1
|
Azam M, Zhang S, Qi J, Abdelghany AM, Shaibu AS, Feng Y, Ghosh S, Agyenim-Boateng KG, Liu Y, Yao L, Li J, Li B, Wang B, Sun J. Effect of Origin, Seed Coat Color, and Maturity Group on Seed Isoflavones in Diverse Soybean Germplasm. PLANTS (BASEL, SWITZERLAND) 2024; 13:1774. [PMID: 38999614 PMCID: PMC11243943 DOI: 10.3390/plants13131774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024]
Abstract
Soybeans are grown worldwide owing to their protein, oil, and beneficial bioactive compounds. Genetic and environmental factors influence soybean seed isoflavones. In the present study, we profiled the seed isoflavones in world diverse soybean germplasm grown in two locations over two years in China. Significant differences (p < 0.001) were observed between the accessions, accession origins, seed coat colors, and maturity groups for individual and total isoflavone (TIF) content. TIF content of the soybean accessions ranged from 677.25 μg g-1 to 5823.29 μg g-1, representing an 8-fold difference. USA soybean accessions showed the highest mean TIF content (3263.07 μg g-1), followed by Japan (2521.26 μg g-1). Soybean with black seed coat showed the highest (3236.08 μg g-1) TIF concentration. Furthermore, isoflavone levels were significantly higher in late-maturity groups. Correlation analysis revealed significant positive associations between individual and TIF content. Malonyldaidzin and malonylgenistin showed higher correlations with TIF content (r = 0.92 and r = 0.94, respectively). The soybean accessions identified as having high and stable TIF content can be utilized in the food and pharmaceutical industries and breeding programs to develop soybean varieties with enhanced isoflavone content.
Collapse
Affiliation(s)
- Muhammad Azam
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Shengrui Zhang
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Jie Qi
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | | | - Abdulwahab Saliu Shaibu
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
- Department of Agronomy, Bayero University, Kano 700001, Nigeria
| | - Yue Feng
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Suprio Ghosh
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Kwadwo Gyapong Agyenim-Boateng
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Yitian Liu
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Luming Yao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Li
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Bin Li
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Biao Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junming Sun
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
2
|
Thakro V, Varshney N, Malik N, Daware A, Srivastava R, Mohanty JK, Basu U, Narnoliya L, Jha UC, Tripathi S, Tyagi AK, Parida SK. Functional allele of a MATE gene selected during domestication modulates seed color in chickpea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:53-71. [PMID: 37738381 DOI: 10.1111/tpj.16469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023]
Abstract
Seed color is one of the key target traits of domestication and artificial selection in chickpeas due to its implications on consumer preference and market value. The complex seed color trait has been well dissected in several crop species; however, the genetic mechanism underlying seed color variation in chickpea remains poorly understood. Here, we employed an integrated genomics strategy involving QTL mapping, high-density mapping, map-based cloning, association analysis, and molecular haplotyping in an inter-specific RIL mapping population, association panel, wild accessions, and introgression lines (ILs) of Cicer gene pool. This delineated a MATE gene, CaMATE23, encoding a Transparent Testa (TT) and its natural allele (8-bp insertion) and haplotype underlying a major QTL governing seed color on chickpea chromosome 4. Signatures of selective sweep and a strong purifying selection reflected that CaMATE23, especially its 8-bp insertion natural allelic variant, underwent selection during chickpea domestication. Functional investigations revealed that the 8-bp insertion containing the third cis-regulatory RY-motif element in the CaMATE23 promoter is critical for enhanced binding of CaFUSCA3 transcription factor, a key regulator of seed development and flavonoid biosynthesis, thereby affecting CaMATE23 expression and proanthocyanidin (PA) accumulation in the seed coat to impart varied seed color in chickpea. Consequently, overexpression of CaMATE23 in Arabidopsis tt12 mutant partially restored the seed color phenotype to brown pigmentation, ascertaining its functional role in PA accumulation in the seed coat. These findings shed new light on the seed color regulation and evolutionary history, and highlight the transcriptional regulation of CaMATE23 by CaFUSCA3 in modulating seed color in chickpea. The functionally relevant InDel variation, natural allele, and haplotype from CaMATE23 are vital for translational genomic research, including marker-assisted breeding, for developing chickpea cultivars with desirable seed color that appeal to consumers and meet global market demand.
Collapse
Affiliation(s)
- Virevol Thakro
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Varshney
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Anurag Daware
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rishi Srivastava
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Mohanty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Udita Basu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Laxmi Narnoliya
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Shailesh Tripathi
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
3
|
Uba CU, Oselebe HO, Tesfaye AA, Abtew WG. Association mapping in bambara groundnut [Vigna subterranea (L.) Verdc.] reveals loci associated with agro-morphological traits. BMC Genomics 2023; 24:593. [PMID: 37803263 PMCID: PMC10557193 DOI: 10.1186/s12864-023-09684-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) are important for the acceleration of crop improvement through knowledge of marker-trait association (MTA). This report used DArT SNP markers to successfully perform GWAS on agro-morphological traits using 270 bambara groundnut [Vigna subterranea (L.) Verdc.] landraces sourced from diverse origins. The study aimed to identify marker traits association for nine agronomic traits using GWAS and their candidate genes. The experiment was conducted at two different locations laid out in alpha lattice design. The cowpea [Vigna unguiculata (L.) Walp.] reference genome (i.e. legume genome most closely related to bambara groundnut) assisted in the identification of candidate genes. RESULTS The analyses showed that linkage disequilibrium was found to decay rapidly with an average genetic distance of 148 kb. The broadsense heritability was relatively high and ranged from 48.39% (terminal leaf length) to 79.39% (number of pods per plant). The GWAS identified a total of 27 significant marker-trait associations (MTAs) for the nine studied traits explaining 5.27% to 24.86% of phenotypic variations. Among studied traits, the highest number of MTAs was obtained from seed coat colour (6) followed by days to flowering (5), while the least is days to maturity (1), explaining 5.76% to 11.03%, 14.5% to 19.49%, and 11.66% phenotypic variations, respectively. Also, a total of 17 candidate genes were identified, varying in number for different traits; seed coat colour (6), days to flowering (3), terminal leaf length (2), terminal leaf width (2), number of seed per pod (2), pod width (1) and days to maturity (1). CONCLUSION These results revealed the prospect of GWAS in identification of SNP variations associated with agronomic traits in bambara groundnut. Also, its present new opportunity to explore GWAS and marker assisted strategies in breeding of bambara groundnut for acceleration of the crop improvement.
