1
|
Pretzler M, Rompel A. Tyrosinases: a family of copper-containing metalloenzymes. CHEMTEXTS 2024; 10:12. [PMID: 39624788 PMCID: PMC11608171 DOI: 10.1007/s40828-024-00195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/15/2024] [Indexed: 12/08/2024]
Abstract
Tyrosinases (TYRs) are a family of copper-containing metalloenzymes that are present in all domains of life. TYRs catalyze the reactions that start the biosynthesis of melanin, the main pigment of the animal kingdom, and are also involved in the formation of the bright colors seen on the caps of mushrooms and in the petals of flowers. TYRs catalyze the ortho-hydroxylation and oxidation of phenols and the oxidation of catechols to the respective o-quinones. They only need molecular oxygen to do that, and the products of TYRs-o-quinones-are highly reactive and will usually react with the next available nucleophile. This reactivity can be harnessed for pharmaceutical applications as well as in environmental and food biotechnology. The majority of both basic and applied research on TYRs utilizes "mushroom tyrosinase", a crude enzyme preparation derived from button mushroom (Agaricus bisporus) fruiting bodies. Access to pure TYR preparations comes almost exclusively from the production of recombinant TYRs as the purification of these enzymes from the natural source is usually very laborious and plagued by low yields. In this text an introduction into the biochemistry of the enzyme TYR will be given, followed by an overview of available structural data of TYRs, the current model for the catalytic mechanism, a survey of reports on the recombinant production of this important metalloenzyme family, and a review of the applications of TYRs for the synthesis of catechols, as biosensors, in bioremediation, for the cross-linking of proteins and medical hydrogels as well as for melanoma treatment. Graphical Abstract
Collapse
Affiliation(s)
- Matthias Pretzler
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Annette Rompel
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
2
|
Wu K, Yang B, Chen R, Majeed R, Li B, Gong L, Wei X, Yang J, Tang Y, Wang A, Toufeeq S, Shaik HA, Huang W, Guo X, Ling E. Lack of signal peptide in insect prophenoloxidase to avoid glycosylation to damage the zymogen activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 160:105230. [PMID: 39029607 DOI: 10.1016/j.dci.2024.105230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Insect prophenoloxidases (PPOs) are important immunity proteins for defending against the invading pathogens and parasites. As a Type-Ⅲ copper-containing proteins, unlike Homo sapiens tyrosinases, the insect PPOs and most bacterial tyrosinases contain no signal peptides for unknown reason, however they can still be released. To this end, we fused different signal peptides to Drosophila melanogaster PPOs for in vitro and in vivo expression, respectively. We demonstrate that an artificial signal peptide can help PPO secretion in vitro. The secreted PPO appeared larger than wild-type PPO on molecular weight sizes due to glycosylation when expressed in S2 cells. Two asparagine residues for potential glycosylation in PPO1 were identified when a signal peptide was fused. After purification, the glycosylated PPO1 lost zymogen activity. When PPO1 containing a signal peptide was over-expressed in Drosophila larvae, the glycosylation and secretion of PPO1 was detected in vivo. Unlike insect PPO, human tyrosinase needs a signal peptide for protein expression and maintaining enzyme activity. An artificial signal peptide fused to bacterial tyrosinase had no influence on the protein expression and enzyme activity. These Type-Ⅲ copper-containing proteins from different organisms may evolve to perform their specific functions. Intriguingly, our study revealed that the addition of calcium inhibits PPO secretion from the transiently cultured larval hindguts in vitro, indicating that the calcium concentration may regulate PPO secretion. Taken together, insect PPOs can maintain enzyme activities without any signal peptide.
Collapse
Affiliation(s)
- Kai Wu
- College of Life Sciences, Shangrao Normal University, Shangrao, 334001, China; Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bing Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; Shanghai Majorbio Bio-pharm Technology Co., Ltd, Shanghai, 201318, China
| | - Rongbing Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Rafia Majeed
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Baoling Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; College of Advanced Agricultural Sciences, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Liyuan Gong
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuefei Wei
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jingfeng Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yingyu Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Aibin Wang
- College of Life Sciences, Shangrao Normal University, Shangrao, 334001, China
| | - Shahzad Toufeeq
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Haq Abdul Shaik
- Institute of Entomology, Biology Centre CAS, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Xuan Guo
- Life Science Institute, Jinzhou Medical University, Jinzhou, 121001, China.
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
3
|
Xu Y, Liang X, Hyun CG. Discovery of Indole-Thiourea Derivatives as Tyrosinase Inhibitors: Synthesis, Biological Evaluation, Kinetic Studies, and In Silico Analysis. Int J Mol Sci 2024; 25:9636. [PMID: 39273583 PMCID: PMC11394742 DOI: 10.3390/ijms25179636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Tyrosinase, a key enzyme in melanin synthesis, represents a crucial therapeutic target for hyperpigmentation disorders due to excessive melanin production. This study aimed to design and evaluate a series of indole-thiourea derivatives by conjugating thiosemicarbazones with strong tyrosinase inhibitory activity to indole. Among these derivatives, compound 4b demonstrated tyrosinase inhibitory activity with an IC50 of 5.9 ± 2.47 μM, outperforming kojic acid (IC50 = 16.4 ± 3.53 μM). Kinetic studies using Lineweaver-Burk plots confirmed competitive inhibition by compound 4b. Its favorable ADMET and drug-likeness properties make compound 4b a promising therapeutic candidate with a reduced risk of toxicity. Molecular docking revealed that the compounds bind strongly to mushroom tyrosinase (mTYR) and human tyrosinase-related protein 1 (TYRP1), with compound 4b showing superior binding energies of -7.0 kcal/mol (mTYR) and -6.5 kcal/mol (TYRP1), surpassing both kojic acid and tropolone. Molecular dynamics simulations demonstrated the stability of the mTYR-4b complex with low RMSD and RMSF and consistent Rg and SASA values. Persistent strong hydrogen bonds with mTYR, along with favorable Gibbs free energy and MM/PBSA calculations (-19.37 kcal/mol), further support stable protein-ligand interactions. Overall, compound 4b demonstrated strong tyrosinase inhibition and favorable pharmacokinetics, highlighting its potential for treating pigmentary disorders.
Collapse
Affiliation(s)
- Yang Xu
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea; (Y.X.); (X.L.)
| | - Xuhui Liang
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea; (Y.X.); (X.L.)
| | - Chang-Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea; (Y.X.); (X.L.)
- Department of Beauty and Cosmetology, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
4
|
Faure C, Min Ng Y, Belle C, Soler-Lopez M, Khettabi L, Saïdi M, Berthet N, Maresca M, Philouze C, Rachidi W, Réglier M, du Moulinet d'Hardemare A, Jamet H. Interactions of Phenylalanine Derivatives with Human Tyrosinase: Lessons from Experimental and Theoretical tudies. Chembiochem 2024; 25:e202400235. [PMID: 38642076 DOI: 10.1002/cbic.202400235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/22/2024]
Abstract
The pigmentation of the skin, modulated by different actors in melanogenesis, is mainly due to the melanins (protective pigments). In humans, these pigments' precursors are synthetized by an enzyme known as tyrosinase (TyH). The regulation of the enzyme activity by specific modulators (inhibitors or activators) can offer a means to fight hypo- and hyper-pigmentations responsible for medical, psychological and societal handicaps. Herein, we report the investigation of phenylalanine derivatives as TyH modulators. Interacting with the binuclear copper active site of the enzyme, phenylalanine derivatives combine effects induced by combination with known resorcinol inhibitors and natural substrate/intermediate (amino acid part). Computational studies including docking, molecular dynamics and free energy calculations combined with biological activity assays on isolated TyH and in human melanoma MNT-1 cells, and X-ray crystallography analyses with the TyH analogue Tyrp1, provide conclusive evidence of the interactions of phenylalanine derivatives with human tyrosinase. In particular, our findings indicate that an analogue of L-DOPA, namely (S)-3-amino-tyrosine, stands out as an amino phenol derivative with inhibitory properties against TyH.
Collapse
Affiliation(s)
- Clarisse Faure
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| | - Yi Min Ng
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38053, Grenoble, France
| | - Catherine Belle
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| | - Montserrat Soler-Lopez
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38053, Grenoble, France
| | - Lyna Khettabi
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38053, Grenoble, France
| | - Mélissa Saïdi
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38053, Grenoble, France
| | - Nathalie Berthet
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| | - Marc Maresca
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France)
| | - Christian Philouze
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| | - Walid Rachidi
- IRIG-BGE U1038, INSERM, Univ. Grenoble Alpes, Biomics, 38054, Grenoble, France
| | - Marius Réglier
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France)
| | | | - Hélène Jamet
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| |
Collapse
|
5
|
Zhu H, Oh JH, Matsuda Y, Mino T, Ishikawa M, Nakamura H, Tsujikawa M, Nonaka H, Hamachi I. Tyrosinase-Based Proximity Labeling in Living Cells and In Vivo. J Am Chem Soc 2024; 146:7515-7523. [PMID: 38445591 DOI: 10.1021/jacs.3c13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Characterizing the protein constituents of a specific organelle and protein neighbors of a protein of interest (POI) is essential for understanding the function and state of the organelle and protein networks associated with the POI. Proximity labeling (PL) has emerged as a promising technology for specific and efficient spatial proteomics. Nevertheless, most enzymes adopted for PL still have limitations: APEX requires cytotoxic H2O2 for activation and thus is poor in biocompatibility for in vivo application, BioID shows insufficient labeling kinetics, and TurboID suffers from high background biotinylation. Here, we introduce a bacterial tyrosinase (BmTyr) as a new PL enzyme suitable for H2O2-free, fast (≤10 min in living cells), and low-background protein tagging. BmTyr is genetically encodable and enables subcellular-resolved PL and proteomics in living cells. We further designed a strategy of ligand-tethered BmTyr for in vivo PL, which unveiled the surrounding proteome of a neurotransmitter receptor (Grm1 and Drd2) in its resident synapse in a live mouse brain. Overall, BmTyr is one promising enzyme that can improve and expand PL-based applications and discoveries.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Jae Hoon Oh
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo, 102-0075, Japan
| | - Yuna Matsuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takeharu Mino
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Mamoru Ishikawa
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo, 102-0075, Japan
| | - Hideki Nakamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Kyoto University Hakubi Center for Advanced Research, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Muneo Tsujikawa
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo, 102-0075, Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo, 102-0075, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo, 102-0075, Japan
| |
Collapse
|
6
|
Lazinski LM, Beaumet M, Roulier B, Gay R, Royal G, Maresca M, Haudecoeur R. Design and synthesis of 4-amino-2',4'-dihydroxyindanone derivatives as potent inhibitors of tyrosinase and melanin biosynthesis in human melanoma cells. Eur J Med Chem 2024; 266:116165. [PMID: 38262119 DOI: 10.1016/j.ejmech.2024.116165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
Melanogenesis inhibition constitutes a privileged therapeutic solution to treat skin hyperpigmentation, a major dermatological concern associated with the overproduction of melanin by human tyrosinase (hsTYR). Despite the existence of many well-known TYR (tyrosinase) inhibitors commercialized in skin formulations, their hsTYR-inhibition efficacy remains poor since most of them were investigated over mushroom tyrosinase (abTYR), a model with low homology relative to hsTYR. Considering the need for new potent hsTYR inhibitors, we designed and synthesized a series of indanones starting from 4-hydroxy compound 1a, one of the two most active derivatives reported to date against the human enzyme, together with marketed thiamidol. We observed that analogues featuring 4-amino and 4-amido-2',4'-dihydroxyindanone motifs showed two-to ten-fold increase in activity over human melanoma MNT-1 cell lysates, and a ten-fold improvement in a 4-days whole-cell experiment, compared to parent analogue 1a. Molecular docking investigation was performed for the most promising 4-amido derivatives and suggested a plausible interaction pattern with the second coordination sphere of hsTYR, notably through hydrogen bonding with Glu203, confirming their impact in the binding mode with hsTYR active site.
