1
|
Shi M, Wei Y, Guo R, Luo F. Integrated Analysis Identified TGFBI as a Biomarker of Disease Severity and Prognosis Correlated with Immune Infiltrates in Patients with Sepsis. J Inflamm Res 2024; 17:2285-2298. [PMID: 38645878 PMCID: PMC11027929 DOI: 10.2147/jir.s456132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Background Sepsis is a major contributor to morbidity and mortality among hospitalized patients. This study aims to identify markers associated with the severity and prognosis of sepsis, providing new approaches for its management and treatment. Methods Data were mined from the Gene Expression Omnibus (GEO) databases and were analyzed by multiple statistical methods like the Spearman correlation coefficient, Kaplan-Meier analysis, Cox regression analysis, and functional enrichment analysis. Candidate indicator' associations with immune infiltration and roles in sepsis development were evaluated. Additionally, we employed techniques such as flow cytometry and neutral red staining to evaluate its impact on macrophage functions like polarization and phagocytosis. Results Twenty-eight genes were identified as being closely linked to the severity of sepsis, among which transforming growth factor beta induced (TGFBI) emerged as a distinct marker for predicting clinical outcomes. Notably, reductions in TGFBI expression during sepsis correlate with poor prognosis and rapid disease progression. Elevated expression of TGFBI has been observed to mitigate abnormalities in sepsis-related immune cell infiltration that are critical to the pathogenesis and prognosis of the disease, including but not limited to type 17 T helper cells and activated CD8 T cells. Moreover, the protein-protein interaction network revealed the top ten genes that interact with TGFBI, showing significant involvement in the regulation of the actin cytoskeleton, extracellular matrix-receptor interactions, and phagosomes. These are pivotal elements in the formation of phagocytic cups by macrophages, squaring the findings of the Human Protein Atlas. Additionally, we discovered that TGFBI expression was significantly higher in M2-like macrophages, and its upregulation was found to inhibit lipopolysaccharide-induced polarization and phagocytosis in M1-like macrophages, thereby playing a role in preventing the onset of inflammation. Conclusion TGFBI warrants additional exploration as a promising biomarker for assessing illness severity and prognosis in patients with sepsis, considering its significant association with immunological and inflammatory responses in this condition.
Collapse
Affiliation(s)
- Mingjie Shi
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, People’s Republic of China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, People’s Republic of China
| | - Yue Wei
- Department of Ultrasound, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, People’s Republic of China
| | - Runmin Guo
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, People’s Republic of China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, People’s Republic of China
| | - Fei Luo
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, People’s Republic of China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, People’s Republic of China
| |
Collapse
|
2
|
Atorrasagasti C, Onorato AM, Mazzolini G. The role of SPARC (secreted protein acidic and rich in cysteine) in the pathogenesis of obesity, type 2 diabetes, and non-alcoholic fatty liver disease. J Physiol Biochem 2023; 79:815-831. [PMID: 36018492 DOI: 10.1007/s13105-022-00913-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022]
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is an extracellular matrix glycoprotein with pleiotropic functions, which is expressed in adipose, hepatic, muscular, and pancreatic tissue. Particularly, several studies demonstrated that SPARC is an important player in the context of obesity, diabetes, and fatty liver disease including advanced hepatic fibrosis and hepatocellular carcinoma. Evidence in murine and human samples indicates that SPARC is involved in adipogenesis, cellular metabolism, extracellular matrix modulation, glucose and lipid metabolism, among others. Furthermore, studies in SPARC knockout mouse model showed that SPARC contributes to adipose tissue formation, non-alcoholic fatty liver disease (NAFLD), and diabetes. Hence, SPARC may represent a novel and interesting target protein for future therapeutic interventions or a biomarker of disease progression. This review summarizes the role of SPARC in the pathophysiology of obesity, and extensively revised SPARC functions in physiological and pathological adipose tissue deposition, muscle metabolism, liver, and diabetes-related pathways.
Collapse
Affiliation(s)
- Catalina Atorrasagasti
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Av. Pte. Perón 1500 (B1629AHJ) Derqui-Pilar, Buenos Aires, Argentina.
| | - Agostina M Onorato
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Av. Pte. Perón 1500 (B1629AHJ) Derqui-Pilar, Buenos Aires, Argentina
| | - Guillermo Mazzolini
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Av. Pte. Perón 1500 (B1629AHJ) Derqui-Pilar, Buenos Aires, Argentina.
- Liver Unit, Hospital Universitario Austral, Universidad Austral, Av. Pte. Perón 1500 (B1629AHJ) Derqui-Pilar, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Wojtowicz K, Świerczewska M, Nowicki M, Januchowski R. The TGFBI gene and protein expression in topotecan resistant ovarian cancer cell lines. Adv Med Sci 2023; 68:379-385. [PMID: 37806183 DOI: 10.1016/j.advms.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE The primary limiting factor in achieving cures for patients with cancer, particularly ovarian cancer, is drug resistance. The mechanisms of drug resistance of cancer cells during chemotherapy may include compounds of the extracellular matrix, such as the transforming growth factor-beta-induced protein (TGFBI). In this study, we aimed to analyze the TGFBI gene and protein expression in different sensitive and drug-resistant ovarian cancer cell lines, as well as test if TGFBI can be involved in the response to topotecan (TOP) at the very early stages of treatment. MATERIALS AND METHODS In this study, we conducted a detailed analysis of TGFBI expression in different ovarian cancer cell lines (A2780, A2780TR1, A2780TR2, W1, W1TR, SKOV-3, PEA1, PEA2 and PEO23). The level of TGFBI mRNA (QPCR), intracellular and extracellular protein (Western blot analysis) were assessed in this study. RESULTS We observed upregulation of TGFBI mRNA in drug-resistant cell lines and estrogen-receptor positive cell lines, which was supported by overexpression of both intracellular and extracellular TGFBI protein. We also showed the TGFBI expression after a short period of treatment of sensitive ovarian cancer cell lines with TOP. CONCLUSION The expression of TGFBI in ovarian cancer cell lines suggests its role in the development of drug resistance.
