1
|
Hamaguchi R, Isowa M, Narui R, Morikawa H, Okamoto T, Wada H. How Does Cancer Occur? How Should It Be Treated? Treatment from the Perspective of Alkalization Therapy Based on Science-Based Medicine. Biomedicines 2024; 12:2197. [PMID: 39457509 PMCID: PMC11504456 DOI: 10.3390/biomedicines12102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
This review article investigates the relationship between mitochondrial dysfunction and cancer progression, emphasizing the metabolic shifts that promote tumor growth. Mitochondria are crucial for cellular energy production, but they also play a significant role in cancer progression by promoting glycolysis even under oxygen-rich conditions, a phenomenon known as the Warburg effect. This metabolic reprogramming enables cancer cells to maintain an alkaline internal pH and an acidic external environment, which are critical for their proliferation and survival in hypoxic conditions. The article also explores the acidic tumor microenvironment (TME), a consequence of intensive glycolytic activity and proton production by cancer cells. This acidic milieu enhances the invasiveness and metastatic potential of cancer cells and contributes to increased resistance to chemotherapy. Alkalization therapy, which involves neutralizing this acidity through dietary modifications and the administration of alkalizing agents such as sodium bicarbonate, is highlighted as an effective strategy to counteract these adverse conditions and impede cancer progression. Integrating insights from science-based medicine, the review evaluates the effectiveness of alkalization therapy across various cancer types through clinical assessments. Science-based medicine, which utilizes inductive reasoning from observed clinical outcomes, lends support to the hypothesis of metabolic reprogramming in cancer treatment. By addressing both metabolic and environmental disruptions, this review suggests that considering cancer as primarily a metabolic disorder could lead to more targeted and effective treatment strategies, potentially improving outcomes for patients with advanced-stage cancers.
Collapse
Affiliation(s)
- Reo Hamaguchi
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (R.H.); (M.I.); (R.N.); (H.M.)
| | - Masahide Isowa
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (R.H.); (M.I.); (R.N.); (H.M.)
| | - Ryoko Narui
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (R.H.); (M.I.); (R.N.); (H.M.)
| | - Hiromasa Morikawa
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (R.H.); (M.I.); (R.N.); (H.M.)
| | - Toshihiro Okamoto
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Hiromi Wada
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (R.H.); (M.I.); (R.N.); (H.M.)
| |
Collapse
|
2
|
Isowa M, Hamaguchi R, Narui R, Morikawa H, Okamoto T, Wada H. Exploring the Potential Use of Natural Products Together with Alkalization in Cancer Therapy. Pharmaceutics 2024; 16:787. [PMID: 38931908 PMCID: PMC11207558 DOI: 10.3390/pharmaceutics16060787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer treatment is a significant focus in medicine, owing to the increasing global incidence of cancers. Patients with advanced cancers that do not respond to conventional therapies have limited options and an unfavorable prognosis. Consequently, researchers are investigating complementary approaches to conventional treatments. One such approach is alkalization therapy, which aims to neutralize the acidic tumor microenvironment (TME) by increasing its pH level. The acidic TME promotes inflammation, tumor progression, and drug resistance. Alkalization therapy has been demonstrated to be effective for various cancers. In addition, natural products, such as triterpenoids, parthenolides, fulvic acid, Taxus yunnanensis, and apple pectin have the potential to alleviate symptoms, maintain physical fitness, and improve treatment outcomes of cancer patients through their anti-inflammatory, antioxidant, and anticancer properties. In this review, we focus on the effects of alkalization therapy and natural products on cancer. Furthermore, we present a case series of advanced cancer patients who received alkalization therapy and natural products alongside standard treatments, resulting in long-term survival. We posit that alkalization therapy together with supplementation with natural products may confer benefits to cancer patients, by mitigating the side effects of chemotherapy and complementing standard treatments. However, further research is warranted to validate these clinical findings.
Collapse
Affiliation(s)
- Masahide Isowa
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| | - Reo Hamaguchi
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| | - Ryoko Narui
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| | - Hiromasa Morikawa
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| | - Toshihiro Okamoto
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Hiromi Wada
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| |
Collapse
|
3
|
Isowa M, Hamaguchi R, Narui R, Morikawa H, Okamoto T, Wada H. Potential of Alkalization Therapy for the Management of Metastatic Pancreatic Cancer: A Retrospective Study. Cancers (Basel) 2023; 16:61. [PMID: 38201489 PMCID: PMC10777900 DOI: 10.3390/cancers16010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Current treatments for patients with pancreatic cancer offer limited benefits. In this study, we applied alkalization therapy, which was efficacious for other solid tumors at our clinic, to stage 4 pancreatic cancer patients, and investigated its effect on disease prognosis. Patients with metastatic pancreatic cancer who were treated at Karasuma Wada Clinic in Kyoto, Japan, between January 2011 and April 2022, were included in the study. All patients received alkalization therapy (a combination of an alkaline diet, bicarbonate, and citric acid administration), alongside standard chemotherapy. Urine samples were collected to assess urine pH as a marker of whole-body alkalization. In the 98 patients analyzed, the median overall survival (OS) from the time of diagnosis was 13.2 months. Patients with a mean urine pH of 7.5 or greater had a median OS of 29.9 months, compared with 15.2 months for those with a mean urine pH of 6.5 to 7.5, and 8.0 months for those with a mean urine pH of less than 6.5, which suggests a trend of a longer OS in patients with a higher urine pH (p = 0.0639). Alkalization therapy may offer a viable approach to extending the survival of stage 4 pancreatic cancer patients, who typically have an unfavorable prognosis.
Collapse
Affiliation(s)
- Masahide Isowa
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| | - Reo Hamaguchi
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| | - Ryoko Narui
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| | - Hiromasa Morikawa
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| | - Toshihiro Okamoto
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH 44195, USA;
- Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Transplant Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hiromi Wada
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| |
Collapse
|
4
|
Marciniak M, Wagner M. Innate lymphoid cells and tumor-derived lactic acid: novel contenders in an enduring game. Front Immunol 2023; 14:1236301. [PMID: 37868977 PMCID: PMC10585168 DOI: 10.3389/fimmu.2023.1236301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Aerobic glycolysis, also known as the Warburg effect, has for a prolonged period of time been perceived as a defining feature of tumor metabolism. The redirection of glucose utilization towards increased production of lactate by cancer cells enables their rapid proliferation, unceasing growth, and longevity. At the same time, it serves as a significant contributor to acidification of the tumor microenvironment, which, in turn, imposes substantial constraints on infiltrating immune cells. Here, we delve into the influence of tumor-derived lactic acid on innate lymphoid cells (ILCs) and discuss potential therapeutic approaches. Given the abundance of ILCs in barrier tissues such as the skin, we provide insights aimed at translating this knowledge into therapies that may specifically target skin cancer.
