1
|
Zamanian MY, Kamran Z, Tavakoli MR, Oghenemaro EF, Abohassan M, Kubaev A, Nathiya D, Kaur P, Zwamel AH, Abdulamer RS. The Role of ΔFosB in the Pathogenesis of Levodopa-Induced Dyskinesia: Mechanisms and Therapeutic Strategies. Mol Neurobiol 2025; 62:7393-7412. [PMID: 39890697 DOI: 10.1007/s12035-025-04720-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Levodopa-induced dyskinesia (LID) represents a significant complication associated with the long-term administration of levodopa (L-DOPA) for the treatment of Parkinson's disease (PD). This review examines the critical role of ΔFosB, a transcription factor, in the pathogenesis of LID and explores potential therapeutic interventions. ΔFosB accumulates within the striatum in response to chronic dopaminergic stimulation, thereby driving maladaptive changes that culminate in dyskinesia. Its persistent expression modifies gene transcription, influencing neuronal plasticity and contributing to the sustained presence of dyskinetic movements. This study explains how ΔFosB functions at the molecular level, focusing on its connections with dopamine D1 receptors, the cAMP/PKA signaling pathway, and its regulatory effects on downstream targets such as DARPP-32 and GluA1 AMPA receptor subunits. Additionally, it examines how neuronal nitric oxide synthase (nNOS) affects ΔFosB levels and the development of LID. This review also considers the interactions between ΔFosB and other signaling pathways, such as ERK and mTOR, in the context of LID and striatal plasticity. Emerging therapeutic strategies targeting ΔFosB and its associated pathways include pharmacological interventions like ranitidine, 5-hydroxytryptophan, and carnosic acid. Furthermore, this study addresses the role of JunD, another component of the AP-1 transcription factor complex, in the pathogenesis of LID. Understanding the molecular mechanisms by which ΔFosB contributes to LID offers promising avenues for developing novel treatments that could mitigate dyskinesia and improve the quality of life for PD patients undergoing long-term L-DOPA therapy.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Zahra Kamran
- Department of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marziye Ranjbar Tavakoli
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology & Biotechnology, Faculty of Pharmacy, Delta State University, Abraka, Nigeria
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Resan Shakir Abdulamer
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
2
|
Yang Q, Abdulla A, Farooq M, Ishikawa Y, Liu SJ. Emotional stress increases GluA2 expression and potentiates fear memory via adenylyl cyclase 5. Cell Rep 2025; 44:115180. [PMID: 39786995 PMCID: PMC11904910 DOI: 10.1016/j.celrep.2024.115180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/20/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
Stress can alter behavior and contributes to psychiatric disorders by regulating the expression of the GluA2 AMPA receptor subunit. We have previously shown in mice that exposure to predator odor stress elevates GluA2 transcription in cerebellar molecular layer interneurons (MLIs), and MLI activity is required for fear memory consolidation. Here, we identified the critical involvement of adenylyl cyclase 5, in both the stress-induced increase in GluA2 in MLIs and the enhancement of fear memory. We found that noradrenaline release during predator odor stress activates AC5 and downstream PKA-CREB signaling. This pathway interacts synergistically with α1-adrenergic receptors to promote synaptic GluA2 expression in MLIs. At a behavioral level, predator odor stress potentiates associative fear memory, and this is abolished in AC5 knockout mice, suggesting that AC5-dependent plasticity is required for enhanced memory formation. Therefore, AC5 is a promising pharmacological target for preventing stress-enhanced fear memory.
Collapse
Affiliation(s)
- Qian Yang
- Department of Cell Biology and Anatomy, LSUHSC, New Orleans, LA 70112, USA
| | - Ahmad Abdulla
- Department of Cell Biology and Anatomy, LSUHSC, New Orleans, LA 70112, USA; Southeast Louisiana VA Healthcare System, New Orleans, LA 70119, USA
| | - Muhammad Farooq
- Department of Cell Biology and Anatomy, LSUHSC, New Orleans, LA 70112, USA; Southeast Louisiana VA Healthcare System, New Orleans, LA 70119, USA
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Siqiong June Liu
- Department of Cell Biology and Anatomy, LSUHSC, New Orleans, LA 70112, USA; Southeast Louisiana VA Healthcare System, New Orleans, LA 70119, USA.
