1
|
Wang X, Xu M, Kong X, Zhong S, Kabissa JJ, Li D, Kang Z, Xu Y, Chen Z. The role of insulin receptor InR in photoperiod-regulated reproductive diapause of Chrysoperla nipponensis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104305. [PMID: 40158640 DOI: 10.1016/j.ibmb.2025.104305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Insects usually diapause, a process regulated by hormonal signals as an adaptive mechanism developed through long-term evolution to survive unfavorable environmental conditions. Chrysoperla nipponensis is classified as a photoperiod-sensitive insect. Treatments with short-day (SD) and long-day (LD) conditions have distinct effects on ovarian development and lipid accumulation in adults, with SD condition inducing diapause. Injecting bovine insulin promoted ovarian development and egg formation in diapause females, while injecting insulin receptor induced diapause-like traits in reproductive females. This study investigate the biological function of insulin signaling in the reproductive diapause of females of C. nipponensis. Under SD treatment the mRNA expression level of InR1 and InR2, as well as the protein expression level of InR1 were significantly reduced. This reduction led to stagnant ovarian development, increased adipose tissue mass, and a significant rise in triglyceride (TG) content. Silencing InR1 under LD conditions resulted in halted ovarian development and enhanced lipid accumulation, with the expression levels of Akt, Kr-h1, and Vg significantly decreased mirroring those observed under SD conditions. Interestingly, silencing InR2 under LD condition did not affect ovarian development. Furthermore, transcriptome analysis identified six genes (Akt, PkN, Skp2, CycB3, BTrC, and AurkA) associated with reproductive regulation and eight genes (FadΔ11, EchA, EcI, Ugts (2A3, 1-9), AR, Gpdh and Cbr) linked to lipid metabolism, all of which are involved in InR1 mediated regulation of C. nipponensis reproduction.
Collapse
Affiliation(s)
- Xiao Wang
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Minghui Xu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Xue Kong
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Shaofeng Zhong
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Jeremiah Joe Kabissa
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, PR China; Tanzania Agricultural Research Institute (TARI), Mwanza, 999132, Tanzania
| | - Dandan Li
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Zhiwei Kang
- College of Life Sciences, Hebei University, Baoding, 071000, PR China.
| | - Yongyu Xu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, PR China.
| | - Zhenzhen Chen
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, PR China.
| |
Collapse
|
2
|
Lawson ME, McAbee M, Lucas RA, Tanner S, Wittke-Thompson J, Pelletier TA, Ozsoy Z, Sterne-Marr R, Rele CP, Reed LK. Gene model for the ortholog of Ilp5 in Drosophila ananassae. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.000782. [PMID: 39717145 PMCID: PMC11664428 DOI: 10.17912/micropub.biology.000782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024]
Abstract
Gene model for the ortholog of Insulin-like peptide 5 ( Ilp5 ) in the D. ananassae May 2011 (Agencourt dana_caf1/DanaCAF1) Genome Assembly (GenBank Accession: GCA_000005115.1 ) of Drosophila ananassae . This ortholog was characterized as part of a developing dataset to study the evolution of the Insulin/insulin-like growth factor signaling pathway (IIS) across the genus Drosophila using the Genomics Education Partnership gene annotation protocol for Course-based Undergraduate Research Experiences.
Collapse
Affiliation(s)
| | | | | | - Scott Tanner
- University of South Carolina Upstate, Spartanburg, SC USA
| | | | | | - Zeynep Ozsoy
- Colorado Mesa University, Grand Junction, CO, USA
| | | | | | | |
Collapse
|
3
|
Dhungana P, Wei X, Meuti ME, Sim C. Genome-wide identification of PAR domain protein 1 (PDP1) targets through ChIP-seq reveals the regulation of diapause-specific characteristics in Culex pipiens. INSECT MOLECULAR BIOLOGY 2024; 33:777-791. [PMID: 38989821 PMCID: PMC11537818 DOI: 10.1111/imb.12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Insects use seasonal diapause as an alternative strategy to endure adverse seasons. This developmental trajectory is induced by environmental cues like short-day lengths in late summer and early fall, but how insects measure day length is unknown. The circadian clock has been implicated in regulating photoperiodic or seasonal responses in many insects, including the Northern house mosquito, Culex pipiens, which enters adult diapause. To investigate the potential control of diapause by circadian control, we employed ChIP-sequencing to identify the downstream targets of a circadian transcription factor, PAR domain protein 1 (PDP1), that contribute to the hallmark features of diapause. We identified the nearest genes in a 10 kb region of the anticipated PDP1 binding sites, listed prospective targets and searched for PDP1-specific binding sites. By examining the functional relevance to diapause-specific behaviours and modifications such as metabolic pathways, lifespan extension, cell cycle regulation and stress tolerance, eight genes were selected as targets and validated using ChIP-qPCR. In addition, qRT-PCR demonstrated that the mRNA abundance of PDP1 targets increased in the heads of diapausing females during the middle of the scotophase (ZT17) compared with the early photophase (ZT1), in agreement with the peak and trough of PDP1 abundance. Thus, our investigation uncovered the mechanism by which PDP1 might generate a diapause phenotype in insects.