Collapse
Affiliation(s)
- Mateusz Marciniak
- Cancer Biomarkers Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
| | - Marek Wagner
- Cancer Biomarkers Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Retamiro KM, Nunes KC, Zani AP, Zani CP, Beltran LB, Silva SDO, Garcia FP, Ueda-Nakamura T, Bergamasco R, Nakamura CV. Ionized alkaline water reduces injury in BALB/c mice infected with Leishmania amazonensis. PLoS One 2023; 18:e0280695. [PMID: 37410769 PMCID: PMC10325109 DOI: 10.1371/journal.pone.0280695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/06/2023] [Indexed: 07/08/2023] Open
Abstract
Ionized water has been reported to contribute to the tissue repair process and wound healing. Water purifiers can generate ionized water by means of activated charcoal with silver and minerals, the main purpose of which are to reduce microbiological and physicochemical contaminants. Moreover, when water is subjected to a magnetic field an organization of water molecules occurs due to the presence of mineral salts. The resulting water is thus more alkaline, which has been shown to be non-toxic to mice and can actually prolong survival. Cutaneous leishmaniasis is a neglected tropical disease, caused by obligate uni- and intracellular protozoa belonging to the genus Leishmania, that can manifest in the form of skin lesions. Thus, the objective of this study was to compare the evolution of disease in L. amazonensis-infected BALB/c mice that received tap water (TW) or ionized alkaline water (IAW). As a control, additional groups of mice receiving TW or IAW were also treated with the antileishmanial miltefosine. All mouse groups received either TW or IAW as drinking water 30 days prior to infection and the groups continued to receive the respective drinking water for 4 weeks, after which the blood and plasma were collected. Biochemical assays of aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transferase, creatinine, urea, glucose, triglycerides, and cholesterol were performed, in addition to hematology tests. There was a significant decrease in the volume of the lesion for groups that received IAW, in which the ingestion of ionized alkaline water favored the non-evolution of the lesion in the footpads of the animals. The results of the blood count and leukogram tests were within the normal values for BALB/c mice demonstrating that ionized water has no toxic effects on blood factors.
Collapse
Affiliation(s)
- Karina Miyuki Retamiro
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá, Brazil
| | - Karine Campos Nunes
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá, Brazil
| | - Aline Pinto Zani
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá, Brazil
| | - Caroline Pinto Zani
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá, Brazil
| | - Laiza Bergamasco Beltran
- Laboratory of Management, Preservation and Environmental Control, State University of Maringá, Maringá, Brazil
| | - Sueli de Oliveira Silva
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá, Brazil
| | - Francielle Pelegrin Garcia
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá, Brazil
| | - Tânia Ueda-Nakamura
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá, Brazil
| | - Rosangela Bergamasco
- Laboratory of Management, Preservation and Environmental Control, State University of Maringá, Maringá, Brazil
| | - Celso Vataru Nakamura
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá, Brazil
| |
Collapse
|
6
|
Isowa M, Hamaguchi R, Narui R, Morikawa H, Wada H. Effects of alkalization therapy on hepatocellular carcinoma: a retrospective study. Front Oncol 2023; 13:1179049. [PMID: 37313464 PMCID: PMC10258336 DOI: 10.3389/fonc.2023.1179049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
Background In hepatocellular carcinoma (HCC) patients, is difficult to prevent recurrence even when remission is achieved. In addition, even with the advent of drugs that are effective for the treatment of HCC, a satisfactory extension of patient survival has not been achieved. To overcome this situation, we hypothesized that the combination of alkalization therapy with standard treatments will improve the prognosis of HCC. We here report the clinical results of HCC patients treated with alkalization therapy at our clinic. Patients and methods Patients with HCC treated at Karasuma Wada Clinic (in Kyoto, Japan), from January 1, 2013, to December 31, 2020 were analyzed. Overall survival (OS) from both the time of diagnosis and the start of alkalization therapy for each patient was compared. The mean urine pH was also calculated as a surrogate marker of tumor microenvironment pH, and OS from the start of alkalization therapy was compared between patients with a mean urine pH of ≥ 7.0 and those with a mean urine pH of < 7.0. Results Twenty-three men and six women were included in the analysis, with a mean age at diagnosis of 64.1 years (range: 37-87 years). Seven of the 29 patients had extrahepatic metastases. Patients were divided into two groups according to their mean urine pH after the initiation of alkalization therapy: 12 of the 29 patients had a mean urine pH of ≥ 7.0, and 17 had a mean urine pH of < 7.0. The median OS from diagnosis was 95.6 months (95% confidence interval [CI] = 24.7-not reached), and from the start of alkalization therapy was 42.3 months (95% CI = 8.93-not reached). The median OS from the start of alkalization therapy in patients with a urine pH of ≥ 7.0 was not reached (n = 12, 95% CI = 3.0-not reached), which was significantly longer than that in patients with a pH of < 7.0 (15.4 months, n = 17, 95% CI = 5.8-not reached, p < 0.05). Conclusions The addition of alkalization therapy to standard therapies may be associated with more favorable outcomes in HCC patients with increased urine pH after alkalization therapy.
Collapse
Affiliation(s)
| | - Reo Hamaguchi
- Japanese Society on Inflammation and Metabolism in Cancer, Nakagyo-ku, Kyoto, Japan
| | | | | | | |
Collapse
|
7
|
Abstract
Significance: Cancer-associated tissue-specific lactic acidosis stimulates and mediates tumor invasion and metastasis and is druggable. Rarely, malignancy causes systemic lactic acidosis, the role of which is poorly understood. Recent Advances: The understanding of the role of lactate has shifted dramatically since its discovery. Long recognized as only a waste product, lactate has become known as an alternative metabolism substrate and a secreted nutrient that is exchanged between the tumor and the microenvironment. Tissue-specific lactic acidosis is targeted to improve the host body's anticancer defense and serves as a tool that allows the targeting of anticancer compounds. Systemic lactic acidosis is associated with poor survival. In patients with solid cancer, systemic lactic acidosis is associated with an extremely poor prognosis, as revealed by the analysis of 57 published cases in this study. Although it is considered a pathology worth treating, targeting systemic lactic acidosis in patients with solid cancer is usually inefficient. Critical Issues: Research gaps include simple questions, such as the unknown nuclear pH of the cancer cells and its effects on chemotherapy outcomes, pH sensitivity of glycosylation in cancer cells, in vivo mechanisms of response to acidosis in the absence of lactate, and overinterpretation of in vitro results that were obtained by using cells that were not preadapted to acidic environments. Future Directions: Numerous metabolism-targeting anticancer compounds induce lactatemia, lactic acidosis, or other types of acidosis. Their potential to induce acidic environments is largely overlooked, although the acidosis might contribute to a substantial portion of the observed clinical effects. Antioxid. Redox Signal. 37, 1130-1152.
Collapse
Affiliation(s)
- Petr Heneberg
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Gillies RJ, Ibrahim-Hashim A, Ordway B, Gatenby RA. Back to basic: Trials and tribulations of alkalizing agents in cancer. Front Oncol 2022; 12:981718. [PMID: 36452492 PMCID: PMC9702334 DOI: 10.3389/fonc.2022.981718] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/25/2022] [Indexed: 09/12/2023] Open
Abstract
UNLABELLED "Dysregulated" metabolism is a characteristic of the cancer cell phenotype. This includes persistent use of glycolytic metabolism in normoxic environments (Warburg effect) leading to increased acid production and accumulation of protons in the interstitial space. Although often thought to be disordered, altered cancer metabolism is the outcome of intense Darwinian selection and, thus, must have evolved to maximize cancer cell fitness. In an evolutionary context, cancer-induced acidification of the microenvironment represents a niche construction strategy to promote proliferation. Ecological advantages conferred on the cancer population included remodeling of the extracellular matrix to promote local invasion, suppression of potential competitive proliferation of fibroblasts, and suppression of host immune response. Preclinical data demonstrates that increasing the serum buffering capacity (through, for example, oral sodium bicarbonate and TRIS) can neutralize the acidic tumor microenvironment with inhibition local invasion and proliferation which can be synergistic with the effects of chemotherapy and immunotherapy agents. Here, we describe the proton dynamics in cancer and their influence on tumor progression and metastasis. Additionally, we will discuss targeting the tumor acidosis with alkalizing agents including our bicarbonate clinical trial results. CLINICAL TRIAL REGISTRATION clinicaltrials.gov, identifier NCT01350583, NCT01198821 and NCT01846429.