Collapse
Affiliation(s)
- Karolina Wojtowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Radosław Januchowski
- Department of Anatomy and Histology, Collegium Medicum of Zielona Gora, Zielona Gora, Poland
| |
Collapse
|
4
|
Jazwinska DE, Kulawiec DG, Zervantonakis IK. Cancer-mesothelial and cancer-macrophage interactions in the ovarian cancer microenvironment. Am J Physiol Cell Physiol 2023; 325:C721-C730. [PMID: 37545408 PMCID: PMC10635648 DOI: 10.1152/ajpcell.00461.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The metastatic ovarian cancer microenvironment is characterized by an intricate interaction network between cancer cells and host cells. This complex heterotypic cancer-host cell crosstalk results in an environment that promotes cancer cell metastasis and treatment resistance, leading to poor patient prognosis and survival. In this review, we focus on two host cell types found in the ovarian cancer microenvironment: mesothelial cells and tumor-associated macrophages. Mesothelial cells make up the protective lining of organs in the abdominal cavity. Cancer cells attach and invade through the mesothelial monolayer to form metastatic lesions. Crosstalk between mesothelial and cancer cells can contribute to metastatic progression and chemotherapy resistance. Tumor-associated macrophages are the most abundant immune cell type in the ovarian cancer microenvironment with heterogeneous subpopulations exhibiting protumor or antitumor functions. Macrophage reprogramming toward a protumor or antitumor state can be influenced by chemotherapy and communication with cancer cells, resulting in cancer cell invasion and treatment resistance. A better understanding of cancer-mesothelial and cancer-macrophage crosstalk will uncover biomarkers of metastatic progression and therapeutic targets to restore chemotherapy sensitivity.
Collapse
Affiliation(s)
- Dorota E Jazwinska
- Department of Bioengineering and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Diana G Kulawiec
- Department of Bioengineering and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ioannis K Zervantonakis
- Department of Bioengineering and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
5
|
Jiang S, Sun HF, Li S, Zhang N, Chen JS, Liu JX. SPARC: a potential target for functional nanomaterials and drugs. Front Mol Biosci 2023; 10:1235428. [PMID: 37577749 PMCID: PMC10419254 DOI: 10.3389/fmolb.2023.1235428] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), also termed osteonectin or BM-40, is a matricellular protein which regulates cell adhesion, extracellular matrix production, growth factor activity, and cell cycle. Although SPARC does not perform a structural function, it, however, modulates interactions between cells and the surrounding extracellular matrix due to its anti-proliferative and anti-adhesion properties. The overexpression of SPARC at sites, including injury, regeneration, obesity, cancer, and inflammation, reveals its application as a prospective target and therapeutic indicator in the treatment and assessment of disease. This article comprehensively summarizes the mechanism of SPARC overexpression in inflammation and tumors as well as the latest research progress of functional nanomaterials in the therapy of rheumatoid arthritis and tumors by manipulating SPARC as a new target. This article provides ideas for using functional nanomaterials to treat inflammatory diseases through the SPARC target. The purpose of this article is to provide a reference for ongoing disease research based on SPARC-targeted therapy.
Collapse
Affiliation(s)
- Shan Jiang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Hui-Feng Sun
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Shuang Li
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Ning Zhang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Ji-Song Chen
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, China
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Poplawski P, Alseekh S, Jankowska U, Skupien-Rabian B, Iwanicka-Nowicka R, Kossowska H, Fogtman A, Rybicka B, Bogusławska J, Adamiok-Ostrowska A, Hanusek K, Hanusek J, Koblowska M, Fernie AR, Piekiełko-Witkowska A. Coordinated reprogramming of renal cancer transcriptome, metabolome and secretome associates with immune tumor infiltration. Cancer Cell Int 2023; 23:2. [PMID: 36604669 PMCID: PMC9814214 DOI: 10.1186/s12935-022-02845-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer. The molecules (proteins, metabolites) secreted by tumors affect their extracellular milieu to support cancer progression. If secreted in amounts detectable in plasma, these molecules can also serve as useful, minimal invasive biomarkers. The knowledge of ccRCC tumor microenvironment is fragmentary. In particular, the links between ccRCC transcriptome and the composition of extracellular milieu are weakly understood. In this study, we hypothesized that ccRCC transcriptome is reprogrammed to support alterations in tumor microenvironment. Therefore, we comprehensively analyzed ccRCC extracellular proteomes and metabolomes as well as transcriptomes of ccRCC cells to find molecules contributing to renal tumor microenvironment. METHODS Proteomic and metabolomics analysis of conditioned media isolated from normal kidney cells as well as five ccRCC cell lines was performed using mass spectrometry, with the following ELISA validation. Transcriptomic analysis was done using microarray analysis and validated using real-time PCR. Independent transcriptomic and proteomic datasets of ccRCC tumors were used for the analysis of gene and protein expression as well as the level of the immune infiltration. RESULTS Renal cancer secretome contained 85 proteins detectable in human plasma, consistently altered in all five tested ccRCC cell lines. The top upregulated extracellular proteins included SPARC, STC2, SERPINE1, TGFBI, while downregulated included transferrin and DPP7. The most affected extracellular metabolites were increased 4-hydroxy-proline, succinic acid, cysteine, lactic acid and downregulated glutamine. These changes were associated with altered expression of genes encoding the secreted proteins (SPARC, SERPINE1, STC2, DPP7), membrane transporters (SLC16A4, SLC6A20, ABCA12), and genes involved in protein trafficking and secretion (KIF20A, ANXA3, MIA2, PCSK5, SLC9A3R1, SYTL3, and WNTA7). Analogous expression changes were found in ccRCC tumors. The expression of SPARC predicted the infiltration of ccRCC tumors with endothelial cells. Analysis of the expression of the 85 secretome genes in > 12,000 tumors revealed that SPARC is a PanCancer indicator of cancer-associated fibroblasts' infiltration. CONCLUSIONS Transcriptomic reprogramming of ccRCC supports the changes in an extracellular milieu which are associated with immune infiltration. The proteins identified in our study represent valuable cancer biomarkers detectable in plasma.