Collapse
Affiliation(s)
- Prabin Dhungana
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Xueyan Wei
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Megan E. Meuti
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
4
|
Zhang YK, Zhang HX, An HM, Wang K, Zhu F, Liu W, Wang XP. Key roles of insulin receptor InR1 in initiating reproductive diapause in males of the cabbage beetle Colaphellus bowringi (Coleoptera: Chrysomelidae). PEST MANAGEMENT SCIENCE 2024; 80:3852-3860. [PMID: 38511626 DOI: 10.1002/ps.8088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 03/21/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Reproductive diapause serves as a valuable strategy enabling insects to survive unfavorable seasonal conditions. However, forcing insects into diapause when the environment is conducive to their well-being can cause them to miss out on seasonal opportunities for reproduction. This outcome not only reduces insect populations but also minimizes crop losses caused by insect feeding. Therefore, altering the timing of diapause initiation presents a potential strategy for managing pests. In this study, we examined the possible role of the Insulin Receptor 1 (InR1) in controlling reproductive diapause entry in the male cabbage beetle, Colaphellus bowringi. RESULTS Compared to short-day (SD) conditions, long-day (LD) conditions led to reproductive diapause of C. bowringi males, characterized by arrested gonad development, increased Triglyceride (TG) accumulation, and upregulated expression of diapause protein 1 and genes associated with lipogenesis and stress tolerance. Upon employing RNA interference to knock down InR1 under SD conditions, males destined for reproduction were compelled into diapause, evidenced by arrested gonadal development, accumulation of TG, and elevated expression of diapause-related genes. Intriguingly, despite the common association of the absence of juvenile hormone (JH) with reproductive diapause in females, the knockdown of InR1 in males did not significant affect the expression of JH biosynthesis and JH response gene. CONCLUSION The study highlight InR1 is a key factor involved in regulating male reproductive diapause in C. bowringi. Consequently, targeting insulin signaling could be a viable approach to perturb diapause timing, offering a promising strategy for managing pests with reproductive diapause capabilities. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-Ke Zhang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Han-Xue Zhang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao-Min An
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kou Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fen Zhu
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Liu
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Hidalgo S, Chiu JC. Integration of photoperiodic and temperature cues by the circadian clock to regulate insect seasonal adaptations. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:585-599. [PMID: 37584703 PMCID: PMC11057393 DOI: 10.1007/s00359-023-01667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
Organisms adapt to unfavorable seasonal conditions to survive. These seasonal adaptations rely on the correct interpretation of environmental cues such as photoperiod, and temperature. Genetic studies in several organisms, including the genetic powerhouse Drosophila melanogaster, indicate that circadian clock components, such as period and timeless, are involved in photoperiodic-dependent seasonal adaptations, but our understanding of this process is far from complete. In particular, the role of temperature as a key factor to complement photoperiodic response is not well understood. The development of new sequencing technologies has proven extremely useful in understanding the plastic changes that the clock and other cellular components undergo in different environmental conditions, including changes in gene expression and alternative splicing. This article discusses the integration of photoperiod and temperature for seasonal biology as well as downstream molecular and cellular pathways involved in the regulation of physiological adaptations that occur with changing seasons. We focus our discussion on the current understanding of the involvement of the molecular clock and the circadian clock neuronal circuits in these adaptations in D. melanogaster.
Collapse
Affiliation(s)
- Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Chen JJ, Liu XX, Guo PH, Teets NM, Zhou JC, Chen WB, Luo QZ, Kanjana N, Li YY, Zhang LS. Regulation of forkhead box O transcription factor by insulin signaling pathway controls the reproductive diapause of the lady beetle, Coccinella septempunctata. Int J Biol Macromol 2024; 258:128104. [PMID: 37977460 DOI: 10.1016/j.ijbiomac.2023.128104] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
In biological control programs, knowledge about diapause regulation in natural enemy insects provides important insight for improving long-term storage, transportation, and field adoption of these biological control agents. As a natural predator of agricultural pests, the lady beetle Coccinella septempunctata has been commercially mass-cultured and widely employed in pest management. In some insects, insulin signaling, in conjunction with the downstream transcription factor Forkhead box O (FoxO), are master regulators of multiple physiological processes involved in diapause, but it is unclear whether insulin signaling and FoxO affect the diapause of C. septempunctata. In this study, we use a combination of approaches to demonstrate that insulin signaling and FoxO mediate the diapause response in C. septempunctata. In diapausing beetles, application of exogenous insulin and knocking down expression of CsFoxo with RNA interference (RNAi) both rescued beetles from developmental arrest. In non-diapausing beetles, knocking down expression of the insulin receptor (CsInR) with RNA interference (RNAi) arrested ovarian development and decreased juvenile hormone (JH) content to levels comparable to the diapause state. Taken together, these results suggest that a shutdown of insulin signaling prompts the activation of the downstream FoxO gene, leading to the diapause phenotype.