| |
Collapse
|
3
|
Arjmand S, Ilaghi M, Shafie'ei M, Gobira PH, Grassi-Oliveira R, Wegener G. Exploring the potential link between ΔFosB and N-acetylcysteine in craving/relapse dynamics: can N-acetylcysteine stand out as a possible treatment candidate? Acta Neuropsychiatr 2024; 37:e31. [PMID: 39415655 DOI: 10.1017/neu.2024.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
From a neuroscientific point of view, one of the unique archetypes of substance use disorders is its road to relapse, in which the reward system plays a crucial role. Studies on the neurobiology of substance use disorders have highlighted the central role of a protein belonging to the Fos family of transcription factors, ΔFosB. Relying on the roles ΔFosB plays in the pathophysiology of substance use disorders, we endeavour to present some evidence demonstrating that N-acetylcysteine, a low-cost and well-tolerated over-the-counter medicine, may influence the downstream pathway of ΔFosB, thereby serving as a treatment strategy to mitigate the risk of relapse in cases of substance use.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shafie'ei
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Pedro H Gobira
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rodrigo Grassi-Oliveira
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Affective Disorders, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
| |
Collapse
|
4
|
Stephens GS, Park J, Eagle A, You J, Silva-Pérez M, Fu CH, Choi S, Romain CPS, Sugimoto C, Buffington SA, Zheng Y, Costa-Mattioli M, Liu Y, Robison AJ, Chin J. Persistent ∆FosB expression limits recurrent seizure activity and provides neuroprotection in the dentate gyrus of APP mice. Prog Neurobiol 2024; 237:102612. [PMID: 38642602 PMCID: PMC11406539 DOI: 10.1016/j.pneurobio.2024.102612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
Recurrent seizures lead to accumulation of the activity-dependent transcription factor ∆FosB in hippocampal dentate granule cells in both mouse models of epilepsy and mouse models of Alzheimer's disease (AD), which is also associated with increased incidence of seizures. In patients with AD and related mouse models, the degree of ∆FosB accumulation corresponds with increasing severity of cognitive deficits. We previously found that ∆FosB impairs spatial memory in mice by epigenetically regulating expression of target genes such as calbindin that are involved in synaptic plasticity. However, the suppression of calbindin in conditions of neuronal hyperexcitability has been demonstrated to provide neuroprotection to dentate granule cells, indicating that ∆FosB may act over long timescales to coordinate neuroprotective pathways. To test this hypothesis, we used viral-mediated expression of ∆JunD to interfere with ∆FosB signaling over the course of several months in transgenic mice expressing mutant human amyloid precursor protein (APP), which exhibit spontaneous seizures and develop AD-related neuropathology and cognitive deficits. Our results demonstrate that persistent ∆FosB activity acts through discrete modes of hippocampal target gene regulation to modulate neuronal excitability, limit recurrent seizure activity, and provide neuroprotection to hippocampal dentate granule cells in APP mice.
Collapse
Affiliation(s)
| | - Jin Park
- Department of Neuroscience, Baylor College of Medicine, USA
| | - Andrew Eagle
- Department of Physiology, Michigan State University, USA
| | - Jason You
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Chia-Hsuan Fu
- Department of Neuroscience, Baylor College of Medicine, USA
| | - Sumin Choi
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Chiho Sugimoto
- Department of Physiology, Michigan State University, USA
| | - Shelly A Buffington
- Center for Precision Environmental Health, Department of Neuroscience, Baylor College of Medicine, USA
| | - Yi Zheng
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Yin Liu
- Department of Neurobiology and Anatomy, McGovern Medical School at UT Health, USA
| | - A J Robison
- Department of Physiology, Michigan State University, USA
| | - Jeannie Chin
- Department of Neuroscience, Baylor College of Medicine, USA.
| |
Collapse
|
5
|
Paudel D, Uehara O, Giri S, Morikawa T, Yoshida K, Kitagawa T, Ariwansa D, Acharya N, Ninomiya K, Kuramitsu Y, Ohta T, Kobayashi M, Abiko Y. Transcriptomic analysis of the submandibular gland under psychological stress condition. J Oral Pathol Med 2024; 53:150-158. [PMID: 38291254 DOI: 10.1111/jop.13512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/01/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Psychological stress is associated with changes in salivary flow and composition. However, studies to show the effect of psychological stress on the transcriptome of the salivary gland are limited. This study aims to perform a transcriptomic analysis of the submandibular gland under psychological stress using a chronic restraint stress model of rats. METHODS Sprague-Dawley rats were divided into stress groups and control groups. Psychological stress was induced in the stress group rats by enclosing them in a plastic tube for 4 h daily over 6 weeks. RNA sequencing was performed on RNA extracted from the submandibular gland. The differentially expressed genes were identified, and the genes of interest were further validated using qRT-PCR, immunofluorescence, and western blot. RESULTS A comparison between control and stress groups showed 45 differentially expressed genes. The top five altered genes in RNA sequencing data showed similar gene expression in qRT-PCR validation. The most downregulated gene in the stress group, FosB, was a gene of interest and was further validated for its protein-level expression using immunofluorescence and western blot. The genesets for gene ontology cellular component, molecular function, and KEGG showed that pathways related to ribosome biosynthesis and function were downregulated in the stress group compared to the control. CONCLUSION Psychological stress showed transcriptomic alteration in the submandibular gland. The findings may be important in understanding stress-related oral diseases.
