1
|
Li Y, Mei J, Xie J. Citral: Bioactivity, Metabolism, Delivery Systems, and Food Preservation Applications. Compr Rev Food Sci Food Saf 2025; 24:e70168. [PMID: 40391414 DOI: 10.1111/1541-4337.70168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 05/21/2025]
Abstract
Citral is a monoterpene aldehyde with a lemon flavor, comprising two isomers: geranyl aldehyde and neura. Citral's unique biological activities and lemonlike aroma have contributed to its widespread use in the food preservation industry. However, citral exhibits instability under various conditions, necessitating the development of several delivery systems to enhance its physicochemical stability and retard degradation. This article provides a comprehensive review of citral's structure, biological activities (including antimicrobial, antioxidant, anti-inflammatory, diabetes prevention, anticancer, and insect repellent properties), metabolism, stability, and delivery systems (such as spray drying, Pickering emulsions, nano-emulsions, and self-assembly), as well as its applications in food preservation. The advantages and limitations of these delivery systems are also discussed. Future research should explore opportunities to develop biopackaging films by integrating advanced technologies to achieve better monitoring and regulation of food freshness.
Collapse
Affiliation(s)
- Yingying Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| |
Collapse
|
2
|
Vinutha M, Manikandan A, Lakshmikanth RN, Shravani S, Divyashree B, Aishwarya K, Nagaraj MM. Molecular Docking and anti-MRSA effects of bioactive compounds from Cymbopogon. In Silico Pharmacol 2025; 13:73. [PMID: 40313477 PMCID: PMC12040786 DOI: 10.1007/s40203-025-00334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/27/2025] [Indexed: 05/03/2025] Open
Abstract
Molecular docking is an effective tool for screening bioactive compounds based on molecular mechanistic values. Efforts were taken to identify and screen plant secondary metabolites against Methicillin-Resistant Staphylococcus aureus (MRSA) using essential oil (EO) extracted from locally available species of Cymbopogon such as C. flexuosus, C. winterianus, and C. martinii. Hydro distillation of EO followed by GCMS characterization was accomplished. The library-generated compounds were docked against penicillin-binding protein 2a (PBP2a) (PDB ID: 3ZG5). We targeted PBP2a, a transpeptidase because it produces high-level resistance to MRSA against β-lactam antibiotics through its expression. Importantly, PBP2a catalyzes cell-wall cross-linking in the face of the defy by β-lactam antibiotics. A 100ns MD simulation was conducted to find the stability of the receptor-ligand complex. The anti-MRSA activity against different clinical isolates of MRSA was performed and the genetic similarity between the isolates of MRSA was analyzed through the RAPD technique which is a quick, cost-effective, and affordable technique. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00334-4.
Collapse
Affiliation(s)
- M. Vinutha
- Department of Biotechnology, M.S Ramaiah College of Arts, Science and Commerce, Bangalore, 54 India
| | - A. Manikandan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105 India
| | - R. N. Lakshmikanth
- Department of Biotechnology, M.S Ramaiah College of Arts, Science and Commerce, Bangalore, 54 India
| | - S. Shravani
- Department of Biotechnology, M.S Ramaiah College of Arts, Science and Commerce, Bangalore, 54 India
| | - B. Divyashree
- Department of Biotechnology, M.S Ramaiah College of Arts, Science and Commerce, Bangalore, 54 India
| | - K. Aishwarya
- Department of Biotechnology, M.S Ramaiah College of Arts, Science and Commerce, Bangalore, 54 India
| | - M. M. Nagaraj
- Department of Biotechnology, M.S Ramaiah College of Arts, Science and Commerce, Bangalore, 54 India
| |
Collapse
|
3
|
Liu Y, Han N, Meng F. Magnolia essential oil: a preliminary exploration of chemical composition and its antimicrobial and antioxidant potential. Front Microbiol 2025; 16:1509796. [PMID: 40276223 PMCID: PMC12018430 DOI: 10.3389/fmicb.2025.1509796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
In this study, the chemical composition of Magnolia essential oil (MEO) was analyzed using gas chromatography-mass spectrometry (GC-MS). The results indicated that terpenoids were the primary constituents, with the main components being 1,8-cineole (44.87%), (+)-citronellal (6.93%), and linalool (29.1%). The antibacterial activity of MEO against four target bacteria was confirmed through inhibition zone assays, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) tests. The bacterial growth curve demonstrated that MEO significantly inhibited bacterial growth and effectively delayed the logarithmic growth phase. Mechanistic studies suggested that MEO primarily acts in the initial stages of bacterial growth by disrupting the bacterial cell membrane, leading to substantial leakage of intracellular materials, impairing metabolic activities, inducing lipid peroxidation, and enhancing oxidative stress, thereby inhibiting normal bacterial proliferation. Furthermore, MEO's antioxidant properties were evaluated through its scavenging effects on DPPH and hydroxyl radicals, as well as its ferric reducing antioxidant power (FRAP). The findings revealed that MEO exhibited the strongest scavenging activity against DPPH radicals, followed by hydroxyl radical scavenging, with the FRAP results being comparatively weaker. These results suggest that MEO not only possesses potent antibacterial effects but also exhibits notable antioxidant activity, indicating potential for broader applications.
Collapse
Affiliation(s)
- Yingjie Liu
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Ningling Han
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
| | - Fanxin Meng
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
| |
Collapse
|
4
|
Sreepian PM, Popruk S, Rattanasinganchan P, Sreepian A. Comprehensive investigation of Litsea cubeba antibacterial and antifungal activities across solid, liquid, and vapor phases against key human pathogens. NARRA J 2025; 5:e1685. [PMID: 40352192 PMCID: PMC12059852 DOI: 10.52225/narra.v5i1.1685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/22/2025] [Indexed: 05/14/2025]
Abstract
The escalating global incidence of antimicrobial resistance poses a significant public health challenge. In response, exploring alternative antimicrobial agents, particularly derived from plants, becomes crucial to alleviate the selective pressure exerted by conventional antibiotics. The aim of this study was to characterize the composition of essential oil extracted from Litsea cubeba fruits and to evaluate its antimicrobial potential, along with its major compound, across solid, liquid, and vapor phases. The antimicrobial activity was assessed against a diverse range of human pathogenic Gram-positive bacteria (n = 8), Gram-negative bacteria (n = 34), filamentous fungi (n = 2), and yeast (n = 1). Disk diffusion, broth macrodilution, and vapor-phase diffusion methods were employed. This study found that all phases of L. cubeba essential oil and purified limonene exhibited broad-spectrum bactericidal and fungicidal activities (solid-phase: inhibition zone diameter (IZD) 19 mm vs 14 mm; liquid-phase: minimum inhibitory concentration (MIC) 2.0 mg/mL vs 4.0 mg/mL; vapor-phase: IZD 90 mm vs 45 mm), with superior efficacy against filamentous fungi and yeast compared to bacteria (solid-phase: IZD 90 mm vs 17.5 mm; liquid-phase: MIC 2.0 mg/mL vs 0.06 mg/mL; vapor-phase: IZD 90 mm vs 12.5 mm; all p-values<0.05). Among bacteria, solid-phase L. cubeba essential oil demonstrated increased activity against Staphylococcus saprophyticus and Acinetobacter Iwoffii whereas liquid-phase L. cubeba essential oil had optimal activity against Streptococcus agalactiae and Elizabethkingia meningoceptica. Notably, Trichophyton rubrum, Nannizzia gypsea, and Candida albicans displayed high susceptibility to all phases of L. cubeba essential oil. These findings highlight the potential activity of L. cubeba essential oil, across its various phases, as a promising alternative antimicrobial agent against medically significant pathogens, providing essential baseline information for further exploration and development of L. cubeba essential oil in the pursuit of combating antimicrobial resistance.
Collapse
Affiliation(s)
| | - Supaluk Popruk
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Apichai Sreepian
- Faculty of Medical Technology, Rangsit University, Pathum Thani, Thailand
| |
Collapse
|
5
|
Palafox-Rivera P, Tapia-Rodriguez MR, Lopez-Romero JC, Lugo-Flores MA, Quintero-Cabello KP, Silva-Espinoza BA, Cruz-Valenzuela MR, Nazzaro F, Ayala-Zavala JF. Exploring the potential of hydrolytic enzymes combined with antibacterial agents to disrupt pathogenic biofilms and disinfect released cells. BIOFOULING 2025; 41:131-143. [PMID: 39757560 DOI: 10.1080/08927014.2024.2435018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/31/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025]
Abstract
Biofilms are bacterial communities encapsulated in a self-produced extracellular polymeric matrix comprising carbohydrates, proteins, lipids, and DNA. This matrix provides structural integrity while significantly enhancing bacterial antibiotic resistance, presenting substantial disinfection challenges. The persistence of biofilm-associated infections and foodborne outbreaks underscores the need for more effective disinfection strategies. Conventional antibacterial agents often are less effective against biofilm-protected cells compared to their efficacy against planktonic (non-attached) bacteria. Integrating hydrolytic enzymes, such as cellulases, proteases, and DNases, into disinfection protocols offers a promising approach by breaking down the biofilm matrix to expose the bacteria. However, the follow-up use of antibacterial agents is important, as enzymes alone do not possess bactericidal properties. Unlike traditional disinfectants, natural antibacterial agents work synergistically with enzymes, enhancing biofilm disruption without compromising the enzymatic activity through oxidation. This review offers a comprehensive analysis of the current knowledge and potential of combining hydrolytic enzymes with disinfectants to disrupt biofilms and eradicate the released bacterial cells, emphasizing applications for clinical and foodborne pathogens.
Collapse
Affiliation(s)
- Patricia Palafox-Rivera
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| | - Melvin R Tapia-Rodriguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, Col. Centro, Ciudad Obregón, Sonora, México
| | - Julio Cesar Lopez-Romero
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Norte, Eleazar Ortiz Caborca, Sonora, México
| | - Marco A Lugo-Flores
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| | - Karen P Quintero-Cabello
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| | - Brenda A Silva-Espinoza
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| | - M Reynaldo Cruz-Valenzuela
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| | | | - J Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| |
Collapse
|
6
|
Aslam MN, Khaliq H, Zhao H, Moosa A, Maqsood A, Farooqi MA, Bilal MS, Mahmood T, Mukhtar T. Thymol as a Novel Plant-Derived Antibacterial Agent for Suppressing Xanthomonas citri pv. malvacearum in Cotton. Curr Microbiol 2025; 82:99. [PMID: 39836298 DOI: 10.1007/s00284-025-04077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Xanthomonas citri pv. malvacearum (Xcm) associated with bacterial blight disease is a significant and widespread pathogen affecting cotton worldwide. The excessive use of harmful chemicals to control plant pathogens has exerted a negative impact on environmental safety. Thymol is a monoterpene phenol present in the essential oils of plants belonging to Lamiaceae family. In this study the antimicrobial activity of thymol was evaluated against Xcm. The minimum inhibitory concentration (MIC) and 99.9% bactericidal concentration (MBC) of thymol against Xcm were 2 and 4 mg/mL, respectively. The effect of MIC and MBC of thymol against Xcm was assessed on the Luria-Bertani medium. The effect of thymol on intercellular ATP levels, membrane potential, and motility in Xcm was assessed using fluorescence spectrometry for membrane potential and firefly luciferase-based assay for ATP levels. Thymol ruptured the cellular membrane of Xcm, resulting in decreased intracellular ATP concentrations, intracellular leakage of genetic material, and changes in membrane potential. Scanning electron microscopy images supported the impact of thymol on the cell membrane of Xcm. Moreover, thymol inhibited the swimming motility and biofilm formation of Xcm at concentrations equal to or above the MIC and MBC. In contrast, sub-MIC concentrations of thymol had little to no impact on the virulence of Xcm. In conclusion, thymol demonstrated the potential as a strong bactericidal compound against Xcm.