Collapse
Affiliation(s)
- Jun-Jie Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, PR China
| | - Xiao-Xiao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, PR China
| | - Peng-Hui Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, PR China
| | - Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Jin-Cheng Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, PR China; Plant Protection College, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Wan-Bin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, PR China
| | - Qiao-Zhi Luo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, PR China
| | - Nipapan Kanjana
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, PR China
| | - Yu-Yan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, PR China.
| | - Li-Sheng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, PR China.
| |
Collapse
|
7
|
Fan B, Chen Y, Yasen A, Wu S, Wang M, Zhu J, Huang J, Tang S, Shen X. BmINR and BmAC6 genes involve in diapause regulation via the insulin/IGF signaling pathway in the silkworm (Bombyx mori). Gene 2023:147626. [PMID: 37423399 DOI: 10.1016/j.gene.2023.147626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Diapause of the silkworm (Bombyx mori) is an important ecological adaptation strategy regulated by multiple signaling pathways. As an evolutionarily conserved signaling pathway, the insulin/IGF signaling (IIS) pathway is essential in regulating lifespan, energy accumulation, and stress resistance in diapause insects. However, the regulatory mechanism of IIS on diapause in B. mori is still not fully understood. To investigate the role of the IIS pathway in regulating diapause, we first analyzed the transcription levels of the insulin receptor (BmINR) and its downstream gene adenylate cyclase 6 (BmAC6). The diapause-terminated eggs of a bivoltine strain QiuFeng (V2-QF) were incubated at 25℃ in natural room light for preparing diapause egg producers (DEPs) and at 17℃ in total darkness for preparing non-diapause egg producers (NDEPs), respectively. Then we investigated the effects of BmINR and BmAC6 on diapause phenotype and expression of diapause-related genes by RNA interference (RNAi) and overexpression techniques. The results showed that the mRNA expression levels of BmINR and BmAC6 in the head and ovary of NDEPs were higher than those in DEPs during the early and middle pupal stages. Furthermore, when BmINR was knocked down in the NDEPs, approximately 14.43% of eggs were in light red color and subsequently changed into gray-purple color after 48 hours post-oviposition, then stayed in a diapause state. On the other hand, overexpression of BmINR or BmAC6 via recombinant baculoviruses did not cause any obvious phenotypic alterations in NDEPs, but it upregulated the expression of genes related to carbohydrate metabolism, which provides energy for embryonic growth and development. Therefore, it can be concluded that BmINR and BmAC6 genes regulate embryonic diapause in bivoltine B. mori.
Collapse
Affiliation(s)
- Bingyan Fan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, Jiangsu, China
| | - Yanhua Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, Jiangsu, China
| | - Ayinuer Yasen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, Jiangsu, China
| | - Sai Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, Jiangsu, China
| | - Meixian Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, Jiangsu, China.
| | - Juan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, Jiangsu, China
| | - Jinshan Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, Jiangsu, China
| | - Shunming Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, Jiangsu, China
| | - Xingjia Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, Jiangsu, China.