Collapse
Affiliation(s)
- Durga Paudel
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Osamu Uehara
- Division of Molecular Epidemiology and Disease Control, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Sarita Giri
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Tetsuro Morikawa
- Division of Oral Medicine and Pathology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Koki Yoshida
- Division of Oral Medicine and Pathology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Takao Kitagawa
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Dedy Ariwansa
- Division of Oral Medicine and Pathology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Nisha Acharya
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Kazunori Ninomiya
- Department of Pharmacology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Yasuhiro Kuramitsu
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Tohru Ohta
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Masanobu Kobayashi
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| |
Collapse
|
6
|
Selçuk B, Aksu T, Dereli O, Adebali O. Downregulated NPAS4 in multiple brain regions is associated with major depressive disorder. Sci Rep 2023; 13:21596. [PMID: 38062059 PMCID: PMC10703936 DOI: 10.1038/s41598-023-48646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Major Depressive Disorder (MDD) is a commonly observed psychiatric disorder that affects more than 2% of the world population with a rising trend. However, disease-associated pathways and biomarkers are yet to be fully comprehended. In this study, we analyzed previously generated RNA-seq data across seven different brain regions from three distinct studies to identify differentially and co-expressed genes for patients with MDD. Differential gene expression (DGE) analysis revealed that NPAS4 is the only gene downregulated in three different brain regions. Furthermore, co-expressing gene modules responsible for glutamatergic signaling are negatively enriched in these regions. We used the results of both DGE and co-expression analyses to construct a novel MDD-associated pathway. In our model, we propose that disruption in glutamatergic signaling-related pathways might be associated with the downregulation of NPAS4 and many other immediate-early genes (IEGs) that control synaptic plasticity. In addition to DGE analysis, we identified the relative importance of KEGG pathways in discriminating MDD phenotype using a machine learning-based approach. We anticipate that our study will open doors to developing better therapeutic approaches targeting glutamatergic receptors in the treatment of MDD.
Collapse
Affiliation(s)
- Berkay Selçuk
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Tuana Aksu
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Onur Dereli
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Ogün Adebali
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey.
- TÜBİTAK Research Institute for Fundamental Sciences, 41470, Gebze, Turkey.
| |
Collapse
|
7
|
Slabe Z, Balesar RA, Verwer RWH, Van Heerikhuize JJ, Pechler GA, Zorović M, Hoogendijk WJ, Swaab DF. Alterations in pituitary adenylate cyclase-activating polypeptide in major depressive disorder, bipolar disorder, and comorbid depression in Alzheimer's disease in the human hypothalamus and prefrontal cortex. Psychol Med 2023; 53:7537-7549. [PMID: 37226771 PMCID: PMC10755247 DOI: 10.1017/s0033291723001265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/01/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is involved in the stress response and may play a key role in mood disorders, but no information is available on PACAP for the human brain in relation to mood disorders. METHODS PACAP-peptide levels were determined in a major stress-response site, the hypothalamic paraventricular nucleus (PVN), of people with major depressive disorder (MDD), bipolar disorder (BD) and of a unique cohort of Alzheimer's disease (AD) patients with and without depression, all with matched controls. The expression of PACAP-(Adcyap1mRNA) and PACAP-receptors was determined in the MDD and BD patients by qPCR in presumed target sites of PACAP in stress-related disorders, the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). RESULTS PACAP cell bodies and/or fibres were localised throughout the hypothalamus with differences between immunocytochemistry and in situ hybridisation. In the controls, PACAP-immunoreactivity-(ir) in the PVN was higher in women than in men. PVN-PACAP-ir was higher in male BD compared to the matched male controls. In all AD patients, the PVN-PACAP-ir was lower compared to the controls, but higher in AD depressed patients compared to those without depression. There was a significant positive correlation between the Cornell depression score and PVN-PACAP-ir in all AD patients combined. In the ACC and DLPFC, alterations in mRNA expression of PACAP and its receptors were associated with mood disorders in a differential way depending on the type of mood disorder, suicide, and psychotic features. CONCLUSION The results support the possibility that PACAP plays a role in mood disorder pathophysiology.
Collapse
Affiliation(s)
- Zala Slabe
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- University of Ljubljana, Faculty of Medicine, Institute of Pharmacology and Experimental Toxicology, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Rawien A. Balesar
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Ronald W. H. Verwer
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Joop J. Van Heerikhuize
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Gwyneth A. Pechler
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- University of Ljubljana, Faculty of Medicine, Institute of Pharmacology and Experimental Toxicology, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Maja Zorović
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Witte J.G. Hoogendijk
- Erasmus University Medical Centre, Department of Psychiatry, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Dick F. Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- University of Ljubljana, Faculty of Medicine, Institute of Pharmacology and Experimental Toxicology, Korytkova 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Liu J, Meng F, Wang W, Wu M, Zhang Y, Cui M, Qiu C, Hu F, Zhao D, Wang D, Liu C, Liu D, Xu Z, Wang Y, Li W, Li C. Medial prefrontal cortical PPM1F alters depression-related behaviors by modifying p300 activity via the AMPK signaling pathway. CNS Neurosci Ther 2023; 29:3624-3643. [PMID: 37309288 PMCID: PMC10580341 DOI: 10.1111/cns.14293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
AIMS Protein phosphatase Mg2+/Mn2+-dependent 1F (PPM1F) is a serine/threonine phosphatase, and its dysfunction in depression in the hippocampal dentate gyrus has been previously identified. Nevertheless, its role in depression of another critical emotion-controlling brain region, the medial prefrontal cortex (mPFC), remains unclear. We explored the functional relevance of PPM1F in the pathogenesis of depression. METHODS The gene expression levels and colocalization of PPM1F in the mPFC of depressed mice were measured by real-time PCR, western blot and immunohistochemistry. An adeno-associated virus strategy was applied to determine the impact of knockdown or overexpression of PPM1F in the excitatory neurons on depression-related behaviors under basal and stress conditions in both male and female mice. The neuronal excitability, expression of p300 and AMPK phosphorylation levels in the mPFC after knockdown of PPM1F were measured by electrophysiological recordings, real-time PCR and western blot. The depression-related behavior induced by PPM1F knockdown after AMPKα2 knockout or the antidepressant activity of PPM1F overexpression after inhibiting acetylation activity of p300 was evaluated. RESULTS Our results indicate that the expression levels of PPM1F were largely decreased in the mPFC of mice exposed to chronic unpredictable stress (CUS). Behavioral alterations relevant to depression emerged with short hairpin RNA (shRNA)-mediated genetic knockdown of PPM1F in the mPFC, while overexpression of PPM1F produced antidepressant activity and ameliorated behavioral responses to stress in CUS-exposed mice. Molecularly, PPM1F knockdown decreased the excitability of pyramidal neurons in the mPFC, and restoring this low excitability decreased the depression-related behaviors induced by PPM1F knockdown. PPM1F knockdown reduced the expression of CREB-binding protein (CBP)/E1A-associated protein (p300), a histone acetyltransferase (HAT), and induced hyperphosphorylation of AMPK, resulting in microglial activation and upregulation of proinflammatory cytokines. Conditional knockout of AMPK revealed an antidepressant phenotype, which can also block depression-related behaviors induced by PPM1F knockdown. Furthermore, inhibiting the acetylase activity of p300 abolished the beneficial effects of PPM1F elevation on CUS-induced depressive behaviors. CONCLUSION Our findings demonstrate that PPM1F in the mPFC modulates depression-related behavioral responses by regulating the function of p300 via the AMPK signaling pathway.