Collapse
Affiliation(s)
- Piotr Poplawski
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Saleh Alseekh
- grid.418390.70000 0004 0491 976XMax-Planck Institute of Molecular Plant Physiology, Golm, 14476 Potsdam, Germany ,grid.510916.a0000 0004 9334 5103Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Urszula Jankowska
- grid.5522.00000 0001 2162 9631Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Bozena Skupien-Rabian
- grid.5522.00000 0001 2162 9631Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Roksana Iwanicka-Nowicka
- grid.12847.380000 0004 1937 1290Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland ,grid.413454.30000 0001 1958 0162Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Helena Kossowska
- grid.12847.380000 0004 1937 1290Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Anna Fogtman
- grid.413454.30000 0001 1958 0162Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Beata Rybicka
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Joanna Bogusławska
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Anna Adamiok-Ostrowska
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Karolina Hanusek
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Jan Hanusek
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Marta Koblowska
- grid.12847.380000 0004 1937 1290Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland ,grid.413454.30000 0001 1958 0162Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Alisdair R. Fernie
- grid.418390.70000 0004 0491 976XMax-Planck Institute of Molecular Plant Physiology, Golm, 14476 Potsdam, Germany ,grid.510916.a0000 0004 9334 5103Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Agnieszka Piekiełko-Witkowska
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
7
|
Zhu EY, Dupuy AJ. Machine learning approach informs biology of cancer drug response. BMC Bioinformatics 2022; 23:184. [PMID: 35581546 PMCID: PMC9112473 DOI: 10.1186/s12859-022-04720-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
Background The mechanism of action for most cancer drugs is not clear. Large-scale pharmacogenomic cancer cell line datasets offer a rich resource to obtain this knowledge. Here, we present an analysis strategy for revealing biological pathways that contribute to drug response using publicly available pharmacogenomic cancer cell line datasets. Methods We present a custom machine-learning based approach for identifying biological pathways involved in cancer drug response. We test the utility of our approach with a pan-cancer analysis of ML210, an inhibitor of GPX4, and a melanoma-focused analysis of inhibitors of BRAFV600. We apply our approach to reveal determinants of drug resistance to microtubule inhibitors. Results Our method implicated lipid metabolism and Rac1/cytoskeleton signaling in the context of ML210 and BRAF inhibitor response, respectively. These findings are consistent with current knowledge of how these drugs work. For microtubule inhibitors, our approach implicated Notch and Akt signaling as pathways that associated with response. Conclusions Our results demonstrate the utility of combining informed feature selection and machine learning algorithms in understanding cancer drug response. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04720-z.
Collapse
Affiliation(s)
- Eliot Y Zhu
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA.,Cancer Biology Graduate Program, The University of Iowa, Iowa City, IA, USA.,The Medical Scientist Training Program, The University of Iowa, Iowa City, IA, USA
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA. .,Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
8
|
Natella F, Guantario B, Ambra R, Ranaldi G, Intorre F, Burki C, Canali R. Human Metabolites of Hamaforton™ ( Hamamelis virginiana L. Extract) Modulates Fibroblast Extracellular Matrix Components in Response to UV-A Irradiation. Front Pharmacol 2022; 12:747638. [PMID: 34975471 PMCID: PMC8719534 DOI: 10.3389/fphar.2021.747638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hamamelis virginiana L. a rich source of both condensed and hydrolyzable tannins, utilized to treat dermatological disorders. Since no experimental and clinical data is available for its use as oral formulation in skin related disorders, the purpose of this study was to investigate the effects of Hamaforton™ (Hamamelis virginiana extract) metabolites on gene dysregulation induced by ultraviolet A radiation in cultured human dermal fibroblasts. A combination of in vivo and ex vivo experimental designs has been exploited in order to take into account the polyphenol metabolic transformation that occurs in humans. 12 healthy volunteers received either a capsule of Hamaforton™ or a placebo in a randomized, blinded crossover trial. After Hamaforton™ ingestion, the kinetic of appearance of galloyl derivatives was measured in plasma. Then, in the ex vivo experiment, the serum isolated after supplementation was used as a source of Hamaforton™ metabolites to enrich the culture medium of dermal fibroblasts exposed to ultraviolet A radiation. Three different gallic acid metabolites (4-O-methyl gallic acid, 4-O-methyl gallic acid sulphate and trimethyl gallic acid glucuronide) were identified in volunteer plasma. While, ultraviolet A irradiation of dermal fibroblasts affected the expression of extracellular matrix genes, the presence of Hamaforton™ metabolites in the culture media did not affect the expression of most of those genes. However, the activation of the expression of 10 different genes involved in repair processes for the maintenance of skin integrity, suggest that the metabolites can play a role in damage recovery. To our knowledge, this is the first study that demonstrates the bioavailability of Hamaforton™ phenolic compounds, and the effects of its metabolites on cultured dermal fibroblast response to ultraviolet A irradiation.
Collapse
Affiliation(s)
- Fausta Natella
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| | - Barbara Guantario
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| | - Roberto Ambra
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| | - Giulia Ranaldi
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| | - Federica Intorre
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| | | | - Raffaella Canali
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| |
Collapse
|
9
|
Zhu YS, Zhang JN, Mo TT, Jiang C, Ma RC, Chen L. Discoidin domain receptor 2 activation of p38 mitogen-activated protein kinase as an important pathway for osteonectin-regulating osteoblast mineralization. J Orthop Surg Res 2021; 16:711. [PMID: 34876214 PMCID: PMC8650413 DOI: 10.1186/s13018-021-02860-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022] Open
Abstract
Objective The present study aimed to determine the role of the discoidin domain receptor 2 (DDR2) in the osteonectin (ON) regulation of osteoblast mineralization through the activation of p38 mitogen-activated protein kinase (MAPK). Methods Four groups were established: the ON group, the inhibitor group, the Ddr2-small interfering ribonucleic acid (siRNA) group, and the control group. Osteoblasts from the parietal bones of neonatal Sprague–Dawley rats were isolated and cultured. In the ON group, 1 µg/mL ON was added to the osteoblasts. The gene expressions of collagen 1 (Col 1) and Ddr2 were detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In the inhibitor group, the osteoblasts were added to WRG-28 (a specific DDR2 inhibitor), and in the Ddr2-siRNA group, the osteoblasts were transfected with Ddr2-siRNA. The gene and protein expressions of DDR2, bone sialoprotein, osteocalcin, osteopontin, and p38 MAPK were determined using RT-qPCR and western blot analysis. Alizarin red staining and transmission electron microscopy were used to detect mineralization. Results The results showed that ON enhanced the osteoblast Col 1 and Ddr2 gene expressions, while the use of a Ddr2-siRNA/DDR2-blocker decreased the OPN, BSP, OCN, and P38 gene and protein expressions and reduced osteoblast cellular activity and mineralized nodules. Conclusion The present study demonstrated that DDR2 activation of p38 MAPK is an important approach to ON-regulating osteoblast mineralization.
