1
|
Mina S, Yaakoub H, Razafimandimby B, Dwars E, Wéry M, Papon N, Meyer W, Bouchara JP. First environmental survey of Scedosporium species in Lebanon. Front Cell Infect Microbiol 2025; 15:1547800. [PMID: 40099015 PMCID: PMC11911385 DOI: 10.3389/fcimb.2025.1547800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Background Scedosporium species are filamentous fungi causing a wide spectrum of infections in healthy and debilitated individuals. Despite their clinical significance, the ecology of Scedosporium species remains understudied, particularly in the Middle East. Methods In this context, we conducted an environmental study to elucidate the distribution and ecological preferences of Scedosporium species in the North of Lebanon. One hundred and fifty-five soil samples were collected from different environmental areas and analyzed for several chemical parameters. Scedosporium isolates were then selected for species identification and genotyping. Results Overall, 39 (25.16%) were positive for Scedosporium species, with a predominance of S. apiospermum (80.56%). Soil analysis revealed associations between the fungal presence and pH, nitrogen, phosphorus, and organic matter content. Moreover, genotyping analysis using MultiLocus Sequence Typing identified five major clusters. Interestingly, a number of Lebanese isolates formed an Asian-specific cluster (V) with one clinical Chinese isolate, whereas two clusters (II and III) showed a close association with German isolates, and clusters (I and IV) contained isolates with a global distribution. Conclusion These findings provide new insights into the ecology of Scedosporium species, bridging a gap in our knowledge of their distribution on the Asian continent and laying the groundwork for future clinical investigations. Future international collaborations are essential to trace the origin of S. apiospermum.
Collapse
Affiliation(s)
- Sara Mina
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Hajar Yaakoub
- Univ Angers, Univ Brest, IRF, SFR ICAT, Angers, France
- Nantes Université, INRAE UMR-1280 PhAN, Nantes, France
| | | | - Elske Dwars
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | | | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, Angers, France
| | - Wieland Meyer
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | | |
Collapse
|
2
|
Wu HM, Fan YH, Phang GJ, Zeng WT, Abdrabo KAES, Wu YT, Sun PL, Lin YH, Huang YT. Human activity, not environmental factors, drives Scedosporium and Lomentospora distribution in Taiwan. Med Mycol 2025; 63:myaf022. [PMID: 40052326 DOI: 10.1093/mmy/myaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/08/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Scedosporium and Lomentospora species are emerging fungal pathogens capable of causing severe infections in both immunocompetent and immunocompromised individuals. Previous environmental surveys have suggested potential associations between these fungi and various soil chemical parameters, though the relative influence of human activity versus environmental factors has not been systematically evaluated. Here, we conducted a comprehensive survey of 406 soil samples from 132 locations across Taiwan, analyzing fungal abundance alongside soil physicochemical parameters and the Human Footprint Index (HFI). We recovered 236 fungal isolates comprising 10 species, with S. boydii (32.2%), S. apiospermum (30.9%), and S. dehoogii (14.4%) being the most prevalent. The highest fungal burdens were observed in urban environments (up to 1293 CFU/g), particularly in public spaces and healthcare facilities. Statistical analysis revealed a significant positive correlation between fungal abundance and HFI (r = 0.143, P = .005), while soil chemical parameters including nitrogen, carbon, pH, electrical conductivity, and various base cations showed no significant associations despite their wide ranges. These findings indicate that anthropogenic disturbance of environments, rather than soil chemistry, is the primary driver of Scedosporium and Lomentospora distribution in Taiwan. This understanding holds important implications for predicting infection risks and developing targeted public health strategies, particularly in rapidly urbanizing regions. Future studies incorporating more specific indicators of human impact may further elucidate the mechanisms underlying these distribution patterns.