Collapse
Affiliation(s)
- Robert J. Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
- Department of Radiology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Arig Ibrahim-Hashim
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Bryce Ordway
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Robert A. Gatenby
- Department of Radiology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
9
|
Wada H, Hamaguchi R, Narui R, Morikawa H. Meaning and Significance of “Alkalization Therapy for Cancer”. Front Oncol 2022; 12:920843. [PMID: 35965526 PMCID: PMC9364696 DOI: 10.3389/fonc.2022.920843] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives of the Study Our research aims to answer the following questions. Can cancer progression be stopped by changing the body condition of person with cancer? Can cancer be cured?If cancer progression can be stopped, what is the underlying mechanism? Theoretical Rationale for Alkalization Therapy Almost 70 years ago, Goldblatt H. & Cameron G. reported on the idea of alkalization therapy. Before that, Otto Warburg had been studying the metabolism of cancer and had discovered the essential nature of cancer. He published a review in Science in 1956 under the title “On the origin of cancer cells”. From his phenomena described above, we established the theoretical rationale for alkalization therapy, based on the question of “How does cancer form and what is its nature”? Limitations of Deductive Methods and Inductive Approaches In this paper, we describe a method to reconstruct the limitations and weaknesses of modern cancer medicine as Science-based Medicine using an inductive method, and to present a new vision of cancer therapy. How should we treat cancer? (Case presentation): Using a specific clinical case, we present patients in whom were successfully treated with no or few anticancer drugs. Summary The biggest weakness of current cancer treatments is that they only treat the cancer and not the actual patient. The “alkalization therapy” that we advocate does not compete with any of the current standard treatments, but improves the effectiveness of standard treatments, reduces side effects, and lowers medical costs.
Collapse
|
10
|
Investigation on the Effects and Mechanisms of Alkaline Natural Mineral Water and Distilled Water on Ethanol-Induced Gastric Ulcers In Vivo and In Vitro. Processes (Basel) 2022. [DOI: 10.3390/pr10030498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studies have proven that alkaline water has a protective effect on gastric diseases. However, the underlying mechanism is not clear. Moreover, in some countries, especially in China, purified water (distilled water) is also an important form of drinking water, while its protective effect on gastric diseases is still unknown. This study aimed to compare the effects of distilled water (pH = 5.6 ± 0.3) and alkaline natural mineral water (pH = 9.3 ± 0.6) on ethanol-induced gastric ulcers in mice and to further clarify the underlying mechanisms. Pepsin activity, prostaglandin E-2 (PGE2) and heat shock protein 70 (HSP70), superoxide dismutase (SOD), reduced glutathione (GSH), and malondialdehyde (MDA), as well as the oxidative stress pathway related proteins such as nuclear factor erythroid-2 related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NADH quinone oxidoreductase 1 (NQO1) were measured. After alkaline natural mineral water treatment, the levels of PGE2 and HSP70 were significantly increased (p < 0.05). Antioxidant indexes (SOD, GSH, and MDA) and Western blot results (Nrf2, HO-1, and NQO1) showed that alkaline natural mineral water did not alleviate gastric ulcers by improving oxidative stress. Pepsin activity assay displayed that the pepsin activity was significantly declined after alkaline natural mineral water treatment compared with the distilled water treatment (p < 0.05). This study indicated that alkaline natural mineral water may alleviate the ethanol-induced gastric ulcers in mice by inhibiting the pepsin activity and increasing the levels of PGE2 and HSP70.
Collapse
|
11
|
Chaudhary B, Kumar P, Arya P, Singla D, Kumar V, Kumar D, S R, Wadhwa S, Gulati M, Singh SK, Dua K, Gupta G, Gupta MM. Recent Developments in the Study of the Microenvironment of Cancer and Drug Delivery. Curr Drug Metab 2022; 23:1027-1053. [PMID: 36627789 DOI: 10.2174/1389200224666230110145513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/20/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023]
Abstract
Cancer is characterized by disrupted molecular variables caused by cells that deviate from regular signal transduction. The uncontrolled segment of such cancerous cells annihilates most of the tissues that contact them. Gene therapy, immunotherapy, and nanotechnology advancements have resulted in novel strategies for anticancer drug delivery. Furthermore, diverse dispersion of nanoparticles in normal stroma cells adversely affects the healthy cells and disrupts the crosstalk of tumour stroma. It can contribute to cancer cell progression inhibition and, conversely, to acquired resistance, enabling cancer cell metastasis and proliferation. The tumour's microenvironment is critical in controlling the dispersion and physiological activities of nano-chemotherapeutics which is one of the targeted drug therapy. As it is one of the methods of treating cancer that involves the use of medications or other substances to specifically target and kill off certain subsets of malignant cells. A targeted therapy may be administered alone or in addition to more conventional methods of care like surgery, chemotherapy, or radiation treatment. The tumour microenvironment, stromatogenesis, barriers and advancement in the drug delivery system across tumour tissue are summarised in this review.
Collapse
Affiliation(s)
- Benu Chaudhary
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Parveen Kumar
- Department of Life Science, Shri Ram College of Pharmacy, Karnal, Haryana, India
| | - Preeti Arya
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Deepak Singla
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Virender Kumar
- Department of Pharmacology, Swami Dayanand Post Graduate Institute of Pharmaceutical Sciences, Rohtak, Haryana, India
| | - Davinder Kumar
- Department of Pharmacology, Swami Dayanand Post Graduate Institute of Pharmaceutical Sciences, Rohtak, Haryana, India
| | - Roshan S
- Department of Pharmacology, Deccan School of Pharmacy, Hyderabad, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Madan Mohan Gupta
- Faculty of Medical Sciences, School of Pharmacy, The University of the West Indies, St. Augustine, Trinidad & Tobago, West Indies
| |
Collapse
|
12
|
Milenin A, Wróbel M, Kustra P, Byrska-Wójcik D, Sulej-Chojnacka J, Płonka B, Łukowicz K, Truchan K, Osyczka A. Microstructure and In Vitro Evaluation of Extruded and Hot Drawn Alloy MgCa0.7 for Biodegradable Surgical Wires. MATERIALS 2021; 14:ma14216673. [PMID: 34772199 PMCID: PMC8587299 DOI: 10.3390/ma14216673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022]
Abstract
The MgCa0.7 alloy may be a promising material for biodegradable surgical wires. In this paper, the technology for producing surgical wires from this alloy has been developed, based both on finite element modelling and experimental study. In particular, the extrusion and hot-drawing effects on the mechanical properties, microstructures, in-vitro rates of biocorrosion, and cytotoxicity to human cancer cells (SaOS-2) and healthy (hPDL) ones, have been determined. An approximately 30–40% increase in corrosion rate due to increasing hot-drawing temperature was observed. An effect of hot-drawing temperature on cytotoxicity was also found. Notably, at various stages of the final wires’ production, the MgCa0.7 alloy became toxic to cancer cells. This cytotoxicity depended on the alloys’ processing parameters and was maximal for the as-extruded rod and for the wires immediately after hot drawing at 440 °C. Thus, the careful selection of processing parameters makes it possible to obtain a product that is not only a promising candidate for biodegradable surgical wires, but one which also has intrinsic bioactive properties that produce antitumor activity.