| |
Collapse
|
8
|
Chen ZZ, Wang X, Kong X, Zhao YM, Xu MH, Gao YQ, Huang HY, Liu FH, Wang S, Xu YY, Kang ZW. Quantitative transcriptomic and proteomic analyses reveal the potential maintenance mechanism of female adult reproductive diapause in Chrysoperla nipponensis. PEST MANAGEMENT SCIENCE 2023; 79:1897-1911. [PMID: 36683402 DOI: 10.1002/ps.7375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/27/2022] [Accepted: 01/23/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The green lacewing Chrysoperla nipponensis is an important natural enemy of many insect pests and exhibits reproductive diapause to overwinter. Our previous studies showed that adult C. nipponensis enters reproductive diapause under a short-day photoperiod. However, the molecular mechanism underlying diapause maintenance in C. nipponensis is still unknown. RESULTS The total lipid and triglyceride content showed the reservation and degradation of energy during diapause in C. nipponensis. Thus, we performed combined transcriptomic and proteomic analyses of female reproductive diapause in C. nipponensis at three ecophysiological phases (initiation, maintenance and termination). A total of 64 388 unigenes and 5532 proteins were identified from the transcriptome and proteome. In-depth dissection of the gene-expression dynamics revealed that differentially expressed genes and proteins were predominately involved in the lipid and carbohydrate metabolic pathways, in particular fatty acid metabolism, metabolic pathways and the citrate cycle. Among of these genes, TIM, CLK, JHAMT2, PMK, HMGS, HMGR, FKBP39, Kr-h1, Phm, ECR, IR1, ILP3, ILP4, mTOR, ACC, LSD1 and LSD2 were differentially expressed in diapause and non-diapause female adults of C. nipponensis. The expression patterns of these genes were consistent with the occurrence of vitellogenesis and expression of either Vg or VgR. CONCLUSION Our findings indicated that diapause adult C. nipponensis accumulate energy resources to overwinter. Transcriptomic and proteomic analyses suggested candidate key genes involved in the maintenance of C. nipponensis during adult reproductive diapause. Taken together, these results provide in-depth knowledge to understand the maintenance mechanism of C. nipponensis during adult reproductive diapause. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhen-Zhen Chen
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Xiao Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Xue Kong
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yue-Ming Zhao
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Ming-Hui Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yu-Qing Gao
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Hai-Yi Huang
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Fang-Hua Liu
- School of Life Sciences, Institutes of Life Science and Green Development, Hebei University, Baoding, China
| | - Su Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yong-Yu Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Zhi-Wei Kang
- School of Life Sciences, Institutes of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
9
|
Andreatta G, Montagnese S, Costa R. Natural alleles of the clock gene timeless differentially affect life-history traits in Drosophila. Front Physiol 2023; 13:1092951. [PMID: 36703932 PMCID: PMC9871817 DOI: 10.3389/fphys.2022.1092951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Circadian clocks orchestrate a variety of physiological and behavioural functions within the 24-h day. These timekeeping systems have also been implicated in developmental and reproductive processes that span more (or less) than 24 h. Whether natural alleles of cardinal clock genes affect entire sets of life-history traits (i.e., reproductive arrest, developmental time, fecundity), thus providing a wider substrate for seasonal adaptation, remains unclear. Here we show that natural alleles of the timeless (tim) gene of Drosophila melanogaster, previously shown to modulate flies' propensity to enter reproductive dormancy, differentially affect correlated traits such as early-life fecundity and developmental time. Homozygous flies expressing the shorter TIM isoform (encoded by the s-tim allele) not only show a lower dormancy incidence compared to those homozygous for ls-tim (which produce both the short and an N-terminal additional 23-residues longer TIM isoform), but also higher fecundity in the first 12 days of adult life. Moreover, s-tim homozygous flies develop faster than ls-tim homozygous flies at both warm (25°C) and cold (15°C) temperatures, with the gap being larger at 15°C. In summary, this phenotypic analysis shows that natural variants of tim affect a set of life-history traits associated with reproductive dormancy in Drosophila. We speculate that this provides further adaptive advantage in temperate regions (with seasonal changes) and propose that the underlying mechanisms might not be exclusively dependent on photoperiod, as previously suggested.
Collapse
Affiliation(s)
- Gabriele Andreatta
- Department of Biology, University of Padua, Padua, Italy,Max Perutz Laboratories, University of Vienna, Vienna, Austria,*Correspondence: Gabriele Andreatta, ; Rodolfo Costa,
| | - Sara Montagnese
- Department of Medicine, University of Padua, Padua, Italy,Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Rodolfo Costa
- Department of Biology, University of Padua, Padua, Italy,Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom,Institute of Neuroscience, National Research Council (CNR), Padua, Italy,*Correspondence: Gabriele Andreatta, ; Rodolfo Costa,
| |
Collapse
|
10
|
Knapp RA, Norman VC, Rouse JL, Duncan EJ. Environmentally responsive reproduction: neuroendocrine signalling and the evolution of eusociality. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100951. [PMID: 35863739 PMCID: PMC9586883 DOI: 10.1016/j.cois.2022.100951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 05/12/2023]
Abstract
Eusociality is a rare but successful life-history strategy that is defined by the reproductive division of labour. In eusocial species, most females forgo their own reproduction to support that of a dominant female or queen. In many eusocial insects, worker reproduction is inhibited via dominance hierarchies or by pheromones produced by the queen and her brood. Here, we consider whether these cues may act as generic 'environmental signals', similar to temperature or nutrition stress, which induce a state of reproductive dormancy in some solitary insects. We review the recent findings regarding the mechanisms of reproductive dormancy in insects and highlight key gaps in our understanding of how environmental cues inhibit reproduction.