Collapse
Affiliation(s)
- Yun-Sen Zhu
- Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Chuan'an Nan Road NO 333, Wenling, 317500, Zhejiang, China
| | - Jiang-Nan Zhang
- Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Chuan'an Nan Road NO 333, Wenling, 317500, Zhejiang, China
| | - Ting-Ting Mo
- Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Chuan'an Nan Road NO 333, Wenling, 317500, Zhejiang, China
| | - Chang Jiang
- Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Chuan'an Nan Road NO 333, Wenling, 317500, Zhejiang, China.
| | - Ru-Chao Ma
- Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Chuan'an Nan Road NO 333, Wenling, 317500, Zhejiang, China
| | - Liang Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| |
Collapse
|
10
|
Lecker LSM, Berlato C, Maniati E, Delaine-Smith R, Pearce OMT, Heath O, Nichols SJ, Trevisan C, Novak M, McDermott J, Brenton JD, Cutillas PR, Rajeeve V, Hennino A, Drapkin R, Loessner D, Balkwill FR. TGFBI Production by Macrophages Contributes to an Immunosuppressive Microenvironment in Ovarian Cancer. Cancer Res 2021; 81:5706-5719. [PMID: 34561272 PMCID: PMC9397609 DOI: 10.1158/0008-5472.can-21-0536] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/11/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023]
Abstract
The tumor microenvironment evolves during malignant progression, with major changes in nonmalignant cells, cytokine networks, and the extracellular matrix (ECM). In this study, we aimed to understand how the ECM changes during neoplastic transformation of serous tubal intraepithelial carcinoma lesions (STIC) into high-grade serous ovarian cancers (HGSOC). Analysis of the mechanical properties of human fallopian tubes (FT) and ovaries revealed that normal FT and fimbria had a lower tissue modulus, a measure of stiffness, than normal or diseased ovaries. Proteomic analysis of the matrisome fraction between FT, fimbria, and ovaries showed significant differences in the ECM protein TGF beta induced (TGFBI, also known as βig-h3). STIC lesions in the fimbria expressed high levels of TGFBI, which was predominantly produced by CD163-positive macrophages proximal to STIC epithelial cells. In vitro stimulation of macrophages with TGFβ and IL4 induced secretion of TGFBI, whereas IFNγ/LPS downregulated macrophage TGFBI expression. Immortalized FT secretory epithelial cells carrying clinically relevant TP53 mutations stimulated macrophages to secrete TGFBI and upregulated integrin αvβ3, a putative TGFBI receptor. Transcriptomic HGSOC datasets showed a significant correlation between TGFBI expression and alternatively activated macrophage signatures. Fibroblasts in HGSOC metastases expressed TGFBI and stimulated macrophage TGFBI production in vitro. Treatment of orthotopic mouse HGSOC tumors with an anti-TGFBI antibody reduced peritoneal tumor size, increased tumor monocytes, and activated β3-expressing unconventional T cells. In conclusion, TGFBI may favor an immunosuppressive microenvironment in STICs that persists in advanced HGSOC. Furthermore, TGFBI may be an effector of the tumor-promoting actions of TGFβ and a potential therapeutic target. SIGNIFICANCE: Analysis of ECM changes during neoplastic transformation reveals a role for TGFBI secreted by macrophages in immunosuppression in early ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Owen Heath
- Barts Cancer Institute, London, United Kingdom
| | | | - Caterina Trevisan
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Department of Women and Children Health, University of Padova, Padova, Italy
| | - Marian Novak
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | | | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Ana Hennino
- Cancer Research Center of Lyon, UMR INSERM 1052, Lyon, France
| | - Ronny Drapkin
- Ovarian Cancer Research Center, Perelman School of Medicine, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
11
|
Wang T, Wagner A, Gehwolf R, Yan W, Passini FS, Thien C, Weissenbacher N, Lin Z, Lehner C, Teng H, Wittner C, Zheng Q, Dai J, Ni M, Wang A, Papadimitriou J, Leys T, Tuan RS, Senck S, Snedeker JG, Tempfer H, Jiang Q, Zheng MH, Traweger A. Load-induced regulation of tendon homeostasis by SPARC, a genetic predisposition factor for tendon and ligament injuries. Sci Transl Med 2021; 13:13/582/eabe5738. [PMID: 33627488 DOI: 10.1126/scitranslmed.abe5738] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/03/2021] [Indexed: 01/18/2023]
Abstract
Tendons and tendon interfaces have a very limited regenerative capacity, rendering their injuries clinically challenging to resolve. Tendons sense muscle-mediated load; however, our knowledge on how loading affects tendon structure and functional adaption remains fragmentary. Here, we provide evidence that the matricellular protein secreted protein acidic and rich in cysteine (SPARC) is critically involved in the mechanobiology of tendons and is required for tissue maturation, homeostasis, and enthesis development. We show that tendon loading at the early postnatal stage leads to tissue hypotrophy and impaired maturation of Achilles tendon enthesis in Sparc -/- mice. Treadmill training revealed a higher prevalence of spontaneous tendon ruptures and a net catabolic adaptation in Sparc -/- mice. Tendon hypoplasia was attenuated in Sparc -/- mice in response to muscle unloading with botulinum toxin A. In vitro culture of Sparc -/- three-dimensional tendon constructs showed load-dependent impairment of ribosomal S6 kinase activation, resulting in reduced type I collagen synthesis. Further, functional calcium imaging revealed that lower stresses were required to trigger mechanically induced responses in Sparc -/- tendon fascicles. To underscore the clinical relevance of the findings, we further demonstrate that a missense mutation (p.Cys130Gln) in the follistatin-like domain of SPARC, which causes impaired protein secretion and type I collagen fibrillogenesis, is associated with tendon and ligament injuries in patients. Together, our results demonstrate that SPARC is a key extracellular matrix protein essential for load-induced tendon tissue maturation and homeostasis.