Collapse
Affiliation(s)
- Hsin-Mao Wu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsuan Fan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Guan-Jie Phang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Ting Zeng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Khaled Abdrabo El-Sayid Abdrabo
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Yu-Ting Wu
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Lun Sun
- Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Hong Lin
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yin-Tse Huang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Neoh CF, Chen SCA, Lanternier F, Tio SY, Halliday CL, Kidd SE, Kong DCM, Meyer W, Hoenigl M, Slavin MA. Scedosporiosis and lomentosporiosis: modern perspectives on these difficult-to-treat rare mold infections. Clin Microbiol Rev 2024; 37:e0000423. [PMID: 38551323 PMCID: PMC11237582 DOI: 10.1128/cmr.00004-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYAlthough Scedosporium species and Lomentospora prolificans are uncommon causes of invasive fungal diseases (IFDs), these infections are associated with high mortality and are costly to treat with a limited armamentarium of antifungal drugs. In light of recent advances, including in the area of new antifungals, the present review provides a timely and updated overview of these IFDs, with a focus on the taxonomy, clinical epidemiology, pathogenesis and host immune response, disease manifestations, diagnosis, antifungal susceptibility, and treatment. An expansion of hosts at risk for these difficult-to-treat infections has emerged over the last two decades given the increased use of, and broader population treated with, immunomodulatory and targeted molecular agents as well as wider adoption of antifungal prophylaxis. Clinical presentations differ not only between genera but also across the different Scedosporium species. L. prolificans is intrinsically resistant to most currently available antifungal agents, and the prognosis of immunocompromised patients with lomentosporiosis is poor. Development of, and improved access to, diagnostic modalities for early detection of these rare mold infections is paramount for timely targeted antifungal therapy and surgery if indicated. New antifungal agents (e.g., olorofim, fosmanogepix) with novel mechanisms of action and less cross-resistance to existing classes, availability of formulations for oral administration, and fewer drug-drug interactions are now in late-stage clinical trials, and soon, could extend options to treat scedosporiosis/lomentosporiosis. Much work remains to increase our understanding of these infections, especially in the pediatric setting. Knowledge gaps for future research are highlighted in the review.
Collapse
Affiliation(s)
- Chin Fen Neoh
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
- The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
| | - Fanny Lanternier
- Service de Maladies Infectieuses et Tropicales, Hôpital universitaire Necker-Enfants malades, Paris, France
- National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology research group, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Shio Yen Tio
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
| | - Sarah E. Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, Australia
| | - David C. M. Kong
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- The National Centre for Antimicrobial Stewardship, The Peter Doherty Institute for Infections and Immunity, Melbourne, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
- School of Medicine, Deakin University, Waurn Ponds, Geelong, Australia
| | - Wieland Meyer
- The University of Sydney, Sydney, Australia
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Monica A. Slavin
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
4
|
Huang YT, Hung TC, Fan YC, Chen CY, Sun PL. The high diversity of Scedosporium and Lomentospora species and their prevalence in human-disturbed areas in Taiwan. Med Mycol 2023; 61:myad041. [PMID: 37061781 DOI: 10.1093/mmy/myad041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/16/2023] [Accepted: 04/13/2023] [Indexed: 04/17/2023] Open
Abstract
Scedosporium and Lomentospora are important opportunistic pathogens causing localized or disseminated infection in humans. Understanding their environmental distribution is critical for public hygiene and clinical management. We carried out the first environmental survey in urbanized and natural regions in Taiwan. Overall, Scedosporium and Lomentospora species were recovered in 132 out of 273 soil samples (48.4%) across Taiwan. We morphologically and molecularly identified six Scedosporium and one Lomentospora species. All four major clinical relevant species were isolated with high frequency, i.e., Scedosporium apiospermum (42.4%), S. boydii (21.8%), Lomentosporaprolificans (14.5%), S. aurantiacum (8.5%); two clinically minor species, Pseudallescheria angusta (6.7%) and S. dehoogii (5.6%), and a saprobic species, S. haikouense (0.6%), had moderate to rare incidence. These fungal species had high incidence in urban (48.6%) and hospital (67.4%) soil samples, and had limited distribution in samples from natural regions (5%). Multivariate analysis of the fungal composition revealed strong evidence of the preferential distribution of these fungi in urban and hospital regions compared with natural sites. In addition, strong evidence suggested that the distribution and abundance of these fungal species were highly heterogeneous in the environment; samples in vicinity often yielded varied fungal communities. We concluded that these fungal species were prevalent in soil in Taiwan and their occurrences were associated with human activities. Although, hygiene sensitive sites such as hospitals were not harboring heavier fungal burdens than other urban facilities in our survey, still, aware should be taken for the high frequency of these clinical relevant species around hospital regions.