Collapse
Affiliation(s)
- Rosemary A Knapp
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Victoria C Norman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - James L Rouse
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
11
|
Bhanja A, Nayak N, Mukherjee S, Sutar PP, Mishra M. Treating the Onset of Diabetes Using Probiotics Along with Prebiotic from Pachyrhizus erosus in High-Fat Diet Fed Drosophila melanogaster. Probiotics Antimicrob Proteins 2022; 14:884-903. [PMID: 35710863 DOI: 10.1007/s12602-022-09962-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 12/20/2022]
Abstract
The increasing mortality due to hypertension and hypercholesterolemia is directly linked with type-2 diabetes. This shows the lethality of the disease. Reports suggest that the prebiotics along with probiotics help in lowering the effects of type-2 diabetes. Prebiotic like inulin is best known for its anti-diabetic effect. The current study utilizes jicama extract as prebiotic source of inulin along with the bacterial strains with probiotic properties (Lactiplantibacillus plantarum and Enterococcus faecium) for treating type-2 diabetes in high-fat diet-induced Drosophila melanogaster model. The high-fat diet-induced Drosophila showed deposition of lipid droplets and formation of micronuclei in the gut. The larva and adult treated with probiotics and synbiotic (probiotic + prebiotic- inulin) comparatively reduced the lipid deposition and micronuclei number in the gut. The increased amount of triglyceride in the whole body of the fatty larva and adult indicated the onset of diabetes. The overexpression of insulin-like genes (Dilp 2) and (Dilp 5) confirmed the insulin resistance, whereas the expression was reduced in the larva and adult supplemented with probiotics and synbiotic. The reactive oxygen species level was reduced with the supplementation of probiotics. The weight, larva size, crawling speed and climbing were also altered in high-fat diet-induced Drosophila melanogaster. The study confirmed the effects of probiotics and synbiotic in successfully lowering diabetes in Drosophila. The study also proved the anti-diabetic potential of the probiotics. Further, it was also confirmed that the probiotics work better in the presence of prebiotic.
Collapse
Affiliation(s)
- Amrita Bhanja
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Nibedita Nayak
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Sumit Mukherjee
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Parag Prakash Sutar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
12
|
Meiselman MR, Alpert MH, Cui X, Shea J, Gregg I, Gallio M, Yapici N. Recovery from cold-induced reproductive dormancy is regulated by temperature-dependent AstC signaling. Curr Biol 2022; 32:1362-1375.e8. [PMID: 35176227 PMCID: PMC8969192 DOI: 10.1016/j.cub.2022.01.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 11/25/2022]
Abstract
Animals have evolved a variety of behaviors to cope with adverse environmental conditions. Similar to other insects, the fly, Drosophila melanogaster, responds to sustained cold by reducing its metabolic rate and arresting its reproduction. Here, we show that a subset of dorsal neurons (DN3s) that express the neuropeptide allatostatin C (AstC) facilitates recovery from cold-induced reproductive dormancy. The activity of AstC-expressing DN3s, as well as AstC peptide levels, are suppressed by cold. Cold temperature also impacts AstC levels in other Drosophila species and mosquitoes, Aedes aegypti, and Anopheles stephensi. The stimulatory effect of AstC on egg production is mediated by cholinergic AstC-R2 neurons. Our results demonstrate that DN3s coordinate female reproductive capacity with environmental temperature via AstC signaling. AstC/AstC-R2 is conserved across many insect species and their role in regulating female reproductive capacity makes them an ideal target for controlling the population of agricultural pests and human disease vectors.
Collapse
Affiliation(s)
- Matthew R Meiselman
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Michael H Alpert
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Jamien Shea
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Ian Gregg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Marco Gallio
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
13
|
Lirakis M, Nolte V, Schlötterer C. Pool-GWAS on reproductive dormancy in Drosophila simulans suggests a polygenic architecture. G3 GENES|GENOMES|GENETICS 2022; 12:6523974. [PMID: 35137042 PMCID: PMC8895979 DOI: 10.1093/g3journal/jkac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
Abstract
The genetic basis of adaptation to different environments has been of long-standing interest to evolutionary biologists. Dormancy is a well-studied adaptation to facilitate overwintering. In Drosophila melanogaster, a moderate number of genes with large effects have been described, which suggests a simple genetic basis of dormancy. On the other hand, genome-wide scans for dormancy suggest a polygenic architecture in insects. In D. melanogaster, the analysis of the genetic architecture of dormancy is complicated by the presence of cosmopolitan inversions. Here, we performed a genome-wide scan to characterize the genetic basis of this ecologically extremely important trait in the sibling species of D. melanogaster, D. simulans that lacks cosmopolitan inversions. We performed Pool-GWAS in a South African D. simulans population for dormancy incidence at 2 temperature regimes (10 and 12°C, LD 10:14). We identified several genes with SNPs that showed a significant association with dormancy (P-value < 1e-13), but the overall modest response suggests that dormancy is a polygenic trait with many loci of small effect. Our results shed light on controversies on reproductive dormancy in Drosophila and have important implications for the characterization of the genetic basis of this trait.