Collapse
Affiliation(s)
- Leticia M Lazinski
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France; Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France
| | - Morane Beaumet
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France
| | - Brayan Roulier
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France
| | - Rémy Gay
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France
| | - Guy Royal
- Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France
| | - Marc Maresca
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13013, Marseille, France
| | | |
Collapse
|
7
|
Chen C, Li J, Wang B, Wang Y, Yu X. TYR mutation in a Chinese population with oculocutaneous albinism: Molecular characteristics and ophthalmic manifestations. Exp Eye Res 2024; 239:109761. [PMID: 38145795 DOI: 10.1016/j.exer.2023.109761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Oculocutaneous albinism (OCA) is a rare inherited disorder characterized by a partial or complete reduction of melanin biosynthesis that leads to hypopigmentation in the skin, hair and eyes. The OCA1 subtype is caused by mutations in TYR. The purpose of this study was to investigate the genetic and clinical ophthalmic characteristics of TYR mutations in patients with OCA. Herein, 51 probands with a clinical diagnosis of OCA were enrolled. Whole-exome sequencing and comprehensive ophthalmic examinations were performed. Overall, TYR mutations were detected in 37.3% (19/51) in the patients with OCA. Fifteen patients had compound heterozygous variants, and four cases had homozygous variants. Eleven different pathogenic variants in TYR were detected in these 19 patients, with missense, insertion, delins and nonsense in 71.1% (27/38), 15.8% (6/38), 2.6% (1/38), and 10.5% (4/38), respectively. Clinical examinations revealed that 84.2% (16/19) of patients were OCA1A, and 15.8% (3/19) were OCA1B. Most TYR probands (52.6%, 10/19) had moderate vision impairment, 15.8% (3/19) had severe visual impairment, 10.5% (2/19) exhibited blindness, only 5.3% (1/19) had mild visual impairment and 15.8% (3/19) were not available. Photophobia and nystagmus were found in 100% (19/19) of the patients. In addition, grade 4 foveal hypoplasia was detected in 100% (12/12) of the patients. In conclusion: The TYR patients exhibited severe ocular phenotypes: the majority (93.8%, 15/16) of them had a moderate vision impairment or worse, and 100% (12/12) had severe grade 4 foveal hypoplasia. These novel findings could provide insight into the understanding of OCA.
Collapse
Affiliation(s)
- Chonglin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Bingqi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yinghuan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xinping Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
8
|
Pham TN, Cazier EA, Gormally E, Lawrence P. Valorization of biomass polyphenols as potential tyrosinase inhibitors. Drug Discov Today 2024; 29:103843. [PMID: 38000718 DOI: 10.1016/j.drudis.2023.103843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Tyrosinases (TYRs; EC 1.14.18.1) catalyze two sequential oxidative reactions of the melanin biosynthesis pathway and play an important role in mammalian pigmentation and enzymatic browning of fruit and vegetables. Inhibition of TYR activity is therefore an attractive target for new drugs and/or food ingredients. In addition, increasing evidence suggests that TYR regulation could be a novel target for treatments of cancer and Parkinson's disease. Biomasses, notably industrial byproducts and biowaste, are good sustainable sources of phytochemicals that may be valorized into bioactive compounds including TYR inhibitors. This review presents potential applications of biomass-derived polyphenols targeting TYR inhibition. Insights into structure-activity relationships of several polyphenols and their glycosides are highlighted. Finally, some remarks and perspectives on research into new TYR inhibitors from biomass waste are provided.
Collapse
Affiliation(s)
- Thanh-Nhat Pham
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE: Sciences et Humanités (EA 1598), Lyon, France.
| | - Elisabeth A Cazier
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE: Sciences et Humanités (EA 1598), Lyon, France; Nantes Université, Oniris, GEPEA, UMR 6144, F-44600 Saint-Nazaire, France
| | - Emmanuelle Gormally
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE: Sciences et Humanités (EA 1598), Lyon, France
| | - Philip Lawrence
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE: Sciences et Humanités (EA 1598), Lyon, France
| |
Collapse
|
9
|
Ricci F, Schira K, Khettabi L, Lombardo L, Mirabile S, Gitto R, Soler-Lopez M, Scheuermann J, Wolber G, De Luca L. Computational methods to analyze and predict the binding mode of inhibitors targeting both human and mushroom tyrosinase. Eur J Med Chem 2023; 260:115771. [PMID: 37657271 DOI: 10.1016/j.ejmech.2023.115771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Tyrosinase, a copper-containing enzyme critical in melanin biosynthesis, is a key drug target for hyperpigmentation and melanoma in humans. Testing the inhibitory effects of compounds using tyrosinase from Agaricus bisporus (AbTYR) has been a common practice to identify potential therapeutics from synthetic and natural sources. However, structural diversity among human tyrosinase (hTYR) and AbTYR presents a challenge in developing drugs that are therapeutically effective. In this study, we combined retrospective and computational analyses with experimental data to provide insights into the development of new inhibitors targeting both hTYR and AbTYR. We observed contrasting effects of Thiamidol™ and our 4-(4-hydroxyphenyl)piperazin-1-yl-derivative (6) on both enzymes; based on this finding, we aimed to investigate their binding modes in hTYR and AbTYR to identify residues that significantly improve affinity. All the information led to the discovery of compound [4-(4-hydroxyphenyl)piperazin-1-yl](2-methoxyphenyl)methanone (MehT-3, 7), which showed comparable activity on AbTYR (IC50 = 3.52 μM) and hTYR (IC50 = 5.4 μM). Based on these achievements we propose the exploitation of our computational results to provide relevant structural information for the development of newer dual-targeting molecules, which could be preliminarily tested on AbTYR as a rapid and inexpensive screening procedure before being tested on hTYR.
Collapse
Affiliation(s)
- Federico Ricci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. D'Alcontres 31, I-98166, Messina, Italy
| | - Kristina Schira
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Lyna Khettabi
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Lisa Lombardo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. D'Alcontres 31, I-98166, Messina, Italy
| | - Salvatore Mirabile
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. D'Alcontres 31, I-98166, Messina, Italy
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. D'Alcontres 31, I-98166, Messina, Italy
| | - Montserrat Soler-Lopez
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Gerhard Wolber
- Molecular Design Lab, Institute of Pharmacy, Freie Universität Berlin, Königin-Luisestr. 2 + 4, 14195, Berlin, Germany
| | - Laura De Luca
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. D'Alcontres 31, I-98166, Messina, Italy.
| |
Collapse
|
10
|
Panis F, Rompel A. Biochemical Investigations of Five Recombinantly Expressed Tyrosinases Reveal Two Novel Mechanisms Impacting Carbon Storage in Wetland Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13863-13873. [PMID: 37656057 PMCID: PMC10515480 DOI: 10.1021/acs.est.3c02910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
Wetlands are globally distributed ecosystems characterized by predominantly anoxic soils, resulting from water-logging. Over the past millennia, low decomposition rates of organic matter led to the accumulation of 20-30% of the world's soil carbon pool in wetlands. Phenolic compounds are critically involved in stabilizing wetland carbon stores as they act as broad-scale inhibitors of hydrolytic enzymes. Tyrosinases are oxidoreductases capable of removing phenolic compounds in the presence of O2 by oxidizing them to the corresponding o-quinones. Herein, kinetic investigations (kcat and Km values) reveal that low-molecular-weight phenolic compounds naturally present within wetland ecosystems (including monophenols, diphenols, triphenols, and flavonoids) are accepted by five recombinantly expressed wetland tyrosinases (TYRs) as substrates. Investigations of the interactions between TYRs and wetland phenolics reveal two novel mechanisms that describe the global impact of TYRs on the wetland carbon cycle. First, it is shown that o-quinones (produced by TYRs from low-molecular-weight phenolic substrates) are capable of directly inactivating hydrolytic enzymes. Second, it is reported that o-quinones can interact with high-molecular-weight phenolic polymers (which inhibit hydrolytic enzymes) and remove them through precipitation. The balance between these two mechanisms will profoundly affect the fate of wetland carbon stocks, particularly in the wake of climate change.
Collapse
Affiliation(s)
- Felix Panis
- Universität
Wien, Fakultät für Chemie, Institut für Biophysikalische
Chemie, Josef-Holaubek-Platz
2, 1090 Wien, Austria, https://www.bpc.univie.ac.at/en/
| | - Annette Rompel
- Universität
Wien, Fakultät für Chemie, Institut für Biophysikalische
Chemie, Josef-Holaubek-Platz
2, 1090 Wien, Austria, https://www.bpc.univie.ac.at/en/
| |
Collapse
|
11
|
Cherubino Ribeiro TH, de Oliveira RR, das Neves TT, Santiago WD, Mansur BL, Saczk AA, Vilela de Resende ML, Chalfun-Junior A. Metabolic Pathway Reconstruction Indicates the Presence of Important Medicinal Compounds in Coffea Such as L-DOPA. Int J Mol Sci 2023; 24:12466. [PMID: 37569839 PMCID: PMC10419165 DOI: 10.3390/ijms241512466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The use of transcriptomic data to make inferences about plant metabolomes is a useful tool to help the discovery of important compounds in the available biodiversity. To unveil previously undiscovered metabolites of Coffea, of phytotherapeutic and economic value, we employed 24 RNAseq libraries. These libraries were sequenced from leaves exposed to a diverse range of environmental conditions. Subsequently, the data were meticulously processed to create models of putative metabolic networks, which shed light on the production of potential natural compounds of significant interest. Then, we selected one of the predicted compounds, the L-3,4-dihydroxyphenylalanine (L-DOPA), to be analyzed by LC-MS/MS using three biological replicates of flowers, leaves, and fruits from Coffea arabica and Coffea canephora. We were able to identify metabolic pathways responsible for producing several compounds of economic importance. One of the identified pathways involved in isoquinoline alkaloid biosynthesis was found to be active and producing L-DOPA, which is a common product of POLYPHENOL OXIDASES (PPOs, EC 1.14.18.1 and EC 1.10.3.1). We show that coffee plants are a natural source of L-DOPA, a widely used medicine for treatment of the human neurodegenerative condition called Parkinson's disease. In addition, dozens of other compounds with medicinal significance were predicted as potential natural coffee products. By further refining analytical chemistry techniques, it will be possible to enhance the characterization of coffee metabolites, enabling a deeper understanding of their properties and potential applications in medicine.