Collapse
|
9
|
Jang J, Kim HJ, Koh HY. Compensatory enhancement of paternal care in maternally neglected mice family. Anim Cells Syst (Seoul) 2023; 27:249-259. [PMID: 37818017 PMCID: PMC10561577 DOI: 10.1080/19768354.2023.2266006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
Parental care strategies, ranging from biparental to uniparental, evolve based on factors affecting sexual conflict over care. Plasticity in how parents respond to reduction in each other's care effort is thus proposed to be important in the evolution of parental care behaviors. Models predict that 'obligate' biparental care is stable when a parent responds to reduced partner effort with 'partial' compensation, trading-off current and future reproduction. A meta-analysis of experimental studies on biparental birds also revealed partial compensation, supporting coevolution of parental care type and plasticity pattern. However, few studies have addressed this issue across different taxa and different parental care types. In laboratory mice, a female-biased 'facultative' biparental species, fathers paired with a competent mother rarely provide care. We show that, when mated with a pup-neglecting mutant mother, fathers increased care effort to 'fully' compensate for the lost maternal care in both pup survival rate and total care amount. Pup retrieval latency was significantly shorter, and neural activity in relevant brain regions twice as high, suggesting enhanced motivation. This study with mice not only opens a road to explore the neural correlates of paternal plasticity but will also help understand how behavioral plasticity contributes to adaptive evolution of parental care behaviors.
Collapse
Affiliation(s)
- Jaewon Jang
- Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hea-jin Kim
- Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Hae-Young Koh
- Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
10
|
Abstract
Motherhood goes through preparation, onset and maintenance phases until the natural weaning. A variety of changes in hormonal/neurohormonal systems and brain circuits are involved in the maternal behavior. Hormones, neuropeptides, and neurotransmitters involved in maternal behavior act via G-protein-coupled receptors, many of which in turn activate plasma membrane enzymes including phospholipase C (PLC) β isoforms. In this study, we examined the effect of PLCβ1 knockout (KO) on maternal behavior. There was little difference between PLCβ1-KO and wild-type (WT) dams in the relative time spent in maternal behavior during the period between 24 h prepartum and 12 h postpartum (-24 h ∼ PPH 12). After PPH 18, however, PLCβ1-KO dams neglected their pups so that they all died in 2-3 days. In the pup retrieval test, latency was not different during the period within PPH 12, but after PPH 18, PLCβ1-KO dams could not finish pup retrieval in a given time. During both periods, FosB expression in the nucleus accumbens (NAcc) of PLCβ1-KO dams was significantly lower than WT, but not different in the medial preoptic area (mPOA). Given that mPOA activity is required for initiation of maternal behavior, and that NAcc is known to be involved in maternal motivation and maintenance of maternal behavior, our results suggest that PLCβ1 signaling is essential for transition from the onset to maintenance phase of maternal behavior.
Collapse
Affiliation(s)
- Hea-jin Kim
- Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jaewon Jang
- Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea,Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hae-Young Koh
- Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea, Hae-Young Koh Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
11
|
Robison AJ, Nestler EJ. ΔFOSB: A Potentially Druggable Master Orchestrator of Activity-Dependent Gene Expression. ACS Chem Neurosci 2022; 13:296-307. [PMID: 35020364 PMCID: PMC8879420 DOI: 10.1021/acschemneuro.1c00723] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ΔFOSB is a uniquely stable member of the FOS family of immediate early gene AP1 transcription factors. Its accumulation in specific cell types and tissues in response to a range of chronic stimuli is associated with biological phenomena as diverse as memory formation, drug addiction, stress resilience, and immune cell activity. Causal connections between ΔFOSB expression and the physiological and behavioral sequelae of chronic stimuli have been established in rodent and, in some cases, primate models for numerous healthy and pathological states with such preclinical observations often supported by human data demonstrating tissue-specific ΔFOSB expression associated with several specific syndromes. However, the viability of ΔFOSB as a target for therapeutic intervention might be questioned over presumptive concerns of side effects given its expression in such a wide range of cell types and circumstances. Here, we summarize numerous insights from the past three decades of research into ΔFOSB structure, function, mechanisms of induction, and regulation of target genes that support its potential as a druggable target. We pay particular attention to the potential for targeting distinct ΔFOSB isoforms or distinct ΔFOSB-containing multiprotein complexes to achieve cell type or tissue specificity to overcome off-target concerns. We also cover critical gaps in knowledge that currently limit the exploitation of ΔFOSB's therapeutic possibilities and how they may be addressed. Finally, we summarize both current and potential future strategies for generating small molecules or genetic tools for the manipulation of ΔFOSB in the clinic.