Collapse
Affiliation(s)
- Yin-Tse Huang
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical School, Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Tsu-Chun Hung
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical School, Kaohsiung, 80708, Taiwan
| | - Yun-Chen Fan
- Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
| | - Chi-Yu Chen
- Department of Plant Pathology, National Chun-Hsing University, Taichung, 402202, Taiwan
| | - Pei-Lun Sun
- Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 33305, Taiwan
| |
Collapse
|
5
|
Javidnia J, Badali H, Haghani I, Abastabar M. A new record of Scedosporium dehoogii isolated from paddy field soil in Iran: Phylogeny and antifungal susceptibility profiles. Curr Med Mycol 2022; 8:27-31. [PMID: 37736605 PMCID: PMC10509499 DOI: 10.32598/cmm.2023.1368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/17/2022] [Accepted: 01/07/2023] [Indexed: 09/23/2023] Open
Abstract
Background and Purpose Scedosporium species are ubiquitous environmental fungi, which are considered emerging agents that trigger disease in humans and animals. The present study aimed to determine Scedosporium dehoogii strain isolated from paddy field soil samples using semi-selective media and evaluate its antifungal susceptibility profile. Materials and Methods Three paddy field soil samples were collected during an investigation for the isolation of Scedosporium species in Mazandaran province, Iran. Morphological and molecular analyses based on ITS-rDNA sequencing were performed. Furthermore, in vitro antifungal susceptibility testing for conventional drugs and novel imidazole (luliconazole) was performed based on Clinical and Laboratory Standards Institute M38-A3 guidelines. Results In this study, S. dehoogii was isolated from the soil in paddy fields. Based on the results, itraconazole and luliconazole showed the least and most antifungal activity against this isolate, respectively. Conclusion Based on the findings, molecular identification was essential for distinguishing the species of S. dehoogii. Remarkably, luliconazole showed potent activity against this strain.
Collapse
Affiliation(s)
- Javad Javidnia
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Badali
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Iman Haghani
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Abastabar
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
6
|
Kitisin T, Muangkaew W, Ampawong S, Sansurin N, Thitipramote N, Sukphopetch P. Development and efficacy of tryptophol-containing emulgel for reducing subcutaneous fungal nodules from Scedosporium apiospermum eumycetoma. Res Pharm Sci 2022; 17:707-722. [PMID: 36704435 PMCID: PMC9872179 DOI: 10.4103/1735-5362.359437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/26/2022] [Accepted: 09/20/2022] [Indexed: 01/28/2023] Open
Abstract
Background and purpose Subcutaneous infections caused by Scedosporium apiospermum present as chronic eumycetomatous manifestations in both immunocompromised and immunocompetent individuals. Serious adverse effects/toxicities from the long-term use of antifungal drugs and antifungal resistance have been reported in patients with S. apiospermum infections. The present study aimed to determine the anti-S. apiospermum activities of fungal quorum sensing molecule known as tryptophol (TOH) and to develop a TOH-containing emulgel for treating S. apiospermum eumycetoma. Experimental approach Anti-S. apiospermum activities of TOH were determined and compared with voriconazole. Effects of TOH on S. apiospermum biofilm formation and human foreskin fibroblast (HFF)-1 cell cytotoxicity were determined. Moreover, TOH-containing emulgel was developed and physical properties, in vitro, and in vivo antifungal activities against S. apiospermum eumycetoma were evaluated. Findings/Results The minimal concentration of TOH at 100 µM exhibited anti-S. apiospermum activities by reducing growth rate, germination rate, and biofilm formation with less cytotoxicity to HFF-1 cells than voriconazole. Further study on the development of an emulgel revealed that TOH-containing emulgel exhibited excellent physical properties including homogeneity, consistency, and stability. Treatment by TOH-containing emulgel significantly reduced subcutaneous mass in a mouse model of S. apiospermum eumycetoma. The histopathological assessment showed marked improvement after 14 days of TOH-containing emulgel treatment. Conclusion and implications TOH could be used as an anti-fungal agent against S. apiospermum infections. A novel and stable TOH-containing emulgel was developed with excellent anti-S. apiospermum activities suggesting the utilization of TOH-containing emulgel as an innovative therapeutic approach in the treatment of S. apiospermum eumycetoma.
Collapse
Affiliation(s)
- Thitinan Kitisin
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - Nichapa Sansurin
- Northeast Laboratory Animal Center, Khon Kaen University, 40002, Khon Kaen, Thailand
| | - Natthawut Thitipramote
- Center of Excellence in Natural Products Innovation, Mae Fah Luang University, 57100, Chiang Rai, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand,Corresponding author: P. Sukphopetch Tel: +66-23549100, Fax: +66-2643 5583
| |
Collapse
|
7
|
Irinyi L, Rope M, Meyer W. In depth search of the Sequence Read Archive database reveals global distribution of the emerging pathogenic fungus Scedosporium aurantiacum. Med Mycol 2022; 60:6542442. [PMID: 35244718 PMCID: PMC8994208 DOI: 10.1093/mmy/myac019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/30/2022] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Scedosporium species are emerging opportunistic fungal pathogens causing various infections mainly in immunocompromised patients, but also in immunocompetent individuals, following traumatic injuries. Clinical manifestations range from local infections, such as subcutaneous mycetoma or bone and joint infections, to pulmonary colonization and severe disseminated diseases. They are commonly found in soil and other environmental sources. To date S. aurantiacum has been reported only from a handful of countries. To identify the worldwide distribution of this species we screened publicly available sequencing data from fungal metabarcoding studies in the Sequence Read Archive (SRA) of The National Centre for Biotechnology Information (NCBI) by multiple BLAST searches. S. aurantiacum was found in 26 countries and two islands, throughout every climatic region. This distribution is like that of other Scedosporium species. Several new environmental sources of S. aurantiacum including human and bovine milk, chicken and canine gut, freshwater, and feces of the giant white-tailed rat (Uromys caudimaculatus) were identified. This study demonstrated that raw sequence data stored in the SRA database can be repurposed using a big data analysis approach to answer biological questions of interest.
