1
|
Hossain MG, Ueda K. Regulation of Hepatitis B Virus Replication by Modulating Endoplasmic Reticulum Stress (ER-Stress). Int J Microbiol 2024; 2024:9117453. [PMID: 39246409 PMCID: PMC11379510 DOI: 10.1155/2024/9117453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
Hepatitis B virus (HBV), resistant to several antiviral drugs due to viral genomic mutations, has been reported, which aggravates chronic infection and leads to hepatocellular carcinoma. Therefore, host cellular factors/signaling modulation might be an alternative way of treatment for drug-resistant HBV. Here, we investigated the viral protein expression, replication, and virion production using endoplasmic reticulum (ER) stress-modulating chemicals, tunicamycin (an ER-stress inducer), and salubrinal (an ER-stress inhibitor). We found that ER-stress could be induced by HBV replication in transfected HepG2 cells as well as by tunicamycin as demonstrated by dual luciferase assay. HBV intracellular core-associated DNA quantified by qPCR has been significantly increased by tunicamycin in transfected HepG2 cells. Inversely, intracellular core associated and extracellular particle DNA has been significantly decreased in a dose-dependent manner in salubrinal-treated HepG2 cells transfected with HBV-replicating plasmid pHBI. Similar results were found in stably HBV-expressing hepatoblastoma (HB611) cells treated with salubrinal. However, increased or decreased ER-stress by tunicamycin or salubrinal treatment, respectively, has been confirmed by expression analysis of grp78 using Western blot. In addition, Western blot results demonstrated that the expression of HBV core protein and large HBsAg is increased and decreased by tunicamycin and salubrinal, respectively. In conclusion, the sal-mediated inhibition of the HBV replication and virion production might be due to the simultaneous reduction of core and large HBsAg expression and maintaining the ER homeostasis. These results of HBV replication regulation by modulation of ER-stress dynamics would be useful for designing/identifying anti-HBV drugs targeting cellular signaling pathways.
Collapse
Affiliation(s)
- Md Golzar Hossain
- Department of Microbiology and Hygiene Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Keiji Ueda
- Division of Virology Department of Microbiology and Immunology Graduate School of Medicine Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Liu Y, Zheng L, Xu W, Xu Q, Li X, Lin Q, Wang L, Lai J. Efficacy of Plasma Exchange and a Double-Plasma Molecular Absorption System for Treating Immune Checkpoint Inhibitor-Related Hepatitis. HEPATITIS MONTHLY 2023; 23. [DOI: 10.5812/hepatmon-137153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/27/2023] [Accepted: 09/03/2023] [Indexed: 09/02/2024]
Abstract
Background: Immune checkpoint inhibitor (ICI)-related hepatitis has been increasing in the past decade. Objectives: This study aimed to investigate the effectiveness of plasma exchange (PE) and a double-plasma molecular absorption system (DPMAS) for ICI-related hepatitis. Methods: A retrospective analysis was conducted on patients with ICI-related hepatitis treated at the Third Affiliated Hospital of Sun Yat-Sen University (China). The collected data included biochemical indices, treatments, the use of an artificial liver support system (ALSS), and outcomes. Results: From June 2021 to January 2023, 16 patients were treated and included in the analysis. Eight patients in group A received general support. The other 8 patients in group B received general support, plus 3 rounds of ALSS every 2 - 4 days (4 patients were treated with PE and the others with DPMAS + PE). There was no significant difference in age and treatment days between the two groups. Before treatment, there was no significant difference in direct bilirubin (DBIL), glutamine transpeptidase (GGT), alkaline phosphatase (ALP), aspartate aminotransferase, alanine aminotransferase (ALT), procalcitonin, the international normalized ratio (INR), model for end-stage liver disease scores, albumin, globulin, and hemocyte count between groups A and B (in all cases, P > 0.05). However, the total bilirubin (TBIL) of group B was significantly higher than that of group A (P = 0.029). After treatment, TBIL and DBIL were significantly decreased in group B (both P < 0.05), and group B had a significantly lower GGT (P = 0.028) and higher INR (P = 0.004) than group A. The ALP level of group B was also lower, but the difference was not significant (P = 0.068). No allergic reaction or severe adverse effect was observed. Conclusions: Both PE and DPMAS + PE can effectively improve ICI-related hepatitis within the short term and are more effective for patients with hyperbilirubinemia. Liver function should be monitored continuously during treatment.