Collapse
Affiliation(s)
- Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
12
|
Benfato ID, Quintanilha ACS, Henrique JS, Souza MA, Rosário BDA, Beserra Filho JIA, Santos RLO, Ribeiro AM, Le Sueur Maluf L, de Oliveira CAM. Effects of long-term social isolation on central, behavioural and metabolic parameters in middle-aged mice. Behav Brain Res 2022; 417:113630. [PMID: 34656691 PMCID: PMC8516156 DOI: 10.1016/j.bbr.2021.113630] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
Social isolation gained discussion momentum due to the COVID-19 pandemic. Whereas many studies address the effects of long-term social isolation in post-weaning and adolescence and for periods ranging from 4 to 12 weeks, little is known about the repercussions of adult long-term social isolation in middle age. Thus, our aim was to investigate how long-term social isolation can influence metabolic, behavioural, and central nervous system-related areas in middle-aged mice. Adult male C57Bl/6 mice (4 months-old) were randomly divided into Social (2 cages, n = 5/cage) and Isolated (10 cages, n = 1/cage) housing groups, totalizing 30 weeks of social isolation, which ended concomitantly with the onset of middle age of mice. At the end of the trial, metabolic parameters, short-term memory, anxiety-like behaviour, and physical activity were assessed. Immunohistochemistry in the hippocampus (ΔFosB, BDNF, and 8OHDG) and hypothalamus (ΔFosB) was also performed. The Isolated group showed impaired memory along with a decrease in hippocampal ΔFosB at dentate gyrus and in BDNF at CA3. Food intake was also affected, but the direction depended on how it was measured in the Social group (individually or in the group) with no alteration in ΔFosB at the hypothalamus. Physical activity parameters increased with chronic isolation, but in the light cycle (inactive phase), with some evidence of anxiety-like behaviour. Future studies should better explore the timepoint at which the alterations found begin. In conclusion, long-term social isolation in adult mice contributes to alterations in feeding, physical activity pattern, and anxiety-like behaviour. Moreover, short-term memory deficit was associated with lower levels of hippocampal ΔFosB and BDNF in middle age.
Collapse
Affiliation(s)
- Izabelle Dias Benfato
- Interdisciplinary Graduate Program in Health Sciences, Federal University of Sao Paulo (UNIFESP), Brazil
| | | | - Jessica Salles Henrique
- Neurology / Neuroscience Graduate Program, Federal University of Sao Paulo (UNIFESP), Brazil
| | - Melyssa Alves Souza
- Interdisciplinary Graduate Program in Health Sciences, Federal University of Sao Paulo (UNIFESP), Brazil
| | - Barbara Dos Anjos Rosário
- Interdisciplinary Graduate Program in Health Sciences, Federal University of Sao Paulo (UNIFESP), Brazil
| | | | | | - Alessandra Mussi Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of Sao Paulo (UNIFESP), Brazil
| | - Luciana Le Sueur Maluf
- Department of Biosciences, Institute of Health and Society, Federal University of Sao Paulo (UNIFESP), Brazil
| | | |
Collapse
|
13
|
Teague CD, Nestler EJ. Key transcription factors mediating cocaine-induced plasticity in the nucleus accumbens. Mol Psychiatry 2022; 27:687-709. [PMID: 34079067 PMCID: PMC8636523 DOI: 10.1038/s41380-021-01163-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/01/2023]
Abstract
Repeated cocaine use induces coordinated changes in gene expression that drive plasticity in the nucleus accumbens (NAc), an important component of the brain's reward circuitry, and promote the development of maladaptive, addiction-like behaviors. Studies on the molecular basis of cocaine action identify transcription factors, a class of proteins that bind to specific DNA sequences and regulate transcription, as critical mediators of this cocaine-induced plasticity. Early methods to identify and study transcription factors involved in addiction pathophysiology primarily relied on quantifying the expression of candidate genes in bulk brain tissue after chronic cocaine treatment, as well as conventional overexpression and knockdown techniques. More recently, advances in next generation sequencing, bioinformatics, cell-type-specific targeting, and locus-specific neuroepigenomic editing offer a more powerful, unbiased toolbox to identify the most important transcription factors that drive drug-induced plasticity and to causally define their downstream molecular mechanisms. Here, we synthesize the literature on transcription factors mediating cocaine action in the NAc, discuss the advancements and remaining limitations of current experimental approaches, and emphasize recent work leveraging bioinformatic tools and neuroepigenomic editing to study transcription factors involved in cocaine addiction.