Collapse
Affiliation(s)
- Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Westmead, NSW Australia
| | - Michael Rope
- Division of Biomedical Science and Biochemistry, Australian National University, Canberra, ACT, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Westmead, NSW Australia.,Westmead Hospital (Research and Education Network), Westmead, NSW, Australia
| |
Collapse
|
8
|
Harun A, Kan A, Schwabenbauer K, Gilgado F, Perdomo H, Firacative C, Losert H, Abdullah S, Giraud S, Kaltseis J, Fraser M, Buzina W, Lackner M, Blyth CC, Arthur I, Rainer J, Lira JFC, Artigas JG, Tintelnot K, Slavin MA, Heath CH, Bouchara JP, Chen SCA, Meyer W. Multilocus Sequence Typing Reveals Extensive Genetic Diversity of the Emerging Fungal Pathogen Scedosporium aurantiacum. Front Cell Infect Microbiol 2022; 11:761596. [PMID: 35024355 PMCID: PMC8744116 DOI: 10.3389/fcimb.2021.761596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/26/2021] [Indexed: 01/19/2023] Open
Abstract
Scedosporium spp. are the second most prevalent filamentous fungi after Aspergillus spp. recovered from cystic fibrosis (CF) patients in various regions of the world. Although invasive infection is uncommon prior to lung transplantation, fungal colonization may be a risk factor for invasive disease with attendant high mortality post-transplantation. Abundant in the environment, Scedosporium aurantiacum has emerged as an important fungal pathogen in a range of clinical settings. To investigate the population genetic structure of S. aurantiacum, a MultiLocus Sequence Typing (MLST) scheme was developed, screening 24 genetic loci for polymorphisms on a tester strain set. The six most polymorphic loci were selected to form the S. aurantiacum MLST scheme: actin (ACT), calmodulin (CAL), elongation factor-1α (EF1α), RNA polymerase subunit II (RPB2), manganese superoxide dismutase (SOD2), and β-tubulin (TUB). Among 188 global clinical, veterinary, and environmental strains, 5 to 18 variable sites per locus were revealed, resulting in 8 to 23 alleles per locus. MLST analysis observed a markedly high genetic diversity, reflected by 159 unique sequence types. Network analysis revealed a separation between Australian and non-Australian strains. Phylogenetic analysis showed two major clusters, indicating correlation with geographic origin. Linkage disequilibrium analysis revealed evidence of recombination. There was no clustering according to the source of the strains: clinical, veterinary, or environmental. The high diversity, especially amongst the Australian strains, suggests that S. aurantiacum may have originated within the Australian continent and was subsequently dispersed to other regions, as shown by the close phylogenetic relationships between some of the Australian sequence types and those found in other parts of the world. The MLST data are accessible at http://mlst.mycologylab.org. This is a joined publication of the ISHAM/ECMM working groups on “Scedosporium/Pseudallescheria Infections” and “Fungal Respiratory Infections in Cystic Fibrosis”.
