) in vitro. Pregnant Wistar rats were fed an ad libitum diet (control group) or 50% of the ad libitum diet (restricted group) throughout gestation. We determined vascular reactivity, nitric oxide (NO) concentration, and endothelial nitric oxide synthase (eNOS) protein expression by evaluating the thoracic aorta of adult male offspring from both groups (aged: 19-20 weeks). Moreover, the amount, functional capacity, and senescence of EPCs were assessed in vitro. Our results indicated that IUGR reduced vasodilation via acetylcholine in aorta rings, decreased NO levels, and increased eNOS phosphorylation at Thr495. The amount of EPCs was similar between both groups; however, IUGR decreased the functional capacity of EPCs from the PB and BM. Furthermore, the senescence process was accelerated in BM-derived EPCs from IUGR rats. In summary, our findings demonstrated the deleterious changes in EPCs from IUGR rats, such as reduced EPC function and accelerated senescence in vitro. These findings may contribute towards elucidating the possible mechanisms involved in endothelial dysfunction induced by fetal programming.
Collapse
|
15
|
Li H, Zheng L, Mo Y, Gong Q, Jiang A, Zhao J. Voltage-Dependent Anion Channel 1(VDAC1) Participates the Apoptosis of the Mitochondrial Dysfunction in Desminopathy. PLoS One 2016; 11:e0167908. [PMID: 27941998 PMCID: PMC5152834 DOI: 10.1371/journal.pone.0167908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/22/2016] [Indexed: 11/18/2022] Open
Abstract
Desminopathies caused by the mutation in the gene coding for desmin are genetically protein aggregation myopathies. Mitochondrial dysfunction is one of pathological changes in the desminopathies at the earliest stage. The molecular mechanisms of mitochondria dysfunction in desminopathies remain exclusive. VDAC1 regulates mitochondrial uptake across the outer membrane and mitochondrial outer membrane permeabilization (MOMP). Relationships between desminopathies and Voltage-dependent anion channel 1 (VDAC1) remain unclear. Here we successfully constructed the desminopathy rat model, evaluated with conventional stains, containing hematoxylin and eosin (HE), Gomori Trichrome (MGT), (PAS), red oil (ORO), NADH-TR, SDH staining and immunohistochemistry. Immunofluorescence results showed that VDAC1 was accumulated in the desmin highly stained area of muscle fibers of desminopathy patients or desminopathy rat model compared to the normal ones. Meanwhile apoptosis related proteins bax and ATF2 were involved in desminopathy patients and desminopathy rat model, but not bcl-2, bcl-xl or HK2.VDAC1 and desmin are closely relevant in the tissue splices of deminopathies patients and rats with desminopathy at protein lever. Moreover, apoptotic proteins are also involved in the desminopathies, like bax, ATF2, but not bcl-2, bcl-xl or HK2. This pathological analysis presents the correlation between VDAC1 and desmin, and apoptosis related proteins are correlated in the desminopathy. Furthermore, we provide a rat model of desminopathy for the investigation of desmin related myopathy.
Collapse
Affiliation(s)
- Huanyin Li
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
| | - Lan Zheng
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
| | - Yanqing Mo
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
| | - Qi Gong
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
| | - Aihua Jiang
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
| | - Jing Zhao
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
- * E-mail:
| |
Collapse
|
16
|
Malinovskaya NA, Komleva YK, Salmin VV, Morgun AV, Shuvaev AN, Panina YA, Boitsova EB, Salmina AB. Endothelial Progenitor Cells Physiology and Metabolic Plasticity in Brain Angiogenesis and Blood-Brain Barrier Modeling. Front Physiol 2016; 7:599. [PMID: 27990124 PMCID: PMC5130982 DOI: 10.3389/fphys.2016.00599] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022] Open
Abstract
Currently, there is a considerable interest to the assessment of blood-brain barrier (BBB) development as a part of cerebral angiogenesis developmental program. Embryonic and adult angiogenesis in the brain is governed by the coordinated activity of endothelial progenitor cells, brain microvascular endothelial cells, and non-endothelial cells contributing to the establishment of the BBB (pericytes, astrocytes, neurons). Metabolic and functional plasticity of endothelial progenitor cells controls their timely recruitment, precise homing to the brain microvessels, and efficient support of brain angiogenesis. Deciphering endothelial progenitor cells physiology would provide novel engineering approaches to establish adequate microfluidically-supported BBB models and brain microphysiological systems for translational studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alla B. Salmina
- Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| |
Collapse
|
17
|
Weber GJ, Pushpakumar S, Tyagi SC, Sen U. Homocysteine and hydrogen sulfide in epigenetic, metabolic and microbiota related renovascular hypertension. Pharmacol Res 2016; 113:300-312. [PMID: 27602985 DOI: 10.1016/j.phrs.2016.09.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022]
Abstract
Over the past several years, hydrogen sulfide (H2S) has been shown to be an important player in a variety of physiological functions, including neuromodulation, vasodilation, oxidant regulation, inflammation, and angiogenesis. H2S is synthesized primarily through metabolic processes from the amino acid cysteine and homocysteine in various organ systems including neuronal, cardiovascular, gastrointestinal, and kidney. Derangement of cysteine and homocysteine metabolism and clearance, particularly in the renal vasculature, leads to H2S biosynthesis deregulation causing or contributing to existing high blood pressure. While a variety of environmental influences, such as diet can have an effect on H2S regulation and function, genetic factors, and more recently epigenetics, also have a vital role in H2S regulation and function, and therefore disease initiation and progression. In addition, new research into the role of gut microbiota in the development of hypertension has highlighted the need to further explore these microorganisms and how they influence the levels of H2S throughout the body and possibly exploiting microbiota for use of hypertension treatment. In this review, we summarize recent advances in the field of hypertension research emphasizing renal contribution and how H2S physiology can be exploited as a possible therapeutic strategy to ameliorate kidney dysfunction as well as to control blood pressure.
Collapse
Affiliation(s)
- Gregory J Weber
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY 40202, United States
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY 40202, United States
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY 40202, United States
| | - Utpal Sen
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY 40202, United States.
| |
Collapse
|