Collapse
Affiliation(s)
- Charles U Uba
- Department of Horticulture and Plant Science, Jimma University, Jimma, Ethiopia.
| | | | - Abush A Tesfaye
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Wosene G Abtew
- Department of Horticulture and Plant Science, Jimma University, Jimma, Ethiopia
| |
Collapse
|
4
|
Song J, Xu R, Guo Q, Wu C, Li Y, Wang X, Wang J, Qiu LJ. An omics strategy increasingly improves the discovery of genetic loci and genes for seed-coat color formation in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:71. [PMID: 37663546 PMCID: PMC10471558 DOI: 10.1007/s11032-023-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023]
Abstract
The phenotypic color of seeds is a complex agronomic trait and has economic and biological significance. The genetic control and molecular regulation mechanisms have been extensively studied. Here, we used a multi-omics strategy to explore the color formation in soybean seeds at a big data scale. We identified 13 large quantitative trait loci (QTL) for color with bulk segregating analysis in recombinant inbreeding lines. GWAS analysis of colors and decomposed attributes in 763 germplasms revealed associated SNP sites perfectly falling in five major QTL, suggesting inherited regulation on color during natural selection. Further transcriptomics analysis before and after color accumulation revealed 182 differentially expression genes (DEGs) in the five QTL, including known genes CHS, MYB, and F3'H involved in pigment accumulation. More DEGs with consistently upregulation or downregulation were identified as shared regulatory genes for two or more color formations while some DEGs were only for a specific color formation. For example, five upregulated DEGs in QTL qSC-3 were in flavonoid biosynthesis responsible for black and brown seed. The DEG (Glyma.08G085400) was identified in the purple seed only, which encodes gibberellin 2-beta-dioxygenase in the metabolism of colorful terpenoids. The candidate genes are involved in flavonoid biosynthesis, transcription factor regulation, gibberellin and terpenoid metabolism, photosynthesis, ascorbate and aldarate metabolism, and lipid metabolism. Seven differentially expressed transcription factors were also speculated that may regulate color formation, including a known MYB. The finds expand QTL and gene candidates for color formation, which could guide to breed better cultivars with designed colors. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01414-z.
Collapse
Affiliation(s)
- Jian Song
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Ruixin Xu
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Qingyuan Guo
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Caiyu Wu
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Yinghui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Jun Wang
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
5
|
Yang Y, Zhao T, Wang F, Liu L, Liu B, Zhang K, Qin J, Yang C, Qiao Y. Identification of candidate genes for soybean seed coat-related traits using QTL mapping and GWAS. FRONTIERS IN PLANT SCIENCE 2023; 14:1190503. [PMID: 37384360 PMCID: PMC10293793 DOI: 10.3389/fpls.2023.1190503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 06/30/2023]
Abstract
Seed coat color is a typical morphological trait that can be used to reveal the evolution of soybean. The study of seed coat color-related traits in soybeans is of great significance for both evolutionary theory and breeding practices. In this study, 180 F10 recombinant inbred lines (RILs) derived from the cross between the yellow-seed coat cultivar Jidou12 (ZDD23040, JD12) and the wild black-seed coat accession Y9 (ZYD02739) were used as materials. Three methods, single-marker analysis (SMA), interval mapping (IM), and inclusive composite interval mapping (ICIM), were used to identify quantitative trait loci (QTLs) controlling seed coat color and seed hilum color. Simultaneously, two genome-wide association study (GWAS) models, the generalized linear model (GLM) and mixed linear model (MLM), were used to jointly identify seed coat color and seed hilum color QTLs in 250 natural populations. By integrating the results from QTL mapping and GWAS analysis, we identified two stable QTLs (qSCC02 and qSCC08) associated with seed coat color and one stable QTL (qSHC08) related to seed hilum color. By combining the results of linkage analysis and association analysis, two stable QTLs (qSCC02, qSCC08) for seed coat color and one stable QTL (qSHC08) for seed hilum color were identified. Upon further investigation using Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we validated the previous findings that two candidate genes (CHS3C and CHS4A) reside within the qSCC08 region and identified a new QTL, qSCC02. There were a total of 28 candidate genes in the interval, among which Glyma.02G024600, Glyma.02G024700, and Glyma.02G024800 were mapped to the glutathione metabolic pathway, which is related to the transport or accumulation of anthocyanin. We considered the three genes as potential candidate genes for soybean seed coat-related traits. The QTLs and candidate genes detected in this study provide a foundation for further understanding the genetic mechanisms underlying soybean seed coat color and seed hilum color and are of significant value in marker-assisted breeding.
Collapse
Affiliation(s)
- Yue Yang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Tiantian Zhao
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Fengmin Wang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Luping Liu
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Bingqiang Liu
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Kai Zhang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jun Qin
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Chunyan Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Yake Qiao
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
6
|
Kafer JM, Molinari MDC, Henning FA, Koltun A, Marques VV, Marin SRR, Nepomuceno AL, Mertz-Henning LM. Transcriptional Profile of Soybean Seeds with Contrasting Seed Coat Color. PLANTS (BASEL, SWITZERLAND) 2023; 12:1555. [PMID: 37050181 PMCID: PMC10097363 DOI: 10.3390/plants12071555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Soybean is the primary source of vegetable protein and is used for various purposes, mainly to feed animals. This crop can have diverse seed coat colors, varying from yellow, black, brown, and green to bicolor. Black seed coat cultivars have already been assigned as favorable for both seed and grain production. Thus, this work aimed to identify genes associated with soybean seed quality by comparing the transcriptomes of soybean seeds with contrasting seed coat colors. The results from RNA-seq analyses were validated with real-time PCR using the cultivar BRS 715A (black seed coat) and the cultivars BRS 413 RR and DM 6563 IPRO (yellow seed coat). We found 318 genes differentially expressed in all cultivars (freshly harvested seeds and seeds stored in cold chamber). From the in silico analysis of the transcriptomes, the following genes were selected and validated with RT-qPCR: ACS1, ACSF3, CYP90A1, CYP710A1, HCT, CBL, and SAHH. These genes are genes induced in the black seed coat cultivar and are part of pathways responsible for ethylene, lipid, brassinosteroid, lignin, and sulfur amino acid biosynthesis. The BRSMG 715A gene has almost 4times more lignin than the yellow seed coat cultivars. These attributes are related to the BRSMG 715A cultivar's higher seed quality, which translates to more longevity and resistance to moisture and mechanical damage. Future silencing studies may evaluate the knockout of these genes to better understand the biology of soybean seeds with black seed coat.