Collapse
|
3
|
Zhang JM, Kang NL, Wu LY, Zeng DW. Hepatitis B Virus Envelope Antigen and Hepatitis B Virus Surface Antigen Both Contribute to the Innate Immune Response During Persistent Hepatitis B Virus Infection. Viral Immunol 2023; 36:484-493. [PMID: 37610852 DOI: 10.1089/vim.2023.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
This study aimed to investigate the changes of toll-like receptor 4 (TLR4), proinflammatory cytokine expression, hepatitis B virus surface antigen (HBsAg), and hepatitis B virus envelope antigen (HBeAg) expression as well as innate immune cell percentages in a mouse model of persistent hepatitis B virus (HBV) infection to better understand the innate immune response. Mouse models of persistent HBV infection, HBsAg expression, and HBeAg expression were developed using high-pressure tail-vein injection of recombinant adeno-associated viruses. Enzyme-linked immunosorbent assays (ELISAs) were used to determine the serum proinflammatory cytokine levels. Immunohistochemistry and western blot assays were used to detect TLR4 expression. Flow cytometric analysis was used to assess the percentage of innate immune cells in the whole blood. Persistent HBV infection, HBsAg expression, and HBeAg expression each significantly decreased the expression of TLR4. Persistent HBV infection significantly increased the percentages of T cells and monocytes, whereas it decreased the percentage of natural killer (NK) cells. Persistent HBeAg expression also decreased the percentage of NK cells, whereas persistent HBsAg expression increased the percentage of NK cells. Both persistent HBsAg and HBeAg expression increased the percentage of monocytes. However, both persistent HBsAg and HBeAg expression decreased the percentage of T cells. HBV as well as HBsAg and HBeAg showed similar effects on the expression of TLR4 and proinflammatory cytokines as well as the percentage of monocytes. Persistent HBV infection increased the percentage of T cells and decreased the percentage of NK cells, whereas only persistent HBeAg expression contributed to a decreased percentage of NK cells.
Collapse
Affiliation(s)
- Jie-Min Zhang
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Na-Ling Kang
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University; Clinical Research Center for Liver and Intestinal Diseases of Fujian Province; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Lu-Ying Wu
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University; Clinical Research Center for Liver and Intestinal Diseases of Fujian Province; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Da-Wu Zeng
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University; Clinical Research Center for Liver and Intestinal Diseases of Fujian Province; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Ajoolabady A, Kaplowitz N, Lebeaupin C, Kroemer G, Kaufman RJ, Malhi H, Ren J. Endoplasmic reticulum stress in liver diseases. Hepatology 2023; 77:619-639. [PMID: 35524448 PMCID: PMC9637239 DOI: 10.1002/hep.32562] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 02/02/2023]
Abstract
The endoplasmic reticulum (ER) is an intracellular organelle that fosters the correct folding of linear polypeptides and proteins, a process tightly governed by the ER-resident enzymes and chaperones. Failure to shape the proper 3-dimensional architecture of proteins culminates in the accumulation of misfolded or unfolded proteins within the ER, disturbs ER homeostasis, and leads to canonically defined ER stress. Recent studies have elucidated that cellular perturbations, such as lipotoxicity, can also lead to ER stress. In response to ER stress, the unfolded protein response (UPR) is activated to reestablish ER homeostasis ("adaptive UPR"), or, conversely, to provoke cell death when ER stress is overwhelmed and sustained ("maladaptive UPR"). It is well documented that ER stress contributes to the onset and progression of multiple hepatic pathologies including NAFLD, alcohol-associated liver disease, viral hepatitis, liver ischemia, drug toxicity, and liver cancers. Here, we review key studies dealing with the emerging role of ER stress and the UPR in the pathophysiology of liver diseases from cellular, murine, and human models. Specifically, we will summarize current available knowledge on pharmacological and non-pharmacological interventions that may be used to target maladaptive UPR for the treatment of nonmalignant liver diseases.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Cardiology, Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Neil Kaplowitz
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cynthia Lebeaupin
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jun Ren
- Department of Cardiology, Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Endoplasmic Reticulum Stress in Hepatitis B Virus and Hepatitis C Virus Infection. Viruses 2022; 14:v14122630. [PMID: 36560634 PMCID: PMC9780809 DOI: 10.3390/v14122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Endoplasmic reticulum (ER) stress, a type of cellular stress, always occurs when unfolded or misfolded proteins accumulating in the ER exceed the protein folding capacity. Because of the demand for rapid viral protein synthesis after viral infection, viral infections become a risk factor for ER stress. The hepatocyte is a cell with large and well-developed ER, and hepatitis virus infection is widespread in the population, indicating the interaction between hepatitis viruses and ER stress may have significance for managing liver diseases. In this paper, we review the process that is initiated by the hepatocyte through ER stress against HBV and HCV infection and explain how this information can be helpful in the treatment of HBV/HCV-related diseases.