Collapse
Affiliation(s)
- Tao Wang
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Western Australia 6009,Australia.,Division of Orthopaedic Surgery, Department of Surgery, Guangdong Provincial People'sHospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510000, China
| | - Andrea Wagner
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University-Spinal Cord Injury and Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Renate Gehwolf
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University-Spinal Cord Injury and Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Wenjin Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Fabian S Passini
- University Hospital Balgrist, University of Zurich, Zürich, Switzerland.,Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| | - Christine Thien
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Western Australia 6009,Australia
| | - Nadja Weissenbacher
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University-Spinal Cord Injury and Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Zhen Lin
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Western Australia 6009,Australia.,Division of Orthopaedic Surgery, Department of Surgery, Guangdong Provincial People'sHospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510000, China
| | - Christine Lehner
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University-Spinal Cord Injury and Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Huajian Teng
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210008, China
| | - Claudia Wittner
- Computed Tomography Research Group, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Qiujian Zheng
- Division of Orthopaedic Surgery, Department of Surgery, Guangdong Provincial People'sHospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510000, China
| | - Jin Dai
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ming Ni
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Western Australia 6009,Australia.,Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Allan Wang
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Western Australia 6009,Australia
| | - John Papadimitriou
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Western Australia 6009,Australia.,PathWest Laboratories, Nedlands, Western Australia 6009, Australia
| | - Toby Leys
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Western Australia 6009,Australia
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Institute for Tissue Engineering and Regenerative Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sasha Senck
- Computed Tomography Research Group, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Jess G Snedeker
- University Hospital Balgrist, University of Zurich, Zürich, Switzerland.,Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| | - Herbert Tempfer
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University-Spinal Cord Injury and Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Ming H Zheng
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Western Australia 6009,Australia. .,Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University-Spinal Cord Injury and Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria. .,Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
12
|
Belhabib I, Zaghdoudi S, Lac C, Bousquet C, Jean C. Extracellular Matrices and Cancer-Associated Fibroblasts: Targets for Cancer Diagnosis and Therapy? Cancers (Basel) 2021; 13:3466. [PMID: 34298680 PMCID: PMC8303391 DOI: 10.3390/cancers13143466] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Solid cancer progression is dictated by neoplastic cell features and pro-tumoral crosstalks with their microenvironment. Stroma modifications, such as fibroblast activation into cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM) remodeling, are now recognized as critical events for cancer progression and as potential therapeutic or diagnostic targets. The recent appreciation of the key, complex and multiple roles of the ECM in cancer and of the CAF diversity, has revolutionized the field and raised innovative but challenging questions. Here, we rapidly present CAF heterogeneity in link with their specific ECM remodeling features observed in cancer, before developing each of the impacts of such ECM modifications on tumor progression (survival, angiogenesis, pre-metastatic niche, chemoresistance, etc.), and on patient prognosis. Finally, based on preclinical studies and recent results obtained from clinical trials, we highlight key mechanisms or proteins that are, or may be, used as potential therapeutic or diagnostic targets, and we report and discuss benefits, disappointments, or even failures, of recently reported stroma-targeting strategies.
Collapse
Affiliation(s)
| | | | | | | | - Christine Jean
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31037 Toulouse, France; (I.B.); (S.Z.); (C.L.); (C.B.)
| |
Collapse
|
13
|
Corona A, Blobe GC. The role of the extracellular matrix protein TGFBI in cancer. Cell Signal 2021; 84:110028. [PMID: 33940163 DOI: 10.1016/j.cellsig.2021.110028] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
The secreted extracellular protein, transforming growth factor beta induced (TGFBI or βIGH3), has roles in regulating numerous biological functions, including cell adhesion and bone formation, both during embryonic development and during the pathogenesis of human disease. TGFBI has been most studied in the context of hereditary corneal dystrophies, where mutations in TGFBI result in accumulation of TGFBI in the cornea. In cancer, early studies focused on TGFBI as a tumor suppressor, in part by promoting chemotherapy sensitivity. However, in established tumors, TGFBI largely has a role in promoting tumor progression, with elevated levels correlating to poorer clinical outcomes. As an important regulator of cancer progression, TGFBI expression and function is tightly regulated by numerous mechanisms including epigenetic silencing through promoter methylation and microRNAs. Mechanisms to target TGFBI have potential clinical utility in treating advanced cancers, while assessing TGFBI levels could be a biomarker for chemotherapy resistance and tumor progression.
Collapse
Affiliation(s)
- Armando Corona
- Department of Pharmacology and Cancer Biology, Duke University Medical center, USA
| | - Gerard C Blobe
- Department of Pharmacology and Cancer Biology, Duke University Medical center, USA; Department of Medicine, Duke University Medical Center, USA.
| |
Collapse
|
14
|
Eymerit-Morin C, Ilenko A, Gaillard T, Varinot J, Compérat E, Bendifallah S, Darai E. PD-L1 expression with QR1 and E1L3N antibodies according to histological ovarian cancer subtype: A series of 232 cases. Eur J Histochem 2021; 65. [PMID: 33728864 PMCID: PMC7967270 DOI: 10.4081/ejh.2021.3185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Therapeutic strategies for epithelial ovarian cancers are evolving with the advent of immunotherapy, such as PD-L1 inhibitors, with encouraging results. However, little data are available on PDL-1 expression in ovarian cancers. Thus, we set out to determine the PD-L1 expression according to histological subtype. We evaluated the expression of two PD-L1 clones – QR1 and E1L3N – with two scores, one based on the percentage of labeled tumor cells (tumor proportion score, TPS) and the other on labeled immune cells (combined proportion score, CPS) in a consecutive retrospective series of 232 ovarian cancers. PD-L1 expression was more frequent in high grade serous carcinoma (27.5% with E1L3N clone and 41.5% with QR1 clone), grade 3 endometrioid carcinoma (25% with E1L3N clone and 50% with QR1 clone), and clear-cell carcinomas (27.3% with E1L3N clone and 29.6% with QR1 clone) than other histological subtypes with CPS score. Using the CPS score, 17% of cases were labeled with E1L3N vs 28% with QR1. Using the TPS score, 14% of cases were positive to E1L3N vs 17% for QR1. For TPS and CPS, respectively, 77% and 78% of the QR1 cases were concordant with E1L3N for the thresholds of 1%. Overall and progression-free survival between PD-L1 positive and PD-L1 negative patients were not different across all histological types, and each subtype in particular for serous carcinomas expressing PD-L1. Expression of PD-L1 is relatively uncommon in epithelium ovarian tumors. When positive, usually <10% of tumor cells are labeled. QR1 clone and CPS appear the best tools to evaluate PD-L1 expression.