Collapse
Affiliation(s)
- Muhammad Naveed Aslam
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Huma Khaliq
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hongwei Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ambreen Maqsood
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Aslam Farooqi
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Saqib Bilal
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Tahir Mahmood
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Tariq Mukhtar
- Department of Plant Pathology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan.
| |
Collapse
|
7
|
Begh MZA, Khan J, Al Amin M, Sweilam SH, Dharmamoorthy G, Gupta JK, Sangeetha J, Lokeshvar R, Nafady MH, Ahmad I, Alshehri MA, Emran TB. Monoterpenoid synergy: a new frontier in biological applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:103-124. [PMID: 39105799 DOI: 10.1007/s00210-024-03342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Monoterpenoids, compounds found in various organisms, have diverse applications in various industries. Their effectiveness is influenced by the oil's chemical composition, which in turn is influenced by plant genotype, environmental conditions, cultivation practices, and plant development stage. They are used in various industries due to their distinctive odor and taste, serving as ingredients, additives, insecticides, and repellents. These compounds have synergistic properties, resulting in superior combined effects over discrete ones, potentially beneficial for various health purposes. Many experimental studies have investigated their interactions with other ingredients and their antibacterial, insecticidal, antifungal, anticancer, anti-inflammatory, and antioxidant properties. This review discusses potential synergistic interactions between monoterpenoids and other compounds, their sources, and biological functions. It also emphasizes the urgent need for more research on their bioavailability and toxicity, underlining the importance and relevance of this comprehensive study in the current scientific landscape.
Collapse
Affiliation(s)
- Md Zamshed Alam Begh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Md Al Amin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - G Dharmamoorthy
- Department of Pharmaceutical Analysis, MB School of Pharmaceutical Sciences, Mohan Babu University (Erstwhile Sree Vidyaniketan College of Pharmacy), Tirupati, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - J Sangeetha
- Department of Pharmacognosy, Malla Reddy Institute of Pharmaceutical Sciences, Maisammaguda, Dhulapally, 500100, India
| | - R Lokeshvar
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, India
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| |
Collapse
|
8
|
Pié-Amill A, Colás-Medà P, Viñas I, Falcó I, Alegre I. Efficacy of an Edible Coating with Carvacrol and Citral in Frozen Strawberries and Blueberries to Control Foodborne Pathogens. Foods 2024; 13:3167. [PMID: 39410201 PMCID: PMC11476209 DOI: 10.3390/foods13193167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Adding essential oils in an edible coating could be an alternative for the food industry to control foodborne pathogens. In 2014, EFSA published a report highlighting the risk associated with Salmonella spp. and Norovirus in fresh and frozen berries. This study aimed to evaluate the efficacy of an edible coating (RP-7) with carvacrol and citral on reducing the population of Salmonella enterica, Escherichia coli O157:H7, Listeria monocytogenes, and murine Norovirus (MNV-1) in frozen strawberries and blueberries. Before evaluating the efficacy, the best method for applying the coating on fruit was studied. The immersion method was selected, with an optimal drying time of 45 min. After this, the berries were frozen and stored for one, two, three, four, and eight weeks at -18 °C. In strawberries, all bacteria were reduced to below 0.7 log cfu/strawberry in the eighth week, and the MNV-1 infectivity showed a reduction of nearly 2 logarithmic units. In blueberries, S. enterica and E. coli O157:H7 were reduced to 0.8 log cfu/blueberries within a week, and MNV-1 achieved a reduction of 0.8 logarithmic units at the end of the assay. The application of RP-7 affected the studied microorganisms in frozen strawberries and blueberries.
Collapse
Affiliation(s)
- Anna Pié-Amill
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain; (A.P.-A.); (P.C.-M.); (I.V.)
| | - Pilar Colás-Medà
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain; (A.P.-A.); (P.C.-M.); (I.V.)
| | - Inmaculada Viñas
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain; (A.P.-A.); (P.C.-M.); (I.V.)
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA), Centro Superior de Investigaciones Científicas (CSIC), Avda. Agustín Escardino 7, 46980 Paterna, Spain;
| | - Isabel Alegre
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain; (A.P.-A.); (P.C.-M.); (I.V.)
| |
Collapse
|
9
|
Hulankova R. Methods for Determination of Antimicrobial Activity of Essential Oils In Vitro-A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2784. [PMID: 39409654 PMCID: PMC11478843 DOI: 10.3390/plants13192784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
Essential oils (EOs) have been gaining popularity in the past decades among researchers due to their potential to replace conventional chemicals used in the fight against pests, pathogenic and spoilage microbes, and oxidation processes. EOs are complex mixtures with many chemical components, the content of which depends on many factors-not just the plant genus, species, or subspecies, but also chemotype, locality, climatic conditions, phase of vegetation, method of extraction, and others. Due to this fact, there is still much to study, with antimicrobial effect being one of the key properties of EOs. There are many methods that have been frequently used by researchers for in vitro evaluation; however, although the research has been going on for decades, an internationally accepted standard is still missing. Most of methods are based on time-proven standards used for the testing of antibiotics. Due to the specific properties of EOs and their components, such as volatility and hydrophobicity, many modifications of these standard procedures have been adopted. The aim of this review is to describe the most common methods and their modifications for the testing of antimicrobial properties of EOs and to point out the most controversial variables which can potentially affect results of the assays.
Collapse
Affiliation(s)
- Radka Hulankova
- Department of Hygiene and Technology of Food of Animal Origin and Gastronomy, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| |
Collapse
|
10
|
Faria JMS, Barbosa P. Cymbopogon citratus Allelochemical Volatiles as Potential Biopesticides against the Pinewood Nematode. PLANTS (BASEL, SWITZERLAND) 2024; 13:2233. [PMID: 39204667 PMCID: PMC11359173 DOI: 10.3390/plants13162233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Traditional pesticides are based on toxic compounds that can reduce biodiversity, degrade the environment, and contribute to less healthy living. Plant allelochemicals can provide more environmentally friendly and sustainable alternatives. Essential oils (EOs) are complex mixtures of plant secondary metabolites that show strong biological activities. In the present study, the EOs of Cymbopogon citratus were screened for activity against the pinewood nematode (PWN), the causal agent of pine wilt disease. To understand their nematicidal properties, EOs were fractioned into hydrocarbon molecules and oxygen-containing compounds, and their main compounds were acquired and tested separately against the PWN. The EO oxygen-containing molecules fraction was highly active against the PWN (EC50 = 0.279 µL/mL), with citral and geraniol showing higher activities (EC50 = 0.266 and 0.341 µL/mL, respectively) than emamectin benzoate (EC50 = 0.364 µL/mL), a traditional nematicide used against the PWN. These compounds were additionally reported to be less toxic to non-target organisms (fish, invertebrates, and algae) and safer to human health (with higher reported toxicity thresholds) and predicted to exert fewer environmental impacts than traditional nematicides. Resorting to approved natural compounds can quickly leverage the development of sustainable alternatives to traditional nematicides.
Collapse
Affiliation(s)
- Jorge M. S. Faria
- INIAV, I.P., National Institute for Agrarian and Veterinary Research, Quinta do Marquês, 2780-159 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Pedro Barbosa
- MED, Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Évora University, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
11
|
Jothi R, Gowrishankar S. Synergistic anti-virulence efficacy of citral and carvacrol against mixed vaginitis causing Candida albicans and Gardnerella vaginalis: An in vitro and in vivo study. J Antibiot (Tokyo) 2024; 77:436-453. [PMID: 38750249 DOI: 10.1038/s41429-024-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 06/28/2024]
Abstract
Mixed vaginitis due to bacterial vaginosis (BV) and vulvovaginal candidiasis (VVC) is the most prevalent form and presents a significant therapeutic challenge globally. Since, the administration of monotherapy leads to subsequent recurrent infections, synergistic therapy that completely eradicates both pathogens is of dire need to manage mixed vaginities scenario and to prevent its recurrence. The current investigation was focused on exploring the synergistic inhibitory efficacy of phytochemicals against the virulence traits of individual and mixed species of C. albicans and G. vaginalis in vitro and in vivo (Galleria mellonella). Out of five phytochemicals (carvacrol, thymol, cinnamaldehyde, eugenol, and borneol) screened for synergism with citral [(Ct) as the prime molecule owing to its myriad therapeutic potential], carvacrol (Ca) in combination with citral exhibited promising synergistic effect. Time-kill kinetics and one-minute contact-killing assays demonstrated the phenomenal microbicidal effect of Ct-Ca combination against both mono and dual-species within 30 min and one-minute time intervals, respectively. Furthermore, the sub-CMICs (synergistic combinatorial MIC) of Ct-Ca have significantly eradicated the mature biofilms and remarkably reduced the virulence attributes of both C. albicans and G. vaginalis (viz., yeast to hyphae transition, filamentation, protease production, and hydrophobicity index), in single and dual species states. The non-toxic nature of Ct-Ca combination was authenticated using in vitro (human erythrocyte cells) and in vivo (Galleria mellonella) models. In addition, the in vivo efficacy evaluation and subsequent histopathological investigation was done using the invertebrate model system G. mellonella, which further ascertained the effectiveness of Ct-Ca combination in fighting off the infection caused by individual and mixed species of C. albicans and G. vaginalis. Concomitantly, the current work is the first of its kind to delineate the in vitro interaction of C. albicans and G. vaginalis mixed species at their growth and biofilm states, together emphasizes the promising therapeutic potential of acclaimed phytochemicals as combinatorial synergistic therapy against mixed vaginitis.
Collapse
Affiliation(s)
- Ravi Jothi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Shanmugaraj Gowrishankar
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| |
Collapse
|
12
|
Wang Y, Rui W, Li Y, Han Y, Zhan X, Cheng S, Song L, Yang H, Jiang T, Liu G, Shi C. Inhibition and Mechanism of Citral on Bacillus cereus Vegetative Cells, Spores, and Biofilms. Foodborne Pathog Dis 2024; 21:447-457. [PMID: 38985570 DOI: 10.1089/fpd.2023.0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Bacillus cereus causes food poisoning by producing toxins that cause diarrhea and vomiting and, in severe cases, endocarditis, meningitis, and other diseases. It also tends to form biofilms and spores that lead to contamination of the food production environment. Citral is a potent natural antibacterial agent, but its antibacterial activity against B. cereus has not been extensively studied. In this study, we first determined the minimum inhibitory concentrations and minimum bactericidal concentrations, growth curves, killing effect in different media, membrane potential, intracellular adenosine triphosphate (ATP), reactive oxygen species levels, and morphology of vegetative cells, followed by germination rate, morphology, germination state of spores, and finally biofilm clearance effect. The results showed that the minimum inhibitory concentrations and minimum bactericidal concentrations of citral against bacteria ranged from 100 to 800 μg/mL. The lag phase of bacteria was effectively prolonged by citral, and the growth rate of bacteria was slowed down. Bacteria in Luria-Bertani broth were reduced to below the detection limit by citral at 800 μg/mL within 0.5 h. Bacteria in rice were reduced to 3 log CFU/g by citral at 4000 μg/mL within 0.5 h. After treatment with citral, intracellular ATP concentration was reduced, membrane potential was altered, intracellular reactive oxygen species concentration was increased, and normal cell morphology was altered. After treatment with citral at 400 μg/mL, spore germination rate was reduced to 16.71%, spore morphology was affected, and spore germination state was altered. It also had a good effect on biofilm removal. The present study showed that citral had good bacteriostatic activity against B. cereus vegetative cells and its spores and also had a good clearance effect on its biofilm. Citral has the potential to be used as a bacteriostatic substance for the control of B. cereus in food industry production.