Collapse
Affiliation(s)
- Azian Harun
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Alex Kan
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Katharina Schwabenbauer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Felix Gilgado
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Haybrig Perdomo
- Unitat de Microbiologia, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Carolina Firacative
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | | | - Sarimah Abdullah
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Sandrine Giraud
- UNIV Angers, Université de Bretagne Occidentale, Centre Hospitalier Universitaire (CHU) d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), EA3142, Structure Fédérative de Recherche "Interactions Cellulaires et Applications Thérapeutiques (SFR ICAT), Angers, France
| | - Josef Kaltseis
- Institute of Hygiene and Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Mark Fraser
- UK National Mycology Reference Laboratory, National Infection Service, Public Health England South-West, Bristol, United Kingdom
| | - Walter Buzina
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University, Graz, Austria
| | - Michaela Lackner
- Institute of Hygiene and Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Christopher C Blyth
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia.,Telethon Kids Institute and Medical School, University of Western Australia, Perth, WA, Australia
| | - Ian Arthur
- Mycology Laboratory, Division of Microbiology and Infectious Diseases, PathWest Laboratory Medicine Western Australia, Perth, WA, Australia
| | - Johannes Rainer
- Institute of Microbiology, Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - José F Cano Lira
- Unitat de Microbiologia, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Guarro Artigas
- Unitat de Microbiologia, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | | | - Monica A Slavin
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia
| | - Christopher H Heath
- Department of Microbiology, PathWest Laboratory Medicine, Fiona Stanley Hospital, Murdoch; & Infectious Diseases Department, Fiona Stanley Hospital, Murdoch; Department of Microbiology & Infectious Diseases, Royal Perth Hospital, Perth; & the University of Western Australia, Perth, WA, Australia
| | - Jean-Philippe Bouchara
- UNIV Angers, Université de Bretagne Occidentale, Centre Hospitalier Universitaire (CHU) d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), EA3142, Structure Fédérative de Recherche "Interactions Cellulaires et Applications Thérapeutiques (SFR ICAT), Angers, France
| | - Sharon C A Chen
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia.,Center for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Sydney, NSW, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Kanjanapruthipong T, Sukphopetch P, Reamtong O, Isarangkul D, Muangkaew W, Thiangtrongjit T, Sansurin N, Fongsodsri K, Ampawong S. Cytoskeletal Alteration Is an Early Cellular Response in Pulmonary Epithelium Infected with Aspergillus fumigatus Rather than Scedosporium apiospermum. MICROBIAL ECOLOGY 2022; 83:216-235. [PMID: 33890146 DOI: 10.1007/s00248-021-01750-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Invasive aspergillosis and scedosporiosis are life-threatening fungal infections with similar clinical manifestations in immunocompromised patients. Contrarily, Scedosporium apiospermum is susceptible to some azole derivative but often resistant to amphotericin B. Histopathological examination alone cannot diagnose these two fungal species. Pathogenesis studies could contribute to explore candidate protein markers for new diagnosis and treatment methods leading to a decrease in mortality. In the present study, proteomics was conducted to identify significantly altered proteins in A549 cells infected with or without Aspergillus fumigatus and S. apiospermum as measured at initial invasion. Protein validation was performed with immunogold labelling alongside immunohistochemical techniques in infected A549 cells and lungs from murine models. Further, cytokine production was measured, using the Bio-Plex-Multiplex immunoassay. The cytoskeletal proteins HSPA9, PA2G4, VAT1, PSMA2, PEX1, PTGES3, KRT1, KRT9, CLIP1 and CLEC20A were mainly changed during A. fumigatus infection, while the immunologically activated proteins WNT7A, GAPDH and ANXA2 were principally altered during S. apiospermum infection. These proteins are involved in fungal internalisation and structural destruction leading to pulmonary disorders. Interleukin (IL)-21, IL-1α, IL-22, IL-2, IL-8, IL-12, IL-17A, interferon-γ and tumour necrosis factor-α were upregulated in both aspergillosis and scedosporiosis, although more predominately in the latter, in accordance with chitin synthase-1 and matrix metalloproteinase levels. Our results demonstrated that during invasion, A. fumigatus primarily altered host cellular integrity, whereas S. apiospermum chiefly induced and extensively modulated host immune responses.
Collapse
Affiliation(s)
- Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Duangnate Isarangkul
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Nichapa Sansurin
- Northeast Laboratory Animal Center, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
10
|
Kitisin T, Ampawong S, Muangkaew W, Sukphopetch P. Phenomic profiling of a novel sibling species within the Scedosporium complex in Thailand. BMC Microbiol 2021; 21:42. [PMID: 33563219 PMCID: PMC7874643 DOI: 10.1186/s12866-021-02105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
Background Scedosporium species are a group of pathogenic fungi, which can be found worldwide around high human-impacted areas. Infections of Scedosporium have been reported in several immunocompromised and immunocompetent patients with a high mortality rate. Recently, we have isolated and identified several Scedosporium strains during an environmental survey in Thailand. Results We describe the isolate, TMMI-012, possibly a new species isolated from soils in the Chatuchak public park, Bangkok, Thailand. TMMI-012 is phylogenetically related to the Scedosporium genus and is a sibling to S. boydii but shows distinct morphological and pathological characteristics. It is fast growing and highly resistant to antifungal drugs and abiotic stresses. Pathological studies of in vitro and in vivo models confirm its high virulence and pathogenicity. Conclusion TMMI-012 is considered a putative novel Scedosporium species. The high antifungal resistance of TMMI-012 compared with its sibling, Scedosporium species is likely related to its clinical impact on human health.