Collapse
Affiliation(s)
- Andrij Milenin
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland; (M.W.); (P.K.); (D.B.-W.)
- Correspondence: ; Tel.: +48-12-617-3866
| | - Mirosław Wróbel
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland; (M.W.); (P.K.); (D.B.-W.)
| | - Piotr Kustra
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland; (M.W.); (P.K.); (D.B.-W.)
| | - Dorota Byrska-Wójcik
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland; (M.W.); (P.K.); (D.B.-W.)
| | - Joanna Sulej-Chojnacka
- Łukasiewicz Research Network—Metal Forming Institute, ul. Jana Pawła II 14, 61-139 Poznań, Poland;
| | - Bartłomiej Płonka
- Division in Skawina ul. Piłsudskiego 19, Lukasiewicz Research Network—Institute of Non-Ferrous Metals, 32-050 Skawina, Poland;
| | - Krzysztof Łukowicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (K.Ł.); (K.T.); (A.O.)
| | - Karolina Truchan
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (K.Ł.); (K.T.); (A.O.)
| | - Anna Osyczka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (K.Ł.); (K.T.); (A.O.)
| |
Collapse
|
13
|
Qiao T, Xiong Y, Feng Y, Guo W, Zhou Y, Zhao J, Jiang T, Shi C, Han Y. Inhibition of LDH-A by Oxamate Enhances the Efficacy of Anti-PD-1 Treatment in an NSCLC Humanized Mouse Model. Front Oncol 2021; 11:632364. [PMID: 33859941 PMCID: PMC8042335 DOI: 10.3389/fonc.2021.632364] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy is a curable treatment for certain cancers, but it is still only effective in a small subset of patients, partly because of the lack of sufficient immune cells in the tumor. It is reported that targeted lactate dehydrogenase (LDH) to reduce lactic acid production can promote the infiltration and activity of immune cells and turn tumors into hot tumors. Therefore, we constructed a humanized mouse model to evaluate the efficacy of using classical LDH inhibitor oxamate and pembrolizumab alone or in combination in non-small cell lung cancer (NSCLC). We found that both oxamate and pembrolizumab monotherapy significantly delayed tumor growth; moreover, combination therapy showed better results. Immunofluorescence analysis showed that oxamate treatment increased the infiltration of activated CD8+ T cells in the tumor, which might have enhanced the therapeutic effects of pembrolizumab. Treatment of the humanized mice with anti-CD8 abrogated the therapeutic effects of oxamate, indicating CD8+ T cells as the main force mediating the effect of oxamate. In conclusion, Our preclinical findings position that oxamate not only inhibits tumor growth at a high safe dose but also enhances the efficacy of pembrolizumab in Hu-PBMC-CDX mice. Our study also provides a preclinical model for exploring the efficacy of other immune-based combination therapies for NSCLC.
Collapse
Affiliation(s)
- Tianyun Qiao
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yanlu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yangbo Feng
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenwen Guo
- School of Basic Medical Sciences, Medical College of Yan'an University, Yanan, China
| | - Yongsheng Zhou
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Changhong Shi
- Laboratory Animal Center, The Fourth Military Medical University, Xi'an, China
| | - Yong Han
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Thoracic Surgery, Air Force Medical Center, Beijing, China
| |
Collapse
|
14
|
Calderón-Gerstein WS, Torres-Samaniego G. High altitude and cancer: An old controversy. Respir Physiol Neurobiol 2021; 289:103655. [PMID: 33766749 DOI: 10.1016/j.resp.2021.103655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Ecological studies have found that individuals that live at high altitude regions and in places where ultraviolet radiation is maximal, have lower rates of different types of cancer. However, there is evidence that in these same regions, genetic mutations that are prooncogenic, develop, as they are needed to increase human adaptability to hypoxic environments. Debate has arisen between researchers who consider high altitude environments as suitable for human longevity because of its protective effects against malignancies, and scientists that have reported an increased incidence of different type of cancers in these same regions. Evidence is presented that altitude is related to the development of genetic alterations in micro RNAs, p53 protein, lymphocyte activity, decrease in Fas Ligand and other proapoptotic molecules, as well as increase in prometastatic VGEF an HIF. Notwithstanding, higher vitamin D and ultraviolet B levels, and a better metabolic profile, taken together with lower pollution levels hves been related to lower incidence and mortality rates from malignancies in a series of epidemiological studies.
Collapse
Affiliation(s)
- Walter S Calderón-Gerstein
- Universidad Continental, Huancayo, Peru; EsSalud Junín, Peru; Altitude Medicine Research Association (ASIMEDIAL), Peru.
| | - Gabriela Torres-Samaniego
- San Pedro de Cajas Health Post, EsSalud, Tarma, Peru; Altitude Medicine Research Association (ASIMEDIAL), Peru
| |
Collapse
|
15
|
Halcrow PW, Geiger JD, Chen X. Overcoming Chemoresistance: Altering pH of Cellular Compartments by Chloroquine and Hydroxychloroquine. Front Cell Dev Biol 2021; 9:627639. [PMID: 33634129 PMCID: PMC7900406 DOI: 10.3389/fcell.2021.627639] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance to the anti-cancer effects of chemotherapeutic agents (chemoresistance) is a major issue for people living with cancer and their providers. A diverse set of cellular and inter-organellar signaling changes have been implicated in chemoresistance, but it is still unclear what processes lead to chemoresistance and effective strategies to overcome chemoresistance are lacking. The anti-malaria drugs, chloroquine (CQ) and its derivative hydroxychloroquine (HCQ) are being used for the treatment of various cancers and CQ and HCQ are used in combination with chemotherapeutic drugs to enhance their anti-cancer effects. The widely accepted anti-cancer effect of CQ and HCQ is their ability to inhibit autophagic flux. As diprotic weak bases, CQ and HCQ preferentially accumulate in acidic organelles and neutralize their luminal pH. In addition, CQ and HCQ acidify the cytosolic and extracellular environments; processes implicated in tumorigenesis and cancer. Thus, the anti-cancer effects of CQ and HCQ extend beyond autophagy inhibition. The present review summarizes effects of CQ, HCQ and proton pump inhibitors on pH of various cellular compartments and discuss potential mechanisms underlying their pH-dependent anti-cancer effects. The mechanisms considered here include their ability to de-acidify lysosomes and inhibit autophagosome lysosome fusion, to de-acidify Golgi apparatus and secretory vesicles thus affecting secretion, and to acidify cytoplasm thus disturbing aerobic metabolism. Further, we review the ability of these agents to prevent chemotherapeutic drugs from accumulating in acidic organelles and altering their cytosolic concentrations.