Collapse
Affiliation(s)
- Yihong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wushuang Rui
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yilin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yan Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Tongyu Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Guorong Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Chadha J, Ahuja P, Mudgil U, Khullar L, Harjai K. Citral and triclosan synergistically silence quorum sensing and potentiate antivirulence response in Pseudomonas aeruginosa. Arch Microbiol 2024; 206:324. [PMID: 38913239 DOI: 10.1007/s00203-024-04059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Among the ESKAPE pathogens, Pseudomonas aeruginosa is an extensively notorious superbug that causes difficult-to-treat infections. Since quorum sensing (QS) directly promotes pseudomonal virulence, targeting QS circuits is a promising approach for disarming phenotypic virulence. Hence, this study scrutinizes the anti-QS, antivirulence, and anti-biofilm potential of citral (CiT; phytochemical) and triclosan (TcN; disinfectant), alone and in combination, against P. aeruginosa PAO1/PA14. The findings confirmed synergism between CiT and TcN and revealed their quorum quenching (QQ) potential. At sub-inhibitory levels, CiT-TcN combination significantly impeded pyocyanin, total bacterial protease, hemolysin, and pyochelin production alongside inhibiting biofilm formation in P. aeruginosa. Moreover, the QQ and antivirulence potential of CiT and TcN was positively correlated by molecular docking studies that predicted strong associations of the drugs with QS receptors of P. aeruginosa. Collectively, the study identifies CiT-TcN as an effective drug combination that harbors QQ, antivirulence, and anti-biofilm prospects against P. aeruginosa.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Prerna Ahuja
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Umang Mudgil
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
14
|
Wojtunik-Kulesza K, Rudkowska M, Klimek K, Agacka-Mołdoch M, Mołdoch J, Michalak A. Expanding Knowledge about the Influence of Citral on Cognitive Functions-In Vitro, In Vivo and Ex Vivo Studies. Int J Mol Sci 2024; 25:6866. [PMID: 38999975 PMCID: PMC11241199 DOI: 10.3390/ijms25136866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Citral, a common monoterpene found in numerous plants, is an interesting compound that has been shown to have various biological activities. Although it is widely distributed in nature and there are many studies presenting its biological activities, its anti-neurodegenerative activity, especially under in vivo conditions, is very poorly understood. Thus, this paper aimed to deepen knowledge about citral activity towards factors and symptoms of neurodegeneration. To accomplish this, several comprehensive tests were conducted, including the estimation of butyrylcholinesterase inhibition, the evaluation of hepatotoxicity and the detection of oxidative stress and lipid peroxidation in vitro, as well as an in vivo behavioral assessment using mice models. Additionally, ex vivo determination of level of the compound in the brain and blood of a tested animal was undertaken. The results obtained revealed that citral is able to inhibit butyrylcholinesterase activity and protect hepatic cells against oxidative stress and lipid peroxidation in vitro. Moreover, behavioral tests in vivo indicated that citral (50 mg/kg) improves memory processes associated with acquisition (passive avoidance test), both in acute and subchronic administration. Additionally, we found that the administration of citral at 25 mg/kg and 50 mg/kg did not significantly affect the locomotor activity. Beyond the aforementioned, gas chromatography-mass spectrometry analysis revealed the presence of the compound in the blood and brain after subchronic administration of citral. Taken together, the results obtained in vitro, in vivo and ex vivo clearly indicate that citral is a promising monoterpene that can potentially be used towards cognition improvement.
Collapse
Affiliation(s)
| | - Monika Rudkowska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4A Chodźki, 20-093 Lublin, Poland
| | - Katarzyna Klimek
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Monika Agacka-Mołdoch
- Department of Plant Breeding and Biotechnology, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4A Chodźki, 20-093 Lublin, Poland
| |
Collapse
|
15
|
Fotouh A, Abdel-Maguid DS, Abdelhaseib M, Zaki RS, Darweish M. Pathological and pharmacovigilance monitoring as toxicological imputations of azithromycin and its residues in broilers. Vet World 2024; 17:1271-1280. [PMID: 39077436 PMCID: PMC11283599 DOI: 10.14202/vetworld.2024.1271-1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/13/2024] [Indexed: 07/31/2024] Open
Abstract
Background and Aim The importance of monitoring antimicrobial residues in food is underlined by increasing worries about food safety and public health. The potential toxicity of azithromycin (Az) on broilers and its impact on chicken meat residues require further investigation. This study assesses Az's toxicity effects and associated risks in broiler chickens through evaluation. Materials and Methods One hundred and twenty chicks were distributed into four equal groups randomly. Each group received different daily oral doses of Az: 200 mg/kg for Az1, 100 mg/kg for Az2, and 50 mg/kg for Az3. The FAz group was given plain water. High-performance liquid chromatography was used to measure Az residue levels in muscle and liver. Oxidative markers (malondialdehyde [MDA], superoxide dismutase [SOD], catalase [CAT]), liver and kidney function tests, and histopathological examination were conducted. Results The levels of alanine aminotransferase and aspartate aminotransferase increased in Az1 and Az2 groups from 8 h to 3 days and decreased slightly in Az2 by 7 days, while they remained normal in Az3. The levels of uric acid and creatine in the Az1 and Az2 groups increased from 8 h to 3 days and subsequently decreased in Az2 by the 7th day. Az1 group showed the highest increase in MDA levels within 7 days. With higher Az doses, SOD and CAT levels showed a more significant decrease post-treatment. 9.1 μg/kg Az1 liver had the highest residues, whereas none were detected in muscle. Conclusion At higher doses, Az caused significant liver and kidney damage, whereas lower doses had negligible effects. Muscle tissue contains fewer Az residues than liver. Assessing risks and ensuring compliance with regulations necessitate constant surveillance of Az residues in food. The health implications and risk management insights necessitate further investigation into the long-term effects of Az residues.
Collapse
Affiliation(s)
- Ahmed Fotouh
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El Kharga, Egypt
- MBA, Marywood University, Pennsylvania, USA
| | - Doaa Safwat Abdel-Maguid
- Department of Forensic and Toxicology, Faculty of Veterinary Medicine, New Valley University, El Kharga, Egypt
| | - Maha Abdelhaseib
- Department of Food Hygiene, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Rania Samir Zaki
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, New Valley University, El Kharga, Egypt
| | - Marwa Darweish
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, 13736, Moshtohor, Toukh, Qaluiobia, Egypt
| |
Collapse
|
16
|
El Harati R, Fancello F, Multineddu C, Zara G, Zara S. Screening and In Silico Analyses of the Yeast Saccharomyces cerevisiae Σ1278b Bank Mutants Using Citral as a Natural Antimicrobial. Foods 2024; 13:1457. [PMID: 38790757 PMCID: PMC11119076 DOI: 10.3390/foods13101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The antimicrobial function of citral, one of the main compounds of the essential oils (EO) of the Citrus genus, and widely used by the food industry toward spoilage yeast, was previously proven. In this study, the possible mode of action of citral against yeast cells was evaluated by using a global deletome approach. Firstly, the suitability of Saccharomyces cerevisiae Σ1278b to serve as model yeast was assessed by determining its sensitivity to citral (MIC = 0.5 μL/mL). Subsequently, the complete library of Σ1278b haploid mutants deleted in 4019 non-essential genes was screened to identify potential molecular targets of citral. Finally, the deleted genes in the 590 mutants showing increased citral resistance was analyzed with an in-silico approach (Gene Ontology). The significantly enriched GO Terms were "cytoplasm", "vacuole", and "mitochondrion" (cellular components); "catalytic activity" (molecular function); "pseudohyphal growth" (biological process). For molecular function, resistant mutants were grouped into thiosulfate sulfur transferase activity, transferase activity, and oxidoreductase activity; for cellular components, resistant mutants were grouped as: cytoplasm, intracellular organelle, membrane-bounded organelle, mitochondrion, organelle membrane, and vacuole; and finally, with regard to biological process, deleted genes were grouped as: pseudohyphal growth, mitochondrion organization, lipid metabolic process, DNA recombination and repair, and proteolysis. Interestingly, many identified genes were associated with the cellular response to oxidative stress and ROS scavenging. These findings have important implications for the development of citral-based antimicrobials and the elucidation of its mechanism of action.
Collapse
Affiliation(s)
| | | | | | | | - Severino Zara
- Department di Agricultural Sciences, University of Sassari, 07100 Sassari, Italy; (R.E.H.); (F.F.); (C.M.); (G.Z.)
| |
Collapse
|
17
|
Marin VR, Zamuner CFC, Hypolito GB, Ferrarezi JH, Alleoni N, Caccalano MN, Ferreira H, Sass DC. Antibacterial activity of Cymbopogon species essential oils against Xanthomonas citri and their use in post-harvest treatment for citrus canker management. Lett Appl Microbiol 2024; 77:ovae041. [PMID: 38653726 DOI: 10.1093/lambio/ovae041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Citrus canker is a disease caused by the gram-negative bacterium Xanthomonas citri subp. citri (X. citri), which affects all commercially important varieties of citrus and can lead to significant losses. Fruit sanitization with products such as chlorine-based ones can reduce the spread of the disease. While effective, their use raises concerns about safety of the workers. This work proposes essential oils (EOs) as viable alternatives for fruit sanitization. EOs from Cymbopogon species were evaluated as to their antibacterial activity, their effect on the bacterial membrane, and their ability to sanitize citrus fruit. The in vitro assays revealed that the EOs from C. schoenanthus and C. citratus had a lower bactericidal concentration at 312 mg L-1, followed by 625 mg L-1 for C. martini and C. winterianus. Microscopy assay revealed that the bacterial cell membranes were disrupted after 15 min of contact with all EOs tested. Regarding the sanitizing potential, the EOs with higher proportions of geraniol were more effective in sanitizing acid limes. Fruit treated with C. shoenanthus and C. martini showed a reduction of ∼68% in the recovery of viable bacterial cells. Therefore, these EOs can be used as viable natural alternatives in citrus fruit disinfection.
Collapse
Affiliation(s)
- Vítor Rodrigues Marin
- São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, SP 13506-900, Brazil
| | | | | | | | - Natália Alleoni
- São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, SP 13506-900, Brazil
| | - Mario Nicolas Caccalano
- São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, SP 13506-900, Brazil
| | - Henrique Ferreira
- São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, SP 13506-900, Brazil
| | - Daiane Cristina Sass
- São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, SP 13506-900, Brazil
| |
Collapse
|
18
|
Fei P, Xu J, Xie J, Huang J, Feng H, Chen X, Jiang P, Guo M, Chang Y. Rosa roxburghii Tratt Pomace Crude Extract Inactivates Cronobacter sakazakii Isolated from Powdered Infant Formula. Foodborne Pathog Dis 2024; 21:268-274. [PMID: 38265446 DOI: 10.1089/fpd.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Cronobacter sakazakii is an important foodborne pathogen in powder infant formula (PIF). The objective of this study was to evaluate the inactivation effect of Rosa roxburghii Tratt pomace crude extract (RRPCE) on C. sakazakii isolated from PIF and to reveal the mechanism of action. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were used to evaluate the inhibitory activity of RRPCE against C. sakazakii. The inhibitory mechanism was revealed from the perspective of effects of RRPCE on intracellular adenosine 5'-triphosphate (ATP), reactive oxygen species (ROS), membrane potential, protein and nucleic acid leakage, and cell morphology of C. sakazakii. The inactivation effects of RRPCE on C. sakazakii in biofilms on stainless steel, tinplate, glass, silica gel, polyethylene terephthalate, and polystyrene to evaluate its potential as a natural disinfectant. The results showed that the MIC and MBC of RRPCE against C. sakazakii were 7.5 and 15 mg/mL, respectively. After treatments with RRPCE, intracellular ATP content decreased significantly while intracellular ROS level increased significantly (p < 0.05). The cell membrane depolarization, large leakage of proteins and nucleic acids, and severely damaged cell morphology also occurred in C. sakazakii treated with RRPCE. In addition, a 20-minute treatment with 2 MIC (15 mg/mL) of RRPCE could inactivate all C. sakazakii (from 6.10 to 6.40 CFU/mL) in biofilms on all six contact surfaces. Our findings suggest that RRPCE is ideal for the inactivation of C. sakazakii and has the potential to be used as a natural disinfectant for the inactivation of PIF packaging materials and containers.