Collapse
|
14
|
Neuropeptides as the Shared Genetic Crosstalks Linking Periodontitis and Major Depression Disorder. DISEASE MARKERS 2021; 2021:3683189. [PMID: 34721734 PMCID: PMC8553477 DOI: 10.1155/2021/3683189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/01/2021] [Indexed: 12/21/2022]
Abstract
Background The aim of this study was at investigating the association between major depressive disorder (MDD) and periodontitis based on crosstalk genes and neuropeptides. Methods Datasets for periodontitis (GSE10334, GSE16134, and GSE23586) and MDD (GSE38206 and GSE39653) were downloaded from GEO. Following batch correction, a differential expression analysis was applied (MDD: ∣log2FC | >0 and periodontitis ∣log2FC | ≥0.5, p < 0.05). The neuropeptide data were downloaded from NeuroPep and NeuroPedia. Intersected genes were potential crosstalk genes. The correlation between neuropeptides and crosstalk genes in MDD and periodontitis was analyzed with Pearson correlation coefficient. Subsequently, regression analysis was performed to calculate the differentially regulated link. Cytoscape was used to map the pathways of crosstalk genes and neuropeptides and to construct the protein-protein interaction network. Lasso regression was applied to screen neuropeptides, whereby boxplots were created, and receiver operating curve (ROC) analysis was conducted. Results The MDD dataset contained 30 case and 33 control samples, and the periodontitis dataset contained 430 case and 139 control samples. 35 crosstalk genes were obtained. A total of 102 neuropeptides were extracted from the database, which were not differentially expressed in MDD and periodontitis and had no intersection with crosstalk genes. Through lasso regression, 9 neuropeptides in MDD and 43 neuropeptides in periodontitis were obtained. Four intersected neuropeptide genes were obtained, i.e., ADM, IGF2, PDYN, and RETN. The results of ROC analysis showed that IGF2 was highly predictive in MDD and periodontitis. ADM was better than the other three genes in predicting MDD disease. A total of 13 crosstalk genes were differentially coexpressed with four neuropeptides, whereby FOSB was highly expressed in MDD and periodontitis. Conclusion The neuropeptide genes ADM, IGF2, PDYN, and RETN were intersected between periodontitis and MDD, and FOSB was a crosstalk gene related to these neuropeptides on the transcriptomic level. These results are a basis for future research in the field, needing further validation.
Collapse
|
15
|
Effect of histone acetylation on maintenance and reinstatement of morphine-induced conditioned place preference and ΔFosB expression in the nucleus accumbens and prefrontal cortex of male rats. Behav Brain Res 2021; 414:113477. [PMID: 34302880 DOI: 10.1016/j.bbr.2021.113477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 01/14/2023]
Abstract
Recently, epigenetic mechanisms are considered as the new potential targets for addiction treatment. This research was designed to explore the effect of histone acetylation on ΔFosB gene expression in morphine-induced conditioned place preference (CPP) in male rats. CPP was induced via morphine injection (5 mg/kg) for three consecutive days. Animals received low-dose theophylline (LDT) or Suberoylanilide Hydroxamic acid (SAHA), as an histone deacetylase (HDAC) activator or inhibitor, respectively, and a combination of both in subsequent extinction days. Following extinction, a priming dose of morphine (1 mg/kg) was administered to induce reinstatement. H4 acetylation and ΔFosB expression in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) were assessed on the last day of extinction and the following CPP reinstatement. Our results demonstrated that daily administration of SAHA (25 mg/kg; i.p.), facilitated morphine-extinction and decreased CPP score in reinstatement of place preference. Conversely, injections of LDT (20 mg/kg; i.p.) prolonged extinction in animals. Co-administration of LDT and SAHA on extinction days counterbalanced each other, such that maintenance and reinstatement were no different than the control group. The gene expression of ΔFosB was increased by SAHA in NAc and mPFC compared to the control group. Administration of SAHA during extinction days, also altered histone acetylation in the NAc and mPFC on the last day of extinction, but not on reinstatement day. Collectively, administration of SAHA facilitated extinction and reduced reinstatement of morphine-induced CPP in rats. This study confirms the essential role of epigenetic mechanisms, specifically histone acetylation, in regulating drug-induced plasticity and seeking behaviors.
Collapse
|
16
|
Zhao D, Liu C, Cui M, Liu J, Meng F, Lian H, Wang D, Hu F, Liu D, Li C. The paraventricular thalamus input to central amygdala controls depression-related behaviors. Exp Neurol 2021; 342:113744. [PMID: 33965409 DOI: 10.1016/j.expneurol.2021.113744] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 02/08/2023]
Abstract
The dysregulation of neuronal networks may contribute to the etiology of major depressive disorder (MDD). However, the neural connections underlying the symptoms of MDD have yet to be elucidated. Here, we observed that glutamatergic neurons in the paraventricular thalamus (PVT) were activated by chronic unpredictable stress (CUS) with higher expression numbers of ΔFosB-labeled neurons and protein expression levels, activation of PVT neurons caused depressive-like phenotypes, whereas suppression of PVT neuronal activity induced an antidepressant effect in male, but not female mice, which were achieved by using a chemogenetic approach. Moreover, we found that PVT glutamatergic neurons showed strong neuronal projections to the central amygdala (CeA), activation of the CeA-projecting neurons in PVT or the neuronal terminals of PVT-CeA projection neurons induced depression-related behaviors or showed enhanced stress-induced susceptibility. These results suggest that PVT is a key depression-controlling nucleus, and PVT-CeA projection regulates depression-related behaviors in a sex-dependent manner, which could be served as an essential pathway for morbidity and treatment of depression.