Collapse
Affiliation(s)
- Thales Henrique Cherubino Ribeiro
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| | - Taís Teixeira das Neves
- Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Wilder Douglas Santiago
- National Institute of Coffee Science and Technology (INCT-CAFÉ), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Bethania Leite Mansur
- Multiuser Instrumental Analysis Laboratory (LabMAI), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Adelir Aparecida Saczk
- Analytical and Electroanalytical Laboratory (LAE), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | | | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| |
Collapse
|
12
|
Baber MA, Crist CM, Devolve NL, Patrone JD. Tyrosinase Inhibitors: A Perspective. Molecules 2023; 28:5762. [PMID: 37570734 PMCID: PMC10420840 DOI: 10.3390/molecules28155762] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Due to its integral role in the biosynthesis of melanin in all kingdoms of life, tyrosinase has become an extremely important target for inhibition in several sectors of research including agricultural and cosmetic research. Inhibitors of tyrosinase have made it to the market in the cosmetics industry, but their use has been limited due to conflicting efficacy and potential toxicity, which has led to several small molecules being removed from the market. Undaunted, researchers have continued to pursue tyrosinase inhibitors with varying degrees of success. These pursuits have built an impressive and rich library of research. This review is intended to provide a perspective of the past twenty years (2003-2023) of research on tyrosinase inhibitors by highlighting exemplar molecules and developments.
Collapse
Affiliation(s)
- Mason A. Baber
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48209, USA;
| | - Cole M. Crist
- Program in Biochemistry & Molecular Biology, Rollins College, Winter Park, FL 32789, USA;
| | - Noah L. Devolve
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA;
| | - James D. Patrone
- Program in Biochemistry & Molecular Biology, Rollins College, Winter Park, FL 32789, USA;
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA;
| |
Collapse
|
13
|
Rahman MS, Han MJ, Kim SW, Kang SM, Kim BR, Kim H, Lee CJ, Noh JE, Kim H, Lee JO, Jang SK. Structure-Guided Development of Bivalent Aptamers Blocking SARS-CoV-2 Infection. Molecules 2023; 28:4645. [PMID: 37375202 PMCID: PMC10303109 DOI: 10.3390/molecules28124645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused devastation to human society through its high virulence, infectivity, and genomic mutations, which reduced the efficacy of vaccines. Here, we report the development of aptamers that effectively interfere with SARS-CoV-2 infection by targeting its spike protein, which plays a pivotal role in host cell entry of the virus through interaction with the viral receptor angiotensin-converting enzyme 2 (ACE2). To develop highly effective aptamers and to understand their mechanism in inhibiting viral infection, we determined the three-dimensional (3D) structures of aptamer/receptor-binding domain (RBD) complexes using cryogenic electron microscopy (cryo-EM). Moreover, we developed bivalent aptamers targeting two distinct regions of the RBD in the spike protein that directly interact with ACE2. One aptamer interferes with the binding of ACE2 by blocking the ACE2-binding site in RBD, and the other aptamer allosterically inhibits ACE2 by binding to a distinct face of RBD. Using the 3D structures of aptamer-RBD complexes, we minimized and optimized these aptamers. By combining the optimized aptamers, we developed a bivalent aptamer that showed a stronger inhibitory effect on virus infection than the component aptamers. This study confirms that the structure-based aptamer-design approach has a high potential in developing antiviral drugs against SARS-CoV-2 and other viruses.
Collapse
Affiliation(s)
- Md Shafiqur Rahman
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea; (M.S.R.); (M.J.H.); (S.W.K.)
| | - Min Jung Han
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea; (M.S.R.); (M.J.H.); (S.W.K.)
| | - Sang Won Kim
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea; (M.S.R.); (M.J.H.); (S.W.K.)
| | - Seong Mu Kang
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea; (M.S.R.); (M.J.H.); (S.W.K.)
| | - Bo Ri Kim
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea; (M.S.R.); (M.J.H.); (S.W.K.)
| | - Heesun Kim
- Division of Integrative Bioscience & Biotechnology, POSTECH Biotech Center, Pohang University of Science and Technology, Nam-gu, Pohang-si 37673, Republic of Korea
| | - Chang Jun Lee
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea; (M.S.R.); (M.J.H.); (S.W.K.)
| | - Jung Eun Noh
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea; (M.S.R.); (M.J.H.); (S.W.K.)
| | - Hanseong Kim
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea; (M.S.R.); (M.J.H.); (S.W.K.)
| | - Jie-Oh Lee
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea; (M.S.R.); (M.J.H.); (S.W.K.)
| | - Sung Key Jang
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea; (M.S.R.); (M.J.H.); (S.W.K.)
- Division of Integrative Bioscience & Biotechnology, POSTECH Biotech Center, Pohang University of Science and Technology, Nam-gu, Pohang-si 37673, Republic of Korea
| |
Collapse
|
14
|
Buitrago E, Faure C, Carotti M, Bergantino E, Hardré R, Maresca M, Philouze C, Vanthuyne N, Boumendjel A, Bubacco L, du Moulinet d'Hardemare A, Jamet H, Réglier M, Belle C. Exploiting HOPNO-dicopper center interaction to development of inhibitors for human tyrosinase. Eur J Med Chem 2023; 248:115090. [PMID: 36634457 DOI: 10.1016/j.ejmech.2023.115090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/23/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
In human, Tyrosinase enzyme (TyH) is involved in the key steps of protective pigments biosynthesis (in skin, eyes and hair). The use of molecules targeting its binuclear copper active site represents a relevant strategy to regulate TyH activities. In this work, we targeted 2-Hydroxypyridine-N-oxide analogs (HOPNO, an established chelating group for the tyrosinase dicopper active site) with the aim to combine effects induced by combination with a reference inhibitor (kojic acid) or natural substrate (tyrosine). The HOPNO-MeOH (3) and the racemic amino acid HOPNO-AA compounds (11) were tested on purified tyrosinases from different sources (fungal, bacterial and human) for comparison purposes. Both compounds have more potent inhibitory activities than the parent HOPNO moiety and display strictly competitive inhibition constant, in particular with human tyrosinase. Furthermore, 11 appears to be the most active on the B16-F1 mammal melanoma cells. The investigations were completed by stereospecificity analysis. Racemic mixture of the fully protected amino acid 10 was separated by chiral HPLC into the corresponding enantiomers. Assignment of the absolute configuration of the deprotected compounds was completed, based on X-ray crystallography. The inhibition activities on melanin production were tested on lysates and whole human melanoma MNT-1 cells. Results showed significant enhancement of the inhibitory effects for the (S) enantiomer compared to the (R) enantiomer. Computational studies led to an explanation of this difference of activity based for both enantiomers on the respective position of the amino acid group versus the HOPNO plane.
Collapse
Affiliation(s)
- Elina Buitrago
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France; University of Grenoble Alpes, CNRS-UGA UMR 5063, DPM CS 40700, 38058, Grenoble, Cedex 9, France
| | - Clarisse Faure
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France
| | - Marcello Carotti
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121, Padova, Italy
| | - Elisabetta Bergantino
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121, Padova, Italy
| | - Renaud Hardré
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Marc Maresca
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Christian Philouze
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France
| | - Nicolas Vanthuyne
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Ahcène Boumendjel
- University of Grenoble Alpes, CNRS-UGA UMR 5063, DPM CS 40700, 38058, Grenoble, Cedex 9, France
| | - Luigi Bubacco
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121, Padova, Italy
| | | | - Hélène Jamet
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France
| | - Marius Réglier
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Catherine Belle
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France.
| |
Collapse
|
15
|
Ruckthong L, Pretzler M, Kampatsikas I, Rompel A. Biochemical characterization of Dimocarpus longan polyphenol oxidase provides insights into its catalytic efficiency. Sci Rep 2022; 12:20322. [PMID: 36434079 PMCID: PMC9700842 DOI: 10.1038/s41598-022-20616-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
The "dragon-eye" fruits produced by the tropical longan tree are rich in nutrients and antioxidants. They suffer from post-harvest enzymatic browning, a process for which mainly the polyphenol oxidase (PPO) family of enzymes is responsible. In this study, two cDNAs encoding the PPO have been cloned from leaves of Dimocarpus longan (Dl), heterologously expressed in Escherichia coli and purified by affinity chromatography. The prepro-DlPPO1 contains two signal peptides at its N-terminal end that facilitate transportation of the protein into the chloroplast stroma and to the thylakoid lumen. Removal of the two signal peptides from prepro-DlPPO1 yields pro-DlPPO1. The prepro-DlPPO1 exhibited higher thermal tolerance than pro-DlPPO1 (unfolding at 65 °C vs. 40 °C), suggesting that the signal peptide may stabilize the fold of DlPPO1. DlPPO1 can be classified as a tyrosinase because it accepts both monophenolic and diphenolic substrates. The pro-DlPPO1 exhibited the highest specificity towards the natural diphenol (-)-epicatechin (kcat/KM of 800 ± 120 s-1 mM-1), which is higher than for 4-methylcatechol (590 ± 99 s-1 mM-1), pyrogallol (70 ± 9.7 s-1 mM-1) and caffeic acid (4.3 ± 0.72 s-1 mM-1). The kinetic efficiencies of prepro-DlPPO1 are 23, 36, 1.7 and 4.7-fold lower, respectively, than those observed with pro-DlPPO1 for the four aforementioned diphenolic substrates. Additionally, docking studies showed that (-)-epicatechin has a lower binding energy than any other investigated substrate. Both kinetic and in-silico studies strongly suggest that (-)-epicatechin is a good substrate of DlPPO1 and ascertain the affinity of PPOs towards specific flavonoid compounds.