Collapse
Affiliation(s)
- João M. Kafer
- Biotechnology Department, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Mayla D. C. Molinari
- Arthur Bernardes Foundation, Embrapa Soja, Londrina 86085-981, PR, Brazil; (M.D.C.M.); (V.V.M.)
| | - Fernando A. Henning
- Embrapa Soja, Londrina 86085-981, PR, Brazil; (F.A.H.); (S.R.R.M.); (A.L.N.)
| | - Alessandra Koltun
- Agronomy Department, State University of Maringá, Maringá 87020-900, PR, Brazil;
| | - Viviani V. Marques
- Arthur Bernardes Foundation, Embrapa Soja, Londrina 86085-981, PR, Brazil; (M.D.C.M.); (V.V.M.)
| | - Silvana R. R. Marin
- Embrapa Soja, Londrina 86085-981, PR, Brazil; (F.A.H.); (S.R.R.M.); (A.L.N.)
| | | | | |
Collapse
|
7
|
Feng S, Wu J, Chen K, Chen M, Zhu Z, Wang J, Chen G, Cao B, Lei J, Chen C. Identification and characterization analysis of candidate genes controlling mushroom leaf development in Chinese kale by BSA-seq. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:17. [PMID: 37313295 PMCID: PMC10248679 DOI: 10.1007/s11032-023-01364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/22/2023] [Indexed: 06/15/2023]
Abstract
Mushroom leaves (MLs) are malformed leaves that develop from the leaf veins in some of Chinese kale genotypes. To study the genetic model and molecular mechanism of ML development in Chinese kale, the F2 segregation population was constructed by two inbred lines, genotype Boc52 with ML and genotype Boc55 with normal leaves (NL). In the present study, we have identified for the first time that the development of mushroom leaves may be affected by the change of adaxial-abaxial polarity of leaves. Examination of the phenotypes of F1 and F2 segregation populations suggested that ML development is controlled by two dominant major genes inherited independently. BSA-seq analysis showed that a major quantitative trait locus (QTL) qML4.1 that controls ML development is located within 7.4 Mb on chromosome kC4. The candidate region was further narrowed to 255 kb by linkage analysis combined with insertion/deletion (InDel) markers, and 37 genes were predicted in this region. According to the expression and annotation analysis, a B3 domain-containing transcription factor NGA1-like gene, BocNGA1, was identified as a key candidate gene for controlling ML development in Chinese kale. Fifteen single nucleotide polymorphisms (SNPs) were found in coding sequences and 21 SNPs and 3 InDels found in the promoter sequences of BocNGA1 from the genotype Boc52 with ML. The expression levels of BocNGA1 in ML genotypes are significantly lower than in the NL genotypes, which suggests that BocNGA1 may act as a negative regulator for ML genesis in Chinese kale. This study provides a new foundation for Chinese kale breeding and for the study of the molecular mechanism of plant leaf differentiation. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01364-6.
Collapse
Affiliation(s)
- Shuo Feng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Jianbing Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Kunhao Chen
- Guangdong Helinong Agricultural Research Institute Co., Ltd, Shantou, 515800 Guangdong China
- Guangdong Helinong Biological Seed Industry Co., Ltd, Shantou, 515800 Guangdong China
| | - Muxi Chen
- Guangdong Helinong Agricultural Research Institute Co., Ltd, Shantou, 515800 Guangdong China
- Guangdong Helinong Biological Seed Industry Co., Ltd, Shantou, 515800 Guangdong China
| | - Zhangsheng Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Juntao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Guoju Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Jianjun Lei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Changming Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
8
|
Yuan B, Yuan C, Wang Y, Liu X, Qi G, Wang Y, Dong L, Zhao H, Li Y, Dong Y. Identification of genetic loci conferring seed coat color based on a high-density map in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:968618. [PMID: 35979081 PMCID: PMC9376438 DOI: 10.3389/fpls.2022.968618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 05/26/2023]
Abstract
Seed coat color is a typical evolutionary trait. Identification of the genetic loci that control seed coat color during the domestication of wild soybean could clarify the genetic variations between cultivated and wild soybean. We used 276 F10 recombinant inbred lines (RILs) from the cross between a cultivated soybean (JY47) and a wild soybean (ZYD00321) as the materials to identify the quantitative trait loci (QTLs) for seed coat color. We constructed a high-density genetic map using re-sequencing technology. The average distance between adjacent markers was 0.31 cM on this map, comprising 9,083 bin markers. We identified two stable QTLs (qSC08 and qSC11) for seed coat color using this map, which, respectively, explained 21.933 and 26.934% of the phenotypic variation. Two candidate genes (CHS3C and CHS4A) in qSC08 were identified according to the parental re-sequencing data and gene function annotations. Five genes (LOC100786658, LOC100801691, LOC100806824, LOC100795475, and LOC100787559) were predicted in the novel QTL qSC11, which, according to gene function annotations, might control seed coat color. This result could facilitate the identification of beneficial genes from wild soybean and provide useful information to clarify the genetic variations for seed coat color in cultivated and wild soybean.
Collapse
Affiliation(s)
- Baoqi Yuan
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Cuiping Yuan
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Yumin Wang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Xiaodong Liu
- Crop Germplasm Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Guangxun Qi
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Yingnan Wang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Lingchao Dong
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Hongkun Zhao
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Yuqiu Li
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Yingshan Dong
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| |
Collapse
|
9
|
Li C, Jiang H, Li Y, Liu C, Qi Z, Wu X, Zhang Z, Hu Z, Zhu R, Guo T, Wang Z, Zheng W, Zhang Z, Zhao H, Wang N, Shan D, Xin D, Luan F, Chen Q. Identification of Finely Mapped Quantitative Trait Locus and Candidate Gene Mining for the Three-Seeded Pod Trait in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:715488. [PMID: 34899770 PMCID: PMC8663486 DOI: 10.3389/fpls.2021.715488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
The three-seeded pod number is an important trait that positively influences soybean yield. Soybean variety with increased three-seeded pod number contributes to the seed number/plant and higher yield. The candidate genes of the three-seeded pod may be the key for improving soybean yield. In this study, identification and validation of candidate genes for three-seeded pod has been carried out. First, a total of 36 quantitative trait locus (QTL) were detected from the investigation of recombinant inbred lines including 147 individuals derived from a cross between Charleston and Dongning 594 cultivars. Five consensus QTLs were integrated. Second, an introgressed line CSSL-182 carrying the target segment for the trait from the donor parent was selected to verify the consensus QTL based on its phenotype. Third, a secondary group was constructed by backcrossing with CSSL-182, and two QTLs were confirmed. There were a total of 162 genes in the two QTLs. The mining of candidate genes resulted in the annotation of eight genes with functions related to pod and seed sets. Finally, haplotype analysis and quantitative reverse transcriptase real-time PCR were carried to verify the candidate genes. Four of these genes had different haplotypes in the resource group, and the differences in the phenotype were highly significant. Moreover, the differences in the expression of the four genes during pod and seed development were also significant. These four genes were probably related to the development process underlying the three-seeded pod in soybean. Herein, we discuss the past and present studies related to the three-seeded pod trait in soybean.