Collapse
Affiliation(s)
| | | | - Xuesong Chen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
16
|
Mostafazadeh M, Samadi N, Kahroba H, Baradaran B, Haiaty S, Nouri M. Potential roles and prognostic significance of exosomes in cancer drug resistance. Cell Biosci 2021; 11:1. [PMID: 33407894 PMCID: PMC7789218 DOI: 10.1186/s13578-020-00515-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Drug resistance is a major impediment in cancer therapy which strongly reduces the efficiency of anti-cancer drugs. Exosomes are extracellular vesicles with cup or spherical shape with a size range of 40-150 nm released by eukaryotic cells that contain genetic materials, proteins, and lipids which mediate a specific cell-to-cell communication. The potential roles of exosomes in intrinsic and acquired drug resistance have been reported in several studies. Furthermore, a line of evidence suggested that the content of exosomes released from tumor cells in biological samples may be associated with the clinical outcomes of cancer patients. In this review, we highlighted the recent studies regarding the potential roles of exosomes in tumor initiation, progression, and chemoresistance. This study suggests the possible role of exosomes for drug delivery and their contents in prognosis and resistance to chemotherapy in cancer patients.
Collapse
Affiliation(s)
- Mostafa Mostafazadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Fais S, Marunaka Y. The Acidic Microenvironment: Is It a Phenotype of All Cancers? A Focus on Multiple Myeloma and Some Analogies with Diabetes Mellitus. Cancers (Basel) 2020; 12:3226. [PMID: 33147695 PMCID: PMC7693643 DOI: 10.3390/cancers12113226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy with a poor prognosis while with a long and progressive outcome. To date, the therapeutic options are restricted to few drugs, including thalidomide or its derivates and autologous transplantation including stem-cell transplantation. More recently, the use of both proteasome inhibitors and monoclonal antibodies have been included in MM therapy, but the clinical results are still under evaluation. Unfortunately, death rates (within the 5-year overall survival rates) are still very high (45%), with no relevant improvement over the past 10 years. Here, we discuss data supporting a new therapeutic approach against MM, based on a common phenotype of tumor malignancies, which is the acidic microenvironment. Extracellular acidity drastically reduces the efficacy of both anti-tumor drugs and the immune reaction against tumors. Pre-clinical data have shown that anti-acidic drugs, such as proton pump inhibitors (PPIs), have a potent cytotoxic effect against human MM cells, thus supporting their use in the treatment of this malignancy. Here, we discuss also similarities between MM and type II diabetes mellitus (DM) with high risk of developing MM, suggesting that both anti-diabetic drugs and a hypocaloric diet may help in curing MM patients.
Collapse
Affiliation(s)
- Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), 00161 Rome, Italy
| | - Yoshinori Marunaka
- Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto 604-8472, Japan
- Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| |
Collapse
|
18
|
Logozzi M, Spugnini E, Mizzoni D, Di Raimo R, Fais S. Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer Metastasis Rev 2020; 38:93-101. [PMID: 30715644 DOI: 10.1007/s10555-019-09783-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor milieu is characteristically acidic as a consequence of the fermentative metabolism of glucose that results in massive accumulation of lactic acid within the cytoplasm. Tumor cells get rid of excessive protons through exchangers that are responsible for the extracellular acidification that selects cellular clones that are more apt at surviving in this challenging and culling environment. Extracellular vesicles (EVs) are vesicles with diameters ranging from nm to μm that are released from the cells to deliver nucleic acids, proteins, and lipids to adjacent or distant cells. EVs are involved in a plethora of biological events that promote tumor progression including unrestricted proliferation, angiogenesis, migration, local invasion, preparation of the metastatic niche, metastasis, downregulation or hijacking of the immune system, and drug resistance. There is evidence that the release of specific exosomes is increased many folds in cancer patients, as shown by many techniques aimed at evaluating "liquid biopsies". The quality of the exosomal contents has been shown to vary at the different moments of tumor life such as local invasion or metastasis. In vitro studies have recently pointed out that cancer acidity is a major determinant in inducing increased exosome release by human cancer cells, by showing that exosomal release was increased as the pH moved from 7.4 pH to the typical pH of cancer that is 6.5. In this review, we emphasize the recent evidence that tumor acidity and exosomes levels are strictly related and strongly contribute to the malignant tumor phenotypes.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Enrico Spugnini
- SAFU Department, Regina Elena Cancer Institute, Via Elio Chianesi 51, 00144, Rome, Italy
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
19
|
Deep G, Jain A, Kumar A, Agarwal C, Kim S, Leevy WM, Agarwal R. Exosomes secreted by prostate cancer cells under hypoxia promote matrix metalloproteinases activity at pre-metastatic niches. Mol Carcinog 2020; 59:323-332. [PMID: 31943365 DOI: 10.1002/mc.23157] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
Approximately, 30 000 men die from prostate cancer (PCa) every year in the United States, mainly due to the metastasis. Thus, the key events associated with PCa metastasis are under rigorous investigation, with recent studies showing that preparation of pre-metastatic niches (PMN) in distant organs is an important step. However, the molecular basis for PMN preparation is still unclear. Hypoxia in primary tumors promotes aggressiveness; however, its precise role in metastasis is not clear. We recently reported that exosomes secreted by PCa cells under hypoxia promote stemness and invasiveness in naïve PCa cells; however, whether these extracellular vesicles also influence PMN remains unknown. In the present study, we isolated exosomes from human PCa PC3 cells under normoxic (21% O2 , exosomes secreted under normoxic condition [ExoNormoxic ]) and hypoxic (1% O2 , exosomes secreted under hypoxic condition [ExoHypoxic ]) conditions, and characterized their effect (10 µg exosomes, intraperitoneal (IP) treatment every 48 hours for 4 weeks) on key biomarkers associated with PMN in nude mice. Whole animal fluorescence imaging showed that ExoHypoxic treatment promotes matrix metalloproteinases (MMPs) activity in several putative metastatic sites. Histological studies confirmed that ExoHypoxic treatment enhanced the level of MMP2, MMP9, and extracellular matrix proteins (fibronectin and collagen) as well as increased the number of CD11b+ cells at selective PMN sites. Furthermore, proteomic profiling of exosomes by liquid chromatography/mass spectrometry identified cargo proteins in ExoNormoxic and ExoHypoxic as well as distinct canonical pathways targeted by them. These results suggest that exosomes secreted by PCa cells under hypoxia plausibly remodel distant PMN, and thus, could be a potential target to control metastatic PCa.
Collapse
Affiliation(s)
- Gagan Deep
- Department of Cancer Biology, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina.,Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Anil Jain
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado
| | - Ashish Kumar
- Department of Cancer Biology, Winston-Salem, North Carolina
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado, Aurora, Colorado
| | - Susy Kim
- Department of Cancer Biology, Winston-Salem, North Carolina
| | - W Matthew Leevy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado, Aurora, Colorado
| |
Collapse
|
20
|
Spugnini EP, Fais S. Drug repurposing for anticancer therapies. A lesson from proton pump inhibitors. Expert Opin Ther Pat 2019; 30:15-25. [PMID: 31847622 DOI: 10.1080/13543776.2020.1704733] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Worldwide, the annual expenditure on anticancer drugs is grossly calculated to be in the order of US$100 billion, and is expected to escalate up to $150 billion by 2020. It is evident that the vast majority of the most recently devised anticancer drugs are unaffordable in economically developing nations, frequently resulting in subpar therapies. In this complex medical and economic scenario, the repurposing of older drugs for anticancer therapies becomes a necessity. The repurposing of antiacid drugs such as the proton pump inhibitors as antitumoral agents and chemosensitizers is probably one of the most recent and promising phenomenon in oncology.Areas covered: Important research articles and patents focusing on proton pump inhibitors as a potential class of therapeutics, published between the period of 2006-2019, have been covered. This review mainly focuses on the therapeutic applications, as direct anticancer agents as well as modifiers of the tumor microenvironment and modulator of chemoresistance.Expert opinion: PPIs have significant anticancer applications and are proving to be safe, effective and inexpensive. Here the authors review the current knowledge regarding the influence of PPIs on the efficacy and safety of cancer chemotherapeutics through the regulation of targets other than the H+/K+-ATPase.