Collapse
|
6
|
Phosphoproteomics Unravel HBV Triggered Rewiring of Host Phosphosignaling Events. Int J Mol Sci 2022; 23:ijms23095127. [PMID: 35563518 PMCID: PMC9104152 DOI: 10.3390/ijms23095127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatitis B virus (HBV) infection persists as a major global health problem despite the availability of HBV vaccines for disease prevention. However, vaccination rates remains low in some regions of the world, driving the need for novel strategies to minimise infections and prevent disease progression. Thus, understanding of perturbed molecular signaling events during early phases of HBV infection is required. Phosphosignaling is known to be involved in the HBV infection processes, yet systems-level changes in phosphosignaling pathways in the host during infection remain unclear. To this end, we performed phosphoproteome profiling on HBV-infected HepG2-NTCP cells. Our results showed that HBV infection drastically altered the host phosphoproteome and its associated proteins, including kinases. Computational analysis of this phosphoproteome revealed dysregulation of the pathways involved in immune responses, cell cycle processes, and RNA processing during HBV infection. Kinase Substrate Enrichment Analysis (KSEA) identified the dysregulated activities of important kinases, including those from CMGC (CDK, MAPK, GSK, and CLK), AGC (protein kinase A, G, and C), and TK (Tyrosine Kinase) families. Of note, the inhibition of CLKs significantly reduced HBV infection in HepG2-NTCP cells. In all, our study unravelled the aberrated phosphosignaling pathways and the associated kinases, presenting potential entry points for developing novel therapeutic strategies for HBV treatment.
Collapse
|
7
|
Zhong S, Zhang T, Tang L, Li Y. Cytokines and Chemokines in HBV Infection. Front Mol Biosci 2021; 8:805625. [PMID: 34926586 PMCID: PMC8674621 DOI: 10.3389/fmolb.2021.805625] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a leading cause of hepatic inflammation and damage. The pathogenesis of chronic hepatitis B (CHB) infection is predominantly mediated by persistent intrahepatic immunopathology. With the characterization of unique anatomical and immunological structure, the liver is also deemed an immunological organ, which gives rise to massive cytokines and chemokines under pathogenesis conditions, having significant implications for the progression of HBV infection. The intrahepatic innate immune system is responsible for the formidable source of cytokines and chemokines, with the latter also derived from hepatic parenchymal cells. In addition, systemic cytokines and chemokines are disturbed along with the disease course. Since HBV is a stealth virus, persistent exposure to HBV-related antigens confers to immune exhaustion, whereby regulatory cells are recruited by intrahepatic chemokines and cytokines, including interleukin-10 and transforming growth factor β, are involved in such series of causal events. Although the considerable value of two types of available approved treatment, interferons and nucleos(t)ide analogues, effectively suppress HBV replication, neither of them is sufficient for optimal restoration of the immunological attrition state to win the battle of the functional or virological cure of CHB infection. Notably, cytokines and chemokines play a crucial role in regulating the immune response. They exert effects by directly acting on HBV or indirectly manipulating target immune cells. As such, specific cytokines and chemokines, with a potential possibility to serve as novel immunological interventions, combined with those that target the virus itself, seem to be promising prospects in curative CHB infection. Here, we systematically review the recent literature that elucidates cytokine and chemokine-mediated pathogenesis and immune exhaustion of HBV infection and their dynamics triggered by current mainstream anti-HBV therapy. The predictive value of disease progression or control and the immunotherapies target of specific major cytokines and chemokines in CHB infection will also be delineated.
Collapse
Affiliation(s)
- Shihong Zhong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tianling Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Zhang J, Zheng B, Zhou X, Zheng T, Wang H, Wang Y, Zhang W. Increased BST-2 expression by HBV infection promotes HBV-associated HCC tumorigenesis. J Gastrointest Oncol 2021; 12:694-710. [PMID: 34012659 PMCID: PMC8107608 DOI: 10.21037/jgo-20-356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The majority of hepatocellular carcinoma (HCC) is closely associated with hepatitis B virus (HBV) infection, while the mechanism of HCC induced by HBV is debatable. Bone marrow stromal cell antigen 2 (BST-2), an N-glycoprotein, has been characterized as an oncogenic factor in several types of cancer. However, whether BST-2 plays an important role in HCC tumorigenesis remains unknown. METHODS A total of 182 HCC tumorous and adjacent nontumor liver tissues were collected. HepG2, Huh7, L02, HepAD38, and HEK293T cell lines were adopted in this study. Tumor proliferation was detected by CCK8, transwell, wound healing, colony formation assays in vitro, and in vivo tumorigenesis was measured by mouse xenografts. NF-κB activation was determined by luciferase assay and Western blot. Protein expression was detected by Western blot, ELISA, or qPCR. Immunoprecipitation was used to confirm the interaction between BST-2 and Syk. RESULTS Here, we observed the higher BST-2 expression in HBV-infected HCC than their paired adjacent tissues and HBV-uninfected HCC tissues, particularly more aberrant non-N-glycosylated BST-2 in HBV-infected HCC tumors. We also observed the increased ER degradation-enhancing α-mannosidase-like protein 3 (EDEM3), which is trimming of N-linked glycans by sequential removal of mannose residues, might result in more non-N-glycosylated form of BST-2. Moreover, we demonstrated that BST-2 and non-N-glycosylated BST-2 N65/92A mutant, not only enhanced the tumor characteristics of hepatoma cell lines in vitro, but also enhanced the growth of mouse xenografts in vivo. Mechanically, N65/92A mutant has stronger ability to promote HCC than BST-2 via NF-κB/ERK1/2 but not NF-κB/anti-apoptotic factors pathway. NF-κB inhibitor attenuated BST-2-mediated tumorigenesis of HCC. CONCLUSIONS Our findings illuminate the novel function of BST-2 as an oncogene of HBV-associated HCC, and highlight the novel relationship of N-glycosylation of BST-2 in regulating HCC tumorigenesis in vitro.