Collapse
Affiliation(s)
- Candong Li
- Jiamusi Branch Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
- College of Life Science, Northeast Agricultural University, Harbin, China
- Country College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hongwei Jiang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yingying Li
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Chunyan Liu
- Country College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhaoming Qi
- Country College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaoxia Wu
- Country College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhanguo Zhang
- Country College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhenbang Hu
- Country College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Rongsheng Zhu
- Country College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Tai Guo
- Jiamusi Branch Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Zhixin Wang
- Jiamusi Branch Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Wei Zheng
- Jiamusi Branch Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Zhenyu Zhang
- Jiamusi Branch Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Haihong Zhao
- Jiamusi Branch Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Nannan Wang
- Jiamusi Branch Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
- Country College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Dapeng Shan
- Country College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Dawei Xin
- Country College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Feishi Luan
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Qingshan Chen
- Country College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
10
|
Dhungana SK, Seo JH, Kang BK, Park JH, Kim JH, Sung JS, Baek IY, Shin SO, Jung CS. Protein, Amino Acid, Oil, Fatty Acid, Sugar, Anthocyanin, Isoflavone, Lutein, and Antioxidant Variations in Colored Seed-Coated Soybeans. PLANTS (BASEL, SWITZERLAND) 2021; 10:1765. [PMID: 34579299 PMCID: PMC8468453 DOI: 10.3390/plants10091765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022]
Abstract
Different physiological and genetic studies show that the variations in the accumulation of pigment-stimulating metabolites result in color differences in soybean seed coats. The objective of this study was to analyze the nutrient contents and antioxidant potential in black, brown, and green seed-coated soybeans. Significant variations in protein (38.9-43.3%), oil (13.9-20.4%), total sugar (63.5-97.0 mg/g seed), total anthocyanin (3826.0-21,856.0 μg/g seed coat), total isoflavone (709.5-3394.3 μg/g seed), lutein (1.9-14.8 μg/g), total polyphenol (123.0-385.8 mg gallic acid/100 g seed), total flavonoid (22.1-208.5 mg catechin/100 g seed), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS; 275.0-818.8 mg Trolox/100 g seed), and 2,2-diphenyl-1-picrylhydrazyl (DPPH; 96.3-579.7 mg Trolox/100 g seed) were found among the soybean genotypes. Ilpumgeomjeong2 contained the lowest protein but the highest oil and total sugar. The lowest oil-containing Wonheug had the highest protein content. Socheong2 was rich in all four variables of antioxidants. Anthocyanins were detected only in black soybeans but not in brown and green soybeans. The variation in isoflavone content was up to 5-fold among the soybean genotypes. This study could be a valuable resource for the selection and improvement of soybean because an understanding of the nutrient content and antioxidant potentials is useful to develop effective strategies for improving the economic traits; for example, the major emphasis of soybean breeding for fatty acids is to enhance the oleic and linoleic acid contents and to decrease linolenic acid content.
Collapse
Affiliation(s)
| | - Jeong-Hyun Seo
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Korea; (S.K.D.); (B.-K.K.); (J.-H.P.); (J.-H.K.); (J.-S.S.); (I.-Y.B.); (S.-O.S.); (C.-S.J.)
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Choi YM, Yoon H, Shin MJ, Lee Y, Hur OS, Lee BC, Ha BK, Wang X, Desta KT. Metabolite Contents and Antioxidant Activities of Soybean ( Glycine max (L.) Merrill) Seeds of Different Seed Coat Colors. Antioxidants (Basel) 2021; 10:1210. [PMID: 34439461 PMCID: PMC8388989 DOI: 10.3390/antiox10081210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 11/17/2022] Open
Abstract
Seed coat color is one of the main agronomical traits that determine the chemical quality of soybean seeds and has been used as a parameter during cultivar development. In this study, seeds of yellow (n = 10), greenish-yellow (n = 5), and light-yellow (n = 4) soybean accessions were evaluated for their contents of total protein, total oil, total phenolic (TPC), and five prominent fatty acids including palmitic acid (PA), stearic acid (SA), oleic acid (OA), linoleic acid (LA), and linolenic acid (LLA), relative to a control cultivar, and the effect of seed coat color on each was investigated. Antioxidant activity was also evaluated using 1,1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, Trolox equivalent antioxidant capacity (TEAC), and ferric reducing antioxidant power (FRAP). The results showed significant variations of metabolite contents and antioxidant activities between the soybeans. The average TPC, DPPH-radical scavenging activity, and FRAP were each in the order of greenish-yellow > yellow > light-yellow soybeans. In contrast, light-yellow soybeans contained a high level of OA and low levels of SA, LA, and LLA, each except LA differing significantly from yellow and greenish-yellow soybeans (p < 0.05). Our findings suggest that greenish-yellow and light-yellow soybeans could be good sources of antioxidants and high-quality soybean oil, respectively.
Collapse
Affiliation(s)
- Yu-Mi Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (Y.-M.C.); (H.Y.); (M.-J.S.); (Y.L.); (O.S.H.); (X.W.)
| | - Hyemyeong Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (Y.-M.C.); (H.Y.); (M.-J.S.); (Y.L.); (O.S.H.); (X.W.)
| | - Myoung-Jae Shin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (Y.-M.C.); (H.Y.); (M.-J.S.); (Y.L.); (O.S.H.); (X.W.)
| | - Yoonjung Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (Y.-M.C.); (H.Y.); (M.-J.S.); (Y.L.); (O.S.H.); (X.W.)
| | - On Sook Hur
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (Y.-M.C.); (H.Y.); (M.-J.S.); (Y.L.); (O.S.H.); (X.W.)
| | - Bong Choon Lee
- Crop Foundation Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea;
| | - Bo-Keun Ha
- Division of Plant Biotechnology, Chonnam National University, Gwangju 61186, Korea;
| | - Xiaohan Wang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (Y.-M.C.); (H.Y.); (M.-J.S.); (Y.L.); (O.S.H.); (X.W.)
| | - Kebede Taye Desta
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (Y.-M.C.); (H.Y.); (M.-J.S.); (Y.L.); (O.S.H.); (X.W.)
- Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
| |
Collapse
|
12
|
Kim JH, Park JS, Lee CY, Jeong MG, Xu JL, Choi Y, Jung HW, Choi HK. Dissecting seed pigmentation-associated genomic loci and genes by employing dual approaches of reference-based and k-mer-based GWAS with 438 Glycine accessions. PLoS One 2020; 15:e0243085. [PMID: 33259564 PMCID: PMC7707508 DOI: 10.1371/journal.pone.0243085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/15/2020] [Indexed: 11/19/2022] Open
Abstract
The soybean is agro-economically the most important among all cultivated legume crops, and its seed color is considered one of the most attractive factors in the selection-by-breeders. Thus, genome-wide identification of genes and loci associated with seed colors is critical for the precision breeding of crop soybeans. To dissect seed pigmentation-associated genomic loci and genes, we employed dual approaches by combining reference-based genome-wide association study (rbGWAS) and k-mer-based reference-free GWAS (rfGWAS) with 438 Glycine accessions. The dual analytical strategy allowed us to identify four major genomic loci (designated as SP1-SP4 in this study) associated with the seed colors of soybeans. The k-mer analysis enabled us to find an important recombination event that occurred between subtilisin and I-cluster B in the soybean genome, which could describe a special structural feature of ii allele within the I locus (SP3). Importantly, mapping analyses of both mRNAs and small RNAs allowed us to reveal that the subtilisin-CHS1/CHS3 chimeric transcripts generate and act as an initiator towards 'mirtron (i.e., intron-harboring miRNA precursor)'-triggered silencing of chalcone synthase (CHS) genes. Consequently, the results led us to propose a working model of 'mirtron-triggered gene silencing (MTGS)' to elucidate a long-standing puzzle in the genome-wide CHS gene silencing mechanism. In summary, our study reports four major genomic loci, lists of key genes and genome-wide variations that are associated with seed pigmentation in soybeans. In addition, we propose that the MTGS mechanism plays a crucial role in the genome-wide silencing of CHS genes, thereby suggesting a clue to currently predominant soybean cultivars with the yellow seed coat. Finally, this study will provide a broad insight into the interactions and correlations among seed color-associated genes and loci within the context of anthocyanin biosynthetic pathways.