Collapse
Affiliation(s)
- Di Zhao
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Cuilan Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Minghu Cui
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Haifeng Lian
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dan Wang
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fengai Hu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dunjiang Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
17
|
Xu L, Nan J, Lan Y. The Nucleus Accumbens: A Common Target in the Comorbidity of Depression and Addiction. Front Neural Circuits 2020; 14:37. [PMID: 32694984 PMCID: PMC7338554 DOI: 10.3389/fncir.2020.00037] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
The comorbidity of depression and addiction has become a serious public health issue, and the relationship between these two disorders and their potential mechanisms has attracted extensive attention. Numerous studies have suggested that depression and addiction share common mechanisms and anatomical pathways. The nucleus accumbens (NAc) has long been considered a key brain region for regulating many behaviors, especially those related to depression and addiction. In this review article, we focus on the association between addiction and depression, highlighting the potential mediating role of the NAc in this comorbidity via the regulation of changes in the neural circuits and molecular signaling. To clarify the mechanisms underlying this association, we summarize evidence from overlapping reward neurocircuitry, the resemblance of cellular and molecular mechanisms, and common treatments. Understanding the interplay between these disorders should help guide clinical comorbidity prevention and the search for a new target for comorbidity treatment.
Collapse
Affiliation(s)
- Le Xu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University School of Medicine, Yanji City, China
| | - Jun Nan
- Department of Orthopedics, Affiliated Hospital of Yanbian University, Yanji City, China
| | - Yan Lan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University School of Medicine, Yanji City, China
| |
Collapse
|
18
|
Park JA, Na HH, Jin HO, Kim KC. Increased Expression of FosB through Reactive Oxygen Species Accumulation Functions as Pro-Apoptotic Protein in Piperlongumine Treated MCF7 Breast Cancer Cells. Mol Cells 2019; 42:884-892. [PMID: 31735020 PMCID: PMC6939652 DOI: 10.14348/molcells.2019.0088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/22/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022] Open
Abstract
Piperlongumine (PL), a natural alkaloid compound isolated from long pepper (Piper longum), can selectively kill cancer cells, but not normal cells, by accumulation of reactive oxygen species (ROS). The objective of this study was to investigate functional roles of expression of SETDB1 and FosB during PL treatment in MCF7 breast cancer cells. PL downregulates SETDB1 expression, and decreased SETDB1 expression enhanced caspase 9 dependent-PARP cleavage during PL-induced cell death. PL treatment generated ROS. ROS inhibitor NAC (N-acetyl cysteine) recovered SETDB1 expression decreased by PL. Decreased SETDB1 expression induced transcriptional activity of FosB during PL treatment. PARP cleavage and positive annexin V level were increased during PL treatment with FosB overexpression whereas PARP cleavage and positive annexin V level were decreased during PL treatment with siFosB transfection, implying that FosB might be a pro-apoptotic protein for induction of cell death in PL-treated MCF7 breast cancer cells. PL induced cell death in A549 lung cancer cells, but molecular changes involved in the induction of these cell deaths might be different. These results suggest that SETDB1 mediated FosB expression may induce cell death in PL-treated MCF7 breast cancer cells.
Collapse
Affiliation(s)
- Jin-Ah Park
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341,
Korea
| | - Han-Heom Na
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341,
Korea
| | - Hyeon-Ok Jin
- KIRAMS Radiation Biobank, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812,
Korea
| | - Keun-Cheol Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341,
Korea
| |
Collapse
|
19
|
Zhao J, Lucassen PJ, Swaab DF. Suicide Is a Confounder in Postmortem Studies on Depression. Biol Psychiatry 2019; 86:e37-e40. [PMID: 31227102 DOI: 10.1016/j.biopsych.2019.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Juan Zhao
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Paul J Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Dick F Swaab
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
20
|
Anders QS, Klauss J, Rodrigues LCDM, Nakamura-Palacios EM. FosB mRNA Expression in Peripheral Blood Lymphocytes in Drug Addicted Patients. Front Pharmacol 2018; 9:1205. [PMID: 30405417 PMCID: PMC6207645 DOI: 10.3389/fphar.2018.01205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/02/2018] [Indexed: 11/13/2022] Open
Abstract
FosB gene heterodimerizes with Jun family proteins to form activator protein 1 (AP-1) complexes that bind to AP-1 sites in responsive genes to regulate transcription in all cells. The genic expression of FosB seems to be modified after long time exposure to drugs of abuse and these changes may be involved in craving and addicted behavior. This study investigated the FosB mRNA expression in peripheral blood lymphocytes of drug addicted patients using real-time PCR approach. Thus, patients with crack-cocaine use disorder (CUD, n = 10), alcohol use disorder (AUD, n = 12), and healthy non-addicted subjects (CONT, n = 12) were assessed. FosB mRNA expression was reduced by 1.15-fold in CUD and 2.17-fold in AUD when compared to CONT. Hedge's effect size gs over log FosB/Act was of 0.66 for CUD and of 0.30 for AUD when compared to controls. This study showed that FosB mRNA expression was detected in lymphocytes from peripheral blood for the first time, and it was less expressed in drug addicted patients. This molecular technique may constitute a potential peripheral marker for substance use disorder.