Collapse
Affiliation(s)
| | - Stefano Fais
- Department of Oncology and Molecular Medicine Istituto Superiore di Sanità, National Institute of Health, Rome, Italy
| |
Collapse
|
21
|
Foletti A, Fais S. Unexpected Discoveries Should Be Reconsidered in Science-A Look to the Past? Int J Mol Sci 2019; 20:ijms20163973. [PMID: 31443232 PMCID: PMC6720802 DOI: 10.3390/ijms20163973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022] Open
Abstract
From the past, we know how much “serendipity” has played a pivotal role in scientific discoveries. The definition of serendipity implies the finding of one thing while looking for something else. The most known example of this is the discovery of penicillin. Fleming was studying “Staphylococcus influenzae” when one of his culture plates became contaminated and developed a mold that created a bacteria-free circle. Then he found within the mold, a substance that proved to be very active against the vast majority of bacteria infecting human beings. Serendipity had a key role in the discovery of a wide panel of psychotropic drugs as well, including aniline purple, lysergic acid diethylamide, meprobamate, chlorpromazine, and imipramine. Actually, many recent studies support a step back in current strategies that could lead to new discoveries in science. This change should seriously consider the idea that to further focus research project milestones that are already too focused could be a mistake. How can you observe something that others did not realize before you? Probably, one pivotal requirement is that you pay a high level of attention on what is occurring all around you. But this is not entirely enough, since, specifically talking about scientific discoveries, you should have your mind sufficiently unbiased from mainstream infrastructures, which normally make you extremely focused on a particular endpoint without paying attention to potential “unexpected discoveries”. Research in medicine should probably come back to the age of innocence and avoid the age of mainstream reports that do not contribute to real advances in the curing of human diseases. Max Planck said “Science progresses not because scientists change their minds, but rather because scientists attached to erroneous views die, and are replaced”, and Otto Warburg used the same words when he realized the lack of acceptance of his ideas. This editorial proposes a series of examples showing, in a practical way, how unfocused research may contribute to very important discoveries in science.
Collapse
Affiliation(s)
- Alberto Foletti
- Clinical Biophysics International Research Group, 6900 Lugano, Switzerland
- Institute of Translational Pharmacology, National Research Council-CNR, 00133 Rome, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, 00133 Rome, Italy.
| |
Collapse
|
22
|
Gillies RJ, Pilot C, Marunaka Y, Fais S. Targeting acidity in cancer and diabetes. Biochim Biophys Acta Rev Cancer 2019; 1871:273-280. [PMID: 30708040 PMCID: PMC6525044 DOI: 10.1016/j.bbcan.2019.01.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 02/08/2023]
Abstract
While cancer is commonly described as "a disease of the genes", it is also a disease of metabolism. Indeed, carcinogenesis and malignancy are highly associated with metabolic re-programming, and there is clinical evidence that interrupting a cancer's metabolic program can improve patients' outcomes. Notably, many of the metabolic adaptations observed in cancer are similar to the same perturbations observed in diabetic patients. For example, metformin is commonly used to reduce hyperglycemia in diabetic patients, and has been demonstrated to reduce cancer incidence. Treatment with PI3K inhibitors can induce hyperinsulinemia, which can blunt therapeutic efficacy if unchecked. While commonalities between metabolism in cancer and diabetes have been extensively reviewed, here we examine a less explored and emergent convergence between diabetic and cancer metabolism: the generation of lactic acid and subsequent acidification of the surrounding microenvironment. Extracellular lactic acidosis is integral in disease manifestation and is a negative prognostic in both disease states. In tumors, this results in important sequela for cancer progression including increased invasion and metastasis, as well as inhibition of immune surveillance. In diabetes, acidosis impacts the ability of insulin to bind to its receptor, leading to peripheral resistance and an exacerbation of symptoms. Thus, acidosis may be a relevant therapeutic target, and we describe three approaches for targeting: buffers, nanomedicine, and proton pump inhibitors.
Collapse
Affiliation(s)
- Robert J Gillies
- Dept. Cancer Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33602, USA.
| | - Christian Pilot
- Dept. Cancer Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33602, USA
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto 604-8472, Japan; Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Stefano Fais
- Dept. of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma 00161, Italy.
| |
Collapse
|
23
|
Logozzi M, Capasso C, Di Raimo R, Del Prete S, Mizzoni D, Falchi M, Supuran CT, Fais S. Prostate cancer cells and exosomes in acidic condition show increased carbonic anhydrase IX expression and activity. J Enzyme Inhib Med Chem 2019; 34:272-278. [PMID: 30734594 PMCID: PMC6327996 DOI: 10.1080/14756366.2018.1538980] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acidity and hypoxia are crucial phenotypes of tumour microenvironment both contributing to the selection of malignant cells under a micro evolutionistic pressure. During the tumour progression, nanovesicles, called exosomes and the metalloenzyme carbonic anhydrase IX (CA IX) affect the tumour growth and proliferation. Exosomes are released into the tumour microenvironment and spilt all over the body, while CA IX is a tumour-associated protein overexpressed in many different solid tumours. In the present study, to better understand the relationships between exosomes and CA IX, it has been used an in vitro cellular model of cells cultured in different pH conditions. The results showed that the acidic microenvironment induced upregulation of both expression and activity of CA IX in cancer cells and their exosomes, together with increasing the number of released exosomes. These data strongly support the importance of CA IX as a cancer biomarker and as a valuable target of new anticancer therapies.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- a Department of Oncology and Molecular Medicine , National Institute of Health , Rome , Italy
| | - Clemente Capasso
- b National Research Council , Institute of Biosciences and BioResources , Naples , Italy
| | - Rossella Di Raimo
- a Department of Oncology and Molecular Medicine , National Institute of Health , Rome , Italy
| | - Sonia Del Prete
- b National Research Council , Institute of Biosciences and BioResources , Naples , Italy
| | - Davide Mizzoni
- a Department of Oncology and Molecular Medicine , National Institute of Health , Rome , Italy
| | - Mario Falchi
- c National AIDS Center , National Institute of Health , Rome , Italy
| | - Claudiu T Supuran
- d NEUROFARBA Department , University of Florence, Section of Pharmaceutical Chemistry , Florence , Italy
| | - Stefano Fais
- a Department of Oncology and Molecular Medicine , National Institute of Health , Rome , Italy
| |
Collapse
|
24
|
Oral Administration of Fermented Papaya (FPP ®) Controls the Growth of a Murine Melanoma through the In Vivo Induction of a Natural Antioxidant Response. Cancers (Basel) 2019; 11:cancers11010118. [PMID: 30669508 PMCID: PMC6356895 DOI: 10.3390/cancers11010118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/24/2022] Open
Abstract
Prolonged oxidative stress may play a key role in tumor development. Antioxidant molecules are contained in many foods and seem to have a potential role in future anti-tumor strategies. Among the natural antioxidants the beneficial effect of Fermented Papaya (FPP®) is well known. The aim of this study was to investigate the effects of orally administered FPP® in either the prevention or treatment of a murine model of melanoma. The tumor growth was analyzed together with the blood levels of both oxidants (ROS) and anti-oxidants (SOD-1 and GSH). The results showed that FPP® controlled tumor growth, reducing the tumor mass of about three to seven times vs. untreated mice. The most significant effect was obtained with sublingual administration of FPP® close to the inoculation of melanoma. At the time of the sacrifice none of mice treated with FPP® had metastases and the subcutaneous tumors were significantly smaller and amelanotic, compared to untreated mice. Moreover, the FPP® anti-tumor effect was consistent with the decrease of total ROS levels and the increase in the blood levels of GSH and SOD-1. This study shows that a potent anti-oxidant treatment through FPP® may contribute to both preventing and inhibiting tumors growth.