Collapse
Affiliation(s)
- Peng Fei
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Jing Xu
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Jinlan Xie
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Jicheng Huang
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Hongxia Feng
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Xi Chen
- Institute of Integrated Agricultural Development Research, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Peiyi Jiang
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Mingliang Guo
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Yunhe Chang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| |
Collapse
|
19
|
Jothi R, Kamaladevi A, Muthuramalingam P, Malligarjunan N, Karutha Pandian S, Gowrishankar S. Untargeted metabolomics uncovers prime pathways linked to antibacterial action of citral against bacterial vaginosis-causing Gardnerella vaginalis: An in vitro and in vivo study. Heliyon 2024; 10:e27983. [PMID: 38545203 PMCID: PMC10966606 DOI: 10.1016/j.heliyon.2024.e27983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Global increase in recurrence of bacterial vaginosis (BV) and worrisome rise in antimicrobial resistance pose an urgent call for new/novel antibacterial agents. In light of the circumstance, the present study demonstrates the in vitro and in vivo antibacterial activity of a phytochemical citral, with a particular emphasis to elucidate its mechanistic action against Gardnerella vaginalis -a potential cause of BV. Out of 21 phytochemicals screened initially against G. vaginalis, citral was envisaged to be a phenomenal antibacterial agent showing MIC and MBC at 128 μg/mL. Citral's rapid killing ability was revealed by a time-killing kinetics assay supported by CFU, signifying that it completely killed the given inoculum of planktonic G. vaginalis cells within 60 min. Further, citral was found to exhibit 1 min contact-killing efficacy together with mature-biofilm disintegrating ability at increasing MICs. To further understand the molecular action of citral, in vitro investigations such as ROS estimation, PI staining and intracellular protein release assay were performed, which demonstrated that citral deteriorated the membrane integrity of G. vaginalis. Galleria mellonella, a simple invertebrate model used to evaluate citral's non-toxic and antibacterial activity in vivo, demonstrates that citral completely restored the larvae from G. vaginalis infection. The metabolite level investigation using LC-MS revealed that citral had negative impact on biotin metabolism (via., biotin), spermidine metabolism (via., 5'-methylthioadenosine and spermidine) and nucleotide metabolism (via., guanine, adenine and uridine). Since that biotin is associated with seven different metabolic pathways, it is conceivable that citral could target biotin biosynthesis or its metabolism and as a result, disrupt other metabolic pathways, such as lipid and fatty acid synthesis, which is essential for the creation of cell membranes. Thus, the current study is the first of its kind to delineate the promising in vitro and in vivo antibacterial efficacy of citral and decipher its plausible antibacterial action mechanism through metabolomic approach, which concomitantly emphasizes citral as a viable natural therapeutic alternative to manage and control BV.
Collapse
Affiliation(s)
- Ravi Jothi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Arumugam Kamaladevi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725, South Korea
| | - Nambiraman Malligarjunan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | | | - Shanmugaraj Gowrishankar
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| |
Collapse
|
20
|
Shi C, Liu X, Chen Y, Dai J, Li C, Felemban S, Khowdiary MM, Cui H, Lin L. Inhibitory effects of citral on the production of virulence factors in Staphylococcus aureus and its potential application in meat preservation. Int J Food Microbiol 2024; 413:110581. [PMID: 38246026 DOI: 10.1016/j.ijfoodmicro.2024.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Foodborne diseases caused by Staphylococcus aureus contamination on meat and meat products has gained increasing attention in recent years, while the pathogenicity of S. aureus is mainly attributed to its virulence factors production, which is primarily regulated by quorum sensing (QS) system. Herein, we aimed to uncover the inhibitory effects and mechanisms of citral (CIT) on virulence factors production by S. aureus, and further explore its potential application in pork preservation. Susceptibility test confirmed the antibacterial properties of CIT against S. aureus, the minimal inhibitory concentration (MIC) was 0.25 mg/mL. Treatment with sub-MICs of CIT reduced the hemolytic activity by inhibiting the production of α-hemolysin, and staphylococcal enterotoxins (SEs) production was significantly inhibited by CIT in both culture medium and pork without affecting bacterial growth. Transcriptomic analysis indicated that the differentially expression genes encoding α-hemolysin, SEs, and other virulence factors were down-regulated after treatment with 1/2MIC CIT. Moreover, the genes related to QS including agrA and agrC were also down-regulated, while the global transcriptional regulator sarA was up-regulated. Data here demonstrated that CIT could inhibited S. aureus virulence factors production through disturbing QS systems. In a challenge test, the addition of CIT caused a remarkable inhibition of S. aureus population and delay in lipid oxidation and color change on pork after 15 days incubation at 4 °C. These findings demonstrated that CIT could not only efficiently restrain the production of S. aureus virulence factors by disturbing QS, but also exhibit the potential application on the preservation of meat products.
Collapse
Affiliation(s)
- Ce Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Xu Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yangyang Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinming Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Shifa Felemban
- Department of Chemistry, Faculty of Applied Science, Al Leith University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Manal M Khowdiary
- Department of Chemistry, Faculty of Applied Science, Al Leith University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| |
Collapse
|
21
|
Fei P, Sun Z, Liu X, Jiang P, Feng H, Chen X, Ma Y, Dong G, Fan C, Bai M, Li Y, Chang Y. Antibacterial Activity and Mechanism of Polygonatum sibiricum Extract Against Bacillus cereus and Its Application in Pasteurized Milk. Foodborne Pathog Dis 2024; 21:160-167. [PMID: 38079263 DOI: 10.1089/fpd.2023.0110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
The purpose of this study was to reveal the antibacterial activity and mechanism of Polygonatum sibiricum extract (PSE) against Bacillus cereus and further analyze the application of PSE in pasteurized milk (PM). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values and growth curve analysis were used to evaluate the antibacterial activity of PSE against B. cereus. The changes in contents of intracellular adenosine 5'-triphosphate (ATP) and reactive oxygen species (ROS), activities of β-galactosidase, adenosine triphosphatase (ATPase) and alkaline phosphatase (AKP), cell membrane potential, protein and nucleic acid leakage, and cell morphology were used to reveal the antibacterial mechanism. The effects of PSE on viable count and sensory evaluation of PM during storage were analyzed. The results showed that the MIC and MBC values of PSE against B. cereus were 2 and 4 mg/mL, respectively. Growth curve analysis showed that PSE with a concentration of 2 MIC could completely inhibit the growth of B. cereus. After treatments with PSE, the levels of intracellular ATP and ROS, and activities of β-galactosidase, ATPase and AKP of B. cereus were significantly reduced (p < 0.05). Cell membrane was depolarized, amounts of protein and nucleic acid leakage were significantly increased (p < 0.05), and cell morphology was destroyed. Furthermore, PSE significantly reduced the viable count of B. cereus in PM and improved the sensory quality of PM during storage (p < 0.05). Together, our findings suggested that PSE had the desired effect as a natural preservative applied in PM.
Collapse
Affiliation(s)
- Peng Fei
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
- Zhongyuan Food Laboratory, Luohe, China
| | - Zongyu Sun
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Xinyu Liu
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Peiyi Jiang
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Hongxia Feng
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Xi Chen
- Institute of Integrated Agricultural Development Research, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yan Ma
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Gege Dong
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Chengwei Fan
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Mengyang Bai
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Yadi Li
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Yunhe Chang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| |
Collapse
|
22
|
Almeida HHS, Crugeira PJL, Amaral JS, Rodrigues AE, Barreiro MF. Disclosing the potential of Cupressus leylandii A.B. Jacks & Dallim, Eucalyptus globulus Labill., Aloysia citrodora Paláu, and Melissa officinalis L. hydrosols as eco-friendly antimicrobial agents. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:1. [PMID: 38163838 PMCID: PMC10758378 DOI: 10.1007/s13659-023-00417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Antimicrobial resistance is a major global health concern, threatening the effective prevention and treatment of infections caused by microorganisms. These factors boosted the study of safe and green alternatives, with hydrosols, the by-products of essential oils extraction, emerging as promising natural antimicrobial agents. In this context, four hydrosols obtained from Cupressus leylandii A.B. Jacks & Dallim, Eucalyptus globulus Labill., Aloysia citrodora Paláu and Melissa officinalis L. were studied. Their chemical composition comprises neral, geranial, 1,8-cineole, terpinen-4-ol, and oplopanonyl acetate, compounds with recognised antimicrobial activity. Concerning antimicrobial activity, significant differences were found using different hydrosol concentrations (10-20% v/v) in comparison to a control (without hydrosol), showing the potential of the tested hydrosols to inhibit the microbial growth of Escherichia coli, Staphylococcus aureus, and Candida albicans. A. citrodora hydrosol was the most effective one, inhibiting 90% of E. coli growth and 80% of C. albicans growth, for both hydrosol concentrations (p < 0.0001). With hydrosol concentration increase, it was possible to observe an improved antimicrobial activity with significant reductions (p < 0.0001). The findings of this work indicate the viability of reusing and valuing the hydrosols, encouraging the development of green applications for different fields (e.g., food, agriculture, pharmaceuticals, and cosmetics).
Collapse
Affiliation(s)
- Heloísa H S Almeida
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Pedro J L Crugeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
| | - Joana S Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
| | - Alírio E Rodrigues
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Maria-Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal.
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal.
| |
Collapse
|
23
|
She P, Yang Y, Li L, Li Y, Liu S, Li Z, Zhou L, Wu Y. Repurposing of the antimalarial agent tafenoquine to combat MRSA. mSystems 2023; 8:e0102623. [PMID: 38047647 PMCID: PMC10734505 DOI: 10.1128/msystems.01026-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE This study represents the first investigation into the antimicrobial effect of TAF against S. aureus and its potential mechanisms. Our data highlighted the effects of TAF against MRSA planktonic cells, biofilms, and persister cells, which is conducive to broadening the application of TAF. Through mechanistic studies, we revealed that TAF targets bacterial cell membranes. In addition, the in vivo experiments in mice demonstrated the safety and antimicrobial efficacy of TAF, suggesting that TAF could be a potential antibacterial drug candidate for the treatment of infections caused by multiple drug-resistant S. aureus.