Collapse
Affiliation(s)
- T Kitisin
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - S Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - W Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - P Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
11
|
Kitisin T, Muangkaew W, Ampawong S, Sukphopetch P. Tryptophol Coating Reduces Catheter-Related Cerebral and Pulmonary Infections by Scedosporium apiospermum. Infect Drug Resist 2020; 13:2495-2508. [PMID: 32801788 PMCID: PMC7383110 DOI: 10.2147/idr.s255489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/09/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Central venous catheter (CVC) is a medical device that is used to administer medication for a long duration. Colonization by an emerging opportunistic pathogen Scedosporium apiospermum in the CVC lumen is frequently reported to cause severe complications in patients. Here, we describe the effect of fungal quorum-sensing molecule (QSM) known as tryptophol (TOH) to control S. apiospermum colonization in catheter tube lumens in both in vitro and in vivo models. Methods Antifungal susceptibility of TOH against S. apiospermum was compared with voriconazole, and the colony diameter was determined on days 2, 4, and 6. Experimental catheterization rat model was conducted with pre-coating of TOH and voriconazole or an uncoated control and an infection with S. apiospermum. Biofilm formation on the catheter luminal surface was assessed using the scanning electron microscopy, crystal violet, and 2,3-bis(2-methoxy-4-ni-tro-5-sulfophenyl)-5-(phenylamino)-carbonyl-2H-tetra-zolium hydroxide (XTT) reduction assays. Brain and lung samples of catheterized rats were histopathologically assessed. Serum samples from catheterized rats were injected into Galleria mellonella larvae. Survival of catheterized rats and G. mellonella was determined. Results TOH impeded the growth of S. apiospermum by reducing the colony diameter in a dose-dependent manner. TOH coating remarkably lessened S. apiospermum biofilm formation and fungal cell viability on the catheter luminal surface. Additionally, TOH coating lessens cerebral edema that is associated with abscess and invasive pulmonary damages due to S. apiospermum catheter-related infection. Furthermore, TOH coating also lessened the virulence of S. apiospermum in sera of experimental catheterized rats and extended the survival rate of larvae Galleria mellonella infection model. Conclusion An alternative modification of catheter by coating with TOH is effective in preventing S. apiospermum colonization in vivo. Our study gives a new strategy to control catheter contamination and prevents nosocomial diseases due to S. apiospermum infection.
Collapse
Affiliation(s)
- Thitinan Kitisin
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
12
|
Mouhajir A, Poirier W, Angebault C, Rahal E, Bouabid R, Bougnoux ME, Kobi A, Zouhair R, Bouchara JP, Giraud S. Scedosporium species in soils from various biomes in Northwestern Morocco. PLoS One 2020; 15:e0228897. [PMID: 32092070 PMCID: PMC7039527 DOI: 10.1371/journal.pone.0228897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/24/2020] [Indexed: 12/26/2022] Open
Abstract
Scedosporium species are opportunistic pathogens causing various infections, including disseminated infections in severely immunocompromised patients. Preventive measures aiming to reduce the risk of exposure to these fungi require a better knowledge on their ecology and on the sources of contamination of the patients. In this context, 99 soil samples from the Rabat-Sale-Kenitra and Fez-Meknes regions in Morocco were analyzed. Samples were inoculated on the highly selective Scedo-Select III culture medium, and seven chemical parameters of the soils were measured. Scedosporium species were detected in 48 of the samples, with the highest density in soils from wastewater treatment plants and landfills, followed by those from roadsides and polluted riverbanks, thus confirming the impact of human activities on their ecology. Scedosporium apiospermum was the most common species, followed by S. boydii and S. aurantiacum. Analysis of the chemical parameters of the soils revealed the presence of Scedosporium species was mainly associated with a moderate electrical conductivity, a pH range of 7.0 to 7.6, a nutrient-rich content and a moderate phosphorus amount. Thereby, these results demonstrated the relatively high occurrence of Scedosporium in Morocco and highlighted the impact of phosphorus content on their ecology.