Collapse
|
25
|
Logozzi M, Mizzoni D, Angelini DF, Di Raimo R, Falchi M, Battistini L, Fais S. Microenvironmental pH and Exosome Levels Interplay in Human Cancer Cell Lines of Different Histotypes. Cancers (Basel) 2018; 10:E370. [PMID: 30301144 PMCID: PMC6210604 DOI: 10.3390/cancers10100370] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
Exosomes are extracellular nanovesicles primarily involved in the pathogenesis of many diseases including cancer. This study was set out from recent evidence that extracellular acidity may increase the exosome release by cancer cells. However, this preliminary evidence did not provide solid information on whether the pH-dependent exosome over-release represents a common feature of all cancers. To the purpose of demonstrating that cancer acidity is a major determinant in inducing an increased exosome release by human cancer cells, we evaluated human tumor cell lines deriving from either colon, breast, prostate cancers, melanoma, or osteosarcoma. All cell lines were cultured in either the current 7.4 pH or the typical pH of cancer that is 6.5. The levels of released extracellular vesicles were measured by protein counts, nanoparticle tracking analysis (NTA), and nanoscale flow cytometry. The results showed that pH 6.5 induced a remarkable increase in exosome release, and buffering the medium significantly reduced the exosome release in all cancers. With these results, we provide, for the first time, evidence that tumor acidity and exosome levels represent common cancer phenotypes.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00179 Rome, Italy.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
26
|
Ren J, Shang T, Sherry AD, Malloy CR. Unveiling a hidden 31 P signal coresonating with extracellular inorganic phosphate by outer-volume-suppression and localized 31 P MRS in the human brain at 7T. Magn Reson Med 2018; 80:1289-1297. [PMID: 29427295 PMCID: PMC6085175 DOI: 10.1002/mrm.27121] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/22/2017] [Accepted: 01/15/2018] [Indexed: 01/19/2023]
Abstract
PURPOSE The study was undertaken to demonstrate that there is more than 1 component in the extracellular Pi31 P signal ( Piex) acquired from human head using nonlocalized 31 P MRS. METHODS Outer-volume-suppression (OVS) saturation and 1D/2D 31 P CSI were utilized to reveal the presence of an additional component in the Piex signal. RESULTS 67% of the head extracellular Pi signal was attenuated upon OVS saturation of the peripheral meningeal tissues, likely reflecting elimination of the Pi signal in the meningeal fluids (the blood and CSF). Localized 1D/2D CSI data provided further support for this assignment. Upon correction for the meningeal contribution, the extracellular Pi concentration was 0.51 ± 0.07 mM, whereas the intracellular Pi was 0.85 ± 0.10 mM. The extracellular pH was measured as 7.32 ± 0.04 when using OVS, as compared to 7.39 ± 0.03 when measured without OVS (N = 7 subjects). CONCLUSION The extracellular Pi signal acquired from the human head using nonlocalized 31 P MRS contains a significant component likely contributed by peripheral blood and CSF in meninges that must be removed in order to use this signal as an endogenous probe for measuring extracellular pH and other properties in the brain.
Collapse
Affiliation(s)
- Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ty Shang
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - A. Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Chemistry, University of Texas at Dallas, Richardson, TX 75080
| | - Craig R. Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- VA North Texas Health Care System, Dallas, TX 75216
| |
Collapse
|
27
|
Lacroix R, Rozeman EA, Kreutz M, Renner K, Blank CU. Targeting tumor-associated acidity in cancer immunotherapy. Cancer Immunol Immunother 2018; 67:1331-1348. [PMID: 29974196 PMCID: PMC11028141 DOI: 10.1007/s00262-018-2195-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
Checkpoint inhibitors, such as cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) and programmed cell death-1 (PD-1) monoclonal antibodies have changed profoundly the treatment of melanoma, renal cell carcinoma, non-small cell lung cancer, Hodgkin lymphoma, and bladder cancer. Currently, they are tested in various tumor entities as monotherapy or in combination with chemotherapies or targeted therapies. However, only a subgroup of patients benefit from checkpoint blockade (combinations). This raises the question, which all mechanisms inhibit T cell function in the tumor environment, restricting the efficacy of these immunotherapeutic approaches. Serum activity of lactate dehydrogenase, likely reflecting the glycolytic activity of the tumor cells and thus acidity within the tumor microenvironment, turned out to be one of the strongest markers predicting response to checkpoint inhibition. In this review, we discuss the impact of tumor-associated acidity on the efficacy of T cell-mediated cancer immunotherapy and possible approaches to break this barrier.
Collapse
Affiliation(s)
- Ruben Lacroix
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Elisa A Rozeman
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Christian U Blank
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Abstract
Thiersch, Markus, and Erik R. Swenson. High altitude and cancer mortality. High Alt Med Biol 19:116-123, 2018.-Humans living at high altitude (HA) are exposed to chronic (hypobaric) hypoxia. Despite the permanent stress of hypoxic exposure, humans populating HA areas have reduced cancer mortality over a broad spectrum of cancer types. In fact, the majority of the physiological adaptive processes at HA occurring in response to hypoxia might be the driving force for reduced cancer mortality at HA. In this review, we summarize epidemiological and animal studies that compare cancer incidence and cancer mortality between HA and low altitude or between hypoxia and normoxia, respectively. We discuss the potential role of oxygen-independent and oxygen-dependent mechanisms that might contribute to reduced cancer mortality at HA. Reactive oxygen species and their detoxification as well as the hypoxia-inducible factors are especially promising targets and may be related to why cancer mortality is reduced at HA. In addition, we briefly discuss two aspects with a proven impact on tumorigenesis, namely the immune system and tumor surveillance as well as HA-induced metabolic changes. Further animal and clinical studies are clearly needed to explain why cancer mortality is reduced at HA and to decide whether HA or hypoxia-based therapeutic approaches could be implemented for cancer treatment. However, exposure to HA activates multiple adaptive mechanisms (oxygen independent and oxygen dependent) sharing common pathways as well as activating counteracting pathways, which complicate the identification of specific HA-induced mechanisms of tumor suppression.
Collapse
Affiliation(s)
- Markus Thiersch
- 1 Vetsuisse Faculty, Institute of Veterinary Physiology, University of Zurich , Zurich, Switzerland .,2 Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich , Zurich, Switzerland
| | - Erik R Swenson
- 3 Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington , Seattle, Washington.,4 Medical Service, Veterans Affairs Puget Sound Health Care System , Seattle, Washington
| |
Collapse
|
29
|
Astigiano S, Puglisi A, Mastracci L, Fais S, Barbieri O. Systemic alkalinisation delays prostate cancer cell progression in TRAMP mice. J Enzyme Inhib Med Chem 2017; 32:363-368. [PMID: 28095711 PMCID: PMC6009900 DOI: 10.1080/14756366.2016.1252760] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 01/06/2023] Open
Abstract
The microenvironment of solid tumours is extremely acidic and this condition arises since the precancerous stage. This acidic milieu could therefore provide a useful target for both prophylactic and therapeutic approaches. In TRAMP transgenic mice, an in vivo model of prostate adenocarcinoma (AC), oral administration of alkaline water was devoid of unwanted side effects, and when started from an early age was as effective as NaHCO3 in significantly delaying tumour progression, while when started when prostate tumours were already present, a nonstatistically significant trend in the same direction was detected. These findings indicate that the use of alkalinizing drugs should be considered for chemoprevention and, in association with standard chemotherapy, for treatment of human prostate AC.