Collapse
Affiliation(s)
- Manolis Lirakis
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, 1210 Wien, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
| | | |
Collapse
|
14
|
Hutfilz C. Endocrine Regulation of Lifespan in Insect Diapause. Front Physiol 2022; 13:825057. [PMID: 35242054 PMCID: PMC8886022 DOI: 10.3389/fphys.2022.825057] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Diapause is a physiological adaptation to conditions that are unfavorable for growth or reproduction. During diapause, animals become long-lived, stress-resistant, developmentally static, and non-reproductive, in the case of diapausing adults. Diapause has been observed at all developmental stages in both vertebrates and invertebrates. In adults, diapause traits weaken into adaptations such as hibernation, estivation, dormancy, or torpor, which represent evolutionarily diverse versions of the traditional diapause traits. These traits are regulated through modifications of the endocrine program guiding development. In insects, this typically includes changes in molting hormones, as well as metabolic signals that limit growth while skewing the organism's energetic demands toward conservation. While much work has been done to characterize these modifications, the interactions between hormones and their downstream consequences are incompletely understood. The current state of diapause endocrinology is reviewed here to highlight the relevance of diapause beyond its use as a model to study seasonality and development. Specifically, insect diapause is an emerging model to study mechanisms that determine lifespan. The induction of diapause represents a dramatic change in the normal progression of age. Hormones such as juvenile hormone, 20-hydroxyecdysone, and prothoracicotropic hormone are well-known to modulate this plasticity. The induction of diapause-and by extension, the cessation of normal aging-is coordinated by interactions between these pathways. However, research directly connecting diapause endocrinology to the biology of aging is lacking. This review explores connections between diapause and aging through the perspective of endocrine signaling. The current state of research in both fields suggests appreciable overlap that will greatly contribute to our understanding of diapause and lifespan determination.
Collapse
|
15
|
Easwaran S, Van Ligten M, Kui M, Montell DJ. Enhanced germline stem cell longevity in Drosophila diapause. Nat Commun 2022; 13:711. [PMID: 35132083 PMCID: PMC8821637 DOI: 10.1038/s41467-022-28347-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/14/2022] [Indexed: 01/01/2023] Open
Abstract
In many species including humans, aging reduces female fertility. Intriguingly, some animals preserve fertility longer under specific environmental conditions. For example, at low temperature and short day-length, Drosophila melanogaster enters a state called adult reproductive diapause. As in other stressful conditions, ovarian development arrests at the yolk uptake checkpoint; however, mechanisms underlying fertility preservation and post-diapause recovery are largely unknown. Here, we report that diapause causes more complete arrest than other stresses yet preserves greater recovery potential. During dormancy, germline stem cells (GSCs) incur DNA damage, activate p53 and Chk2, and divide less. Despite reduced niche signaling, germline precursor cells do not differentiate. GSCs adopt an atypical, suspended state connected to their daughters. Post-diapause recovery of niche signaling and resumption of division contribute to restoring GSCs. Mimicking one feature of quiescence, reduced juvenile hormone production, enhanced GSC longevity in non-diapausing flies. Thus, diapause mechanisms provide approaches to GSC longevity enhancement. Drosophila enter adult reproductive diapause in low temperatures and short day, halting ovarian development yet preserving fertility. Here the authors show that ovarian arrest in diapause is distinct from other stress responses and that despite DNA damage and decreased division, germline stem cells recover.
Collapse
|
16
|
Kim J, Hyun M, Hibi M, You YJ. Maintenance of quiescent oocytes by noradrenergic signals. Nat Commun 2021; 12:6925. [PMID: 34836956 PMCID: PMC8626438 DOI: 10.1038/s41467-021-26945-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/29/2021] [Indexed: 11/09/2022] Open
Abstract
All females adopt an evolutionary conserved reproduction strategy; under unfavorable conditions such as scarcity of food or mates, oocytes remain quiescent. However, the signals to maintain oocyte quiescence are largely unknown. Here, we report that in four different species - Caenorhabditis elegans, Caenorhabditis remanei, Drosophila melanogaster, and Danio rerio - octopamine and norepinephrine play an essential role in maintaining oocyte quiescence. In the absence of mates, the oocytes of Caenorhabditis mutants lacking octopamine signaling fail to remain quiescent, but continue to divide and become polyploid. Upon starvation, the egg chambers of D. melanogaster mutants lacking octopamine signaling fail to remain at the previtellogenic stage, but grow to full-grown egg chambers. Upon starvation, D. rerio lacking norepinephrine fails to maintain a quiescent primordial follicle and activates an excessive number of primordial follicles. Our study reveals an evolutionarily conserved function of the noradrenergic signal in maintaining quiescent oocytes.