Collapse
Affiliation(s)
- Jin-Hyun Kim
- Department of Medical Bioscience, Dong-A University, Busan, Republic of Korea
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Joo-Seok Park
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Chae-Young Lee
- Department of Medical Bioscience, Dong-A University, Busan, Republic of Korea
| | - Min-Gyun Jeong
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Jiu Liang Xu
- Systems Biotechnology Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Yongsoo Choi
- Systems Biotechnology Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Ho-Won Jung
- Department of Molecular Genetics, Dong-A University, Busan, Republic of Korea
| | - Hong-Kyu Choi
- Department of Molecular Genetics, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
13
|
Ku YS, Contador CA, Ng MS, Yu J, Chung G, Lam HM. The Effects of Domestication on Secondary Metabolite Composition in Legumes. Front Genet 2020; 11:581357. [PMID: 33193705 PMCID: PMC7530298 DOI: 10.3389/fgene.2020.581357] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Legumes are rich in secondary metabolites, such as polyphenols, alkaloids, and saponins, which are important defense compounds to protect the plant against herbivores and pathogens, and act as signaling molecules between the plant and its biotic environment. Legume-sourced secondary metabolites are well known for their potential benefits to human health as pharmaceuticals and nutraceuticals. During domestication, the color, smell, and taste of crop plants have been the focus of artificial selection by breeders. Since these agronomic traits are regulated by secondary metabolites, the basis behind the genomic evolution was the selection of the secondary metabolite composition. In this review, we will discuss the classification, occurrence, and health benefits of secondary metabolites in legumes. The differences in their profiles between wild legumes and their cultivated counterparts will be investigated to trace the possible effects of domestication on secondary metabolite compositions, and the advantages and drawbacks of such modifications. The changes in secondary metabolite contents will also be discussed at the genetic level to examine the genes responsible for determining the secondary metabolite composition that might have been lost due to domestication. Understanding these genes would enable breeding programs and metabolic engineering to produce legume varieties with favorable secondary metabolite profiles for facilitating adaptations to a changing climate, promoting beneficial interactions with biotic factors, and enhancing health-beneficial secondary metabolite contents for human consumption.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Carolina A. Contador
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Jeongjun Yu
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
14
|
Lee KJ, Baek DY, Lee GA, Cho GT, So YS, Lee JR, Ma KH, Chung JW, Hyun DY. Phytochemicals and Antioxidant Activity of Korean Black Soybean ( Glycine max L.) Landraces. Antioxidants (Basel) 2020; 9:antiox9030213. [PMID: 32150893 PMCID: PMC7139723 DOI: 10.3390/antiox9030213] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022] Open
Abstract
Black soybean (Glycine max L.) has been used as a traditional medicine because its seed coat contains various natural phenolic compounds such as anthocyanins. The objective of this study was to reveal the genetic variation in the agricultural traits, phytochemicals, and antioxidant activity of 172 Korean black soybean landraces (KBSLs) and establish a relationship among them. The evaluation of three agricultural traits (days to 50% flowering, maturity, and 100-seed weight), six phytochemicals (delphinidin-3-glucoside, cyaniding-3-glucoside, petunidin-3-glucoside, daidzin, glycitin, and genestin), and four antioxidant activities (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS), ferric-reducing antioxidant power (FRAP), and the total polyphenol content (TPC) of 172 KBSLs were analyzed in 2012 and 2015. The agricultural traits, phytochemicals, and antioxidant activities of the 172 KBSLs showed wide variation among the accessions and years. In correlation analysis, the agricultural traits and phytochemicals showed positive and negative correlations with phytochemicals and antioxidant activity, respectively. The principal component analyses result indicated that phytochemicals accounted for most of the variability in the KBSLs. In clustering analysis, the 172 KBSLs were classified into four clusters. These results could lead to expanding the knowledge of the agricultural traits, phytochemicals, and antioxidant activity of the KBSLs, which are valuable materials for the development of new soybean varieties.
Collapse
Affiliation(s)
- Kyung Jun Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (K.J.L.); (G.-T.C.); (J.-R.L.)
| | - Da-Young Baek
- Department of Crop Science, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Korea; (D.-Y.B.); (Y.-S.S.)
| | - Gi-An Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (K.J.L.); (G.-T.C.); (J.-R.L.)
| | - Gyu-Taek Cho
- National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (K.J.L.); (G.-T.C.); (J.-R.L.)
| | - Yoon-Sup So
- Department of Crop Science, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Korea; (D.-Y.B.); (Y.-S.S.)
| | - Jung-Ro Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (K.J.L.); (G.-T.C.); (J.-R.L.)
| | - Kyung-Ho Ma
- Department of Herbal Crop Research, NIHHS, RDA, Eumseong 27709, Korea;
| | - Jong-Wook Chung
- Department of Industrial Plant Science and Technology, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Korea
- Correspondence: (J.-W.C.); (D.Y.H.); Tel.: +82-43-261-2518 (J.-W.C.); +82-63-238-4912 (D.Y.H.)
| | - Do Yoon Hyun
- National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (K.J.L.); (G.-T.C.); (J.-R.L.)
- Correspondence: (J.-W.C.); (D.Y.H.); Tel.: +82-43-261-2518 (J.-W.C.); +82-63-238-4912 (D.Y.H.)
| |
Collapse
|
15
|
Jeong SC, Moon JK, Park SK, Kim MS, Lee K, Lee SR, Jeong N, Choi MS, Kim N, Kang ST, Park E. Genetic diversity patterns and domestication origin of soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1179-1193. [PMID: 30588539 PMCID: PMC6449312 DOI: 10.1007/s00122-018-3271-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/19/2018] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE Genotyping data of a comprehensive Korean soybean collection obtained using a large SNP array were used to clarify global distribution patterns of soybean and address the evolutionary history of soybean. Understanding diversity and evolution of a crop is an essential step to implement a strategy to expand its germplasm base for crop improvement research. Accessions intensively collected from Korea, which is a small but central region in the distribution geography of soybean, were genotyped to provide sufficient data to underpin population genetic questions. After removing natural hybrids and duplicated or redundant accessions, we obtained a non-redundant set comprising 1957 domesticated and 1079 wild accessions to perform population structure analyses. Our analysis demonstrates that while wild soybean germplasm will require additional sampling from diverse indigenous areas to expand the germplasm base, the current domesticated soybean germplasm is saturated in terms of genetic diversity. We then showed that our genome-wide polymorphism map enabled us to detect genetic loci underlying flower color, seed-coat color, and domestication syndrome. A representative soybean set consisting of 194 accessions was divided into one domesticated subpopulation and four wild subpopulations that could be traced back to their geographic collection areas. Population genomics analyses suggested that the monophyletic group of domesticated soybeans was likely originated at a Japanese region. The results were further substantiated by a phylogenetic tree constructed from domestication-associated single nucleotide polymorphisms identified in this study.