Collapse
Affiliation(s)
- Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yifan Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linhui Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yimin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shasha Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zehao Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linying Zhou
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha), Central South University, Changsha, China
| | - Yong Wu
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha), Central South University, Changsha, China
| |
Collapse
|
24
|
Sun MC, Li DD, Chen YX, Fan XJ, Gao Y, Ye H, Zhang T, Zhao C. Insights into the Mechanisms of Reuterin against Staphylococcus aureus Based on Membrane Damage and Untargeted Metabolomics. Foods 2023; 12:4208. [PMID: 38231661 DOI: 10.3390/foods12234208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Reuterin is a dynamic small-molecule complex produced through glycerol fermentation by Limosilactobacillus reuteri and has potential as a food biopreservative. Despite its broad-spectrum antimicrobial activity, the underlying mechanism of action of reuterin is still elusive. The present paper aimed to explore the antibacterial mechanism of reuterin and its effects on membrane damage and the intracellular metabolome of S. aureus. Our results showed that reuterin has a minimum inhibitory concentration of 18.25 mM against S. aureus, based on the 3-hydroxypropionaldehyde level. Key indicators such as extracellular electrical conductivity, membrane potential and permeability were significantly increased, while intracellular pH, ATP and DNA were markedly decreased, implying that reuterin causes a disruption to the structure of the cell membrane. The morphological damage to the cells was confirmed by scanning electron microscopy. Subsequent metabolomic analysis identified significant alterations in metabolites primarily involved in lipid, amino acid, carbohydrate metabolism and phosphotransferase system, which is crucial for cell membrane regulation and energy supply. Consequently, these findings indicated that the antibacterial mechanism of reuterin initially targets lipid and amino acid metabolism, leading to cell membrane damage, which subsequently results in energy metabolism disorder and, ultimately, cell death. This paper offers innovative perspectives on the antibacterial mechanism of reuterin, contributing to its potential application as a food preservative.
Collapse
Affiliation(s)
- Mao-Cheng Sun
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dian-Dian Li
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu-Xin Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xiu-Juan Fan
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu Gao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
25
|
Gutiérrez-Pacheco MM, Torres-Moreno H, Flores-Lopez ML, Velázquez Guadarrama N, Ayala-Zavala JF, Ortega-Ramírez LA, López-Romero JC. Mechanisms and Applications of Citral's Antimicrobial Properties in Food Preservation and Pharmaceuticals Formulations. Antibiotics (Basel) 2023; 12:1608. [PMID: 37998810 PMCID: PMC10668791 DOI: 10.3390/antibiotics12111608] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023] Open
Abstract
Citral is a monoterpene constituted by two isomers known as neral and geranial. It is present in different plant sources and recognized as safe (GRAS) by the Food and Drug Administration (FDA). In recent years, investigations have demonstrated that this compound exhibited several biological activities, such as antibacterial, antifungal, antibiofilm, antiparasitic, antiproliferative, anti-inflammatory, and antioxidant properties, by in vitro and in vivo assays. Additionally, when incorporated into different food matrices, citral can reduce the microbial load of pathogenic microorganisms and extend the shelf life. This compound has acceptable drug-likeness properties and does not present any violations of Lipinski's rules, which could be used for drug development. The above shows that citral could be a compound of interest for developing food additives to extend the shelf life of animal and vegetable origin foods and develop pharmaceutical products.
Collapse
Affiliation(s)
| | - Heriberto Torres-Moreno
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, H. Caborca 83600, Sonora, Mexico;
| | - María Liliana Flores-Lopez
- Centro de Investigación e Innovación Científica y Tecnológica, Universidad Autónoma de Coahuila, Saltillo 25070, Coahuila, Mexico;
| | - Norma Velázquez Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - J. Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera Gustavo Astiazarán Rosas No. 46, Colonia la Victoria, Hermosillo 83304, Sonora, Mexico;
| | - Luis Alberto Ortega-Ramírez
- Departamento de Ciencias de la Salud, Universidad Estatal de Sonora, San Luis Río Colorado 83430, Sonora, Mexico;
| | - Julio César López-Romero
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, H. Caborca 83600, Sonora, Mexico;
| |
Collapse
|
26
|
Zhu W, Liu J, Zou Y, Li S, Zhao D, Wang H, Xia X. Anti-Biofilm Activity of Laurel Essential Oil against Vibrio parahaemolyticus. Foods 2023; 12:3658. [PMID: 37835311 PMCID: PMC10572487 DOI: 10.3390/foods12193658] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Vibrio parahaemolyticus is a primary seafood-associated pathogen that could cause gastroenteritis. It can attach to various surfaces and form a biofilm, which poses serious threats to food safety. Hence, an effective strategy is urgently needed to control the biofilm formation of V. parahaemolyticus. Laurel essential oil (LEO) is used in food, pharmaceutical and other industries, and is commonly used as a flavoring agent and valuable spice in food industries. The potential antibiofilm effects of LEO against V. parahaemolyticus were examined in this study. LEO obviously reduced biofilm biomass at subinhibitory concentrations (SICs). It decreased the metabolic activity and viability of biofilm cells. Microscopic images and Raman spectrum indicted that LEO interfered with the structure and biochemical compositions of biofilms. Moreover, it also impaired swimming motility, decreased hydrophobicity, inhibited auto-aggregation and reduced attachment to different food-contact surfaces. RT-qPCR revealed that LEO significantly downregulated transcription levels of biofilm-associated genes of V. parahaemolyticus. These findings demonstrate that LEO could be potentially developed as an antibiofilm strategy to control V. parahaemolyticus biofilms in food industries.
Collapse
Affiliation(s)
- Wenxiu Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (J.L.); (Y.Z.); (S.L.); (D.Z.)
| | - Jiaxiu Liu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (J.L.); (Y.Z.); (S.L.); (D.Z.)
| | - Yue Zou
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (J.L.); (Y.Z.); (S.L.); (D.Z.)
| | - Shugang Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (J.L.); (Y.Z.); (S.L.); (D.Z.)
| | - Dongyun Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (J.L.); (Y.Z.); (S.L.); (D.Z.)
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (J.L.); (Y.Z.); (S.L.); (D.Z.)
| |
Collapse
|
27
|
Lopes TS, Fussieger C, Theodoro H, Silveira S, Pauletti GF, Ely MR, Lunge VR, Streck AF. Antimicrobial activity of essential oils against Staphylococcus aureus and Staphylococcus chromogenes isolated from bovine mastitis. Braz J Microbiol 2023; 54:2427-2435. [PMID: 37340212 PMCID: PMC10485190 DOI: 10.1007/s42770-023-01031-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
Staphylococcus aureus and Staphylococcus chromogenes are pathogens frequently detected in bovine mastitis. Treatment and prevention of this disease have been usually carried on with antimicrobials. However, the emergence of bacterial isolates with antimicrobial resistance has aroused interest in new therapeutic alternatives. Plant essential oils (EOs) have been largely studied as antibacterial treatments. In the present study, EOs from five plants were evaluated for their antibacterial activities against S. aureus and S. chromogenes. Bacterial isolates were obtained in a previous study of clinical cases of bovine mastitis. EOs from lemongrass, eucalyptus, lavender, peppermint, and thyme were obtained by hydrodistillation and their chemical compositions were evaluated by gas chromatography (GC). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated for all EOs. The results demonstrated that citral (40.9%), myrcene (24.7%), and geraniol (1.9%) were detected in lemongrass EO; 1,8-cineole (76.9%), α-pinene (8.2%), and ledene (5.1%) in eucalyptus EO; 1,8-cineole (45.2%), camphor (18.2%), and fenchone (14.6%) in lavender EO; L-menthol (38.5%), menthofuran (16.3%), and citronellal (10.6%) in peppermint EO; and thymol (44.2%), p-cymene (24.6%) and 1,8-cineole (9.9%) in thyme EO. More effective antibacterial activities were observed only with the use of lemongrass (MIC and MBC ranging from 0.39 to 3.12 mg/mL and 0.39 to 6.35 mg/mL, respectively) and thyme (MIC and MBC ranging from 0.39 to 1.56 mg/mL and 0.39 to 3.12 mg/mL, respectively). Peppermint, lavender and eucalyptus EOs did not show bactericidal activities. In conclusion, lemongrass and thyme EOs are promising antibacterial alternatives against Staphylococcus species associated with bovine mastitis.
Collapse
Affiliation(s)
- Tamiris Silva Lopes
- Diagnostic Laboratory of Veterinary Medicine, Biotechnology Institute, Universidade de Caxias Do Sul (UCS), Rua Francisco Getúlio Vargas 1130, Campus Sede, Caxias Do Sul, RS, 95070-560, Brazil
| | - Caroline Fussieger
- Diagnostic Laboratory of Veterinary Medicine, Biotechnology Institute, Universidade de Caxias Do Sul (UCS), Rua Francisco Getúlio Vargas 1130, Campus Sede, Caxias Do Sul, RS, 95070-560, Brazil
| | - Heloísa Theodoro
- Department of Nutrition, Biotechnology Institute, Universidade de Caxias Do Sul (UCS), Rua Francisco Getúlio Vargas 1130, Campus Sede, Caxias Do Sul, RS, 95070-560, Brazil
| | - Simone Silveira
- Immunodiagnostic Laboratory, Universidade Do Oeste de Santa Catarina (UNOESC), Rodovia Rovilho Bortoluzzi SC-480, Barro Preto, Xanxerê, (SC) CEP, 89820-000, Brazil
| | - Gabriel Fernandes Pauletti
- Laboratory of Studies of the Soil, Plant, and Atmosphere System and Plant Metabolism, Biotechnology Institute, Universidade de Caxias Do Sul (UCS), Rua Francisco Getúlio Vargas 1130, Campus Sede, Caxias Do Sul (RS), CEP, 95070-560, Brazil
| | - Mariana Roesch Ely
- Laboratory of Applied Toxicology and Bioproducts, Biotechnology Institute, Universidade de Caxias Do Sul (UCS), Rua Francisco Getúlio Vargas 1130, Campus Sede, Caxias Do Sul (RS), CEP, 95070-560, Brazil
| | - Vagner Ricardo Lunge
- Diagnostic Laboratory of Veterinary Medicine, Biotechnology Institute, Universidade de Caxias Do Sul (UCS), Rua Francisco Getúlio Vargas 1130, Campus Sede, Caxias Do Sul, RS, 95070-560, Brazil
| | - André Felipe Streck
- Diagnostic Laboratory of Veterinary Medicine, Biotechnology Institute, Universidade de Caxias Do Sul (UCS), Rua Francisco Getúlio Vargas 1130, Campus Sede, Caxias Do Sul, RS, 95070-560, Brazil.
| |
Collapse
|
28
|
Yang H, Yeom W, Oh J, Kim H, Beuchat LR, Ryu JH. Antimicrobial effects of essential oil vapors on Bacillus cereus on nutrient agar and iceberg lettuce. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
29
|
Liao Z, Lin K, Liao W, Xie Y, Yu G, Shao Y, Dai M, Sun F. Transcriptomic analyses reveal the potential antibacterial mechanism of citral against Staphylococcus aureus. Front Microbiol 2023; 14:1171339. [PMID: 37250032 PMCID: PMC10213633 DOI: 10.3389/fmicb.2023.1171339] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Background The emergence of multi-drug resistant Staphylococcus aureus (S. aureus) has posed a challenging clinical problem for treating its infection. The development of novel or new antibacterial agents becomes one of the useful methods to solve this problem, and has received more attention over the past decade. Citral is reported to have antibacterial activity against S. aureus, but its mechanism is yet entirely clear. Methods To reveal the antibacterial mechanism of citral against S. aureus, comparative transcriptomic analysis was carried out to analyze the gene expression differences between the citral-treated and untreated groups. The changes of protein, adenosine triphosphate (ATP) and reactive oxygen species (ROS) content in S. aureus caused by citral were also examined. Results Six hundred and fifty-nine differentially expressed genes were obtained according to the comparative transcriptomic analysis, including 287 up-regulated genes and 372 down-regulated genes. The oxidoreductase activity and fatty acid degradation pathway were enriched in up-regulated genes, and ribosome and S. aureus infection pathway were enriched in down-regulated genes. Meanwhile, physiological trials revealed a decline in ATP and protein levels, but an increase in ROS content within the citral-treated group. Thus, it can be inferred that the antibacterial effects of citral against S. aureus were likely due to its ability to decrease ATP content by down-regulating ATP synthase genes (atpD and atpG), reduce protein content, induce cell membrane and cell wall damages, accumulate ROS, and down-regulate virulence factor genes to reduce pathogenicity. Conclusion These findings revealed the antibacterial mechanism of citral was likely a type of multi-target mode that affected multiple molecular processes in S. aureus, which lays the groundwork for further exploitation of citral as a therapeutic candidate against S. aureus infections.
