1
|
Sojar H, Baron S, Hicar MD. Identification of a mimotope of a complex gp41 human immunodeficiency virus epitope related to a non-structural protein of Hepacivirus previously implicated in Kawasaki disease. Microbiol Spectr 2025; 13:e0191124. [PMID: 40162760 PMCID: PMC12054109 DOI: 10.1128/spectrum.01911-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/23/2025] [Indexed: 04/02/2025] Open
Abstract
Current HIV vaccine strategies are hampered by difficulty with recapitulating heavily mutated broadly neutralizing antibodies. We have previously isolated a highly mutated antibody termed "group C 76-Q13-6F5" (6F5) that uses immunoglobulin heavy chain variable region (VH)1-02. 6F5 targets a conformational epitope on HIV gp41 and mediates Ab-dependent cell cytotoxicity (ADCC). Reverting the group C 76 antibodies' variable chain to VH1-02 germline in antibody 76Canc showed retained ADCC activity. A vaccine targeting an epitope functionally recognized by germline antibodies offers a distinct advantage. Due to the 76Canc germline antibody ability to retain anti-HIV function, we sought to identify a protein target that could form the basis of a vaccine. 76Canc specifically recognized a number of acidic peptides on a microarray containing 29,127 linear peptides. Meme analysis identified a peptide sequence similar to a non-structural protein of Hepacivirus previously implicated in Kawasaki disease (KD). Binding was confirmed to significant peptides, including the Hepacivirus-related and KD-related peptide. On serum competition studies using samples from children with KD compared to controls, targeting of this epitope showed no specific correlation to the clinical syndrome of KD. Yeast-displayed human protein microarray autoantigen screening was also reassuring. This study identifies a peptide that can mimic the gp41 epitope targeted by 76C group antibodies (i.e., a mimotope). We show little risk of autoimmune targeting inclusive of inflammation similar to KD, implying non-specific humoral immunity targeting of similar peptides during KD. Development of an HIV vaccine based on such peptides should proceed, but with continued caution. IMPORTANCE The development of protective HIV vaccines continues to remain a significant challenge. Many of the broadly neutralizing antibodies require a significant number of mutations, suggesting that traditional vaccines will not be able to recapitulate these types of responses. We have discovered an antibody that has Ab dependent cell cytotoxicity (ADCC) activity against HIV even when mutating the heavy chain of that antibody to germline. As a potential target for vaccines, this offers a distinct advantage: a few immunizations should directly stimulate B cells harboring those specific germline variable chains for expansion. This study sought to identify potential peptide targets that could be formulated into such a vaccine. We identified a peptide that both germline and mature antibodies can recognize. Initial autoantigen screens and consideration of inflammatory disorders suggest this identified antigen is a feasible approach to move forward into pre-clinical models.
Collapse
Affiliation(s)
- Hakimuddin Sojar
- Department of Pediatrics, University at Buffalo, Buffalo, New York, USA
| | - Sarah Baron
- Department of Pediatrics, University at Buffalo, Buffalo, New York, USA
| | - Mark D. Hicar
- Department of Pediatrics, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
2
|
Sojar H, Baron S, Hicar MD. Identification of a mimotope of a complex gp41 Human Immunodeficiency VIrus epitope related to a non-structural protein of Hepacivirus previously implicated in Kawasaki disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600771. [PMID: 38979252 PMCID: PMC11230383 DOI: 10.1101/2024.06.26.600771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background We have previously isolated a highly mutated VH1-02 antibody termed group C 76-Q13-6F5 (6F5) that targets a conformational epitope on gp41. 6F5 has the capacity to mediate Ab dependent cell cytotoxicity (ADCC). When the VH1-02 group C 76 antibodies variable chain sequence was reverted to germline (76Canc), this still retained ADCC activity. Due to this ability for the 76Canc germline antibody to functionally target this epitope, we sought to identify a protein target for vaccine development. Methods Initially, we interrogated peptide targeting by screening a microarray containing 29,127 linear peptides. Western blot and ELISAs were used to confirm binding and explore human serum targeting. Autoimmune targeting was further interrogated on a yeast-displayed human protein microarray. Results 76Canc specifically recognized a number of acidic peptides. Meme analysis identified a peptide sequence similar to a non-structural protein of Hepacivirus previously implicated in Kawasaki disease (KD). Binding was confirmed to top peptides, including the Hepacivirus-related and KD-related peptide. On serum competitions studies using samples from children with KD compared to controls, targeting of this epitope showed no specific correlation to having KD. Human protein autoantigen screening was also reassuring. Conclusions This study identifies a peptide that can mimic the gp41 epitope targeted by 76C group antibodies (i.e. a mimotope). We show little risk of autoimmune targeting including any inflammation similar to KD, implying non-specific targeting of this peptide during KD. Development of such peptides as the basis for vaccination should proceed cautiously.