Collapse
Affiliation(s)
- Jun Zhang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China
| | - Xiaolei Zhou
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China
| | - Tianhang Zheng
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China
| | - Yingchao Wang
- Hepatobiliary Pancreatic Surgery, the First Hospital of Jilin University, Changchun, China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Zhu Z, Ling X, Zhou H, Zhang C, Yan W. Dexmedetomidine Attenuates Cellular Injury and Apoptosis in H9c2 Cardiomyocytes by Regulating p-38MAPK and Endoplasmic Reticulum Stress. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4231-4243. [PMID: 33116411 PMCID: PMC7568428 DOI: 10.2147/dddt.s265970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/19/2020] [Indexed: 12/18/2022]
Abstract
Background Myocardial ischaemia-reperfusion injury (IRI) has been confirmed to induce endoplasmic reticulum stress (ERS) when myocardial cell function continues to deteriorate to a certain degree. The clinical applications of effective tested strategies are sometimes inconsistent with the applications evaluated in experiments, although reasonable mechanisms and diverse signalling pathways have been broadly explored. Dexmedetomidine (DEX) has been shown to attenuate IRI of the heart in animal studies. This study aimed to determine whether DEX can protect injured cardiomyocytes under hypoxia/reoxygenation (H/R) at the cellular level and whether the mechanism is related to ERS and the p38 MAPK pathway. Methods H9c2 cells were subjected to H/R or thapsigargin (TG) to build a model. DEX or 4-PBA was added to the medium either 1 h or 24 h before modelling, respectively. Model parameters were determined by assessing cell viability and injury, which were measured by assessing cell counting kit-8 (CCK8), lactate dehydrogenase (LDH) release and flow cytometry results, and the expression of GRP78, CHOP and caspase-12. In addition, the protein expression of p38MAPK and p-p38MAPK was examined, and SB202190, a negative regulator, was also preincubated in medium. Results Compared to that of cells in the control group, the activity of cells in the H/R and TG groups was decreased dramatically, and the LDH concentration and proportion of apoptotic cells were increased. DEX could correspondingly reverse the changes induced by H/R or TG. Additionally, DEX effectively attenuated ERS defined as increased expression of GRP78, CHOP and caspase-12. Additionally, DEX could obviously depress the P38 MAPK phosphorylation and high p-p38 MAPK expression in the TG group, indicating DEX has a function similar to that of SB202190. Conclusion H/R injury in H9c2 cells can lead to abnormal ERS and apoptosis, as well as activation of the p38MAPK signalling pathway. DEX can protect cardiomyocytes by intervening in ERS, regulating p38MAPK and the downstream apoptotic signalling pathway.
Collapse
Affiliation(s)
- Zhipeng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province 314000, People's Republic of China
| | - Xiaoyan Ling
- The Outpatient Nursing Department of the Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province 314000, People's Republic of China
| | - Hongmei Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province 314000, People's Republic of China
| | - Caijun Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province 314000, People's Republic of China
| | - Weiwei Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province 314000, People's Republic of China
| |
Collapse
|
10
|
Zheng XY, Lv YD, Jin FY, Wu XJ, Zhu J, Ruan Y. Kainic acid hyperphosphorylates tau via inflammasome activation in MAPT transgenic mice. Aging (Albany NY) 2019; 11:10923-10938. [PMID: 31789603 PMCID: PMC6932880 DOI: 10.18632/aging.102495] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/17/2019] [Indexed: 01/26/2023]
Abstract
The excitotoxicity induced by kainic acid (KA) is thought to contribute to the development of Alzheimer’s disease (AD); however, the mechanisms underlying this excitotoxicity remain unknown. In the current study, we investigated the dynamic changes in tau phosphorylation and their associations with the excitotoxicity induced by intraperitoneal injection of KA in the mouse brain. We found that KA-induced excitotoxicity led to sustained hyperphosphorylation of tau in MAPT transgenic (Tg) mice. By using cultured microglia and mouse brains, we showed that KA treatment specifically induced endoplasmic reticulum (ER) stress, which was characterized by activation of the major biomarkers of ER, such as ATF6, GRP78, and IRE1, and resulted in stimulation of inflammasomes. KA receptors (KARs), such as Girk1, were determined to be involved in this KA-induced ER stress. ER stress was also shown to activate inflammasomes by stimulating the expression of the two major components of inflammasomes, nucleotide binding oligomerization domain (NOD)-like receptor (NLR) protein 3 (NLRP3) and nuclear factor (NF)-κB, and eventually causing the production of interleukin-1β (IL-1β). Inhibition of NLRP3 or NF-κB by Bay11-7082 resulted in reduction of KA-induced IL-1β production. Our results also revealed the positive effects of IL-1β on tau phosphorylation, which was blocked by Bay11-7082. Notably, the results indicate that Bay11-7082 acts against KA-induced neuronal degeneration, tau phosphorylation, and memory defects via inflammasomes, which further highlight the protective role of Bay11-7082 in KA-induced neuronal defects.