Collapse
Affiliation(s)
- Leela Ruckthong
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria
- Faculty of Science, Department of Chemistry, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, 10140, Thailand
| | - Matthias Pretzler
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Ioannis Kampatsikas
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Annette Rompel
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria.
| |
Collapse
|
16
|
Panis F, Rompel A. The Novel Role of Tyrosinase Enzymes in the Storage of Globally Significant Amounts of Carbon in Wetland Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11952-11968. [PMID: 35944157 PMCID: PMC9454253 DOI: 10.1021/acs.est.2c03770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 05/30/2023]
Abstract
Over the last millennia, wetlands have been sequestering carbon from the atmosphere via photosynthesis at a higher rate than releasing it and, therefore, have globally accumulated 550 × 1015 g of carbon, which is equivalent to 73% of the atmospheric carbon pool. The accumulation of organic carbon in wetlands is effectuated by phenolic compounds, which suppress the degradation of soil organic matter by inhibiting the activity of organic-matter-degrading enzymes. The enzymatic removal of phenolic compounds by bacterial tyrosinases has historically been blocked by anoxic conditions in wetland soils, resulting from waterlogging. Bacterial tyrosinases are a subgroup of oxidoreductases that oxidatively remove phenolic compounds, coupled to the reduction of molecular oxygen to water. The biochemical properties of bacterial tyrosinases have been investigated thoroughly in vitro within recent decades, while investigations focused on carbon fluxes in wetlands on a macroscopic level have remained a thriving yet separated research area so far. In the wake of climate change, however, anoxic conditions in wetland soils are threatened by reduced rainfall and prolonged summer drought. This potentially allows tyrosinase enzymes to reduce the concentration of phenolic compounds, which in turn will increase the release of stored carbon back into the atmosphere. To offer compelling evidence for the novel concept that bacterial tyrosinases are among the key enzymes influencing carbon cycling in wetland ecosystems first, bacterial organisms indigenous to wetland ecosystems that harbor a TYR gene within their respective genome (tyr+) have been identified, which revealed a phylogenetically diverse community of tyr+ bacteria indigenous to wetlands based on genomic sequencing data. Bacterial TYR host organisms covering seven phyla (Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Nitrospirae, Planctomycetes, and Proteobacteria) have been identified within various wetland ecosystems (peatlands, marshes, mangrove forests, bogs, and alkaline soda lakes) which cover a climatic continuum ranging from high arctic to tropic ecosystems. Second, it is demonstrated that (in vitro) bacterial TYR activity is commonly observed at pH values characteristic for wetland ecosystems (ranging from pH 3.5 in peatlands and freshwater swamps to pH 9.0 in soda lakes and freshwater marshes) and toward phenolic compounds naturally present within wetland environments (p-coumaric acid, gallic acid, protocatechuic acid, p-hydroxybenzoic acid, caffeic acid, catechin, and epicatechin). Third, analyzing the available data confirmed that bacterial host organisms tend to exhibit in vitro growth optima at pH values similar to their respective wetland habitats. Based on these findings, it is concluded that, following increased aeration of previously anoxic wetland soils due to climate change, TYRs are among the enzymes capable of reducing the concentration of phenolic compounds present within wetland ecosystems, which will potentially destabilize vast amounts of carbon stored in these ecosystems. Finally, promising approaches to mitigate the detrimental effects of increased TYR activity in wetland ecosystems and the requirement of future investigations of the abundance and activity of TYRs in an environmental setting are presented.
Collapse
|
17
|
Ghani U. Azole inhibitors of mushroom and human tyrosinases: Current advances and prospects of drug development for melanogenic dermatological disorders. Eur J Med Chem 2022; 239:114525. [PMID: 35717871 DOI: 10.1016/j.ejmech.2022.114525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Azoles are a famous and promising class of drugs for treatment of a range of ailments especially fungal infections. A wide variety of azole derivatives are also known to exhibit tyrosinase inhibition, some of which possess promising activity with potential for treatment of dermatological disorders such as post-inflammatory hyperpigmentation, nevus, flecks, melasma, and melanoma. Recently, thiazolyl-resorcinol derivatives have demonstrated potent human tyrosinase inhibition with a safe and effective therapeutic profile for treatment of skin hyperpigmentation in humans, which are currently under clinical trials. If approved these derivatives would be the first azole drugs to be used for treatment of skin hyperpigmentation. Although the scientific literature has been witnessing general reviews on tyrosinase inhibitors to date, there is none that specifically and comprehensively discusses azole inhibitors of tyrosinase. Appreciating such potential of azoles, this focused review highlights a wide range of their derivatives with promising mushroom and human tyrosinase inhibitory activities and clinical potential for treatment of melanogenic dermatological disorders. Presently, these disorders have been treated with kojic acid, hydroquinone and other drugs, the design and development of which are based on their ability to inhibit mushroom tyrosinase. The active sites of mushroom and human tyrosinases carry structural differences which affect substrate or inhibitor binding. For this reason, kojic acid and other drugs pose efficacy and safety issues since they were originally developed using mushroom tyrosinase and have been clinically used on human tyrosinase. Design and development of tyrosinase inhibitors should be based on human tyrosinase, however, there are challenges in obtaining the human enzyme and understanding its structure and function. The review discusses these challenges that encompass structural and functional differences between mushroom and human tyrosinases and the manner in which they are inhibited. The review also gauges promising azole derivatives with potential for development of drugs against skin hyperpigmentation by analyzing and comparing their tyrosinase inhibitory activities against mushroom and human tyrosinases, computational data, and clinical profile where available. It aims to lay groundwork for development of new azole drugs for treatment of skin hyperpigmentation, melanoma, and related dermatological disorders.
Collapse
Affiliation(s)
- Usman Ghani
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, 12372, Saudi Arabia.
| |
Collapse
|
18
|
Joyjamras K, Netcharoensirisuk P, Roytrakul S, Chanvorachote P, Chaotham C. Recycled Sericin Hydrolysates Modified by Alcalase ® Suppress Melanogenesis in Human Melanin-Producing Cells via Modulating MITF. Int J Mol Sci 2022; 23:3925. [PMID: 35409284 PMCID: PMC8999004 DOI: 10.3390/ijms23073925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Because available depigmenting agents exhibit short efficacy and serious side effects, sericin, a waste protein from the silk industry, was hydrolyzed using Alcalase® to evaluate its anti-melanogenic activity in human melanin-producing cells. Sericin hydrolysates consisted of sericin-related peptides in differing amounts and smaller sizes compared with unhydrolyzed sericin, as respectively demonstrated by peptidomic and SDS-PAGE analysis. The lower half-maximum inhibitory concentration (9.05 ± 0.66 mg/mL) compared with unhydrolyzed sericin indicated a potent effect of sericin hydrolysates on the diminution of melanin content in human melanoma MNT1 cells. Not only inhibiting enzymatic activity but also a downregulated expression level of tyrosinase was evident in MNT1 cells incubated with 20 mg/mL sericin hydrolysates. Quantitative RT-PCR revealed the decreased mRNA level of microphthalmia-associated transcription factor (MITF), a tyrosinase transcription factor, which correlated with the reduction of pCREB/CREB, an upstream cascade, as assessed by Western blot analysis in MNT1 cells cultured with 20 mg/mL sericin hydrolysates for 12 h. Interestingly, treatment with sericin hydrolysates for 6-24 h also upregulated pERK, a molecule that triggers MITF degradation, in human melanin-producing cells. These results warrant the recycling of wastewater from the silk industry for further development as a safe and effective treatment of hyperpigmentation disorders.
Collapse
Affiliation(s)
- Keerati Joyjamras
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand;
| | - Ponsawan Netcharoensirisuk
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
19
|
Duan Y, Li L, He Y, Wang J. Analysis of TYR Gene Pathogenic Variants in a Chinese Mongolian Family with Progressive Symmetric Erythrokeratoderma. Indian Dermatol Online J 2021; 12:896-899. [PMID: 34934729 PMCID: PMC8653735 DOI: 10.4103/idoj.idoj_665_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/01/2020] [Accepted: 02/22/2021] [Indexed: 11/05/2022] Open
Abstract
This study sought to analyse tyrosinase (TYR) pathogenic variants in a Chinese Mongolian family with progressive symmetric erythrokeratoderma (PSEK). We collected clinical data and peripheral blood DNA samples from the initial patient and his family members for polymerase chain reaction (PCR) amplification and whole-exome sequencing of the coding region of TYR. Genetic analysis showed a TYR insertion (c. 929_930insC; p.Arg311Lysfs*7) in the patient that was not detected in any of the normal family members or in 100 healthy controls. This report provides the first description of this TYR pathogenic variant (c. 929_930insC) in a family; functional studies and further research are needed for an in-depth analysis.
Collapse
Affiliation(s)
- Yan Duan
- Department of Dermatology, People's Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, China
| | - Linye Li
- Department of Dermatology, People's Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, China
- Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yue He
- Department of Dermatology, People's Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, China
- Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jian Wang
- Department of Dermatology, People's Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, China
| |
Collapse
|
20
|
Cajanin Suppresses Melanin Synthesis through Modulating MITF in Human Melanin-Producing Cells. Molecules 2021; 26:molecules26196040. [PMID: 34641584 PMCID: PMC8512678 DOI: 10.3390/molecules26196040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/03/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022] Open
Abstract
Despite its classification as a non-life-threatening disease, increased skin pigmentation adversely affects quality of life and leads to loss of self-confidence. Until now, there are no recommended remedies with high efficacy and human safety for hyperpigmentation. This study aimed to investigate anti-melanogenic activity and underlying mechanism of cajanin, an isoflavonoid extracted from Dalbergia parviflora Roxb. (Leguminosae) in human melanin-producing cells. Culture with 50 μM cajanin for 48–72 h significantly suppressed proliferation in human melanoma MNT1 cells assessed via MTT viability assay. Interestingly, cajanin also efficiently diminished melanin content in MNT1 cells with the half maximum inhibitory concentration (IC50) at 77.47 ± 9.28 μM. Instead of direct inactivating enzymatic function of human tyrosinase, down-regulated mRNA and protein expression levels of MITF and downstream melanogenic enzymes, including tyrosinase, TRP-1 and Dct (TRP-2) were observed in MNT1 cells treated with 50 μM cajanin for 24–72 h. Correspondingly, treatment with cajanin modulated the signaling pathway of CREB and ERK which both regulate MITF expression level. Targeted suppression on MITF-related proteins in human melanin-producing cells strengthens the potential development of cajanin as an effective treatment for human hyperpigmented disorders.