Collapse
Affiliation(s)
- Hakimuddin Sojar
- Department of Pediatrics, University at Buffalo, Buffalo, New York, USA
| | - Sarah Baron
- Department of Pediatrics, University at Buffalo, Buffalo, New York, USA
| | - Mark D Hicar
- Department of Pediatrics, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
3
|
Klug G, Cole FM, Hicar MD, Watt C, Peters T, Pincus SH. Identification of Anti-gp41 Monoclonal Antibodies That Effectively Target Cytotoxic Immunoconjugates to Cells Infected with Human Immunodeficiency Virus, Type 1. Vaccines (Basel) 2023; 11:vaccines11040829. [PMID: 37112741 PMCID: PMC10144985 DOI: 10.3390/vaccines11040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
We are developing cytotoxic immunoconjugates (CICs) targeting the envelope protein (Env) of the Human Immunodeficiency Virus, type 1 (HIV) to purge the persistent reservoirs of viral infection. We have previously studied the ability of multiple monoclonal antibodies (mAbs) to deliver CICs to an HIV-infected cell. We have found that CICs targeted to the membrane-spanning gp41 domain of Env are most efficacious, in part because their killing is enhanced in the presence of soluble CD4. The ability of a mAb to deliver a CIC does not correlate with its ability to neutralize nor mediate Ab-dependent cellular cytotoxicity. In the current study, we seek to define the most effective anti-gp41 mAbs for delivering CICs to HIV-infected cells. To do this, we have evaluated a panel of human anti-gp41 mAbs for their ability to bind and kill two different Env-expressing cell lines: persistently infected H9/NL4-3 and constitutively transfected HEK293/92UG. We measured the binding and cytotoxicity of each mAb in the presence and absence of soluble CD4. We found that mAbs to the immunodominant helix-loop-helix region (ID-loop) of gp41 are most effective, whereas neutralizing mAbs to the fusion peptide, gp120/gp41 interface, and the membrane proximal external region (MPER) are relatively ineffective at delivering CICs. There was only a weak correlation between antigen exposure and killing activity. The results show that the ability to deliver an effective IC and neutralization are distinct functions of mAbs.
Collapse
Affiliation(s)
- Grant Klug
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Frances M Cole
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Mark D Hicar
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, Buffalo, NY 14203, USA
| | - Connie Watt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Tami Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Seth H Pincus
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
4
|
DeCotes D, Baron S, Hoffman J, Garrett M, Sojar H, Hicar MD. Highly mutated monoclonal antibody 3F2 targets a conformational and strain-restricted epitope in human immunodeficiency virus gp41 with significant antibody-dependent cell cytotoxicity. Arch Virol 2022; 167:2193-2201. [PMID: 35871426 PMCID: PMC9308897 DOI: 10.1007/s00705-022-05518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022]
Abstract
Identifying epitope targets by studying the native antibody (Ab) response can identify potential novel vaccine constructs. Studies suggest that long-term non-progressor (LTNP) subjects have inherent immune mechanisms that help to control viremia and disease progression. To explore a role for antibodies (Abs) in LTNP progression, our lab has previously characterized a number of highly mutated Abs that target conformational epitopes of the human immunodeficiency virus (HIV) envelope protein from a single LTNP subject (10076). One Ab clone, 10076-Q3-2C6, had significant cross-clade Ab-dependent cell cytotoxicity. To assess if other LTNP subjects produced similar Abs, we expressed another highly mutated Ab from another subject; subject 10002, clone 10002-Q1-3F2 (variable heavy chain, 63.2% amino acid sequence identity to predicted germline). After expression with its native light chain, the recombinant Ab 3F2 bound to the trimeric envelope protein of HIV (trimer), as well as to the ectodomain of gp41. 3F2 binding to gp41 peptide libraries was consistent with non-linear epitope binding and showed possible overlap with the epitope of 2C6. Ab competition assays suggested that 3F2 may bind near the immunodominant epitope 1 loop region (ID1) of gp41. 2C6 blocked the binding of ID1-loop-binding Abs and 3F2 to the trimer, but 3F2 failed to block 2C6 binding. Together, these results suggest that 3F2 binds to a non-linear conformational epitope primarily localized between the epitope of 2C6 and the ID1. Since they are targeted by functional Abs, a more complete understanding of these ID1 and near-ID1 epitopes may be exploited in future immunization strategies.