Collapse
Affiliation(s)
- Caroline Eymerit-Morin
- Department of Anatomopathology, Tenon University Hospital, Assistance publique des Hopitaux de Paris (APHP.6), Sorbonne Université, Paris.
| | - Anna Ilenko
- Gynecologic and Obstetrics Department, Tenon University Hospital, Assistance publique des Hôpitaux de Paris (APHP.6), Sorbonne Université, Paris.
| | - Thomas Gaillard
- Gynecologic and Obstetrics Department, Tenon University Hospital, Assistance publique des Hôpitaux de Paris (APHP.6), Sorbonne Université, Paris, France.
| | - Justine Varinot
- Department of Anatomopathology, Tenon University Hospital, Assistance publique des Hopitaux de Paris (APHP.6), Sorbonne Université, Paris.
| | - Eva Compérat
- Department of Anatomopathology, Tenon University Hospital, Assistance publique des Hopitaux de Paris (APHP.6), Sorbonne Université, Paris.
| | - Sofiane Bendifallah
- Gynecologic and Obstetrics Department, Tenon University Hospital, Assistance publique des Hôpitaux de Paris (APHP.6), Sorbonne Université, Paris.
| | - Emile Darai
- Gynecologic and Obstetrics Department, Tenon University Hospital, Assistance publique des Hôpitaux de Paris (APHP.6), Sorbonne Université, Paris.
| |
Collapse
|
15
|
Dasari S, Pandhiri T, Grassi T, Visscher DW, Multinu F, Agarwal K, Mariani A, Shridhar V, Mitra AK. Signals from the Metastatic Niche Regulate Early and Advanced Ovarian Cancer Metastasis through miR-4454 Downregulation. Mol Cancer Res 2020; 18:1202-1217. [PMID: 32350057 PMCID: PMC10788085 DOI: 10.1158/1541-7786.mcr-19-1162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/16/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022]
Abstract
Treatment of ovarian cancer is limited by extensive metastasis and yet it remains poorly understood. We have studied the critical step of metastatic colonization in the context of the productive interactions with the metastatic microenvironment with a goal of identifying key regulators. By combining miRNA expression analysis using an organotypic 3D culture model of early ovarian cancer metastasis with that of matched primary and metastatic tumors from 42 patients with ovarian cancer, we identified miR-4454 as a key regulator of both early colonization and advanced metastasis in patients with ovarian cancer. miR-4454 was downregulated in the metastasizing ovarian cancer cells through paracrine signals from microenvironmental fibroblasts, which promoted migration, invasion, proliferation, and clonogenic growth in ovarian cancer cells as well as their ability to penetrate through the outer layers of the omentum. Stable overexpression of miR-4454 decreased metastasis in ovarian cancer xenografts. Its mechanism of action was through the upregulation of its targets, secreted protein acidic and cysteine rich (SPARC) and BCL2 associated athanogene 5 (BAG5), which activated focal adhesion kinase (FAK) signaling, promoted mutant p53 gain of function by its stabilization, and inhibited apoptosis. Because microenvironment-induced downregulation of miR-4454 is essential for early and advanced metastasis, targeting it could be a promising therapeutic approach. IMPLICATIONS: This study identifies a miRNA, miR-4454, which is downregulated by signals from the microenvironment and promotes early and advanced ovarian cancer metastasis through its effects on FAK activation, mutant p53 stabilization, and apoptosis inhibition.
Collapse
Affiliation(s)
- Subramanyam Dasari
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Taruni Pandhiri
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Tommaso Grassi
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota
| | - Daniel W Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Francesco Multinu
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota
| | - Komal Agarwal
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
- Department of Obstetrics and Gynecology, St. Vincent Dunn Hospital, Bedford, Indiana
| | - Andrea Mariani
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota
| | - Viji Shridhar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Anirban K Mitra
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| |
Collapse
|
16
|
Abstract
Cancer is a complex disease with high incidence and mortality rates. The important role played by the tumor microenvironment in regulating oncogenesis, tumor growth, and metastasis is by now well accepted in the scientific community. SPARC is known to participate in tumor-stromal interactions and impact cancer growth in ambiguous ways, which either enhance or suppress cancer aggressiveness, in a context-dependent manner. p53 transcription factor, a well-established tumor suppressor, has been reported to promote tumor growth in certain situations, such as hypoxia, thus displaying a duality in its action. Although both proteins are being tested in clinical trials, the synergistic relation between them is yet to be explored in clinical practice. In this review, we address the controversial roles of SPARC and p53 as double agents in cancer, briefly summarizing the interaction found between these two molecules and its importance in cancer.
Collapse
|
17
|
Tan X, Li T, Zhu S, Zhong W, Li F, Wang Y. Induction of SPARC on Oxidative Stress, Inflammatory Phenotype Transformation, and Apoptosis of Human Brain Smooth Muscle Cells Via TGF-β1-NOX4 Pathway. J Mol Neurosci 2020; 70:1728-1741. [PMID: 32495004 DOI: 10.1007/s12031-020-01566-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 04/22/2020] [Indexed: 11/30/2022]
Abstract
Secreted protein acidic and rich in cysteine (SPARC) has a close association with inflammatory response and oxidative stress in tissues and is widely expressed in intracranial aneurysms (IAs), especially in smooth muscle cells. Therefore, it is inferred that SPARC might be involved in the formation and development of IAs through the inflammatory response pathway or oxidative stress pathway. The aim of this study is to investigate the pathological mechanism of SPARC in oxidative stress, inflammation, and apoptosis during the formation of IAs, as well as the involvement of TGF-β1 and NOX4 molecules. Human brain vascular smooth muscle cells (HBVSMCs) were selected as experimental objects. After the cells were stimulated by recombinant human SPARC protein in vitro, the ROS level in the cells was measured using an ID/ROS fluorescence analysis kit combined with fluorescence microscope and flow cytometry. The related protein expression in HBVSMCs was measured using western blotting. The mitochondrial membrane potential change was detected using a mitochondrial membrane potential kit and laser confocal microscope. The mechanism was explored by intervention with reactive oxygen scavengers N-acetylcysteine (NAC), TGF-β1 inhibitor (SD-208), and siRNA knockout. The results showed that SPARC upregulated the expression of NOX4 through the TGF-β1-dependent signaling pathway, leading to oxidative stress and pro-inflammatory matrix behavior and apoptosis in HBVSMCs. These findings demonstrated that SPARC may promote the progression of IAs.