Collapse
Affiliation(s)
- Xiang-Yu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu-Dan Lv
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Feng-Yan Jin
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiu-Juan Wu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm 141 86, Sweden
| | - Yang Ruan
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
11
|
Chen G, Wu M, Wu B, Liu F, Liu J, Liu L. Effects of dual plasma molecular adsorption system on liver function, electrolytes, inflammation, and immunity in patients with chronic severe hepatitis. J Clin Lab Anal 2019; 33:e22926. [PMID: 31206768 PMCID: PMC6757123 DOI: 10.1002/jcla.22926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background To investigate the effects of dual plasma molecular adsorption system (DPMAS) on the liver function, electrolytes, inflammation, and immunity in patients with chronic severe hepatitis (CSH). Methods Total of 162 patients with CSH treated in our hospital from March 2016 to December 2018 were enrolled and equally randomly divided into control group (n = 81) and observation group (n = 81). The patients in control group were treated with plasma exchange, while those in observation group were additionally treated with DPMAS based on the treatment in control group. The liver function, electrolytes, inflammation, and immunity were evaluated and compared between the two groups. Results After treatment, the liver function indexes in observation group were significantly favorable compared with those in control group, with the reduction in TBIL, DBIL, ALT, and rise of CHE levels (P < 0.05). The levels of K+, Na+, Cl−, and Ca2+ in both groups were significantly improved after treatment (P < 0.05), although there were no significant differences between the two groups (P > 0.05). The levels of C‐reactive protein (CRP), interleukin‐6 (IL‐6), and tumor necrosis factor‐α (TNF‐α) in both groups declined after treatment compared with those before treatment, and those levels in observation group were higher than that in control group (P < 0.05). After treatment, the levels of cluster of differentiation 3+ (CD3+), CD4+, and CD4+/CD8+ were higher in observation group than those in control group, with decreasing level of CD8+ (P < 0.05). Conclusion Dual plasma molecular adsorption system can effectively improve the liver function, effectively correct the electrolyte disorders, reduce the inflammatory response, and adjust the immunity in patients with CSH.
Collapse
Affiliation(s)
- Gao Chen
- Department of InfectionDeyang People's HospitalDeyangChina
| | - Mengzheng Wu
- Department of InfectionDeyang People's HospitalDeyangChina
| | - Bibo Wu
- Department of InfectionDeyang People's HospitalDeyangChina
| | - Feifei Liu
- Department of InfectionDeyang People's HospitalDeyangChina
| | - Jianying Liu
- Department of InfectionDeyang People's HospitalDeyangChina
| | - Li Liu
- Department of InfectionDeyang People's HospitalDeyangChina
| |
Collapse
|
12
|
Abstract
Endoplasmic reticulum (ER) stress occurs when ER homeostasis is perturbed with accumulation of unfolded/misfolded protein or calcium depletion. The unfolded protein response (UPR), comprising of inositol-requiring enzyme 1α (IRE1α), PKR-like ER kinase (PERK) and activating transcription factor 6 (ATF6) signaling pathways, is a protective cellular response activated by ER stress. However, UPR activation can also induce cell death upon persistent ER stress. The liver is susceptible to ER stress given its synthetic and other biological functions. Numerous studies from human liver samples and animal disease models have indicated a crucial role of ER stress and UPR signaling pathways in the pathogenesis of liver diseases, including non-alcoholic fatty liver disease, alcoholic liver disease, alpha-1 antitrypsin deficiency, cholestatic liver disease, drug-induced liver injury, ischemia/reperfusion injury, viral hepatitis and hepatocellular carcinoma. Extensive investigations have demonstrated the potential underlying mechanisms of the induction of ER stress and the contribution of UPR pathways during the development of the diseases. Moreover ER stress and the UPR proteins and genes have become emerging therapeutic targets to treat liver diseases.