Collapse
Affiliation(s)
- Jeongho Kim
- grid.202119.90000 0001 2364 8385Department of Biological Sciences, Inha University, Incheon, 22212 South Korea
| | - Moonjung Hyun
- grid.224260.00000 0004 0458 8737Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298 USA ,grid.418982.e0000 0004 5345 5340Present Address: Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Korea Institute of Toxicology (KIT), Gyeongsangnam-do, 52834 South Korea
| | - Masahiko Hibi
- grid.27476.300000 0001 0943 978XGraduate School of Science, Nagoya University, Nagoya, 464-8602 Japan
| | - Young-Jai You
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA. .,Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan. .,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
17
|
Karp X. Hormonal Regulation of Diapause and Development in Nematodes, Insects, and Fishes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diapause is a state of developmental arrest adopted in response to or in anticipation of environmental conditions that are unfavorable for growth. In many cases, diapause is facultative, such that animals may undergo either a diapause or a non-diapause developmental trajectory, depending on environmental cues. Diapause is characterized by enhanced stress resistance, reduced metabolism, and increased longevity. The ability to postpone reproduction until suitable conditions are found is important to the survival of many animals, and both vertebrate and invertebrate species can undergo diapause. The decision to enter diapause occurs at the level of the whole animal, and thus hormonal signaling pathways are common regulators of the diapause decision. Unlike other types of developmental arrest, diapause is programmed, such that the diapause developmental trajectory includes a pre-diapause preparatory phase, diapause itself, recovery from diapause, and post-diapause development. Therefore, developmental pathways are profoundly affected by diapause. Here, I review two conserved hormonal pathways, insulin/IGF signaling (IIS) and nuclear hormone receptor signaling (NHR), and their role in regulating diapause across three animal phyla. Specifically, the species reviewed are Austrofundulus limnaeus and Nothobranchius furzeri annual killifishes, Caenorhabditis elegans nematodes, and insect species including Drosophila melanogaster, Culex pipiens, and Bombyx mori. In addition, the developmental changes that occur as a result of diapause are discussed, with a focus on how IIS and NHR pathways interact with core developmental pathways in C. elegans larvae that undergo diapause.
Collapse
|
18
|
Kurogi Y, Mizuno Y, Imura E, Niwa R. Neuroendocrine Regulation of Reproductive Dormancy in the Fruit Fly Drosophila melanogaster: A Review of Juvenile Hormone-Dependent Regulation. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.715029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Animals can adjust their physiology, helping them survive and reproduce under a wide range of environmental conditions. One of the strategies to endure unfavorable environmental conditions such as low temperature and limited food supplies is dormancy. In some insect species, this may manifest as reproductive dormancy, which causes their reproductive organs to be severely depleted under conditions unsuitable for reproduction. Reproductive dormancy in insects is induced by a reduction in juvenile hormones synthesized in the corpus allatum (pl. corpora allata; CA) in response to winter-specific environmental cues, such as low temperatures and short-day length. In recent years, significant progress has been made in the study of dormancy-inducing conditions dependent on CA control mechanisms in Drosophila melanogaster. This review summarizes dormancy control mechanisms in D. melanogaster and discusses the implications for future studies of insect dormancy, particularly focusing on juvenile hormone-dependent regulation.
Collapse
|
19
|
Oviposition-promoting pars intercerebralis neurons show period-dependent photoperiodic changes in their firing activity in the bean bug. Proc Natl Acad Sci U S A 2021; 118:2018823118. [PMID: 33622784 DOI: 10.1073/pnas.2018823118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Animals show photoperiodic responses in physiology and behavior to adapt to seasonal changes. Recent genetic analyses have demonstrated the significance of circadian clock genes in these responses. However, the importance of clock genes in photoperiodic responses at the cellular level and the physiological roles of the cellular responses are poorly understood. The bean bug Riptortus pedestris shows a clear photoperiodic response in its reproduction. In the bug, the pars intercerebralis (PI) is an important brain region for promoting oviposition. Here, we analyzed the role of the photoperiodic neuronal response and its relationship with clock genes, focusing on PI neurons. Large PI neurons exhibited photoperiodic firing changes, and high firing activities were primarily found under photoperiodic conditions suitable for oviposition. RNA interference-mediated knockdown of the clock gene period abolished the photoperiodic response in PI neurons, as well as the response in ovarian development. To clarify whether the photoperiodic response in the PI was dependent on ovarian development, we performed an ovariectomy experiment. Ovariectomy did not have significant effects on the firing activity of PI neurons. Finally, we identified the output molecules of the PI neurons and analyzed the relevance of the output signals in oviposition. PI neurons express multiple neuropeptides-insulin-like peptides and diuretic hormone 44-and RNA interference of these neuropeptides reduced oviposition. Our results suggest that oviposition-promoting peptidergic neurons in the PI exhibit a circadian clock-dependent photoperiodic firing response, which contributes to the photoperiodic promotion of oviposition.