Collapse
Affiliation(s)
- Xianjun Tan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Neurosurgery, People's Hospital of Chiping City, Liaocheng City, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China
| | - Tao Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China.,Department of Neurosurgery, the No.4 People's Hospital of Jinan, Jinan City, Shandong Province, China
| | - Shaowei Zhu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China
| | - Weiying Zhong
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China
| | - Feng Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunyan Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China.
| |
Collapse
|
18
|
Steitz AM, Steffes A, Finkernagel F, Unger A, Sommerfeld L, Jansen JM, Wagner U, Graumann J, Müller R, Reinartz S. Tumor-associated macrophages promote ovarian cancer cell migration by secreting transforming growth factor beta induced (TGFBI) and tenascin C. Cell Death Dis 2020; 11:249. [PMID: 32312959 PMCID: PMC7171168 DOI: 10.1038/s41419-020-2438-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
A central and unique aspect of high-grade serous ovarian carcinoma (HGSC) is the extensive transcoelomic spreading of tumor cell via the peritoneal fluid or malignant ascites. We and others identified tumor-associated macrophages (TAM) in the ascites as promoters of metastasis-associated processes like extracellular matrix (ECM) remodeling, tumor cell migration, adhesion, and invasion. The precise mechanisms and mediators involved in these functions of TAM are, however, largely unknown. We observed that HGSC migration is promoted by soluble mediators from ascites-derived TAM, which can be emulated by conditioned medium from monocyte-derived macrophages (MDM) differentiated in ascites to TAM-like asc-MDM. A similar effect was observed with IL-10-induced alternatively activated m2c-MDM but not with LPS/IFNγ-induced inflammatory m1-MDM. These observations provided the basis for deconvolution of the complex TAM secretome by performing comparative secretome analysis of matched triplets of different MDM phenotypes with different pro-migratory properties (asc-MDM, m2c-MDM, m1-MDM). Mass spectrometric analysis identified an overlapping set of nine proteins secreted by both asc-MDM and m2c-MDM, but not by m1-MDM. Of these, three proteins, i.e., transforming growth factor beta-induced (TGFBI) protein, tenascin C (TNC), and fibronectin (FN1), have been associated with migration-related functions. Intriguingly, increased ascites concentrations of TGFBI, TNC, and fibronectin were associated with short progression-free survival. Furthermore, transcriptome and secretome analyses point to TAM as major producers of these proteins, further supporting an essential role for TAM in promoting HGSC progression. Consistent with this hypothesis, we were able to demonstrate that the migration-inducing potential of asc-MDM and m2c-MDM secretomes is inhibited, at least partially, by neutralizing antibodies against TGFBI and TNC or siRNA-mediated silencing of TGFBI expression. In conclusion, the present study provides the first experimental evidence that TAM-derived TGFBI and TNC in ascites promote HGSC progression.
Collapse
Affiliation(s)
- Anna Mary Steitz
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Alina Steffes
- Clinic for Gynecology, Gynecologic Oncology and Endocrinology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Annika Unger
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Leah Sommerfeld
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Julia M Jansen
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.,The German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany.
| | - Silke Reinartz
- Clinic for Gynecology, Gynecologic Oncology and Endocrinology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| |
Collapse
|
19
|
Gerarduzzi C, Hartmann U, Leask A, Drobetsky E. The Matrix Revolution: Matricellular Proteins and Restructuring of the Cancer Microenvironment. Cancer Res 2020; 80:2705-2717. [PMID: 32193287 DOI: 10.1158/0008-5472.can-18-2098] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2019] [Accepted: 03/17/2020] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) surrounding cells is indispensable for regulating their behavior. The dynamics of ECM signaling are tightly controlled throughout growth and development. During tissue remodeling, matricellular proteins (MCP) are secreted into the ECM. These factors do not serve classical structural roles, but rather regulate matrix proteins and cell-matrix interactions to influence normal cellular functions. In the tumor microenvironment, it is becoming increasingly clear that aberrantly expressed MCPs can support multiple hallmarks of carcinogenesis by interacting with various cellular components that are coupled to an array of downstream signals. Moreover, MCPs also reorganize the biomechanical properties of the ECM to accommodate metastasis and tumor colonization. This realization is stimulating new research on MCPs as reliable and accessible biomarkers in cancer, as well as effective and selective therapeutic targets.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada. .,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elliot Drobetsky
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
20
|
Broekelmann TJ, Bodmer NK, Mecham RP. Identification of the growth factor-binding sequence in the extracellular matrix protein MAGP-1. J Biol Chem 2020; 295:2687-2697. [PMID: 31988245 DOI: 10.1074/jbc.ra119.010540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Microfibril-associated glycoprotein-1 (MAGP-1) is a component of vertebrate extracellular matrix (ECM) microfibrils that, together with the fibrillins, contributes to microfibril function. Many of the phenotypes associated with MAGP-1 gene inactivation are consistent with dysregulation of the transforming growth factor β (TGFβ)/bone morphogenetic protein (BMP) signaling system. We have previously shown that full-length MAGP-1 binds active TGFβ-1 and some BMPs. The work presented here further defines the growth factor-binding domain of MAGP-1. Using recombinant domains and synthetic peptides, along with surface plasmon resonance analysis to measure the kinetics of the MAGP-1-TGFβ-1 interaction, we localized the TGFβ- and BMP-binding site in MAGP-1 to a 19-amino acid-long, highly acidic sequence near the N terminus. This domain was specific for binding active, but not latent, TGFβ-1. Growth factor activity experiments revealed that TGFβ-1 retains signaling activity when complexed with MAGP-1. Furthermore, when bound to fibrillin, MAGP-1 retained the ability to interact with TGFβ-1, and active TGFβ-1 did not bind fibrillin in the absence of MAGP-1. The absence of MAGP was sufficient to raise the amount of total TGFβ stored in the ECM of cultured cells, suggesting that the MAGPs compete with the TGFβ large latent complex for binding to microfibrils. Together, these results indicate that MAGP-1 plays an active role in TGFβ signaling in the ECM.