Collapse
Affiliation(s)
- Devin DeCotes
- Department of Pediatrics, University at Buffalo, 6072 UB CTRC, 875 Ellicott Street, Buffalo, New York, 14203, USA
| | - Sarah Baron
- Department of Pediatrics, University at Buffalo, 6072 UB CTRC, 875 Ellicott Street, Buffalo, New York, 14203, USA
| | - Jonathon Hoffman
- Department of Pediatrics, University at Buffalo, 6072 UB CTRC, 875 Ellicott Street, Buffalo, New York, 14203, USA
| | - Meghan Garrett
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. P.0. Box 19024, Seattle, WA, 98109-1024, USA
| | - Hakimuddin Sojar
- Department of Pediatrics, University at Buffalo, 6072 UB CTRC, 875 Ellicott Street, Buffalo, New York, 14203, USA
| | - Mark D Hicar
- Department of Pediatrics, University at Buffalo, 6072 UB CTRC, 875 Ellicott Street, Buffalo, New York, 14203, USA.
| |
Collapse
|
5
|
Monteiro A, Chang AJ, Welliver RR, Baron S, Hicar MD. Humoral cross-coronavirus responses against the S2 region in children with Kawasaki disease. Virology 2022; 575:83-90. [PMID: 36088793 PMCID: PMC9437773 DOI: 10.1016/j.virol.2022.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022]
Abstract
Multisystem Inflammatory Syndrome in Children (MIS-C), a post infectious complication of SARS CoV-2 infection, shares enough features with Kawasaki Disease (KD) that some have hypothesized cross-coronavirus (CoV) immunity may explain the shared pathology. Recent studies have shown that humoral cross-reactivity of the CoVs, particularly of OC43, is focused on the S2 region of the Spike protein. Due to efforts utilizing CoV S2 regions to produce a cross-CoV vaccine, we wished to assess SARS-CoV-2 S2 reactivity in children with KD and assess if cardiac involvement in KD correlated with S2 CoV antibody targeting. The presence of cross-reactivity does not distinguish KD from febrile controls and does not correlate with cardiac involvement in KD. These findings support that, in relation to cardiac vascular inflammation, vaccines targeting the S2 region appear to be a safe approach, but there is disparity in the ability of CoV species to raise cross-reactive S2 targeted antibodies.