Collapse
|
21
|
Panis F, Krachler RF, Krachler R, Rompel A. Expression, Purification, and Characterization of a Well-Adapted Tyrosinase from Peatlands Identified by Partial Community Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11445-11454. [PMID: 34156250 PMCID: PMC8375020 DOI: 10.1021/acs.est.1c02514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 05/30/2023]
Abstract
In peatlands, bacterial tyrosinases (TYRs) are proposed to act as key regulators of carbon storage by removing phenolic compounds, which inhibit the degradation of organic carbon. Historically, TYR activity has been blocked by anoxia resulting from persistent waterlogging; however, recent events of prolonged summer drought have boosted TYR activity and, consequently, the release of carbon stored in the form of organic compounds from peatlands. Since 30% of the global soil carbon stock is stored in peatlands, a profound understanding of the production and activity of TYRs is essential to assess the impact of carbon dioxide emitted from peatlands on climate change. TYR partial sequences identified by degenerated primers suggest a versatile TYR enzyme community naturally present in peatlands, which is produced by a phylogenetically diverse spectrum of bacteria, including Proteobacteria and Actinobacteria. One full-length sequence of an extracellular TYR (SzTYR) identified from a soda-rich inland salt marsh has been heterologously expressed and purified. SzTYR exhibits a molecular mass of 30 891.8 Da and shows a pH optimum of 9.0. Spectroscopic studies and kinetic investigations characterized SzTYR as a tyrosinase and proved its activity toward monophenols (coumaric acid), diphenols (caffeic acid, protocatechuic acid), and triphenols (gallic acid) naturally present in peatlands.
Collapse
Affiliation(s)
- Felix Panis
- Universität
Wien, Fakultät
für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria
| | - Rudolf F. Krachler
- Fakultät
für Chemie, Institut für Anorganische Chemie, Universität Wien, Althanstraße 14, 1090 Wien, Austria
| | - Regina Krachler
- Fakultät
für Chemie, Institut für Anorganische Chemie, Universität Wien, Althanstraße 14, 1090 Wien, Austria
| | - Annette Rompel
- Universität
Wien, Fakultät
für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria
| |
Collapse
|
22
|
Kampatsikas I, Rompel A. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes? Chembiochem 2021; 22:1161-1175. [PMID: 33108057 PMCID: PMC8049008 DOI: 10.1002/cbic.202000647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/25/2020] [Indexed: 12/23/2022]
Abstract
Type-III copper enzymes like polyphenol oxidases (PPOs) are ubiquitous among organisms and play a significant role in the formation of pigments. PPOs comprise different enzyme groups, including tyrosinases (TYRs) and catechol oxidases (COs). TYRs catalyze the o-hydroxylation of monophenols and the oxidation of o-diphenols to the corresponding o-quinones (EC 1.14.18.1). In contrast, COs only catalyze the oxidation of o-diphenols to the corresponding o-quinones (EC 1.10.3.1). To date (August 2020), 102 PDB entries encompassing 18 different proteins from 16 organisms and several mutants have been reported, identifying key residues for tyrosinase activity. The structural similarity between TYRs and COs, especially within and around the active center, complicates the elucidation of their modes of action on a structural basis. However, mutagenesis studies illuminate residues that influence the two activities and show that crystallography on its own cannot elucidate the enzymatic activity mode. Several amino acid residues around the dicopper active center have been proposed to play an essential role in the two different activities. Herein, we critically review the role of all residues identified so far that putatively affect the two activities of PPOs.
Collapse
Affiliation(s)
- Ioannis Kampatsikas
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| |
Collapse
|
23
|
Roulier B, Pérès B, Haudecoeur R. Advances in the Design of Genuine Human Tyrosinase Inhibitors for Targeting Melanogenesis and Related Pigmentations. J Med Chem 2020; 63:13428-13443. [PMID: 32787103 DOI: 10.1021/acs.jmedchem.0c00994] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human tyrosinase (hsTYR) is the key enzyme ensuring the conversion of l-tyrosine to dopaquinone, thereby initiating melanin synthesis, i.e., melanogenesis. Although the protein has long been familiar, knowledge about its three-dimensional structure and efficient overexpression protocols emerged only recently. Consequently, for decades medicinal chemistry studies aiming at developing skin depigmenting agents relied almost exclusively on biological assays performed using mushroom tyrosinase (abTYR), producing a plethoric literature, often of little useful purpose. Indeed, several recent reports have pointed out spectacular differences in terms of interaction patterns and inhibition values between hsTYR and abTYR, including for widely used standard tyrosinase inhibitors. In this review, we summarize the last developments regarding the potential role of hsTYR in human pathologies, the advances in recombinant expression systems and structural data retrieving, and the pioneer generation of true hsTYR inhibitors. Finally, we present suggestions for the design of future inhibitors of this highly attractive target in pharmacology and dermocosmetics.
Collapse
Affiliation(s)
- Brayan Roulier
- Département de Pharmacochimie Moléculaire (DPM), UMR 5063, Université Grenoble Alpes, 38041 Grenoble, France
| | - Basile Pérès
- Département de Pharmacochimie Moléculaire (DPM), UMR 5063, Université Grenoble Alpes, 38041 Grenoble, France
| | - Romain Haudecoeur
- Département de Pharmacochimie Moléculaire (DPM), UMR 5063, Université Grenoble Alpes, 38041 Grenoble, France
| |
Collapse
|
24
|
Patel M, Sergeev Y. Functional in silico analysis of human tyrosinase and OCA1 associated mutations. JOURNAL OF ANALYTICAL & PHARMACEUTICAL RESEARCH 2020; 9:81-89. [PMID: 33458560 PMCID: PMC7808255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oculocutaneous albinism type 1 (OCA1) is an autosomal recessive disorder caused by mutations in the tyrosinase gene. OCA1 exists in two forms: OCA1A and OCA1B. OCA1A is caused by a full loss of the human tyrosinase protein (Tyr), leading to an absence of pigment in skin, hair, and eyes, while OCA1B has reduced Tyr catalytic activity and pigment. The current understanding of the disease is hampered by the absence of information regarding the alterations of protein structure and the effects leading to either form of OCA1. Here, we used computational methods to find a general mechanism for establishing this link. Tyr and mutant variants were built through homology modeling, glycosylated in silico, minimized, and simulated using 100 ns molecular dynamics in water. For OCA1B mutants, cavity size is linked to ΔΔG values for mutants, suggesting that partial loss of Tyr is associated with the destabilizing effect of the EGF-like domain movement. In OCA1A, active site mutation simulations indicate that the absence of O2 leads to protein instability. OCA1B mutants are described in severity by the size of the cavity within the EGF-Tyr interface, while active site OCA1A mutants are unable to fully coordinate copper, leading to an absence of O2 and Tyr instability. In patients with known genotypes, free energy changes may help identify the severity of the disease by assessing either the allosteric effect of the EGF-Tyr cavity in OCA1B or the active site instability in OCA1A.
Collapse
Affiliation(s)
- Milan Patel
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuri Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Ahmed MH, Aldesouki HM, Badria FA. Effect of phenolic compounds from the leaves of Psidium guajava on the activity of three metabolism-related enzymes. Biotechnol Appl Biochem 2020; 68:497-512. [PMID: 32432341 DOI: 10.1002/bab.1956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/16/2020] [Indexed: 01/10/2023]
Abstract
Enzyme activity modulation by synthetic compounds provide strategies combining the inhibitory and therapeutic mode of action of the confirmed inhibitors. However, natural modulators could offer a valuable alternative for synthetic ones for the treatment of different chronic diseases (diabetes, hypertension, cancer); due to the numerous side effects of the latter. In vitro screening assays were conducted for Psidium guajava leaf methanolic extract against three metabolism-related enzymes; α-amylase, tyrosinase, and hyaluronidase. The obtained results showed that the examined extract retained weak and moderate multitarget inhibition against α-amylase, tyrosinase, and hyaluronidase, respectively; however, the leaf fractions exhibited stronger inhibitions for the three investigated enzymes. Fractionation of P. guajava leaf extract revealed that anthraquinones and ellagic acid are of the major active compounds with inhibitory activities for α-amylase, tyrosinase, and hyaluronidase. Kinetic studies showed that quinalizarin inhibition is competitive for both α-amylase and hyaluronidase, and ellagic acid inhibition for tyrosinase and hyaluronidase is competitive and un-competitive, respectively. The molecular docking studies of quinalizarin and ellagic acid with α-amylase, tyrosinase, and hyaluronidase showed high binding energies with different bonds stabilizing the ligand-protein complex. Compiling all obtained results led to conclude that both P. guajava leaf fractions, quinalizarin and ellagic acid, have multitarget activities with potential therapeutic applications in many metabolic disorders.
Collapse
Affiliation(s)
- Mohamed H Ahmed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hala M Aldesouki
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Farid A Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
26
|
Shahrisa A, Nikkhah M, Shirzad H, Behzadi R, Sadeghizadeh M. Enhancing Catecholase Activity of a Recombinant Human Tyrosinase Through Multiple Strategies. IRANIAN JOURNAL OF BIOTECHNOLOGY 2020; 18:e2310. [PMID: 33542935 PMCID: PMC7856396 DOI: 10.30498/ijb.2020.137293.2310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Tyrosinases are copper-containing enzymes that initiate the melanin synthesis. They catalyze the direct oxidation of L-tyrosine or L-DOPA into L-DOPAquinone. OBJECTIVES In present study, we aimed to obtain a recombinant tyrosinase with enhanced catecholase activity through site-directed mutagenesis. MATERIALS AND METHODS The coding sequence of human tyrosinase along with native signal sequence was cloned into pET-28a (+). BL-21 was used as expression host and recombinant protein was purified by Ni-NTA resins. Site-directed mutagenesis was performed on M374 residue to achieve four mutants: M374D, M374T, M374K and M374R. Chloride ions (Cl-) were removed from all solutions, and an extra amount of Cu2+ ions was added to recombinant tyrosinases by a novel technique during the purification process. Removal of Cl- ions and addition of extra Cu2+ ions tripled catecholase activity of the recombinant protein. Therefore, all mutants were obtained under similar conditions. RESULTS Although all the mutants presented higher catecholase activity in comparison to the wild-type enzyme, a significant increase in catecholase activity of the M374D mutant was observed ‒ 13.2-fold. In silico modeling suggested that a de novo hydrogen bond occurs between side chain carboxyl oxygens of D374 and H367 in M374D. In the wild-type tyrosinase, the peptide oxygen atom of M374 is responsible for hydrogen bonding with H367. CONCLUSIONS Our data suggests that M374D mutational variant has applications in different areas such as agriculture, industry, and medicine.