Collapse
Affiliation(s)
- Xiaoying Liu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tarry Building 15-709, 303 East Superior Street, Chicago, IL 60611, Northwestern University Feinberg School of Medicine, Chicago, IL, USA, Corresponding author: Xiaoying-liu@northwestern
| | - Richard M. Green
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tarry Building 15-709, 303 East Superior Street, Chicago, IL 60611, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
13
|
Li H, Li JR, Huang MH, Chen JH, Lv XQ, Zou LL, Tan JL, Dong B, Peng ZG, Jiang JD. Bicyclol Attenuates Liver Inflammation Induced by Infection of Hepatitis C Virus via Repressing ROS-Mediated Activation of MAPK/NF-κB Signaling Pathway. Front Pharmacol 2018; 9:1438. [PMID: 30618739 PMCID: PMC6306031 DOI: 10.3389/fphar.2018.01438] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022] Open
Abstract
Treatment with direct-acting antivirals (DAAs) cures most patients infected with hepatitis C virus (HCV) in the real world. However, some patients, especially those with the underlying advanced liver disease, have a limited reduction of liver injury after achieving a sustained viral response (SVR). Bicyclol was widely used in clinics for the treatment of a variety of liver injuries but with an unknown mechanism for the treatment of hepatitis C. We investigated the anti-inflammatory effects and mechanisms of bicyclol in HCV-infected hepatocytes and further confirmed the putative results in a mouse hepatitis model induced by the coinjection of polyinosinic-polycytidylic acid [poly (I:C)] and D-galactosamine (D-GalN). The results showed that the activation of nuclear factor kappa B (NF-κB) and the subsequent increase of inflammatory factors were directly induced by HCV infection and were persistent after clearance of the virus in Huh7.5 cells. Bicyclol decreased the activation of NF-κB and the levels of inflammatory factors in HCV-infected hepatocytes by inhibiting the activation of the ROS-MAPK-NF-κB pathway, and the effect was synergistic with DAAs in HCV-infected hepatocytes. Bicyclol attenuated the ROS-MAPK-NF-κB axis via recovering mitochondrial function without a dependence on dihydronicotinamide adenine dinucleotide phosphate oxidase and superoxide dismutases. The anti-inflammatory effects and mechanism of bicyclol were verified in mouse hepatitis induced by the coinjection of poly(I:C)/D-GalN. Bicyclol directly ameliorates the chronic inflammation caused by HCV infection and might be used with DAAs or after DAA therapy for ultimately curing chronic hepatitis C.
Collapse
Affiliation(s)
- Hu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian-Rui Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meng-Hao Huang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jin-Hua Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Qin Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li-Li Zou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jia-Li Tan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Biao Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Jarosinski KW, Carpenter JE, Buckingham EM, Jackson W, Knudtson K, Moffat JF, Kita H, Grose C. Cellular Stress Response to Varicella-Zoster Virus Infection of Human Skin Includes Highly Elevated Interleukin-6 Expression. Open Forum Infect Dis 2018; 5:ofy118. [PMID: 30014002 DOI: 10.1093/ofid/ofy118] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/18/2018] [Indexed: 12/17/2022] Open
Abstract
Background The infectious cycle of varicella-zoster virus (VZV) after reactivation from the dorsal root ganglia includes replication and assembly of complete enveloped virions in the human skin to cause the characteristic herpes zoster (shingles). Methods To pursue studies of innate immunity to VZV infection, we have adapted a fetal skin organ culture model to a human neonatal foreskin explant model. Results Abundant expression of VZV IE62, gE, and gC was visualized by confocal microscopy while numerous enveloped virions were observed by electron microscopy in infected skin organ cultures. Microarray experiments demonstrated that the patterns of upregulated transcripts differed between VZV-infected cells and VZV-infected skin explants. One result stood out, namely a >30-fold elevated interleukin (IL)-6 level in the infected skin explant that was not present in the infected monolayer culture. The IL-6 results in the polyermase chain reaction (PCR) assay were reproduced by quantitative PCR testing with newly designed primers. To determine if increased transcription was accompanied by increased IL-6 expression, we quantitated the levels of IL-6 protein in the explant media at increasing intervals after infection. We found a statistically significant increase in IL-6 protein levels secreted into the media from VZV-infected skin explants as compared with mock-infected explants. Conclusions The cellular stress response to VZV infection in neonatal skin explants included highly elevated levels of IL-6 transcription and expression. This skin organ model could be adapted to other viruses with a skin tropism, such as herpes simplex virus.