Collapse
Affiliation(s)
- Abdelmounaim Mouhajir
- Groupe d’Etude des Interactions Hôte-Pathogène (EA 3142), UNIV Angers, UNIV Brest, Angers, France
- Department of Biology, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Wilfried Poirier
- Groupe d’Etude des Interactions Hôte-Pathogène (EA 3142), UNIV Angers, UNIV Brest, Angers, France
| | - Cécile Angebault
- Université Paris Descartes, Service de Microbiologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Elkahkahi Rahal
- Department of Biology, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Rachid Bouabid
- Department of Soil Science, Ecole National d’agriculture de Meknes, Meknes, Morocco
| | - Marie-Elisabeth Bougnoux
- Université Paris Descartes, Service de Microbiologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Abdessamad Kobi
- Laboratoire en sûreté de fonctionnement qualité et organisation (EA 3858), Université d’Angers, Angers, France
| | - Rachid Zouhair
- Groupe d’Etude des Interactions Hôte-Pathogène (EA 3142), UNIV Angers, UNIV Brest, Angers, France
- Department of Biology, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Jean-Philippe Bouchara
- Groupe d’Etude des Interactions Hôte-Pathogène (EA 3142), UNIV Angers, UNIV Brest, Angers, France
- Centre Hospitalier Universitaire, Laboratoire de Parasitologie-Mycologie, Angers, France
| | - Sandrine Giraud
- Groupe d’Etude des Interactions Hôte-Pathogène (EA 3142), UNIV Angers, UNIV Brest, Angers, France
| |
Collapse
|
13
|
Bouchara JP, Le Govic Y, Kabbara S, Cimon B, Zouhair R, Hamze M, Papon N, Nevez G. Advances in understanding and managing Scedosporium respiratory infections in patients with cystic fibrosis. Expert Rev Respir Med 2019; 14:259-273. [PMID: 31868041 DOI: 10.1080/17476348.2020.1705787] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Considered for a long time to be exclusively responsible for chronic localized infections, fungi of the genus Scedosporium have recently received a renewed interest because of their recognition as common colonizing agents of the respiratory tract of patients with cystic fibrosis, and of the description of severe disseminated infections in patients undergoing lung transplantation. Recently, several studies have been carried out on these opportunistic pathogens, which led to some advances in the understanding of their pathogenic mechanisms and in the biological diagnosis of the airway colonization/respiratory infections caused by these fungi.Areas covered: From a bibliographic search on the Pubmed database, we summarize the current knowledge about the taxonomy of Scedosporium species, the epidemiology of these fungi and their pathogenic mechanisms, and present the improvements in the detection of the airway colonization and diagnosis of Scedosporium respiratory infections, the difficulties in their therapeutic management, and the antifungal drugs in development.Expert opinion: As described in this review, many advances have been made regarding the taxonomy and ecology of Scedosporium species or the molecular determinants of their pathogenicity, but also in the management of Scedosporium infections, particularly by improving the biological diagnostic and publishing evidence for the efficacy of combined therapy.
Collapse
Affiliation(s)
- Jean-Philippe Bouchara
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Yohann Le Govic
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Samar Kabbara
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Bernard Cimon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Rachid Zouhair
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Liban
| | - Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Gilles Nevez
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, Brest, France
| |
Collapse
|
14
|
Luplertlop N, Muangkaew W, Pumeesat P, Suwanmanee S, Singkum P. Distribution of Scedosporium species in soil from areas with high human population density and tourist popularity in six geographic regions in Thailand. PLoS One 2019; 14:e0210942. [PMID: 30673761 PMCID: PMC6343921 DOI: 10.1371/journal.pone.0210942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 01/05/2019] [Indexed: 12/26/2022] Open
Abstract
Scedosporium is a genus comprising at least 10 species of airborne fungi (saprobes) that survive and grow on decaying organic matter. These fungi are found in high density in human-affected areas such as sewage-contaminated water, and five species, namely Scedosporium apiospermum, S. boydii, S. aurantiacum, S. dehoogii, and S. minutisporum, cause human infections. Thailand is a popular travel destination in the world, with many attractions present in densely populated areas; thus, large numbers of people may be exposed to pathogens present in these areas. We conducted a comprehensive survey of Scedosporium species in 350 soil samples obtained from 35 sites of high human population density and tourist popularity distributed over 23 provinces and six geographic regions of Thailand. Soil suspensions of each sample were inoculated on three plates of Scedo-Select III medium to isolate Scedosporium species. In total, 191 Scedosporium colonies were isolated from four provinces. The species were then identified using PCR and sequencing of the beta-tubulin (BT2) gene. Of the 191 isolates, 188 were S. apiospermum, one was S. dehoogii, and species of two could not be exactly identified. Genetic diversity analysis revealed high haplotype diversity of S. apiospermum. Soil is a major ecological niche for Scedosporium and may contain S. apiospermum populations with high genetic diversity. This study of Scedosporium distribution might encourage health care providers to consider Scedosporium infection in their patients.