Collapse
Affiliation(s)
- Thomas J Broekelmann
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Nicholas K Bodmer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
21
|
Melouane A, Yoshioka M, St-Amand J. Extracellular matrix/mitochondria pathway: A novel potential target for sarcopenia. Mitochondrion 2020; 50:63-70. [DOI: 10.1016/j.mito.2019.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/28/2019] [Accepted: 10/10/2019] [Indexed: 12/30/2022]
|
22
|
Impact of Fibroblast-Derived SPARC on Invasiveness of Colorectal Cancer Cells. Cancers (Basel) 2019; 11:cancers11101421. [PMID: 31554208 PMCID: PMC6827058 DOI: 10.3390/cancers11101421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/28/2019] [Accepted: 09/18/2019] [Indexed: 12/31/2022] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein modulating cell-matrix interactions and was found up-regulated in tumor stroma. To explore the effect of high stromal SPARC on colorectal cancer (CRC) cell behavior and clinical outcome, this study determined SPARC expression in patients suffering from stage II and III CRC using a publicly available mRNA data set and immunohistochemistry of tissue microarray sections. Moreover, in vitro co-culture models using CRC cell lines together with colon-associated fibroblasts were established to determine the effect of fibroblast-derived SPARC on cancer cells. In 466 patient samples, high SPARC mRNA was associated with a shorter disease-free survival. In 99 patients of the tissue microarray cohort, high stromal SPARC in the primary tumor was an independent predictor of shorter survival in patients with relapse (27 cases; HR = 4574, p = 0.004). In CRC cell lines, SPARC suppressed phosphorylation of focal adhesion kinase and stimulated cell migration. Colon-associated fibroblasts increased migration velocity by 30% and doubled track-length in SPARC-dependent manner. In a 3D co-culture system, fibroblast-derived SPARC enhanced tumor cell invasion. Taken together, stromal SPARC had a pro-metastatic impact in vitro and was a characteristic of aggressive tumors with poor prognosis in CRC patients.
Collapse
|
23
|
Lin HC, Ren Y, Lysaght AC, Kao SY, Stankovic KM. Proteome of normal human perilymph and perilymph from people with disabling vertigo. PLoS One 2019; 14:e0218292. [PMID: 31185063 PMCID: PMC6559673 DOI: 10.1371/journal.pone.0218292] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
The vast majority of hearing loss, the most common sensory impairment, and vertigo, which commonly causes falls, both reflect underlying dysfunction of inner ear cells. Perilymph sampling can thus provide molecular cues to hearing and balance disorders. While such "liquid biopsy" of the inner ear is not yet in routine clinical practice, previous studies have uncovered alterations in perilymph in patients with certain types of hearing loss. However, the proteome of perilymph from patients with intact hearing has been unknown. Furthermore, no complete characterization of perilymph from patients with vestibular dysfunction has been reported. Here, using liquid-chromatography with tandem mass spectrometry, we analyzed samples of normal perilymph collected from three patients with skull base meningiomas and intact hearing. We identified 228 proteins that were common across the samples, establishing a greatly expanded proteome of the previously inferred normal human perilymph. Further comparison to perilymph obtained from three patients with vestibular dysfunction with drop attacks due to Meniere's disease showed 38 proteins with significantly differential abundance. The abundance of four protein candidates with previously unknown roles in inner ear biology was validated in murine cochleae by immunohistochemistry and in situ hybridization: AACT, HGFAC, EFEMP1, and TGFBI. Together, these results motivate future work in characterizing the normal human perilymph and identifying biomarkers of inner ear disease.
Collapse
Affiliation(s)
- Hsiao-Chun Lin
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
| | - Yin Ren
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
| | - Andrew C. Lysaght
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, United States of America
| | - Shyan-Yuan Kao
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
| | - Konstantina M. Stankovic
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, United States of America
- Harvard Program in Therapeutic Science, Harvard University, Boston, United States of America
| |
Collapse
|
24
|
Hawkins AG, Basrur V, da Veiga Leprevost F, Pedersen E, Sperring C, Nesvizhskii AI, Lawlor ER. The Ewing Sarcoma Secretome and Its Response to Activation of Wnt/beta-catenin Signaling. Mol Cell Proteomics 2018; 17:901-912. [PMID: 29386236 PMCID: PMC5930412 DOI: 10.1074/mcp.ra118.000596] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 12/11/2022] Open
Abstract
Tumor: tumor microenvironment (TME) interactions are critical for tumor progression and the composition and structure of the local extracellular matrix (ECM) are key determinants of tumor metastasis. We recently reported that activation of Wnt/beta-catenin signaling in Ewing sarcoma cells induces widespread transcriptional changes that are associated with acquisition of a metastatic tumor phenotype. Significantly, ECM protein-encoding genes were found to be enriched among Wnt/beta-catenin induced transcripts, leading us to hypothesize that activation of canonical Wnt signaling might induce changes in the Ewing sarcoma secretome. To address this hypothesis, conditioned media from Ewing sarcoma cell lines cultured in the presence or absence of Wnt3a was collected for proteomic analysis. Label-free mass spectrometry was used to identify and quantify differentially secreted proteins. We then used in silico databases to identify only proteins annotated as secreted. Comparison of the secretomes of two Ewing sarcoma cell lines revealed numerous shared proteins, as well as a degree of heterogeneity, in both basal and Wnt-stimulated conditions. Gene set enrichment analysis of secreted proteins revealed that Wnt stimulation reproducibly resulted in increased secretion of proteins involved in ECM organization, ECM receptor interactions, and collagen formation. In particular, Wnt-stimulated Ewing sarcoma cells up-regulated secretion of structural collagens, as well as matricellular proteins, such as the metastasis-associated protein, tenascin C (TNC). Interrogation of published databases confirmed reproducible correlations between Wnt/beta-catenin activation and TNC and COL1A1 expression in patient tumors. In summary, this first study of the Ewing sarcoma secretome reveals that Wnt/beta-catenin activated tumor cells upregulate secretion of ECM proteins. Such Wnt/beta-catenin mediated changes are likely to impact on tumor: TME interactions that contribute to metastatic progression.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexey I Nesvizhskii
- §Pathology, and
- ¶Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
25
|
Yokobori T, Nishiyama M. TGF-β Signaling in Gastrointestinal Cancers: Progress in Basic and Clinical Research. J Clin Med 2017; 6:jcm6010011. [PMID: 28106769 PMCID: PMC5294964 DOI: 10.3390/jcm6010011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/31/2016] [Accepted: 01/16/2017] [Indexed: 12/18/2022] Open
Abstract
Transforming growth factor (TGF)-β superfamily proteins have many important biological functions, including regulation of tissue differentiation, cell proliferation, and migration in both normal and cancer cells. Many studies have reported that TGF-β signaling is associated with disease progression and therapeutic resistance in several cancers. Similarly, TGF-β-induced protein (TGFBI)—a downstream component of the TGF-β signaling pathway—has been shown to promote and/or inhibit cancer. Here, we review the state of basic and clinical research on the roles of TGF-β and TGFBI in gastrointestinal cancers.
Collapse
Affiliation(s)
- Takehiko Yokobori
- Research Program for Omics-based Medical Science, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Masahiko Nishiyama
- Research Program for Omics-based Medical Science, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|