Collapse
Affiliation(s)
- Ajit Monteiro
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Arthur J Chang
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - R Ross Welliver
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Sarah Baron
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Mark D Hicar
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
6
|
Wrotniak BH, Garrett M, Baron S, Sojar H, Shon A, Asiago-Reddy E, Yager J, Kalams S, Croix M, Hicar MD. Antibody dependent cell cytotoxicity is maintained by the unmutated common ancestor of 6F5, a Gp41 conformational epitope targeting antibody that utilizes heavy chain VH1-2. Vaccine 2022; 40:4174-4181. [PMID: 35688727 DOI: 10.1016/j.vaccine.2022.05.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 11/21/2022]
Abstract
In studies on monoclonal IgG antibodies (mAbs) from long-term non-progressors (LTNPs), our laboratory has previously described highly mutated Abs against a complex conformational epitope with contributions from both gp41 the N terminal and C terminal heptad repeat helices. Despite using the VH1-2 gene segment, known to contribute to some of the broadest neutralizing Abs against HIV, members of these Abs, termed group 76C Abs, did not exhibit broad neutralization. Because of the high number of mutations and use of VH1-2, our goal was to characterize the non-neutralizing functions of Abs of group 76C, to assess if targeting of the epitope correlates with LTNP, and to assess the maturation of these Abs by comparison to their predicted common ancestor. Serum competition assays showed group 76C Abs were enriched in LTNPs, in comparison to VRC-01. Specific group 76C clones 6F5 and 6F11, expressed as recombinant Abs, both have robust ADCC activity, despite their sequence disparity. Sequence analysis predicted the common ancestor of this clonal group would utilize the germline non-mutated variable gene. We produced a recombinant ancestor Ab (76Canc) with a heavy chain utilizing the germline variable gene sequence paired to the 6F5 light chain. Competition with group 76C recombinant Ab 6F5 confirms 76Canc binds HIV envelope constructs near the original group C epitope. 76Canc demonstrates comparable ADCC to 6F5 and 6F11 when using gp41 constructs of both clade B and clade C. The functional capability of Abs utilizing germline VH1-2 has implications for disease control and vaccine development.
Collapse
Affiliation(s)
- Brian H Wrotniak
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Meghan Garrett
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sarah Baron
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Hakimuddin Sojar
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Alyssa Shon
- Department of Medicine, University at Buffalo, Buffalo, NY, USA
| | | | - Jessica Yager
- Department of Medicine, SUNY Downstate, New York City, NY, USA
| | - Spyros Kalams
- Department of Internal Medicine, Vanderbilt University, Nashville, TN, USA
| | - Michael Croix
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Mark D Hicar
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
7
|
Smith M, Hoffman J, Sojar H, Aalinkeel R, Hsiao CB, Hicar MD. Assessment of Antibody Interference of Enfuvirtide (T20) Function Shows Assay Dependent Variability. Curr HIV Res 2019; 16:404-415. [PMID: 30836922 PMCID: PMC6710457 DOI: 10.2174/1570162x17666190228154850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023]
Abstract
Background: During HIV infection, fusion of the viral and cellular membranes is dependent on folding of the gp41 trimer into a six-helix bundle. Fusion inhibitors, such as the antiretroviral Enfuvirtide (T20), interfere with the formation of the gp41 six-helix bundle. Recent in vitro studies reveal that the gp41 immunodominant region one targeting antibody 3D6 can block T20 interference, but the clinical and pathophysiologic significance of this finding is unclear. Objective/Method: We have previously characterized a number of antibodies that target conformational epitopes on gp41and herein characterized their ability to interfere with T20 in multiple assays and assess their prevalence in HIV infected subjects. Results: The T20 interference by antibody 3D6 was confirmed in a CHO-HXB2 envelope/ HeLaT4+ cell culture assay. Antibodies that target an immunodominant region one epitope, as well as a gp41 discontinuous epitope, also interfered in this assay, however, not all antibodies that targeted these epitopes showed T20 interference. This response was not due to the direct binding of T20 by the antibodies and could not be replicated utilizing TZM-bl and HL2/3 cells. Notably, serum competition studies on a panel of HIV subjects demonstrate that these conformational targeting antibodies are common in the HIV population. Conclusion: The relatively common nature of antibodies targeting these epitopes, the disparate in vitro results, and lack of reported clinical failures ascribed to such antibodies leads us to conclude that antibody interference of T20 is likely not clinically relevant. However, this warrants continued consideration with the advancement of other fusion inhibitors.