Collapse
Affiliation(s)
- Zedong Liao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, Sichuan, China
| | - Keshan Lin
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, Sichuan, China
| | - Weijiang Liao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ying Xie
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, Sichuan, China
| | - Guoqing Yu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yan Shao
- The Second People’s Hospital of Pinghu, Pinghu, Zhejiang, China
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, Sichuan, China
| | - Fenghui Sun
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Parra MC, Forwood DL, Chaves AV, Meale SJ. In vitro screening of anti-methanogenic additives for use in Australian grazing systems. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2023.1123532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Despite considerable effort to develop and optimise additives to reduce methane emissions from cattle, little information on additive effectiveness exists for cattle under grazing scenarios. As the majority of Australian cattle production occurs on grazing land it is pertinent to report on the use of additives under simulated conditions. The current study evaluated the addition of nine additives to Rhodes grass hay under in vitro conditions, to estimate their impact on methane (CH4), gas production, and rumen fermentation parameters (volatile fatty acids, rumen pH and in vitro dry matter digestibility [IVDMD]). Citral extract at 0.1% of rumen media decreased all CH4 production parameters, but reduced gas production and digestibility, compared to a 100% hay control. Similarly, Sandalwood essential oil decreased CH4 production at 48 h, IVDMD and gas production, compared to the control. Biochar + nitrates at 5 and 8% DM, and Biochar + Asparagopsis at 5% DM decreased cumulative CH4 production (15.6%, 25.9%, 23.8%, respectively; P < 0.01), compared to the control. No changes in IVDMD and gas production were observed. As such, the biochar additives were considered the most promising additives from those evaluated with a substrate designed to replicate Australian grazing systems.
Collapse
|
31
|
Carvalho F, Coimbra AT, Silva L, Duarte AP, Ferreira S. Melissa officinalis essential oil as an antimicrobial agent against Listeria monocytogenes in watermelon juice. Food Microbiol 2023; 109:104105. [DOI: 10.1016/j.fm.2022.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
|
32
|
Su F, Yang G, Hu D, Ruan C, Wang J, Zhang Y, Zhu Q. Chemical Composition, Antibacterial and Antioxidant Activities of Essential Oil from Centipeda minima. Molecules 2023; 28:molecules28020824. [PMID: 36677882 PMCID: PMC9861044 DOI: 10.3390/molecules28020824] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
This study elucidated the chemical composition of essential oil from Centipeda minima (EOCM) and its antibacterial and antioxidant activities with two chemical monomers thymol and carvacrol. The main chemical composition of EOCM, analyzed by GC-MS, were trans-chrysanthenyl acetate, thymol, aromadendrene and β-caryophyllene. In the screening of antibacterial activity against S. aureus, two monomers with antibacterial activity were obtained: thymol and carvacrol. The MIC of EOCM, thymol and carvacrol were 0.625 mg/mL, 0.156 mg/mL and 0.156 mg/mL, respectively. The experimental results were shown that three drugs could inhibit the growth of S. aureus and inhibit the formation of biofilm by changing the permeability of cell membrane and interfering with the metabolic activities in bacteria. The scavenging effects of the three drugs on DPPH radical and hydroxyl radical showed that the antioxidant effect of the three drugs was EOCM > carvacrol > thymol.
Collapse
Affiliation(s)
- Fan Su
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Gan Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Datong Hu
- Shandong Academy of Pharmaceutical Sciences, Jinan 250098, China
| | - Chen Ruan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jing Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yingying Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (Y.Z.); (Q.Z.)
| | - Qingjun Zhu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (Y.Z.); (Q.Z.)
| |
Collapse
|
33
|
El-Sayed ASA, George NM, Abou-Elnour A, El-Mekkawy RM, El-Demerdash MM. Production and bioprocessing of camptothecin from Aspergillus terreus, an endophyte of Cestrum parqui, restoring their biosynthetic potency by Citrus limonum peel extracts. Microb Cell Fact 2023; 22:4. [PMID: 36609265 PMCID: PMC9824926 DOI: 10.1186/s12934-022-02012-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
The metabolic potency of fungi as camptothecin producer elevates their prospective use as an industrial platform for commercial production, however, the loss of camptothecin productivity by fungi with the storage and subculturing are the major obstacle. Thus, screening for endophytic fungal isolates inhabiting ethnopharmacological plants with an obvious metabolic stability and sustainability for camptothecin biosynthesis could be one of the most feasible paradigms. Aspergillus terreus ON908494.1, an endophyte of Cestrum parqui was morphologically and molecularly verified, displaying the most potent camptothecin biosynthetic potency. The chemical identity of A. terreus camptothecin was confirmed from the HPLC, FTIR and LC-MS/MS analyses, gave the same molecular structure and mass fragmentation patterns of authentic one. The purified putative camptothecin displayed a strong anticancer activity towards HepG-2 and MCF-7 with IC50 values 0.96 and 1.4 µM, respectively, with no toxicity to OEC normal cells. As well as, the purified camptothecin displayed a significant antifungal activity towards fungal human pathogen Candida albicans, Aspergillus flavus, and A. parasiticus, ensuring the unique structural activity relationships of A. terreus camptothecin, as a powerful dually active anticancer and antimicrobial agent. The camptothecin productivity of A. terreus was maximized by bioprocessing with Plackett-Burman design, with an overall 1.5 folds increment (170.5 µg/L), comparing to control culture. So, the optimal medium components for maximum yield of camptothecin by A. terreus was acid why (2.0 mL/L), Diaion HP20 (2.0 g/L), Amberlite XAD (2.0 g/L), dextrin (5.0 g/L), glucose (10.0 g/L), salicylic acid (2.0 g/L), serine (4.0 g/L), cysteine (4.0 g/L) and glutamate (10.0 g/L), at pH 6 for 15 days incubation. By the 5th generation of A. terreus, the camptothecin yield was reduced by 60%, comparing to zero culture. Interestingly, the productivity of camptothecin by A. terreus has been completely restored and over increased (210 µg/L), comparing to the 3rd generation A. terreus (90 µg/L) upon addition of methanolic extracts of Citrus limonum peels, revealing the presence of some chemical signals that triggers the camptothecin biosynthetic machinery. The feasibility of complete restoring of camptothecin biosynthetic-machinery of A. terreus for stable and sustainable production of camptothecin, pave the way for using this fungal isolate as new platform for scaling-up the camptothecin production.
Collapse
Affiliation(s)
- Ashraf S. A. El-Sayed
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Nelly M. George
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Amira Abou-Elnour
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Rasha M. El-Mekkawy
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Marwa M. El-Demerdash
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
34
|
Wang H, Li Y, Li Z, Ma R, Bai X, Zhan X, Luo K, Su R, Li X, Xia X, Shi C. Inhibition of Cronobacter sakazakii by Litsea cubeba Essential Oil and the Antibacterial Mechanism. Foods 2022; 11:foods11233900. [PMID: 36496708 PMCID: PMC9736361 DOI: 10.3390/foods11233900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Litsea cubeba essential oil (LC-EO) has anti-insecticidal, antioxidant, and anticancer proper-ties; however, its antimicrobial activity toward Cronobacter sakazakii has not yet been researched extensively. The objective of this study was to investigate the antimicrobial and antibiofilm effects of LC-EO toward C. sakazakii, along with the underlying mechanisms. The minimum inhibitory concentrations of LC-EO toward eight different C. sakazakii strains ranged from 1.5 to 4.0 μL/mL, and LC-EO exposure showed a longer lag phase and lower specific growth compared to untreated bacteria. LC-EO increased reactive oxygen species production, decreased the integrity of the cell membrane, caused cell membrane depolarization, and decreased the ATP concentration in the cell, showing that LC-EO caused cellular damage associated with membrane permeability. LC-EO induced morphological changes in the cells. LC-EO inhibited C. sakazakii in reconstituted infant milk formula at 50 °C, and showed effective inactivation of C. sakazakii biofilms on stainless steel surfaces. Confocal laser scanning and attenuated total reflection-Fourier-transform infrared spectrometry indicated that the biofilms were disrupted by LC-EO. These findings suggest a potential for applying LC-EO in the prevention and control of C. sakazakii in the dairy industry as a natural antimicrobial and antibiofilm agent.
Collapse
Affiliation(s)
- Haoran Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Yulu Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Zhuo Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Run Ma
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Kunyao Luo
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xuejiao Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xiaodong Xia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116304, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
- Correspondence: ; Tel.: +86-29-87092486; Fax: +86-29-87091391
| |
Collapse
|
35
|
Synergistic antimicrobial effects of Dryopteris erythrosora extract and mild heat treatment against Staphylococcus aureus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
36
|
Lu H, Sun Y, Wang X, Lu Z, Zhu J. Transcriptomics reveal the antibiofilm mechanism of NaCl combined with citral against Vibrio parahaemolyticus. Appl Microbiol Biotechnol 2022; 107:313-326. [DOI: 10.1007/s00253-022-12286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022]
|
37
|
Shan Y, Chen S, Zhang J, Du C, Liu C, Yang F, Yin W, Shao Y, Wang Y. Preparation of Citral Compound and Its Bamboo Antimildew Properties. Polymers (Basel) 2022; 14:4691. [PMID: 36365683 PMCID: PMC9654108 DOI: 10.3390/polym14214691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 07/30/2023] Open
Abstract
To reduce the amount of citral used without reducing the antimildew performance of bamboo, the citral compound preparation process, the distribution of the compound in bamboo, and its antimildew performance were investigated using the Oxford cup method, Fourier-transform infrared spectroscopy, and ultraviolet spectrophotometry. The results revealed that the combination of citral with cinnamaldehyde or thymol may lead to partial chemical reactions, which may change the chemical structure of citral and affect its bacteriostatic properties. The bacteriostatic properties of the citraldehyde thymol compound against common molds of bamboo were considerably superior to those of the citral cinnamaldehyde compound. The limonaldehyde thymol compound showed a low distribution trend outside and vice versa inside in the treated bamboo. The citral thymol compound exhibited good antimildew performance at a concentration of 200 mg/mL. The citral thymol compound could reduce the amount of citral by approximately 67 mg/mL without reducing the antimildew performance of bamboo.