Collapse
Affiliation(s)
| | - Andrea Puglisi
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Luca Mastracci
- IRCCS A.O.U. S. Martino-IST University Hospital, Genova, Italy
- Department of Surgical and Diagnostic Science, University of Genova, Genova, Italy
| | - Stefano Fais
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità (National Institute of Health), Roma, Italy
| | - Ottavia Barbieri
- IRCCS A.O.U. S. Martino-IST University Hospital, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| |
Collapse
|
30
|
Logozzi M, Angelini DF, Iessi E, Mizzoni D, Di Raimo R, Federici C, Lugini L, Borsellino G, Gentilucci A, Pierella F, Marzio V, Sciarra A, Battistini L, Fais S. Increased PSA expression on prostate cancer exosomes in in vitro condition and in cancer patients. Cancer Lett 2017; 403:318-329. [PMID: 28694142 DOI: 10.1016/j.canlet.2017.06.036] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022]
Abstract
Prostate specific antigen (PSA) test is the most common, clinically validated test for the diagnosis of prostate cancer (PCa). While neoplastic lesions of the prostate may cause aberrant levels of PSA in the blood, the quantitation of free or complexed PSA poorly discriminates cancer patients from those developing benign lesions, often leading to invasive and unnecessary surgical procedures. Microenvironmental acidity increases exosome release by cancer cells. In this study we evaluated whether acidity, a critical phenotype of malignancy, could influence exosome release and increase the PSA expression in nanovesicles released by PCa cells. To this aim, we exploited Nanoparticle Tracking Analysis (NTA), an immunocapture-based ELISA, and nanoscale flow-cytometry. The results show that microenvironmental acidity induces an increased release of nanovesicles expressing both PSA and the exosome marker CD81. In order to verify whether the changes induced by the local selective pressure of extracellular acidity may correspond to a clinical pathway we used the same approach to evaluate the levels of PSA-expressing exosomes in the plasma of PCa patients and controls, including subjects with benign prostatic hypertrophy (BPH). The results show that only PCa patients have high levels of nanovesicles expressing both CD81 and PSA. This study shows that tumor acidity exerts a selective pressure leading to the release of extracellular vesicles that express both PSA and exosome markers. A comparable scenario was shown in the plasma of prostate cancer patients as compared to both BPH and healthy controls. These results suggest that microenvironmental acidity may represent a key factor which determines qualitatively and quantitatively the release of extracellular vesicles by malignant tumors, including prostate cancer. This condition leads to the spill-over of nanovesicles into the peripheral blood of prostate cancer patients, where the levels of tumor biomarkers expressed by exosomes, such as PSA-exosomes, may represent a novel, non-invasive clinical tool for the screening and early diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | - Elisabetta Iessi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Cristina Federici
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Luana Lugini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | - Alessandro Gentilucci
- Department of Urological Sciences, Policlinico Umberto I, University Sapienza, Rome, Italy
| | - Federico Pierella
- Department of Urological Sciences, Policlinico Umberto I, University Sapienza, Rome, Italy
| | - Vittorio Marzio
- Department of Urological Sciences, Policlinico Umberto I, University Sapienza, Rome, Italy
| | - Alessandro Sciarra
- Department of Urological Sciences, Policlinico Umberto I, University Sapienza, Rome, Italy
| | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
31
|
Ibrahim-Hashim A, Abrahams D, Enriquez-Navas PM, Luddy K, Gatenby RA, Gillies RJ. Tris-base buffer: a promising new inhibitor for cancer progression and metastasis. Cancer Med 2017; 6:1720-1729. [PMID: 28556628 PMCID: PMC5504318 DOI: 10.1002/cam4.1032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 01/11/2023] Open
Abstract
Neutralizing tumor external acidity with oral buffers has proven effective for the prevention and inhibition of metastasis in several cancer mouse models. Solid tumors are highly acidic as a result of high glycolysis combined with an inadequate blood supply. Our prior work has shown that sodium bicarbonate, imidazole, and free‐base (but not protonated) lysine are effective in reducing tumor progression and metastasis. However, a concern in translating these results to clinic has been the presence of counter ions and their potential undesirable side effects (e.g., hypernatremia). In this work, we investigate tris(hydroxymethyl)aminomethane, (THAM or Tris), a primary amine with no counter ion, for its effects on metastasis and progression in prostate and pancreatic cancer in vivo models using MRI and bioluminescence imaging. At an ad lib concentration of 200 mmol/L, Tris effectively inhibited metastasis in both models and furthermore led to a decrease in the expression of the major glucose transporter, GLUT‐1. Our results also showed that Tris–base buffer (pH 8.4) had no overt toxicity to C3H mice even at higher doses (400 mmol/L). In conclusion, we have developed a novel therapeutic approach to manipulate tumor extracellular pH (pHe) that could be readily adapted to a clinical trial.
Collapse
Affiliation(s)
- Arig Ibrahim-Hashim
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Dominique Abrahams
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Pedro M Enriquez-Navas
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Kim Luddy
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Robert A Gatenby
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida.,Department of Radiology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Robert J Gillies
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, Florida.,Department of Radiology, H. Lee Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
32
|
Spugnini E, Fais S. Proton pump inhibition and cancer therapeutics: A specific tumor targeting or it is a phenomenon secondary to a systemic buffering? Semin Cancer Biol 2017; 43:111-118. [PMID: 28088584 DOI: 10.1016/j.semcancer.2017.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/21/2016] [Accepted: 01/06/2017] [Indexed: 01/17/2023]
Abstract
One of the unsolved mysteries in oncology includes the strategies that cancer cells adopt to cope with an adverse microenvironment. However, we knew, from the Warburg's discovery that through their metabolism based on sugar fermentation, cancer cells acidify their microenvironment and this progressive acidification induces a selective pressure, leading to the development of very malignant cells entirely armed to survive in the hostile microenvironment generated by their own metabolism. In the last decades a primordial role for proton exchangers has been supported as a key tumor advantage in facing off the acidic milieu. Proton exchangers do not allow intracellular acidification through a continuous elimination of H+ either outside the cells or within the internal vacuoles. This article wants to comment a translational process through that led to the preclinical demonstration that a class of proton pump inhibitors (PPI) exploited worldwide for peptic ulcer treatment and gastroprotection are indeed powerful chemosensitizers as well. In this process we achieved the clinical proof of concept that PPI may well be included in new anti-cancer strategies with a solid background and rationale.
Collapse
Affiliation(s)
- Enrico Spugnini
- SAFU, Regina Elena Cancer Institute, Via Chianesi 53, 00134 Rome, Italy
| | - Stefano Fais
- Dept. of Therapeutic Research and Medicines Evaluation Istituto Superiore di Sanità (National Institute of Health), Viale Regina Elena 299, Rome Italy.
| |
Collapse
|