Collapse
Affiliation(s)
- Michele Smith
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jonathon Hoffman
- Department of Pediatrics, Division of Infectious Diseases, University at Buffalo, Buffalo, NY, United States
| | - Hakimuddin Sojar
- Department of Pediatrics, Division of Infectious Diseases, University at Buffalo, Buffalo, NY, United States
| | - Ravikumar Aalinkeel
- Jacobs School of Medicine and Biomedical Sciences, Department of Medicine, Division of Allergy Immunology and Rheumatology, University at Buffalo, Buffalo, NY, United States
| | - Chiu-Bin Hsiao
- Temple University School of Medicine, Pittsburgh, PA, United States.,Allegheny General Hospital, Pittsburgh, PA, United States
| | - Mark Daniel Hicar
- Department of Pediatrics, School of Medicine and Biomedical Sciences, University at Buffalo, NY, United States
| |
Collapse
|
8
|
Monoclonal Antibody 2C6 Targets a Cross-Clade Conformational Epitope in gp41 with Highly Active Antibody-Dependent Cell Cytotoxicity. J Virol 2019; 93:JVI.00772-19. [PMID: 31217246 DOI: 10.1128/jvi.00772-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Previous studies in our laboratory characterized a panel of highly mutated HIV-specific conformational epitope-targeting antibodies (Abs) from a panel of HIV-infected long-term nonprogressors (LTNPs). Despite binding HIV envelope protein and having a high number of somatic amino acid mutations, these Abs had poor neutralizing activity. Because of the evidence of antigen-driven selection and the long CDR3 region (21 amino acids [aa]), we further characterized the epitope targeting of monoclonal Ab (MAb) 76-Q3-2C6 (2C6). We confirmed that 2C6 binds preferentially to trimeric envelope and recognizes the clades A, B, and C SOSIP trimers. 2C6 binds gp140 constructs of clades A, B, C, and D, suggesting a conserved binding site that we localized to the ectodomain of gp41. Ab competition with MAb 50-69 suggested this epitope localizes near aa 579 to 613 (referenced to HXB2 gp160). Peptide library scanning showed consistent binding in this region but to only a single peptide. Lack of overlapping peptide binding supported a nonlinear epitope structure. The significance of this site is supported by 2C6 having Ab-dependent cell cytotoxicity (ADCC) against envelope proteins from two clades. Using 2C6 and variants, alanine scanning mutagenesis identified three amino acids (aa 592, 595, and 596) in the overlapping region of the previously identified peptide. Additional amino acids at sites 524 and 579 were also identified, helping explain its conformational requirement. The fact that different amino acids were included in the epitope depending on the targeted protein supports the conclusion that 2C6 targets a native conformational epitope. When we mapped these amino acids on the trimerized structure, they spanned across oligomers, supporting the notion that the epitope targeted by 2C6 lies in a recessed pocket between two gp41 oligomers. A complete understanding of the epitope specificity of ADCC-mediating Abs is essential for developing effective immunization strategies that optimize protection by these Abs.IMPORTANCE This paper further defines the function and area of the HIV trimeric envelope protein targeted by the monoclonal antibody 2C6. 2C6 binding is influenced by amino acid mutations across two separate gp41 sections of the envelope trimer. This epitope is recognized on multiple clades (variant groups of circulating viruses) of gp41, gp140 trimers, and SOSIP trimers. For the clades tested, 2C6 has robust ADCC. As the target of 2C6 is available in the major clades of HIV and has robust ADCC activity, further definition and appreciation of targeting of antibodies similar to 2C6 during vaccine development should be considered.
Collapse
|
9
|
Chan SK, Lim TS. Immune Human Antibody Libraries for Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:61-78. [PMID: 29549635 DOI: 10.1007/978-3-319-72077-7_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The incident of two children in Europe who died of diphtheria due to a shortage of anti-toxin drugs has highlighted the need for alternative anti-toxins. Historically, antiserum produced from immunised horses have been used to treat diphtheria. Despite the potential of antiserum, the economical and medial concerns associated with the use of animal antiserum has led to its slow market demise. Over the years, new and emerging infectious diseases have grown to be a major global health threat. The emergence of drug-resistant superbugs has also pushed the boundaries of available therapeutics to deal with new infectious diseases. Antibodies have emerged as a possible alternative to combat the continuous onslaught of various infectious agents. The isolation of antibodies against pathogens of infectious diseases isolated from immune libraries utilising phage display has yielded promising results in terms of affinities and neutralizing activities. This chapter focuses on the concept of immune antibody libraries and highlights the application of immune antibody libraries to generate antibodies for various infectious diseases.
Collapse
Affiliation(s)
- Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia.
| |
Collapse
|