Collapse
|
38
|
Su R, Bai X, Liu X, Song L, Liu X, Zhan X, Guo D, Wang Y, Chang Y, Shi C. Antibacterial Mechanism of Eugenol Against Shigella sonnei and Its Antibacterial Application in Lettuce Juice. Foodborne Pathog Dis 2022; 19:779-786. [PMID: 36367551 DOI: 10.1089/fpd.2022.0046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Shigella sonnei is a species of Shigella, and the infection rate of S. sonnei is increasing year by year. Eugenol is an active ingredient in clove essential oil and is a generally recognized as safe (GRAS)-certified food ingredient. The mechanism of inhibition of S. sonnei by eugenol has been investigated in this study. The minimum inhibitory concentration of eugenol against both S. sonnei ATCC 25931 and S. sonnei CMCC 51592 was 0.5 mg/mL and minimum bactericidal concentration (MBC) for both strains was 0.8 mg/mL. The inhibition effect of eugenol against S. sonnei was due to increased levels of reactive oxygen species in cells, changed cell membrane permeability, and induced cell membrane dysfunction, for instance, cell membrane hyperpolarization and intracellular ATP concentration drops. The results of confocal laser scanning microscope and field emission scanning electron microscopy showed that eugenol leads to decreased cell membrane integrity, resulting in changed cell morphology. Moreover, eugenol inactivated S. sonnei in Luria-Bertani (LB) broth and lettuce juice. These results indicated that eugenol could inactivate S. sonnei and has the potential to control S. sonnei in the food industry.
Collapse
Affiliation(s)
- Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaoxiao Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xue Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yunhe Chang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
39
|
Zhang Q, Jia S, Ding Y, Li D, Ding Y, Zhou X. Antibacterial activity and mechanism of malondialdehyde against Staphylococcus xylosus and Lactiplantibacillus plantarum isolated from a traditional Chinese dry-cured fish. Front Microbiol 2022; 13:979388. [DOI: 10.3389/fmicb.2022.979388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Malondialdehyde (MDA) is one of the most representative reactive carbonyl species (RCSs) produced by lipid oxidation in food. However, the inhibitory effect of MDA on microorganisms has received little attention. Thus, the aim of this study was to reveal the antibacterial mechanism of MDA on Staphylococcus xylosus and Lactiplantibacillus plantarum isolated from dry-cured fish. The results showed that the minimum inhibitory concentrations (MICs) of MDA on S. xylosus and L. plantarum were 90 μg/ml and 180 μg/ml, respectively. Time-kill curves indicated a concentration-dependent antibacterial activity of MDA. Moreover, cell wall damage, cell membrane depolarization, intracellular adenosine triphosphate (ATP) decline, Ca2+ and Mg2+ leakage, cell morphological destruction and alterations in intracellular biomolecules were observed, which indicated the negative influence of MDA on cell membrane and cellular homeostasis. This study demonstrated the potential antimicrobial properties of MDA and provided theoretical support for the scientific prevention and control of lipid oxidation and microbial contamination in food. This study demonstrated the potential antibacterial properties of MDA and further enriches theoretical studies on the effects of lipid oxidation on microorganisms.
Collapse
|
40
|
Wang W, Bao X, Bové M, Rigole P, Meng X, Su J, Coenye T. Antibiofilm Activities of Borneol-Citral-Loaded Pickering Emulsions against Pseudomonas aeruginosa and Staphylococcus aureus in Physiologically Relevant Chronic Infection Models. Microbiol Spectr 2022; 10:e0169622. [PMID: 36194139 PMCID: PMC9602683 DOI: 10.1128/spectrum.01696-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/08/2022] [Indexed: 12/31/2022] Open
Abstract
Phytochemicals are promising antibacterials for the development of novel antibiofilm drugs, but their antibiofilm activity in physiologically relevant model systems is poorly characterized. As the host microenvironment can interfere with the activity of the phytochemicals, mimicking the complex environment found in biofilm associated infections is essential to predict the clinical potential of novel phytochemical-based antimicrobials. In the present study, we examined the antibiofilm activity of borneol, citral, and combinations of both as well as their Pickering emulsions against Staphylococcus aureus and Pseudomonas aeruginosa in an in vivo-like synthetic cystic fibrosis medium (SCFM2) model, an in vitro wound model (consisting of an artificial dermis and blood components at physiological levels), and an in vivo Galleria mellonella model. The Pickering emulsions demonstrated an enhanced biofilm inhibitory activity compared to both citral and the borneol/citral combination, reducing the minimum biofilm inhibitory concentration (MBIC) values up to 2 to 4 times against P. aeruginosa PAO1 and 2 to 8 times against S. aureus P8-AE1 in SCMF2. In addition, citral, the combination borneol/citral, and their Pickering emulsions can completely eliminate the established biofilm of S. aureus P8-AE1. The effectiveness of Pickering emulsions was also demonstrated in the wound model with a reduction of up to 4.8 log units in biofilm formation by S. aureus Mu50. Furthermore, citral and Pickering emulsions exhibited a significant degree of protection against S. aureus infection in the G. mellonella model. The present findings reveal the potential of citral- or borneol/citral-based Pickering emulsions as a type of alternative antibiofilm candidate to control pathogenicity in chronic infection. IMPORTANCE There is clearly an urgent need for novel formulations with antimicrobial and antibiofilm activity, but while there are plenty of studies investigating them using simple in vitro systems, there is a lack of studies in which (combinations of) phytochemicals are evaluated in relevant models that closely resemble the in vivo situation. Here, we examined the antibiofilm activity of borneol, citral, and their combination as well as Pickering emulsions (stabilized by solid particles) of these compounds. Activity was tested against Staphylococcus aureus and Pseudomonas aeruginosa in in vitro models mimicking cystic fibrosis sputum and wounds as well as in an in vivo Galleria mellonella model. The Pickering emulsions showed drastically increased antibiofilm activity compared to that of the compounds as such in both in vitro models and protected G. mellonella larvae from S. aureus-induced killing. Our data show that Pickering emulsions from phytochemicals are potentially useful for treating specific biofilm-related chronic infections.
Collapse
Affiliation(s)
- Wen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Xuerui Bao
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Mona Bové
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Xiaofeng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Jianyu Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
41
|
Wang B, Lei X, Chen J, Li W, Long Y, Wang W. Antifungal Activities of Bacillus mojavensis BQ-33 towards the Kiwifruit Black Spot Disease Caused by the Fungal Pathogen Didymella glomerata. Microorganisms 2022; 10:microorganisms10102085. [PMID: 36296359 PMCID: PMC9611226 DOI: 10.3390/microorganisms10102085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
‘Hongyang’ kiwifruit (Actinidia chinensis, cultivar ‘Hongyang’) black spot disease is caused by the fungal pathogen Didymella glomerata, and is a serious disease, causing considerable losses to the kiwifruit industry during growth of the fruit. Hence, we aimed to identify a potential biocontrol agent against D. glomerata. In this study, bacterial isolates from the rhizosphere soil of kiwifruit were tested for their potential antifungal activity against selected fungal pathogens. Based on a phylogenetic tree constructed using sequences of 16S rDNA and the gyrA gene, BQ-33 with the best antifungal activity was identified as Bacillus mojavensis. We evaluated the antagonistic activity and inhibitory mechanism of BQ-33 against D. glomerata. Confrontation experiments showed that both BQ-33 suspension and the sterile supernatant (SS) produced by BQ-33 possessed excellent broad-spectrum antifungal activity. Furthermore, the SS damaged the cell membrane and cell wall of the mycelia, resulting in the leakage of a large quantity of small ions (Na+, K+), soluble proteins and nucleic acids. Chitinase and β-1,3-glucanase activities in SS increased in correlation with incubation time and remained at a high level for several days. An in vivo control efficacy assay indicated that 400 mL L−1 of SS completely inhibited kiwifruit black spot disease caused by D. glomerata. Therefore, BQ-33 is a potential biocontrol agent against kiwifruit black spot and plant diseases caused by other fungal pathogens. To our knowledge, this is the first report of the use of a rhizosphere microorganism as a biocontrol agent against kiwifruit black spot disease caused by D. glomerata.
Collapse
Affiliation(s)
- Bingce Wang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xia Lei
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Jia Chen
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Wenzhi Li
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Youhua Long
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
- Correspondence: (Y.L.); (W.W.)
| | - Weizhen Wang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
- Correspondence: (Y.L.); (W.W.)
| |
Collapse
|
42
|
Roychoudhury S, Das D, Das S, Jha NK, Pal M, Kolesarova A, Kesari KK, Kalita JC, Slama P. Clinical Potential of Himalayan Herb Bergenia ligulata: An Evidence-Based Study. Molecules 2022; 27:7039. [PMID: 36296631 PMCID: PMC9611975 DOI: 10.3390/molecules27207039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 07/25/2023] Open
Abstract
Herbal products have been used in traditional systems of medicine and by ethnic healers for ages to treat various diseases. Currently, it is estimated that about 80% of people worldwide use herbal traditional medicines against various ailments, partly due to easy accessibility and low cost, and the lower side effects they pose. Bergenia ligulata, a herb ranging from the Himalayas to the foothills, including the north-eastern states of India, has traditionally been used as a remedy against various diseases, most prominently kidney stones. The medicinal properties of B. ligulata have been attributed to bergenin, its most potent bioactive component. Apart from bergenin, the other compounds available in B. ligulata are arbutin, gallic acid, protocatechuic acid, chlorogenic acid, syringic acid, catechin, ferulic acid, afzelechin, paashaanolactone, caryophyllene, 1,8-cineole, β-eudesmol, stigmasterol, β-sitosterol, parasorbic acid, 3-methyl-2-buten-1-ol, phytol, terpinen-4-ol, tannic acid, isovalaric acid, avicularin, quercetin, reynoutrin, and sitoinoside I. This review summarizes various medicinal properties of the herb, along with providing deep insight into its bioactive molecules and their potential roles in the amelioration of human ailments. Additionally, the possible mechanism(s) of action of the herb's anti-urolithiatic, antioxidative, antipyretic, anti-diabetic, anti-inflammatory and hepatoprotective properties are discussed. This comprehensive documentation will help researchers to better understand the medicinal uses of the herb. Further studies on B. ligulata can lead to the discovery of new drug(s) and therapeutics for various ailments.
Collapse
Affiliation(s)
| | - Dipika Das
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Sandipan Das
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Adriana Kolesarova
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia
| | - Kavindra Kumar Kesari
- Department of Bio-products and Bio-systems, School of Chemical Engineering, Aalto University, 00076 Espoo, Finland
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| | - Jogen C. Kalita
- Department of Zoology, Gauhati University, Guwahati 781014, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
43
|
Chang Y, Xia S, Fei P, Feng H, Fan F, Liu Y, Qin L, Ma L, Song Q, Liu Y. Houttuynia cordata Thunb. crude extract inactivates Cronobacter sakazakii: Antibacterial components, antibacterial mechanism, and application as a natural disinfectant. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
44
|
Abbasabadi OR, Farahpour MR, Tabatabaei ZG. Accelerative effect of nanohydrogels based on chitosan/ZnO incorporated with citral to heal the infected full-thickness wounds; an experimental study. Int J Biol Macromol 2022; 217:42-54. [PMID: 35820486 DOI: 10.1016/j.ijbiomac.2022.07.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022]
Abstract
Antimicrobial-resistant is a major challenge in to treat infected wounds, and new formulations should be produced. Citral (Citl), chitosan (Chsn), and zinc oxide (ZnO) nanoparticles may accelerate the wound healing process in terms of their antibacterial properties. This new study aimed to investigate the effects of ointments produced from ZnO/Chsn/Citl nanoparticles (NPs) to treat the infected wounds. Following the preparation of ZnO/Chsn/Citl-NPs, swelling behavior, the release of citral, toxicity, and antibacterial properties were evaluated. Base ointment, mupirocin, and ointments made from Chsn-NPs, Chsn/Citl-NPs, and ZnO/Chsn/Citl-NPs were used to treat the mice. The ointments' effects on wound contraction, total bacterial count, and immunofluorescence staining for TNF-α, TGF-β, and bFGF were tested. The synthesis of ZnO/Chsn/Citl-NPs was validated by XRD, FT-IR, DLS, and TEM findings. In higher dilutions, chitosan/citral and ZnO/Chsn/Citl-NPs indicated better antibacterial activity. Nanoparticles were safe up to concentration of the 0.5 mg/mL. The mice in Chsn/Citl and ZnO/Chsn/Citl-NPs treated groups showed higher (P < 0.05) wound contraction ratio and expressions for bFGF, and lower total bacterial count and expressions for TGF-β and TNF-α compared to control mice. Ointments prepared from ZnO/Chsn/Citl-NPs could compete with the commercial ointment of mupirocin and can be used to treat infected wounds after clinical studies.