Collapse
Affiliation(s)
- Quézia Silva Anders
- Laboratory of Cognitive Sciences and Neuropsychopharmacology, Program of Post-Graduation in Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Jaisa Klauss
- Laboratory of Cognitive Sciences and Neuropsychopharmacology, Program of Post-Graduation in Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Livia Carla de Melo Rodrigues
- Laboratory of Neurotoxicology and Psychopharmacology, Program of Post-Graduation in Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | - Ester Miyuki Nakamura-Palacios
- Laboratory of Cognitive Sciences and Neuropsychopharmacology, Program of Post-Graduation in Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| |
Collapse
|
21
|
Analyses of long non-coding RNA and mRNA profiling using RNA sequencing in calcium oxalate monohydrate-stimulated renal tubular epithelial cells. Urolithiasis 2018; 47:225-234. [PMID: 29947995 DOI: 10.1007/s00240-018-1065-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/08/2018] [Indexed: 01/10/2023]
Abstract
To study the expression profiles of lncRNA and mRNA in the calcium oxalate monohydrate-attached HK-2 cells, and investigate the association between critical lncRNA expression level and renal injury. The HK-2 cells were treated with crystal suspension of calcium oxalate. The effects of calcium oxalate crystals on the growth of HK-2 cells were determined by MTT assay. Total RNA was extracted and the lncRNA and mRNA expression profiles were analyzed by high-throughput transcriptase sequencing platform HiSeq 2500. The profile of identified lncRNAs and mRNAs were verified by real-time PCR and their potential function was analyzed by Gene Ontology database and KEGG signal pathway analysis. Calcium oxalate crystals adhered to the surface of HK-2 cells in few minutes and showed obvious cytotoxicity. RNA seq results showed that there were 25 differentially expressed lncRNAs in HK-2 cells treated with calcium oxalate crystals, of which 9 were up-regulated and 16 were down-regulated. The difference was verified by real-time PCR which showed statistically significant (P < 0.05). Calcium oxalate crystals have a significant effect on lncRNA and mRNA expression in human renal epithelial cells, which may play critical roles in kidney stone-mediated renal injury.
Collapse
|
22
|
Kovalchuk A, Ilnytskyy Y, Rodriguez-Juarez R, Katz A, Sidransky D, Kolb B, Kovalchuk O. Growth of Triple Negative and Progesterone Positive Breast Cancer Causes Oxidative Stress and Down-Regulates Neuroprotective Transcription Factor NPAS4 and NPAS4-Regulated Genes in Hippocampal Tissues of TumorGraft Mice-an Aging Connection. Front Genet 2018; 9:58. [PMID: 29556248 PMCID: PMC5845109 DOI: 10.3389/fgene.2018.00058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/08/2018] [Indexed: 12/29/2022] Open
Abstract
While the refinement of existing and the development of new chemotherapeutic regimens has significantly improved cancer treatment outcomes and patient survival, chemotherapy still causes many persistent side effects. Central nervous system (CNS) toxicity is of particular concern, as cancer patients experience significant deficits in memory, learning, cognition, and decision-making. These chemotherapy-induced cognitive changes are termed chemo brain, and manifest in more than half of cancer survivors. Moreover, recent studies have emerged suggesting that neurocognitive deficits manifest prior to cancer diagnosis and treatment, and thus may be associated with tumor presence, a phenomenon recently termed “tumor brain.” To dissect the molecular mechanisms of tumor brain, we used TumorGraftTM models, wherein part of a patient's tumor is grafted into immune-deficient mice. Here, we analyzed molecular changes in the hippocampal tissues of mice carrying triple negative (TNBC) or progesterone receptor positive (PR+BC) xenografts. TNBC growth led to increased oxidative damage, as detected by elevated levels of 4-hydroxy-2-nonenal, a product of lipid peroxidation. Furthermore, the growth of TNBC and PR+BC tumors altered global gene expression in the murine hippocampus and affected multiple pathways implicated in PI3K-Akt and MAPK signaling, as well as other pathways crucial for the proper functioning of hippocampal neurons. TNBC and PR+BC tumor growth also led to a significant decrease in the levels of neuronal transcription factor NPAS4, a regulator that governs the expression of brain-derived neurotrophic factor (BDNF), and several other key brain neurotrophic factors and pro-survival molecules. The decreased expression of ERK1/2, NPAS4, and BDNF are also seen in neurodegenerative conditions and aging, and may constitute an important tumor brain mechanism.
Collapse
Affiliation(s)
- Anna Kovalchuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,Leaders in Medicine Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | | | - Amanda Katz
- Department of Oncology, Champions Oncology, Baltimore, MD, United States
| | - David Sidransky
- Department of Oncology, Champions Oncology, Baltimore, MD, United States.,Department of Otolaryngology and Oncology, Johns Hopkins University, Baltimore, MD, United States
| | - Bryan Kolb
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|