Collapse
Affiliation(s)
| | - John E Carpenter
- Division of Infectious Diseases/Virology, University of Iowa, Iowa City, Iowa
| | - Erin M Buckingham
- Division of Infectious Diseases/Virology, University of Iowa, Iowa City, Iowa
| | - Wallen Jackson
- Division of Infectious Diseases/Virology, University of Iowa, Iowa City, Iowa
| | - Kevin Knudtson
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa
| | - Jennifer F Moffat
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York
| | - Hirohito Kita
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Charles Grose
- Division of Infectious Diseases/Virology, University of Iowa, Iowa City, Iowa
| |
Collapse
|
15
|
Liu N, Xu L, Shi Y, Fang L, Gu H, Wang H, Ding X, Zhuang S. Pharmacologic targeting ERK1/2 attenuates the development and progression of hyperuricemic nephropathy in rats. Oncotarget 2018; 8:33807-33826. [PMID: 28442634 PMCID: PMC5464913 DOI: 10.18632/oncotarget.16995] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of hyperuricemia-induced chronic kidney disease is largely unknown. In this study, we investigated whether extracellular signal–regulated kinases1/2 (ERK1/2) would contribute to the development of hyperuricemic nephropathy (HN). In a rat model of HN induced by feeding mixture of adenine and potassium oxonate, increased ERK1/2 phosphorylation and severe glomerular sclerosis and renal interstitial fibrosis were evident, in parallel with diminished levels of renal function and increased urine microalbumin excretion. Administration of U0126, which is a selective inhibitor of the ERK1/2 pathway, improved renal function, decreased urine microalbumin and inhibited activation of renal interstitial fibroblasts as well as accumulation of extracellular proteins. U0126 also inhibited hyperuricemia-induced expression of multiple profibrogenic cytokines/chemokines and infiltration of macrophages in the kidney. Furthermore, U0126 treatment suppressed xanthine oxidase, which mediates uric acid production. It also reduced expression of the urate anion exchanger 1, which promotes reabsorption of uric acid, and preserved expression of organic anion transporters 1 and 3, which accelerate uric acid excretion in the kidney of hyperuricemic rats. Finally, U0126 inhibited phosphorylation of Smad3, a key mediator in transforming growth factor (TGF-β) signaling. In cultured renal interstitial fibroblasts, inhibition of ERK1/2 activation by siRNA suppressed uric acid-induced activation of renal interstitial fibroblasts. Collectively, pharmacologic targeting of ERK1/2 can alleviate HN by suppressing TGF-β signaling, reducing inflammation responses, and inhibiting the molecular processes associated with elevation of blood uric acid levels in the body. Thus, ERK1/2 inhibition may be a potential approach for the prevention and treatment of hyperuricemic nephropathy.
Collapse
Affiliation(s)
- Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Liuqing Xu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Lu Fang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hongwei Gu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hongrui Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Medicine, Rhode Island Hospital and Brown University School of Medicine, Providence, RI 02903, USA
| |
Collapse
|
16
|
Cheng ST, Yuan D, Liu Y, Huang Y, Chen X, Yu HB, He L, Jiang H, Ren JH, Chen J. Interleukin-35 Level Is Elevated in Patients with Chronic Hepatitis B Virus Infection. Int J Med Sci 2018; 15:188-194. [PMID: 29333103 PMCID: PMC5765732 DOI: 10.7150/ijms.21957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023] Open
Abstract
Backgrounds: As one of the major public health problems, the hepatitis B virus (HBV) infection would activate the immune system. The outcome of HBV infection was affect significantly by the interactions between HBV and host immune response. Interleukins play important role in anti-viral immunity. Here we investigated the role of interleukin-35 (IL-35) in chronic HBV infection patients. Methods/Results: Serum IL-35 in 72 chronic hepatitis B virus infection patients and 41 healthy control subjects were analyzed by ELISA assay. The mRNA level of IL-35 in PBMCs was determined by RT-qPCR. In this study, we found that both protein and mRNA levels of IL-35 were significantly decreased in chronic HBV patients compared to the healthy controls. Furthermore, the statistical analysis found that serum IL-35 was significantly associated with HBV DNA (P =0.0158), ALT (P =0.0003), AST (P =0.0216), TB (P =0.0270) and AFP (P =0.0369). Importantly, correlation analysis also found that serum IL-35 level was negatively correlated with HBV DNA copies, ALT, AST, TB and AFP. Meanwhile, IL-35 treatment inhibited the level of HBV DNA, HBsAg and HBeAg in HepAD38 cells. Conclusion: Our study identified that IL-35 may be a novel marker associated with HBV infection and hepatocytes injury. These data suggested the potential use of IL-35 in the HBV treatment.