Collapse
Affiliation(s)
- Arman Shahrisa
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hadi Shirzad
- Department of Human Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roudabeh Behzadi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
27
|
Ahmed MH, Aldesouki HM, Badria FA. Effect of phenolic compounds from the rind of Punica granatum on the activity of three metabolism-related enzymes. Biotechnol Appl Biochem 2020; 67:960-972. [PMID: 31769157 DOI: 10.1002/bab.1866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022]
Abstract
Enzyme activity modulation by synthetic compounds provide strategies combining the inhibitory and therapeutic mode of action of the confirmed inhibitors. However, natural modulators could offer a valuable alternative for synthetic ones for the treatment of different chronic diseases (diabetes, hypertension, cancer) due to the numerous side effects of the latter. In vitro screening assays were conducted for Punica granatum rind methanolic extract against three metabolism-related enzymes: α-amylase, tyrosinase, and hyaluronidase. The obtained results showed that the examined extract retained high multitarget inhibition with inhibition percentages 31.5 ± 1.3%, 75.9 ± 4.7%, and 68.5 ± 5.3% against α-amylase, tyrosinase, and hyaluronidase, respectively. Bioguided fractionation of P. granatum rind extract revealed that quercetin is the major active compound with inhibitory activities: 54.3 ± 2.7%, 94.2 ± 3.5%, and 90.9 ± 2.7% against α-amylase, tyrosinase, and hyaluronidase, respectively. Kinetic studies of enzymes showed that quercetin inhibition was noncompetitive, uncompetitive, and competitive for α-amylase, tyrosinase, and hyaluronidase, respectively. The molecular docking of quercetin with α-amylase and hyaluronidase showed high binding energy with different bonds stabilizing the ligand-protein complex. Compiling all obtained results led to conclude that both P. granatum rind extract and quercetin have multitarget activities with potential therapeutic applications in many metabolic disorders.
Collapse
Affiliation(s)
- Mohamed H Ahmed
- Departments of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hala M Aldesouki
- Departments of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Farid A Badria
- Departments of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
28
|
Yuan Y, Jin W, Nazir Y, Fercher C, Blaskovich MA, Cooper MA, Barnard RT, Ziora ZM. Tyrosinase inhibitors as potential antibacterial agents. Eur J Med Chem 2020; 187:111892. [DOI: 10.1016/j.ejmech.2019.111892] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
|
29
|
Phenylthiourea Binding to Human Tyrosinase-Related Protein 1. Int J Mol Sci 2020; 21:ijms21030915. [PMID: 32019241 PMCID: PMC7036772 DOI: 10.3390/ijms21030915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Tyrosinase-related protein 1 (TYRP1) is one of the three human melanogenic enzymes involved in the biosynthesis of melanin, a pigment responsible for the color of the skin, hair, and eyes. It shares high sequence identity with tyrosinase, but has two zinc ions in its active site rather than two copper ions as in tyrosinase. Typical tyrosinase inhibitors do not directly coordinate to the zinc ions of TYRP1. Here, we show, from an X-ray crystal structure determination, that phenylthiourea, a highly potent tyrosinase inhibitor, does neither coordinate the active site zinc ions, but binds differently from other structurally characterized TYRP1-inhibitor complexes. Its aromatic ring is directed outwards from the active site, apparently as a result from the absence of polar oxygen substituents that can take the position of water molecules bound in the active site. The compound binds via hydrophobic interactions, thereby blocking substrate access to the active site.
Collapse
|
30
|
Dolinska MB, Wingfield PT, Young KL, Sergeev YV. The TYRP1-mediated protection of human tyrosinase activity does not involve stable interactions of tyrosinase domains. Pigment Cell Melanoma Res 2019; 32:753-765. [PMID: 31077632 PMCID: PMC6777992 DOI: 10.1111/pcmr.12791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/15/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022]
Abstract
Tyrosinases are melanocyte-specific enzymes involved in melanin biosynthesis. Mutations in their genes cause oculocutaneous albinism associated with reduced or altered pigmentation of skin, hair, and eyes. Here, the recombinant human intra-melanosomal domains of tyrosinase, TYRtr (19-469), and tyrosinase-related protein 1, TYRP1tr (25-472), were studied in vitro to define their functional relationship. Proteins were expressed or coexpressed in whole Trichoplusia ni larvae and purified. Their associations were studied using gel filtration and sedimentation equilibrium methods. Protection of TYRtr was studied by measuring the kinetics of tyrosinase diphenol oxidase activity in the presence (1:1 and 1:20 molar ratios) or the absence of TYRP1tr for 10 hr under conditions mimicking melanosomal and ER pH values. Our data indicate that TYRtr incubation with excess TYRP1tr protects TYR, increasing its stability over time. However, this mechanism does not appear to involve the formation of stable hetero-oligomeric complexes to maintain the protective function.
Collapse
Affiliation(s)
- Monika B Dolinska
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul T Wingfield
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kenneth L Young
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Yuri V Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
31
|
Parveen N, Ali SA, Ali AS. Insights Into the Explication of Potent Tyrosinase Inhibitors with Reference to Computational Studies. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180803111021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background:
Pigment melanin has primarily a photo defensive role in human skin, its
unnecessary production and irregular distribution can cause uneven skin tone ultimately results in
hyper pigmentation. Melanin biosynthesis is initiated by tyrosine oxidation through tyrosinase, the
key enzyme for melanogenesis. Not only in humans, tyrosinase is also widely distributed in plants
and liable for browning of vegetables and fruits. Search for the inhibitors of tyrosinase have been
an important target to facilitate development of therapies for the prevention of hyperpigmentary
disorders and an undesired browning of vegetables and fruits.
Methods:
Different natural and synthetic chemical compounds have been tested as potential tyrosinase
inhibitors, but the mechanism of inhibition is not known, and the quest for information regarding
interaction between tyrosinase and its inhibitors is one of the recent areas of research. Computer
based methods hence are useful to overcome such issues. Successful utilization of in silico tools
like molecular docking simulations make it possible to interpret the tyrosinase and its inhibitor’s
intermolecular interactions and helps in identification and development of new and potent tyrosinase
inhibitors.
Results:
The present review has pointed out the prominent role of computer aided approaches for
the explication of promising tyrosinase inhibitors with a focus on molecular docking approach.
Highlighting certain examples of natural compounds whose antityrosinase effects has been evaluated
using computational simulations.
Conclusion:
The investigation of new and potent inhibitors of tyrosinase using computational
chemistry and bioinformatics will ultimately help millions of peoples to get rid of hyperpigmentary
disorders as well as browning of fruits and vegetables.
Collapse
Affiliation(s)
- Naima Parveen
- Department of Biotechnology and Zoology, Saifia College of Science, Bhopal 462001, India
| | - Sharique Akhtar Ali
- Department of Biotechnology and Zoology, Saifia College of Science, Bhopal 462001, India
| | - Ayesha Sharique Ali
- Department of Biotechnology and Zoology, Saifia College of Science, Bhopal 462001, India
| |
Collapse
|
32
|
Min K, Park GW, Yoo YJ, Lee JS. A perspective on the biotechnological applications of the versatile tyrosinase. BIORESOURCE TECHNOLOGY 2019; 289:121730. [PMID: 31279520 DOI: 10.1016/j.biortech.2019.121730] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
Tyrosinase (E.C. 1.14.18. 1) is a type of Cu-containing oxidoreductase which has bifunctional activity for various phenolic substrates: ortho-hydroxylation of monophenols to diphenols (a cresolase activity) and oxidation of diphenols to quinones (a catecholase activity). Based on the broad substrate spectrum, tyrosinase has been used in bioremediation of phenolic pollutants, constructing biosensors for identifying phenolic compounds, and L-DOPA synthesis. Furthermore, not only tyrosinase has been used to produce useful polyphenol derivatives, but also it is recently revealed that the promiscuous activity of tyrosinase is closely related with delignification in the biorefinery. Accordingly, tyrosinase might be a potential biocatalyst for industrial applications (e.g., electroenzymatic L-DOPA production, but its long-term stability and reusability should be further explored. In this review, we emphasize the versatility of tyrosinase, which includes conventional applications, and suggest new perspectives as an industrial biocatalyst (e.g., electroenzymatic L-DOPA production). Especially, this review focuses on and comprehensively discusses recent innovative studies.
Collapse
Affiliation(s)
- Kyoungseon Min
- Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Gwon Woo Park
- Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Young Je Yoo
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Suk Lee
- Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea.
| |
Collapse
|
33
|
Kampatsikas I, Bijelic A, Rompel A. Biochemical and structural characterization of tomato polyphenol oxidases provide novel insights into their substrate specificity. Sci Rep 2019; 9:4022. [PMID: 30858490 PMCID: PMC6411738 DOI: 10.1038/s41598-019-39687-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/28/2019] [Indexed: 11/09/2022] Open
Abstract
Polyphenol oxidases (PPOs) contain the structurally similar enzymes tyrosinases (TYRs) and catechol oxidases (COs). Two cDNAs encoding pro-PPOs from tomato (Solanum lycopersicum) were cloned and heterologously expressed in Escherichia coli. The two pro-PPOs (SlPPO1-2) differ remarkably in their activity as SlPPO1 reacts with the monophenols tyramine (kcat = 7.94 s-1) and phloretin (kcat = 2.42 s-1) and was thus characterized as TYR, whereas SlPPO2 accepts only diphenolic substrates like dopamine (kcat = 1.99 s-1) and caffeic acid (kcat = 20.33 s-1) rendering this enzyme a CO. This study, for the first time, characterizes a plant TYR and CO originating from the same organism. Moreover, X-ray structure analysis of the latent holo- and apo-SlPPO1 (PDB: 6HQI and 6HQJ) reveals an unprecedented high flexibility of the gatekeeper residue phenylalanine (Phe270). Docking studies showed that depending on its orientation the gatekeeper residue could either stabilize and correctly position incoming substrates or hinder their entrance into the active site. Furthermore, phloretin, a substrate of SIPPO1 (Km = 0.11 mM), is able to approach the active centre of SlPPO1 with both phenolic rings. Kinetic and structural results indicate that phloretin could act as a natural substrate and connote the participation of PPOs in flavonoid-biosynthesis.
Collapse
Affiliation(s)
- Ioannis Kampatsikas
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Wien, Austria
| | - Aleksandar Bijelic
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Wien, Austria.
| |
Collapse
|
34
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
35
|
Versatile Fungal Polyphenol Oxidase with Chlorophenol Bioremediation Potential: Characterization and Protein Engineering. Appl Environ Microbiol 2018; 84:AEM.01628-18. [PMID: 30266731 PMCID: PMC6238066 DOI: 10.1128/aem.01628-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/21/2018] [Indexed: 12/24/2022] Open
Abstract
Polyphenol oxidases (PPOs) have been mostly associated with the undesirable postharvest browning in fruits and vegetables and have implications in human melanogenesis. Nonetheless, they are considered useful biocatalysts in the food, pharmaceutical, and cosmetic industries. The aim of the present work was to characterize a novel PPO and explore its potential as a bioremediation agent. A gene encoding an extracellular tyrosinase-like enzyme was amplified from the genome of Thermothelomyces thermophila and expressed in Pichia pastoris The recombinant enzyme (TtPPO) was purified and biochemically characterized. Its production reached 40 mg/liter, and it appeared to be a glycosylated and N-terminally processed protein. TtPPO showed broad substrate specificity, as it could oxidize 28/30 compounds tested, including polyphenols, substituted phenols, catechols, and methoxyphenols. Its optimum temperature was 65°C, with a half-life of 18.3 h at 50°C, while its optimum pH was 7.5. The homology model of TtPPO was constructed, and site-directed mutagenesis was performed in order to increase its activity on mono- and dichlorophenols (di-CPs). The G292N/Y296V variant of TtPPO 5.3-fold increased activity on 3,5-dichlorophenol (3,5-diCP) compared to the wild type.IMPORTANCE A novel fungal PPO was heterologously expressed and biochemically characterized. Construction of single and double mutants led to the generation of variants with altered specificity against CPs. Through this work, knowledge is gained regarding the effect of mutations on the substrate specificity of PPOs. This work also demonstrates that more potent biocatalysts for the bioremediation of harmful CPs can be developed by applying site-directed mutagenesis.