Collapse
Affiliation(s)
- Natthanej Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok Thailand
- * E-mail:
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok Thailand
| | - Potjaman Pumeesat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok Thailand
| | - San Suwanmanee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok Thailand
| | - Pantira Singkum
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok Thailand
| |
Collapse
|
15
|
Effects of UVC Irradiation on Growth and Apoptosis of Scedosporium apiospermum and Lomentospora prolificans. Interdiscip Perspect Infect Dis 2019; 2018:3748594. [PMID: 30631350 PMCID: PMC6304556 DOI: 10.1155/2018/3748594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/21/2018] [Indexed: 11/26/2022] Open
Abstract
Scedosporium apiospermum and Lomentospora prolificans are important fungal species isolated from immunocompromised patients. Previous studies have demonstrated that these filamentous fungi exist as saprophytes in the soil and showed the highest minimum inhibitory concentration to several drugs. We aimed to examine how UVC affects the S. apiospermum and L. prolificans by investigating the role of UVC on growth, induction of apoptosis by ethidium bromide (EB)/acridine orange (AO) staining, and transcriptomic study of caspase recruitment domain family, member 9 (CARD-9) gene. Our studies showed that 15 minutes of exposure to UVC light effectively increased reduction in both organisms and caused changes in colony morphology, color, and hyphal growth pattern. After 15 min of UVC irradiation, apoptotic cells were quantitated by EB/AO staining, and the percentage of apoptosis was 96.06% in S. apiospermum and 28.30% in L. prolificans. CARD-9 gene expression results confirmed that apoptosis was induced in S. apiospermum and L. prolificans after UVC treatment and that S. apiospermum showed a higher expression of apoptosis signaling than L. prolificans. Our study explored the effects of UVC in the inactivation of S. apiospermum and L. prolificans. We hope that our data is useful to other researchers in future studies.
Collapse
|
16
|
Mello TP, Bittencourt VCB, Liporagi-Lopes LC, Aor AC, Branquinha MH, Santos AL. Insights into the social life and obscure side of Scedosporium/Lomentospora species: ubiquitous, emerging and multidrug-resistant opportunistic pathogens. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2018.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Luplertlop N. Pseudallescheria/Scedosporium complex species: From saprobic to pathogenic fungus. J Mycol Med 2018; 28:249-256. [PMID: 29567285 DOI: 10.1016/j.mycmed.2018.02.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
Scedosporiosis is an emerging fungal infection caused by Pseudallescheria/Scedosporium complex species (PSC). This pathogen has been drawn significant interest in recent years due to its worldwide prevalence, the seriousness of its infection, associated with high mortality in both immunocompromised and immunocompetent hosts and its cryptic ecology, distribution and epidemiology across the globe. These species complexes can be found in environments impacted by human. The purpose of this review is to describe the characteristics, mode of transmission, ecology, prevalence, global epidemiology of this fungal group in order to increase the awareness of among clinicians and microbiologists, especially in regions with high endemic, as well as to promote further research on all of its aspects.
Collapse
Affiliation(s)
- N Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 10400 Bangkok, Thailand.
| |
Collapse
|
18
|
Ecology of Scedosporium Species: Present Knowledge and Future Research. Mycopathologia 2017; 183:185-200. [DOI: 10.1007/s11046-017-0200-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
|
19
|
Wongsuk T, Pumeesat P, Luplertlop N. Genetic variation analysis and relationships among environmental strains of Scedosporium apiospermum sensu stricto in Bangkok, Thailand. PLoS One 2017; 12:e0181083. [PMID: 28704511 PMCID: PMC5507518 DOI: 10.1371/journal.pone.0181083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/26/2017] [Indexed: 11/26/2022] Open
Abstract
The Scedosporium apiospermum species complex is an emerging filamentous fungi that has been isolated from environment. It can cause a wide range of infections in both immunocompetent and immunocompromised individuals. We aimed to study the genetic variation and relationships between 48 strains of S. apiospermum sensu stricto isolated from soil in Bangkok, Thailand. For PCR, sequencing and phylogenetic analysis, we used the following genes: actin; calmodulin exons 3 and 4; the second largest subunit of the RNA polymerase II; ß-tubulin exon 2–4; manganese superoxide dismutase; internal transcribed spacer; transcription elongation factor 1α; and beta-tubulin exons 5 and 6. The present study is the first phylogenetic analysis of relationships among S. apiospermum sensu stricto in Thailand and South-east Asia. This result provides useful information for future epidemiological study and may be correlated to clinical manifestation.
Collapse
Affiliation(s)
- Thanwa Wongsuk
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Clinical Pathology, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Potjaman Pumeesat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Medical Technology, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok, Thailand
| | - Natthanej Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|