Collapse
Affiliation(s)
- Soon-Chun Jeong
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Korea.
| | - Jung-Kyung Moon
- Agricultural Genome Center, National Academy of Agricultural Sciences, Rural Development Administration, Jeonju, Jeonbuk, 55365, Korea.
| | - Soo-Kwon Park
- National Institute of Crop Science, Rural Development Administration, Wanju, Jeonbuk, 55365, Korea
| | - Myung-Shin Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Korea
| | - Kwanghee Lee
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Korea
| | - Soo Rang Lee
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Korea
| | - Namhee Jeong
- National Institute of Crop Science, Rural Development Administration, Wanju, Jeonbuk, 55365, Korea
| | - Man Soo Choi
- National Institute of Crop Science, Rural Development Administration, Wanju, Jeonbuk, 55365, Korea
| | - Namshin Kim
- Epigenomics Research Center, Genome Institute, Institute of Bioscience and Biotechnology, Korea Research, Taejon, 34141, Korea
| | - Sung-Taeg Kang
- Department of Crop Science and Biotechnology, Dankook University, Cheonan, Chungnam, 31116, Korea
| | - Euiho Park
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea
| |
Collapse
|
16
|
Xie M, Chung CYL, Li MW, Wong FL, Wang X, Liu A, Wang Z, Leung AKY, Wong TH, Tong SW, Xiao Z, Fan K, Ng MS, Qi X, Yang L, Deng T, He L, Chen L, Fu A, Ding Q, He J, Chung G, Isobe S, Tanabata T, Valliyodan B, Nguyen HT, Cannon SB, Foyer CH, Chan TF, Lam HM. A reference-grade wild soybean genome. Nat Commun 2019; 10:1216. [PMID: 30872580 PMCID: PMC6418295 DOI: 10.1038/s41467-019-09142-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/22/2019] [Indexed: 01/01/2023] Open
Abstract
Efficient crop improvement depends on the application of accurate genetic information contained in diverse germplasm resources. Here we report a reference-grade genome of wild soybean accession W05, with a final assembled genome size of 1013.2 Mb and a contig N50 of 3.3 Mb. The analytical power of the W05 genome is demonstrated by several examples. First, we identify an inversion at the locus determining seed coat color during domestication. Second, a translocation event between chromosomes 11 and 13 of some genotypes is shown to interfere with the assignment of QTLs. Third, we find a region containing copy number variations of the Kunitz trypsin inhibitor (KTI) genes. Such findings illustrate the power of this assembly in the analysis of large structural variations in soybean germplasm collections. The wild soybean genome assembly has wide applications in comparative genomic and evolutionary studies, as well as in crop breeding and improvement programs.
Collapse
Affiliation(s)
- Min Xie
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Claire Yik-Lok Chung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Fuk-Ling Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Xin Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Ailin Liu
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Zhili Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Alden King-Yung Leung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Tin-Hang Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Suk-Wah Tong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Zhixia Xiao
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Kejing Fan
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Xinpeng Qi
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Linfeng Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Tianquan Deng
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Lijuan He
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Lu Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Aisi Fu
- Wuhan Institute of Biotechnology, Wuhan, 430075, Hubei, China
| | - Qiong Ding
- Wuhan Institute of Biotechnology, Wuhan, 430075, Hubei, China
| | - Junxian He
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Gwangju, 550-749, Jeonnam, South Korea
| | - Sachiko Isobe
- Kazusa DNA Research Institute, Kazusa-Kamatari, Kisarazu, 292-0818, Chiba, Japan
| | - Takanari Tanabata
- Kazusa DNA Research Institute, Kazusa-Kamatari, Kisarazu, 292-0818, Chiba, Japan
| | - Babu Valliyodan
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Steven B Cannon
- Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Ames, Iowa, 50011-4014, USA
| | - Christine H Foyer
- Faculty of Biological Sciences, Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, Yorkshire, UK
| | - Ting-Fung Chan
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.
| |
Collapse
|
17
|
Choi HK. Translational genomics and multi-omics integrated approaches as a useful strategy for crop breeding. Genes Genomics 2019; 41:133-146. [PMID: 30353370 PMCID: PMC6394800 DOI: 10.1007/s13258-018-0751-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/01/2018] [Indexed: 01/25/2023]
Abstract
Recent next generation sequencing-driven mass production of genomic data and multi-omics-integrated approaches have significantly contributed to broadening and deepening our knowledge on the molecular system of living organisms. Accordingly, translational genomics (TG) approach can play a pivotal role in creating an informational bridge between model systems and relatively less studied plants. This review focuses mainly on addressing recent advancement in omics-related technologies, a diverse array of bioinformatic resources and potential applications of TG for the crop breeding. To accomplish above objectives, information on omics data production, various DBs and high throughput technologies was collected, integrated, and used to analyze current status and future perspectives towards omics-assisted crop breeding. Various omics data and resources have been organized and integrated into the databases and/or bioinformatic infrastructures, and thereby serve as the ome's information center for cross-genome translation of biological data. Although the size of accumulated omics data and availability of reference genomes are different among plant families, translational approaches have been actively progressing to access particular biological characteristics. When multi-layered omics data are integrated in a synthetic manner, it will allow providing a stereoscopic view of dynamic molecular behavior and interacting networks of genes occurring in plants. Consequently, TG approach will lead us to broader and deeper insights into target traits for the plant breeding. Furthermore, such systems approach will renovate conventional breeding programs and accelerate precision crop breeding in the future.
Collapse
Affiliation(s)
- Hong-Kyu Choi
- Department of Molecular Genetics, College of Natural Resources and Life Science, Dong-A University, Nakdong-Daero 550-Beongil 37, Saha-Gu, Busan, 49315, Republic of Korea.
| |
Collapse
|
18
|
Rajkumar MS, Garg R, Jain M. Genome-wide discovery of DNA polymorphisms among chickpea cultivars with contrasting seed size/weight and their functional relevance. Sci Rep 2018; 8:16795. [PMID: 30429540 PMCID: PMC6235875 DOI: 10.1038/s41598-018-35140-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 10/31/2018] [Indexed: 12/16/2022] Open
Abstract
Seed size/weight is a major agronomic trait which determine crop productivity in legumes. To understand the genetic basis of seed size determination, we sought to identify DNA polymorphisms between two small (Himchana 1 and Pusa 362) and two large-seeded (JGK 3 and PG 0515) chickpea cultivars via whole genome resequencing. We identified a total of 75535 single nucleotide polymorphisms (SNPs), 6486 insertions and deletions (InDels), 1938 multi-nucleotide polymorphisms (MNPs) and 5025 complex variants between the two small and two large-seeded chickpea cultivars. Our analysis revealed 814, 244 and 72 seed-specific genes harboring DNA polymorphisms in promoter or non-synonymous and large-effect DNA polymorphisms, respectively. Gene ontology analysis revealed enrichment of cell growth and division related terms in these genes. Among them, at least 22 genes associated with quantitative trait loci, and those involved in cell growth and division and encoding transcription factors harbored promoter and/or large-effect/non-synonymous DNA polymorphisms. These also showed higher expression at late-embryogenesis and/or mid-maturation stages of seed development in the large-seeded cultivar, suggesting their role in seed size/weight determination in chickpea. Altogether, this study provided a valuable resource for large-scale genotyping applications and a few putative candidate genes that might play crucial role in governing seed size/weight in chickpea.