Collapse
|
36
|
Farney SK, Dolinska MB, Sergeev YV. Dynamic analysis of human tyrosinase intra-melanosomal domain and mutant variants to further understand oculocutaneous albinism type 1. ACTA ACUST UNITED AC 2018; 7:621-632. [PMID: 30868138 PMCID: PMC6411056 DOI: 10.15406/japlr.2018.07.00293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human tyrosinase (Tyr) is a Type I membrane glycoprotein that is the rate-limiting enzyme for controlling the production of melanin pigment in melanosomes. Currently, ~300 Tyr mutations are known to be involved in the genetic disease oculocutaneous albinism type 1 (OCA1), which exists in two forms, OCA1A and OCA1B. OCA1A is caused by a full loss of Tyr enzymatic activity, resulting in the absence of pigment in the skin, hair, and eyes, while OCA1B has reduced Tyr activity and pigment. Here, we used molecular modeling to try to understand the role of genetic changes at the protein level in inherited disease. The significant part of Tyr intra-melanosomal domain and five OCA1 mutant variants were built by homology modeling, glycosylated in silico, and refined using molecular dynamics in water. The modeling confirmed experimental results that N347 and N371 glycosylation is vital for protein stability. The changes caused by the T373K mutation indicate a significant impact on protein structure, as expected for OCA1A. In addition, evaluation of free energy changes in OCA1B mutants showed a strong association with the changes observed in our unfolding/refolding experiments in vitro. In conclusion, our results could be useful for understanding the role of OCA1 mutant variants in melanin pigment production, in silico searching for inhibitors and activators of tyrosinase activity, and genotype-to- phenotype analysis in OCA1.
Collapse
Affiliation(s)
- S Katie Farney
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, USA
| | - Monika B Dolinska
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, USA
| | - Yuri V Sergeev
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, USA
| |
Collapse
|
37
|
Pillaiyar T, Namasivayam V, Manickam M, Jung SH. Inhibitors of Melanogenesis: An Updated Review. J Med Chem 2018; 61:7395-7418. [PMID: 29763564 DOI: 10.1021/acs.jmedchem.7b00967] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Melanins are pigment molecules that determine the skin, eye, and hair color of the human subject to its amount, quality, and distribution. Melanocytes synthesize melanin and provide epidermal protection from various stimuli, such as harmful ultraviolet radiation, through the complex process called melanogenesis. However, serious dermatological problems occur when there is excessive production of melanin in different parts of the human body. These include freckles, melasma, senile lentigo, pigmented acne scars, and cancer. Therefore, controlling the production of melanin is an important approach for the treatment of pigmentation related disorderes. In this Perspective, we focus on the inhibitors of melanogenesis that directly/indirectly target a key enzyme tyrosinase as well as its associated signaling pathways.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Manoj Manickam
- College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon 34134 , Korea
| | - Sang-Hun Jung
- College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon 34134 , Korea
| |
Collapse
|
38
|
Sun W, Shen Y, Shan S, Han L, Li Y, Zhou Z, Zhong Z, Chen J. Identification of TYR mutations in patients with oculocutaneous albinism. Mol Med Rep 2018; 17:8409-8413. [PMID: 29658579 DOI: 10.3892/mmr.2018.8881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/01/2017] [Indexed: 11/06/2022] Open
Abstract
Oculocutaneous albinism (OCA) is a set of autosomal recessive disorders characterized by hypopigmented hair, skin and eyes. Homozygous or compound heterozygous mutations in the tyrosinase (TYR) gene can cause OCA1, which is the most common and severe subtype of albinism. In the present study, 17 patients with non‑syndromic OCA were enrolled from eight provinces of China and were non‑consanguineous, with the exception of Patient 4000301. Total genomic DNA was isolated from peripheral blood. Screening was performed for the whole exons and their flanking regions of the TYR gene using Sanger sequencing and the pathogenicity of variants was predicted using in silico analysis. In total, 12 TYR mutations were identified in 10 patients, respectively. Of these, two patients carried homozygous mutations and eight patients carried compound heterozygous mutations. Among the 12 TYR mutations, two missense mutations c.1198T>G (p.W400G) and c.819G>T (p.Q273H) were novel. The results of the present study expand the mutation spectrum of the TYR gene, which may further assist in the prenatal examination and genetic diagnosis of OCA.
Collapse
Affiliation(s)
- Wan Sun
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yanjie Shen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Shan Shan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Liyun Han
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yang Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Zheng Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Zilin Zhong
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Jianjun Chen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
39
|
Hassani S, Gharechaei B, Nikfard S, Fazli M, Gheibi N, Hardré R, Legge RL, Haghbeen K. New insight into the allosteric effect of L-tyrosine on mushroom tyrosinase during L-dopa production. Int J Biol Macromol 2018; 114:821-829. [PMID: 29621499 DOI: 10.1016/j.ijbiomac.2018.03.185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 12/16/2022]
Abstract
Kinetics studies of L-tyrosine (LTy) ortho-hydroxylation by mushroom tyrosinase (MT) confirmed that MT was severely, but not completely, inhibited at higher concentrations of LTy. Despite the availability of the crystal structure reports, no allosteric site has been identified on MT. To examine the assumption that a non-specific binding site works as a regulatory site, docking simulations were run for the second molecule of L-tyrosine (LTy2) on the complexes of the first L-tyrosine molecule (LTy1) with the heavy chain (H) of MT (LTy1/HMT) and its dimer with the light chain (Ty1/LHMT). In both, LTy2 occupied a non-specific binding site (MTPc). MD simulations revealed LTy2/HMT/LTy1 and LTy2/LHMT/LTy1 were stable. Binding free-energy analysis supported the formation of LTy2/HMT/LTy1 and LTy2/LHMT/LTy1 at higher concentrations of LTy and disclosed the importance of ΔEelec and ΔGpolar during binding of LTy2 to MTPc. Upon LTy2 binding to MTPc, the Cu-Cu distance remained unchanged while the spatial position of LTy1 in the active site (MTPa) changed so that it would not be able to participate in ortho-hydroxylation. This study suggests a tuning role for L chain during binding of the ligands to MTPa and MTPc. Given these results, a plausible mechanism was proposed for the MT substrate inhibition.
Collapse
Affiliation(s)
- Sorour Hassani
- National Institute for Genetic Engineering and Biotechnology, P.O. Box:14965-161, Tehran, Iran
| | - Behzad Gharechaei
- Department of Chemistry, Faculty of Science, Semnan University, Semnan, Iran
| | - Somayeh Nikfard
- National Institute for Genetic Engineering and Biotechnology, P.O. Box:14965-161, Tehran, Iran
| | - Mostafa Fazli
- Department of Chemistry, Faculty of Science, Semnan University, Semnan, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, P.O. Box: 34199-15315, Iran
| | - Renaud Hardré
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Raymond L Legge
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada
| | - Kamahldin Haghbeen
- National Institute for Genetic Engineering and Biotechnology, P.O. Box:14965-161, Tehran, Iran.
| |
Collapse
|
40
|
Mann T, Scherner C, Röhm KH, Kolbe L. Structure-Activity Relationships of Thiazolyl Resorcinols, Potent and Selective Inhibitors of Human Tyrosinase. Int J Mol Sci 2018; 19:ijms19030690. [PMID: 29495618 PMCID: PMC5877551 DOI: 10.3390/ijms19030690] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/13/2018] [Accepted: 02/24/2018] [Indexed: 01/22/2023] Open
Abstract
Tyrosinase inhibitors are of great clinical interest as agents for the treatment of hyperpigmentary disorders; however, most compounds described in the literature lack clinical efficiency due to insufficient inhibitory activity against human tyrosinase (hTyr). Recently, we reported that thiazolyl resorcinols (4-resorcinylthiazol-2-amines and -amides) are both selective and efficacious inhibitors of hTyr in vitro and in vivo. Here, we measured dose-activity profiles of a large number of thiazolyl resorcinols and analogous compounds to better understand the molecular basis of their interaction with hTyr. We show that both the resorcinyl moiety and the thiazole ring must be intact to allow efficient inhibition of hTyr, while the substituents at the thiazole 2-amino group confer additional inhibitory activity, depending on their size and polarity. The results of molecular docking simulations were in excellent agreement with the experimental data, affording a rationale for the structural importance of either ring. We further propose that a special type of interaction between the thiazole sulfur and a conserved asparagine residue is partially responsible for the superior inhibitory activity of thiazolyl resorcinols against hTyr.
Collapse
Affiliation(s)
- Tobias Mann
- Front End Innovation, Beiersdorf AG, 20245 Hamburg, Germany.
| | | | - Klaus-Heinrich Röhm
- Institute of Physiological Chemistry, Philipps University, 35032 Marburg, Germany.
| | - Ludger Kolbe
- Front End Innovation, Beiersdorf AG, 20245 Hamburg, Germany.
| |
Collapse
|
41
|
Solano F. On the Metal Cofactor in the Tyrosinase Family. Int J Mol Sci 2018; 19:ijms19020633. [PMID: 29473882 PMCID: PMC5855855 DOI: 10.3390/ijms19020633] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022] Open
Abstract
The production of pigment in mammalian melanocytes requires the contribution of at least three melanogenic enzymes, tyrosinase and two other accessory enzymes called the tyrosinase-related proteins (Trp1 and Trp2), which regulate the type and amount of melanin. The last two proteins are paralogues to tyrosinase, and they appeared late in evolution by triplication of the tyrosinase gene. Tyrosinase is a copper-enzyme, and Trp2 is a zinc-enzyme. Trp1 has been more elusive, and the direct identification of its metal cofactor has never been achieved. However, due to its enzymatic activity and similarities with tyrosinase, it has been assumed as a copper-enzyme. Recently, recombinant human tyrosinase and Trp1 have been expressed in enough amounts to achieve for the first time their crystallization. Unexpectedly, it has been found that Trp1 contains a couple of Zn(II) at the active site. This review discusses data about the metal cofactor of tyrosinase and Trps. It points out differences in the studied models, and it proposes some possible points accounting for the apparent discrepancies currently appearing. Moreover, some proposals about the possible flexibility of the tyrosinase family to uptake copper or zinc are discussed.