Collapse
Affiliation(s)
- Sheng-Tao Cheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Ding Yuan
- Department of Neurosurgery, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Yi Liu
- Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ying Huang
- Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiang Chen
- Department of Clinical Laboratory, Zhuzhou Central Hospital, Zhuzhou, China
| | - Hai-Bo Yu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lin He
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Hui Jiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Ji-Hua Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Jianfei L, Min W, Chunlai M, Bicui C, Jiming Z, Bin W. The Ca 2+/CaMKK2 axis mediates the telbivudine induced upregulation of creatine kinase: Implications for mechanism of antiviral nucleoside analogs' side effect. Biochem Pharmacol 2017; 146:224-232. [PMID: 29038020 DOI: 10.1016/j.bcp.2017.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/12/2017] [Indexed: 12/24/2022]
Abstract
Telbivudine (LdT), a widely prescribed anti-hepatitis B virus (HBV) drug for the treatment of chronic Hepatitis B (CHB), causes adverse reactions ranging from creatine kinase (CK) elevation to myopathy. The purpose of this study was to explore the mechanism(s) of LdT induced CK elevation. The effects of LdT on mitochondrial morphology and proteins (TK2 and β-actin), oxidative stress, intracellular Ca2+ levels, Ca2+-related signaling pathway (CaMKK2/AMPK), and Ca2+-related biomarkers such as superoxide dismutase (SOD) and malondialdehyde (MDA) were assessed in human skeletal muscle cells (HSKMCs). The results showed that LdT induced a dose-dependent increase in CK activity in HSKMCs, without affecting mitochondrial morphology, and TK2 and β-actin protein levels, following 72 h of treatment. In addition, LdT increased Ca2+ production, ROS generation, MDA and lipid peroxide (LPO) levels, and activated the CaMKK2/AMPK signaling pathway. Moreover, these effects were attenuated by the BAPIA-AM (the calcium chelator). We also confirmed the presence of relevant markers (MDA, LPO, and SOD) in serum from CHB patients after LdT treatment, and found that CK was positively correlated with MDA and LPO, and negatively associated with SOD. These findings indicate that LdT induces CK elevation and oxidative stress associated with imbalance of intracellular Ca2+ in HSKMCs, suggesting that Ca2+/CaMKK2 axis imbalance may underlie human LdT-induced CK elevation. The present findings provide a solid basis for assessing the mechanism of drug-induced CK elevation, which can help develop new tools for the prevention and treatment of diseases associated with drug-induced CK elevation.
Collapse
Affiliation(s)
- Long Jianfei
- Department of Pharmacy, HuaShan Hospital, Fudan University, Shanghai, China
| | - Wang Min
- College of Pharmacy, Fudan University, Shanghai, China
| | - Ma Chunlai
- Department of Pharmacy, HuaShan Hospital, Fudan University, Shanghai, China
| | - Chen Bicui
- Department of Pharmacy, HuaShan Hospital, Fudan University, Shanghai, China
| | - Zhang Jiming
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| | - Wang Bin
- Department of Pharmacy, HuaShan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Cipolla GA, Park JK, Lavker RM, Petzl-Erler ML. Crosstalk between Signaling Pathways in Pemphigus: A Role for Endoplasmic Reticulum Stress in p38 Mitogen-Activated Protein Kinase Activation? Front Immunol 2017; 8:1022. [PMID: 28928733 PMCID: PMC5591886 DOI: 10.3389/fimmu.2017.01022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022] Open
Abstract
Pemphigus consists of a group of chronic blistering skin diseases mediated by autoantibodies (autoAbs). The dogma that pemphigus is caused by keratinocyte dissociation (acantholysis) as a distinctive and direct consequence of the presence of autoAb targeting two main proteins of the desmosome—desmoglein (DSG) 1 and/or DSG3—has been put to the test. Several outside-in signaling events elicited by pemphigus autoAb in keratinocytes have been described, among which stands out p38 mitogen-activated protein kinase (p38 MAPK) engagement and its apoptotic effect on keratinocytes. The role of apoptosis in the disease is, however, debatable, to an extent that it may not be a determinant event for the occurrence of acantholysis. Also, it has been verified that compromised DSG trans-interaction does not lead to keratinocyte dissociation when p38 MAPK is inhibited. These examples of conflicting results have been followed by recent work revealing an important role for endoplasmic reticulum (ER) stress in pemphigus’ pathogenesis. ER stress is known to activate the p38 MAPK pathway, and vice versa. However, this relationship has not yet been studied in the context of activated signaling pathways in pemphigus. Therefore, by reviewing and hypothetically connecting the role(s) of ER stress and p38 MAPK pathway in pemphigus, we highlight the importance of elucidating the crosstalk between all activated signaling pathways, which may in turn contribute for a better understanding of the role of apoptosis in the disease and a better management of this life-threatening condition.
Collapse
Affiliation(s)
- Gabriel A Cipolla
- Department of Genetics, Federal University of Paraná, Curitiba, Brazil.,CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Jong Kook Park
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Biomedical Science and Research, Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Robert M Lavker
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | |
Collapse
|
19
|
Abstract
To generate new hypotheses, sometimes a "systems" approach is needed. In this review, I focus on the mitogen-activated kinase p38 because it has been recently shown to play an important role in the developmental programing and senescence of normal and stressed reproductive tissues. What follows is an overview of (i) pathways of p38 activation and their involvement in basic biological processes, (ii) evidence that p38 is involved in the homeostasis of reproductive tissues, (iii) how focus on p38 can be incorporated into investigation of normal and stressed pregnancies. Existence of excellent reviews will be mentioned as well as relevant animal models.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Burlington, VT, USA
| |
Collapse
|