Collapse
Affiliation(s)
- Mohan Singh Rajkumar
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India. .,National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
19
|
Patil G, Vuong TD, Kale S, Valliyodan B, Deshmukh R, Zhu C, Wu X, Bai Y, Yungbluth D, Lu F, Kumpatla S, Shannon JG, Varshney RK, Nguyen HT. Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1939-1953. [PMID: 29618164 PMCID: PMC6181215 DOI: 10.1111/pbi.12929] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 05/04/2023]
Abstract
The cultivated [Glycine max (L) Merr.] and wild [Glycine soja Siebold & Zucc.] soybean species comprise wide variation in seed composition traits. Compared to wild soybean, cultivated soybean contains low protein, high oil, and high sucrose. In this study, an interspecific population was derived from a cross between G. max (Williams 82) and G. soja (PI 483460B). This recombinant inbred line (RIL) population of 188 lines was sequenced at 0.3× depth. Based on 91 342 single nucleotide polymorphisms (SNPs), recombination events in RILs were defined, and a high-resolution bin map was developed (4070 bins). In addition to bin mapping, quantitative trait loci (QTL) analysis for protein, oil, and sucrose was performed using 3343 polymorphic SNPs (3K-SNP), derived from Illumina Infinium BeadChip sequencing platform. The QTL regions from both platforms were compared, and a significant concordance was observed between bin and 3K-SNP markers. Importantly, the bin map derived from next-generation sequencing technology enhanced mapping resolution (from 1325 to 50 Kb). A total of five, nine, and four QTLs were identified for protein, oil, and sucrose content, respectively, and some of the QTLs coincided with soybean domestication-related genomic loci. The major QTL for protein and oil were mapped on Chr. 20 (qPro_20) and suggested negative correlation between oil and protein. In terms of sucrose content, a novel and major QTL were identified on Chr. 8 (qSuc_08) and harbours putative genes involved in sugar transport. In addition, genome-wide association using 91 342 SNPs confirmed the genomic loci derived from QTL mapping. A QTL-based haplotype using whole-genome resequencing of 106 diverse soybean lines identified unique allelic variation in wild soybean that could be utilized to widen the genetic base in cultivated soybean.
Collapse
Affiliation(s)
- Gunvant Patil
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
- Present address:
Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMN55108USA
| | - Tri D. Vuong
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Sandip Kale
- Center of Excellence in GenomicsInternational Crops Research Institute for the Semi‐Arid TropicsHyderabadIndia
- Present address:
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GateslebenD‐06466StadtSeelandGermany
| | - Babu Valliyodan
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | | | - Chengsong Zhu
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Xiaolei Wu
- Crop Science DivisionBayer CropScienceMorrisvilleNCUSA
| | - Yonghe Bai
- Dow AgroSciencesIndianapolisINUSA
- Present address:
Nuseed Americas10 N. East Street, Suite 101WoodlandCA95776USA
| | | | - Fang Lu
- Dow AgroSciencesIndianapolisINUSA
- Present address:
AmgenOne Amgen Center DriveThousand OaksCA91320USA
| | | | | | - Rajeev K. Varshney
- Center of Excellence in GenomicsInternational Crops Research Institute for the Semi‐Arid TropicsHyderabadIndia
| | - Henry T. Nguyen
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| |
Collapse
|
20
|
Wang YY, Li YQ, Wu HY, Hu B, Zheng JJ, Zhai H, Lv SX, Liu XL, Chen X, Qiu HM, Yang J, Zong CM, Han DZ, Wen ZX, Wang DC, Xia ZJ. Genotyping of Soybean Cultivars With Medium-Density Array Reveals the Population Structure and QTNs Underlying Maturity and Seed Traits. FRONTIERS IN PLANT SCIENCE 2018; 9:610. [PMID: 29868067 PMCID: PMC5954420 DOI: 10.3389/fpls.2018.00610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/17/2018] [Indexed: 05/08/2023]
Abstract
Soybean was domesticated about 5,000 to 6,000 years ago in China. Although genotyping technologies such as genotyping by sequencing (GBS) and high-density array are available, it is convenient and economical to genotype cultivars or populations using medium-density SNP array in genetic study as well as in molecular breeding. In this study, 235 cultivars, collected from China, Japan, USA, Canada and some other countries, were genotyped using SoySNP8k iSelect BeadChip with 7,189 single nucleotide polymorphisms (SNPs). In total, 4,471 polymorphic SNP markers were used to analyze population structure and perform genome-wide association study (GWAS). The most likely K value was 7, indicating this population can be divided into 7 subpopulations, which is well in accordance with the geographic origins of cultivars or accession studied. The LD decay rate was estimated at 184 kb, where r2 dropped to half of its maximum value (0.205). GWAS using FarmCPU detected a stable quantitative trait nucleotide (QTN) for hilum color and seed color, which is consistent with the known loci or genes. Although no universal QTNs for flowering time and maturity were identified across all environments, a total of 30 consistent QTNs were detected for flowering time (R1) or maturity (R7 and R8) on 16 chromosomes, most of them were corresponding to known E1 to E4 genes or QTL region reported in SoyBase (soybase.org). Of 16 consistent QTNs for protein and oil contents, 11 QTNs were detected having antagonistic effects on protein and oil content, while 4 QTNs soly for oil content, and one QTN soly for protein content. The information gained in this study demonstrated that the usefulness of the medium-density SNP array in genotyping for genetic study and molecular breeding.