Collapse
Affiliation(s)
- Omidreza Raei Abbasabadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Mohammad Reza Farahpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.
| | | |
Collapse
|
45
|
Ma XJ, Wang T, Zhang HM, Shao JQ, Jiang M, Wang H, Zhu HX, Zhou D. Comparison of inhibitory effects and mechanisms of lactonic sophorolipid on different pathogenic bacteria. Front Microbiol 2022; 13:929932. [PMID: 36238587 PMCID: PMC9552708 DOI: 10.3389/fmicb.2022.929932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022] Open
Abstract
Crude sophorolipids (SLs) have been proven to perform varying degrees of inhibitory effects on different pathogenic bacteria. However, systematic comparative studies of pure lactonic sophorolipid (LSL) among different types of bacteria are few. In this study, the antibacterial effects and mechanisms of LSL on pathogenic bacteria of Staphylococcus aureus, Lactobacillus sp., Pseudomonas aeruginosa, and Escherichia coli were investigated. Bacteriostatic circle, antibacterial rate, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of LSL on different pathogenic bacteria were measured. Then, the antibacterial mechanisms of LSL on S. aureus and P. aeruginosa were explored using ultrastructural observation, cell membrane permeability analysis, intracellular ATP content determination, and extracellular UV absorption detection. With the minimum MIC and MBC values of 0.05 and 0.20 mg/ml, LSL exhibited the best inhibitory effect against S. aureus, followed by P. aeruginosa. LSL showed no significant inhibitory effect on E. coli and Lactobacillus sp. For both S. aureus and P. aeruginosa, LSL achieved bacteriostatic and bactericidal effects by destroying the cell wall, increasing the permeability of the cell membrane and leading to the flow out of intracellular contents. However, the action mode and action intensity of LSL on the cell wall and membrane of these two bacteria were significantly different. LSL had a greater influence on the cell membrane of S. aureus by “leaking,” while it exhibited a stronger effect on the cell wall of P. aeruginosa by “blasting.” These results contributed to a better understanding of the relationship between LSL and different bacterial cell structures, further suggesting the conclusion that LSL might be used for the targeted treatment of special pathogenic bacteria.
Collapse
Affiliation(s)
- Xiao-jing Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Ministry of Education, Engineering Research Center of Bio-Process, Hefei University of Technology, Hefei, China
- *Correspondence: Xiao-jing Ma,
| | - Tong Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hui-min Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jun-qian Shao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mei Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Huai Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Ministry of Education, Engineering Research Center of Bio-Process, Hefei University of Technology, Hefei, China
| | - Hui-xia Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Ministry of Education, Engineering Research Center of Bio-Process, Hefei University of Technology, Hefei, China
| | - Dong Zhou
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
- Dong Zhou,
| |
Collapse
|
46
|
Tančinová D, Mašková Z, Mendelová A, Foltinová D, Barboráková Z, Medo J. Antifungal Activities of Essential Oils in Vapor Phase against Botrytis cinerea and Their Potential to Control Postharvest Strawberry Gray Mold. Foods 2022; 11:foods11192945. [PMID: 36230021 PMCID: PMC9563059 DOI: 10.3390/foods11192945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
Essential oils (EOs) from aromatic plants seem to have the potential to control several fungal pathogens and food contaminants. Botrytis cinerea is the main strawberry fruit contaminant causing high losses during storage. Here, thirteen EOs applied in the vapor phase were evaluated for their potential to inhibit the growth of three different strains of B. cinerea isolated from strawberry fruits. Eight EOs (lemongrass, litsea, lavender, peppermint, mint, petitgrain, sage, and thyme) were able to completely inhibit the growth of B. cinerea for 7 days when applied at a concentration of 625 μL·L−1. Four EOs with the lowest minimal inhibition concentrations (thyme, peppermint, lemongrass, and litsea) have been tested on strawberry fruits intentionally inoculated by B. cinerea. All four EOs showed high inhibition at a concentration of 250 or 500 μL·L−1, but only peppermint EO was able to completely inhibit B. cinerea lesion development at a concentration of 125 μL·L−1. The sensory evaluation of strawberries treated by EOs at a concentration 125 μL·L−1 resulted in a statistically significant decrease in taste, aftertaste, aroma, and overall quality. Lemongrass and litsea EOs scored better than thyme and peppermint ones, thus forming two viable methods for B. cinerea suppression and the extension of packed strawberries’ shelf life.
Collapse
Affiliation(s)
- Dana Tančinová
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A Hlinku 2, 949 76 Nitra, Slovakia
| | - Zuzana Mašková
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A Hlinku 2, 949 76 Nitra, Slovakia
| | - Andrea Mendelová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A Hlinku 2, 949 76 Nitra, Slovakia
| | - Denisa Foltinová
- The State Veterinary and Food Administration of the Slovak Republic, Botanická 17, 842 13 Bratislava, Slovakia
| | - Zuzana Barboráková
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A Hlinku 2, 949 76 Nitra, Slovakia
| | - Juraj Medo
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A Hlinku 2, 949 76 Nitra, Slovakia
- Correspondence:
| |
Collapse
|
47
|
Effects of cinnamaldehyde against planktonic bacteria and biofilm formation of Shigella flexneri. Microb Pathog 2022; 171:105741. [PMID: 36038086 DOI: 10.1016/j.micpath.2022.105741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022]
Abstract
Cinnamaldehyde (CA) has demonstrated anti-inflammatory, anti-tumor and anti-cancer activities; Its antimicrobial and antibiofilm actions against Shigella flexneri, on the other hand, have not been investigated. Sh. flexneri is a gram-negative foodborne pathogen that can be widely found in nature and some industrial production environments. In this current research, our aim was to examine the influences of CA on planktonic bacteria and biofilm formation. The minimum inhibitory concentration (MIC) of CA against Sh. flexneri strain was 100 μg/mL, while bacteria treated with CA showed a longer lag phase compared with the untreated control. CA effectively inactivated the Sh. flexneri in LB broth and fresh lettuce juice. CA treatment resulted in cell membrane permeability changes and dysfunction, as proven by cell membrane depolarization, decreased intracellular ATP concentration. In addition, CA was also discovered to increase the level of reactive oxygen species (ROS) in cells, and induce morphological changes in cells. Crystal violet staining showed that the biomass of biofilm was decreased significantly with CA in 24 h. Light microscopy and field emission scanning electron microscopy (FESEM) observations demonstrated decreased biofilm adhesion and destruction of biofilm architecture after treatment with CA. These findings indicated that CA acts as a natural bacteriostatic agent to control Sh. flexneri in food processing and production.
Collapse
|
48
|
Cai Y, Zou G, Xi M, Hou Y, Shen H, Ao J, Li M, Wang J, Luo A. Juglone Inhibits Listeria monocytogenes ATCC 19115 by Targeting Cell Membrane and Protein. Foods 2022; 11:foods11172558. [PMID: 36076744 PMCID: PMC9455723 DOI: 10.3390/foods11172558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Foodborne disease caused by Listeria monocytogenes is a major global food safety problem. A potential solution is the antimicrobial development of the highly bioactive natural product juglone, yet few studies exist on its antibacterial mechanism against L. monocytogenes. Thus, we aimed to elucidate the antibacterial mechanism of action of juglone against L. monocytogenes by determining the resultant cell morphology, membrane permeability, membrane integrity, and proteome changes. The minimum inhibitory concentration of juglone against L. monocytogenes was 50 μg/mL, and L. monocytogenes treated with juglone had longer lag phases compared to controls. Juglone induced L. monocytogenes cell dysfunction, leakage of potassium ions, and membrane potential hyperpolarization. Confocal laser scanning microscopy and field-emission-gun scanning electron microscope assays revealed clear membrane damage due to juglone treatment. Fourier transform infrared analyses showed that L. monocytogenes responded to juglone by some conformational and compositional changes in the molecular makeup of the cell membrane. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that juglone either destroyed proteins or inhibited proteins synthesis in L. monocytogenes. Therefore, our findings established juglone as a natural antibacterial agent with potential to control foodborne L. monocytogenes infections.
Collapse
|
49
|
Pei J, Yu H, Qiu W, Mei J, Xie J. Antimicrobial Effect of Epigallocatechin Gallate Against Shewanella putrefaciens ATCC 8071: A Study Based on Cell Membrane and Biofilm. Curr Microbiol 2022; 79:297. [PMID: 35996024 DOI: 10.1007/s00284-022-02978-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/15/2022] [Indexed: 01/28/2023]
Abstract
The study was to evaluate the antimicrobial impacts and biofilm influences on epigallocatechin gallate (EGCG) against Shewanella putrefaciens ATCC 8071. The minimum inhibitory concentration (MIC) of EGCG on S. putrefaciens was 160 μg mL-1. The growth curve exhibited that EGCG had a good antimicrobial activity. EGCG caused damages to the bacterial cell wall and membrane based the intracellular component leakage and cell viability analysis. The damage to the membrane integrity by EGCG has been confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM shows deformation of shape, TEM shows cell membrane and wall damage, and the leakage of cytoplasmic material. The treatment with EGCG at 0.25× and 0.5× MIC resulted in decreased motility and elevated levels of oxidative stress, leading to an increase in biofilm formation. These results demonstrated that EGCG may be used as a natural preservative to reduce S. putrefaciens in fish during cold storage.
Collapse
Affiliation(s)
- Juxin Pei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Huijie Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China. .,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China. .,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China. .,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China. .,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.
| |
Collapse
|
50
|
Verbascoside: An Efficient and Safe Natural Antibacterial Adjuvant for Preventing Bacterial Contamination of Fresh Meat. Molecules 2022; 27:molecules27154943. [PMID: 35956890 PMCID: PMC9370273 DOI: 10.3390/molecules27154943] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Inappropriate and disproportionate antibiotic use contributes immensely to the development of antibiotic resistance in bacterial species associated with food contamination. Therefore, alternative strategies to treat multidrug-resistant (MDR) bacterial infections are urgently needed. In this study, verbascoside was shown to exhibit excellent antibacterial activity and synergistic effects in combination with cell wall synthesis-inhibiting antibiotics, indicating that it can be used as an adjuvant to restore or increase the activity of antibiotics against resistant pathogens. In a mechanistic study, higher concentrations of verbascoside resulted in a longer lag phase and a lower specific exponential-phase growth rate of bacteria. Furthermore, verbascoside exerted its antimicrobial activity through multiple mechanisms, including cell membrane dysfunction, biofilm eradication and changes in cell morphology. The promising antibacterial activity and in vitro safety assessment results suggested that verbascoside can be used as a food additive for fresh meat preservation. Treatment with medium and high doses of verbascoside caused significant bacterial death in meat samples, slowed the spoilage rate, and extended the shelf life. Collectively, verbascoside is expected to be useful as an antibiotic adjuvant to prevent or treat resistant bacteria-related infections and an alternative novel antimicrobial additive in the food industry.
Collapse
|