Collapse
Affiliation(s)
- Francisco Solano
- Department Biochemistry and Molecular Biology B and Immunology, School of Medicine and LAIB-IMIB, University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
42
|
Mann T, Gerwat W, Batzer J, Eggers K, Scherner C, Wenck H, Stäb F, Hearing VJ, Röhm KH, Kolbe L. Inhibition of Human Tyrosinase Requires Molecular Motifs Distinctively Different from Mushroom Tyrosinase. J Invest Dermatol 2018; 138:1601-1608. [PMID: 29427586 DOI: 10.1016/j.jid.2018.01.019] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/03/2018] [Accepted: 01/15/2018] [Indexed: 11/20/2022]
Abstract
Tyrosinase is the rate-limiting enzyme of melanin production and, accordingly, is the most prominent target for inhibiting hyperpigmentation. Numerous tyrosinase inhibitors have been identified, but most of those lack clinical efficacy because they were identified using mushroom tyrosinase as the target. Therefore, we used recombinant human tyrosinase to screen a library of 50,000 compounds and compared the active screening hits with well-known whitening ingredients. Hydroquinone and its derivative arbutin only weakly inhibited human tyrosinase with a half-maximal inhibitory concentration (IC50) in the millimolar range, and kojic acid showed a weak efficacy (IC50 > 500 μmol/L). The most potent inhibitors of human tyrosinase identified in this screen were resorcinyl-thiazole derivatives, especially the newly identified Thiamidol (Beiersdorf AG, Hamburg, Germany) (isobutylamido thiazolyl resorcinol), which had an IC50 of 1.1 μmol/L. In contrast, Thiamidol only weakly inhibited mushroom tyrosinase (IC50 = 108 μmol/L). In melanocyte cultures, Thiamidol strongly but reversibly inhibited melanin production (IC50 = 0.9 μmol/L), whereas hydroquinone irreversibly inhibited melanogenesis (IC50 = 16.3 μmol/L). Clinically, Thiamidol visibly reduced the appearance of age spots within 4 weeks, and after 12 weeks some age spots were indistinguishable from the normal adjacent skin. The full potential of Thiamidol to reduce hyperpigmentation of human skin needs to be explored in future studies.
Collapse
Affiliation(s)
- Tobias Mann
- Front End Innovation, Beiersdorf AG, Hamburg, Germany
| | | | - Jan Batzer
- Front End Innovation, Beiersdorf AG, Hamburg, Germany
| | | | | | - Horst Wenck
- Front End Innovation, Beiersdorf AG, Hamburg, Germany
| | - Franz Stäb
- Front End Innovation, Beiersdorf AG, Hamburg, Germany
| | | | | | - Ludger Kolbe
- Front End Innovation, Beiersdorf AG, Hamburg, Germany.
| |
Collapse
|
43
|
Efficient purification of a highly active H-subunit of tyrosinase from Agaricus bisporus. Protein Expr Purif 2018; 145:64-70. [PMID: 29326063 DOI: 10.1016/j.pep.2018.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 11/22/2022]
Abstract
A highly-active tyrosinase (H subunit) isoform has been purified from a commercial crude extract of Agaricus bisporus by a specific, two step-hydrophobic chromatography cascade process based on the differential adsorption of the proteins from the extract to hydrophobic-functionalized supports. At first, commercial, crude tyrosinase from Agaricus bisporus (AbTyr) dissolved in aqueous media was added to octadecyl-Sepabeads matrix at 25 °C. Under these conditions, the support specifically adsorbed a protein with a molecular weight of 47 kDa which showed no tyrosinase activity. The known H subunit of tyrosinase from Agaricus bisporus (45 kDa, H-AbTyr) and another protein of 50 kDa were present in the supernatant. Sodium phosphate buffer was added to adjust the ionic strength of the solution up to 100 mM and Triton X-100 was added (final concentration of 0.07% v/v) to control the hydrophobicity effect for both proteins. This solution was offered again to fresh octadecyl-Sepabeads support, immobilizing selectively the H-AbTyr and leaving exclusively the 50 kDa protein as a pure sample in the supernatant. This tyrosinase isoform of 50 kDa was almost 4-fold more active than the known H-TyrAb, with a specific tyrosinase activity of more than 38,000 U/mg.
Collapse
|
44
|
Lai X, Wichers HJ, Soler‐Lopez M, Dijkstra BW. Structure of Human Tyrosinase Related Protein 1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xuelei Lai
- Laboratory of Biophysical ChemistryUniversity of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
- Structural Biology GroupEuropean Synchrotron Radiation Facility 71 Avenue des Martyrs 38000 Grenoble France
| | - Harry J. Wichers
- Wageningen Food & Biobased Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Montserrat Soler‐Lopez
- Structural Biology GroupEuropean Synchrotron Radiation Facility 71 Avenue des Martyrs 38000 Grenoble France
| | - Bauke W. Dijkstra
- Laboratory of Biophysical ChemistryUniversity of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| |
Collapse
|
45
|
Lai X, Wichers HJ, Soler-Lopez M, Dijkstra BW. Structure of Human Tyrosinase Related Protein 1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis. Angew Chem Int Ed Engl 2017; 56:9812-9815. [PMID: 28661582 PMCID: PMC5601231 DOI: 10.1002/anie.201704616] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Indexed: 11/25/2022]
Abstract
Tyrosinase‐related protein 1 (TYRP1) is one of three tyrosinase‐like glycoenzymes in human melanocytes that are key to the production of melanin, the compound responsible for the pigmentation of skin, eye, and hair. Difficulties with producing these enzymes in pure form have hampered the understanding of their activity and the effect of mutations that cause albinism and pigmentation disorders. Herein we show that the typical tyrosinase‐like subdomain of TYRP1 contains two zinc ions in the active site instead of copper ions as found in tyrosinases, which explains why TYRP1 does not exhibit tyrosinase redox activity. In addition, the structures reveal for the first time that the Cys‐rich subdomain, which is unique to vertebrate melanogenic proteins, has an epidermal growth factor‐like fold and is tightly associated with the tyrosinase subdomain. Our structures suggest that most albinism‐related mutations of TYRP1 affect its stability or activity.
Collapse
Affiliation(s)
- Xuelei Lai
- Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.,Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Harry J Wichers
- Wageningen Food & Biobased Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Montserrat Soler-Lopez
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Bauke W Dijkstra
- Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
46
|
Pretzler M, Bijelic A, Rompel A. Heterologous expression and characterization of functional mushroom tyrosinase (AbPPO4). Sci Rep 2017; 7:1810. [PMID: 28500345 PMCID: PMC5431950 DOI: 10.1038/s41598-017-01813-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/12/2017] [Indexed: 11/09/2022] Open
Abstract
Tyrosinases are an ubiquitous group of copper containing metalloenzymes that hydroxylate and oxidize phenolic molecules. In an application context the term 'tyrosinase' usually refers to 'mushroom tyrosinase' consisting of a mixture of isoenzymes and containing a number of enzymatic side-activities. We describe a protocol for the efficient heterologous production of tyrosinase 4 from Agaricus bisporus in Escherichia coli. Applying this procedure a pure preparation of a single isoform of latent tyrosinase can be achieved at a yield of 140 mg per liter of autoinducing culture medium. This recombinant protein possesses the same fold as the enzyme purified from the natural source as evidenced by single crystal X-ray diffraction. The latent enzyme can be activated by limited proteolysis with proteinase K which cleaves the polypeptide chain after K382, only one The latent enzyme can amino acid before the main in-vivo activation site. Latent tyrosinase can be used as obtained and enzymatic activity may be induced in the reaction mixture by the addition of an ionic detergent (e.g. 2 mM SDS). The proteolytically activated mushroom tyrosinase shows >50% of its maximal activity in the range of pH 5 to 10 and accepts a wide range of substrates including mono- and diphenols, flavonols and chalcones.
Collapse
Affiliation(s)
- Matthias Pretzler
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - Aleksandar Bijelic
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria.
| |
Collapse
|
47
|
Haudecoeur R, Carotti M, Gouron A, Maresca M, Buitrago E, Hardré R, Bergantino E, Jamet H, Belle C, Réglier M, Bubacco L, Boumendjel A. 2-Hydroxypyridine- N-oxide-Embedded Aurones as Potent Human Tyrosinase Inhibitors. ACS Med Chem Lett 2017; 8:55-60. [PMID: 28105275 DOI: 10.1021/acsmedchemlett.6b00369] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/17/2016] [Indexed: 01/31/2023] Open
Abstract
With the aim to develop effective and selective human tyrosinase inhibitors, we investigated aurone derivatives whose B-ring was replaced by a non-oxidizable 2-hydroxypyridine-N-oxide (HOPNO) moiety. These aurones were synthesized and evaluated as inhibitors of purified human tyrosinase. Excellent inhibition activity was revealed and rationalized by theoretical calculations. The aurone backbone was especially found to play a crucial role, as the HOPNO moiety alone provided very modest activity on human tyrosinase. Furthermore, the in vitro activity was confirmed by measuring the melanogenesis suppression ability of the compounds in melanoma cell lysates and whole cells. Our study reveals that HOPNO-embedded 6-hydroxyaurone is to date the most effective inhibitor of isolated human tyrosinase. Owing to its low toxicity and its high inhibition activity, it could represent a milestone on the path toward new valuable agents in dermocosmetics, as well as in medical fields where it was recently suggested that tyrosinase could play key roles.
Collapse
Affiliation(s)
- Romain Haudecoeur
- Univ. Grenoble-Alpes/CNRS, DPM UMR 5063, CS 40700, 38058 Grenoble, France
| | - Marcello Carotti
- Department
of Biology, University of Padova, Via Ugo Bassi 58b, Padova 35121, Italy
| | - Aurélie Gouron
- Univ. Grenoble-Alpes/CNRS, DCM UMR 5250, CS 40700, 38058 Grenoble, France
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Elina Buitrago
- Univ. Grenoble-Alpes/CNRS, DPM UMR 5063, CS 40700, 38058 Grenoble, France
- Univ. Grenoble-Alpes/CNRS, DCM UMR 5250, CS 40700, 38058 Grenoble, France
| | - Renaud Hardré
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | | | - Hélène Jamet
- Univ. Grenoble-Alpes/CNRS, DCM UMR 5250, CS 40700, 38058 Grenoble, France
| | - Catherine Belle
- Univ. Grenoble-Alpes/CNRS, DCM UMR 5250, CS 40700, 38058 Grenoble, France
| | - Marius Réglier
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Luigi Bubacco
- Department
of Biology, University of Padova, Via Ugo Bassi 58b, Padova 35121, Italy
| | - Ahcène Boumendjel
- Univ. Grenoble-Alpes/CNRS, DPM UMR 5063, CS 40700, 38058 Grenoble, France
| |
Collapse
|