Collapse
Affiliation(s)
- Ya-ying Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-qiu Li
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Hong-yan Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Bo Hu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-jia Zheng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Zhai
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Shi-xiang Lv
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xin-lei Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xin Chen
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hong-mei Qiu
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jiayin Yang
- Huaiyin Institute of Agricultural Sciences in Xuhuai Region of Jiangsu Province, Huaian, China
| | - Chun-mei Zong
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, China
| | - De-zhi Han
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, China
| | - Zi-xiang Wen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - De-chun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Zheng-jun Xia
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
21
|
Karthikeyan A, Li K, Li C, Yin J, Li N, Yang Y, Song Y, Ren R, Zhi H, Gai J. Fine-mapping and identifying candidate genes conferring resistance to Soybean mosaic virus strain SC20 in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:461-476. [PMID: 29181547 DOI: 10.1007/s00122-017-3014-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 11/04/2017] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE The Mendelian gene conferring resistance to Soybean mosaic virus Strain SC20 in soybean was fine-mapped onto a 79-kb segment on Chr.13 where two closely linked candidate genes were identified and qRT-PCR verified. Soybean mosaic virus (SMV) threatens the world soybean production, particularly in China. A country-wide SMV strain system composed of 22 strains was established in China, among which SC20 is a dominant strain in five provinces in Southern China. Resistance to SC20 was evaluated in parents, F1, F2 and the F2:7 RIL (recombinant inbred line) population derived from a cross between Qihuang-1 (resistant) and NN1138-2 (susceptible). The segregation ratio of resistant to susceptible in the populations suggested a single dominant gene involved in the resistance to SC20 in Qihuang-1. A "partial genome mapping strategy" was used to map the resistance gene on Chromosome 13. Linkage analysis between 178 RILs and genetic markers showed that the SC20-resistance gene located at 3.9 and 3.8 cM to the flanking markers BARCSOYSSR_13_1099 and BARCSOYSSR_13_1185 on Chromosome 13. Subsequently, a residual heterozygote segregating population with 346 individuals was developed by selfing four plants heterozygous at markers adjacent to the tentative SC20-resistance gene; then, the candidate region was delimited to a genomic interval of approximately 79 kb flanked by the new markers gm-ssr_13-14 and gm-indel_13-3. Among the seven annotated candidate genes in this region, two genes, Glyma.13G194700 and Glyma.13G195100, encoding Toll Interleukin Receptor-nucleotide-binding-leucine-rich repeat resistance proteins were identified as candidate resistance genes by quantitative real-time polymerase chain reaction and sequence analysis. The two closely linked genes work together to cause the phenotypic segregation as a single Mendelian gene. These results will facilitate marker-assisted selection, gene cloning and breeding for the resistance to SC20.
Collapse
Affiliation(s)
- Adhimoolam Karthikeyan
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Kai Li
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Cui Li
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jinlong Yin
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Na Li
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yunhua Yang
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yingpei Song
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Rui Ren
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Haijian Zhi
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Junyi Gai
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China.
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China.
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
22
|
Senda M, Yamaguchi N, Hiraoka M, Kawada S, Iiyoshi R, Yamashita K, Sonoki T, Maeda H, Kawasaki M. Accumulation of proanthocyanidins and/or lignin deposition in buff-pigmented soybean seed coats may lead to frequent defective cracking. PLANTA 2017; 245:659-670. [PMID: 27995313 DOI: 10.1007/s00425-016-2638-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
MAIN CONCLUSION Defective cracking frequently occurs in buff-pigmented soybean seed coats, where proanthocyanidins accumulate and lignin is deposited, suggesting that proanthocyanidins and/or lignin may change physical properties and lead to defective cracking. In the seed production of many yellow soybean (Glycine max) cultivars, very low percentages of self-pigmented seeds are commonly found. This phenomenon is derived from a recessive mutation of the I gene inhibiting seed coat pigmentation. In Japan, most of these self-pigmented seeds are buff-colored, and frequently show multiple defective cracks in the seed coat. However, it is not known why cracking occurs specifically in buff seed coats. In this study, quantitative analysis was performed between yellow and buff soybean seed coats. Compared with yellow soybeans, in which defective cracking rarely occurs, contents of proanthocyanidins (PAs) and lignin were significantly higher in buff seed coats. Histochemical data of PAs and lignin in the seed coats strongly supported this result. Measurements of the physical properties of seed coats using a texture analyzer showed that a hardness value was significantly decreased in the buff seed coats. These results suggest that PA accumulation and/or lignin deposition may affect the physical properties of buff seed coats and lead to the defective cracking. This work contributes to understanding of the mechanism of defective cracking, which decreases the seed quality of soybean and related legumes.
Collapse
Affiliation(s)
- Mineo Senda
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori, 036-8561, Japan.
| | - Naoya Yamaguchi
- Hokkaido Research Organization Tokachi Agricultural Experiment Station, 2, Minami 9 sen, Shinsei, Memuro-cho, Kasai-gun, Hokkaido, 082-0081, Japan
| | - Miho Hiraoka
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori, 036-8561, Japan
| | - So Kawada
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori, 036-8561, Japan
| | - Ryota Iiyoshi
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori, 036-8561, Japan
| | - Kazuki Yamashita
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori, 036-8561, Japan
| | - Tomonori Sonoki
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori, 036-8561, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori, 036-8561, Japan
| | - Michio Kawasaki
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori, 036-8561, Japan
| |
Collapse
|
23
|
Daware AV, Srivastava R, Singh AK, Parida SK, Tyagi AK. Regional Association Analysis of MetaQTLs Delineates Candidate Grain Size Genes in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:807. [PMID: 28611791 PMCID: PMC5447001 DOI: 10.3389/fpls.2017.00807] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/29/2017] [Indexed: 05/20/2023]
Abstract
Molecular mapping studies which aim to identify genetic basis of diverse agronomic traits are vital for marker-assisted crop improvement. Numerous Quantitative Trait Loci (QTLs) mapped in rice span long genomic intervals with hundreds to thousands of genes, which limits their utilization for marker-assisted genetic enhancement of rice. Although potent, fine mapping of QTLs is challenging task as it requires screening of large number of segregants to identify suitable recombination events. Association mapping offers much higher resolution as compared to QTL mapping, but detects considerable number of spurious QTLs. Therefore, combined use of QTL and association mapping strategies can provide advantages associated with both these methods. In the current study, we utilized meta-analysis approach to identify metaQTLs associated with grain size/weight in diverse Indian indica and aromatic rice accessions. Subsequently, attempt has been made to narrow-down identified grain size/weight metaQTLs through individual SNP- as well as haplotype-based regional association analysis. The study identified six different metaQTL regions, three of which were successfully revalidated, and substantially scaled-down along with GS3 QTL interval (positive control) by regional association analysis. Consequently, two potential candidate genes within two reduced metaQTLs were identified based on their differential expression profiles in different tissues/stages of rice accessions during seed development. The developed strategy has broader practical utility for rapid delineation of candidate genes and natural alleles underlying QTLs associated with complex agronomic traits in rice as well as major crop plants enriched with useful genetic and genomic information.
Collapse
Affiliation(s)
| | | | - Ashok K. Singh
- Division of Genetics, Indian Agricultural Research InstituteNew Delhi, India
| | - Swarup K. Parida
- National Institute of Plant Genome ResearchNew Delhi, India
- *Correspondence: Akhilesh K. Tyagi, Swarup K. Parida, ;
| | - Akhilesh K. Tyagi
- National Institute of Plant Genome ResearchNew Delhi, India
- Department of Plant Molecular Biology, University of Delhi South CampusNew Delhi, India
- *Correspondence: Akhilesh K. Tyagi, Swarup K. Parida, ;
| |
Collapse
|