Collapse
|
20
|
Semaniuk U, Strilbytska O, Malinovska K, Storey KB, Vaiserman A, Lushchak V, Lushchak O. Factors that regulate expression patterns of insulin-like peptides and their association with physiological and metabolic traits in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 135:103609. [PMID: 34146686 DOI: 10.1016/j.ibmb.2021.103609] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/05/2021] [Accepted: 06/13/2021] [Indexed: 06/12/2023]
Abstract
Insulin-like peptides (ILPs) and components of the insulin signaling pathway are conserved across different animal phyla. Eight ILPs (called DILPs) and two receptors, dInR and Lgr3, have been described in Drosophila. DILPs regulate varied physiological traits including lifespan, reproduction, development, feeding behavior, stress resistance and metabolism. At the same time, different conditions such as nutrition, dietary supplements and environmental factors affect the expression of DILPs. This review focuses primarily on DILP2, DILP3, and DILP5 which are produced by insulin-producing cells in the brain of Drosophila. Although they are produced by the same cells and can potentially compensate for each other, DILP2, DILP3, and DILP5 expression may be differentially regulated at the mRNA level. Thus, we summarized available data on the conditions affecting the expression profiles of these DILPs in adult Drosophila. The accumulated data indicate that transcript levels of DILPs are determined by (a) nutritional conditions such as the protein-to-carbohydrate ratio, (b) carbohydrate type within the diet, (c) malnutrition or complete starvation; (d) environmental factors such as stress or temperature; (e) mutations of single peptides that induce changes in the expression of the other peptides; and (f) dietary supplements of drugs or natural substances. Furthermore, manipulation of specific genes in a cell- and tissue-specific manner affects mRNA levels for DILPs and, thereby, modulates various physiological traits and metabolism in Drosophila.
Collapse
Affiliation(s)
- Uliana Semaniuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Karina Malinovska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | | | | | - Volodymyr Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine; Research and Development University, Ivano-Frankivsk, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine; Research and Development University, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
21
|
Prince E, Kretzschmar J, Trautenberg LC, Broschk S, Brankatschk M. DIlp7-Producing Neurons Regulate Insulin-Producing Cells in Drosophila. Front Physiol 2021; 12:630390. [PMID: 34385929 PMCID: PMC8353279 DOI: 10.3389/fphys.2021.630390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
Cellular Insulin signaling shows a remarkable high molecular and functional conservation. Insulin-producing cells respond directly to nutritional cues in circulation and receive modulatory input from connected neuronal networks. Neuronal control integrates a wide range of variables including dietary change or environmental temperature. Although it is shown that neuronal input is sufficient to regulate Insulin-producing cells, the physiological relevance of this network remains elusive. In Drosophila melanogaster, Insulin-like peptide7-producing neurons are wired with Insulin-producing cells. We found that the former cells regulate the latter to facilitate larval development at high temperatures, and to regulate systemic Insulin signaling in adults feeding on calorie-rich food lacking dietary yeast. Our results demonstrate a role for neuronal innervation of Insulin-producing cells important for fruit flies to survive unfavorable environmental conditions.
Collapse
Affiliation(s)
- Elodie Prince
- Biotechnologisches Zentrum, Dresden, Germany.,CNRS UMR 7277, Inserm U1091, UNS - Bâtiment Centre de Biochimie, Faculté des Sciences, iBV - Institut de Biologie Valrose, Nice, France
| | | | | | - Susanne Broschk
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | | |
Collapse
|
22
|
Cambron LD, Yocum GD, Yeater KM, Greenlee KJ. Overwintering conditions impact insulin pathway gene expression in diapausing Megachile rotundata. Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110937. [PMID: 33737040 DOI: 10.1016/j.cbpa.2021.110937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/22/2022]
Abstract
Diapause is a non-feeding state that many insects undergo to survive the winter months. With fixed resources, overall metabolism and insulin signaling (IIS) are maintained at low levels, but whether those change in response to seasonal temperature fluctuations remains unknown. The focus of this study was to determine 1) how genes in the insulin signaling pathway vary throughout diapause and 2) if that variation changes in response to temperature. To test the hypothesis that expression of IIS pathway genes vary in response to temperature fluctuations during overwintering, alfalfa leafcutting bees, Megachile rotundata, were overwintered at either a constant 4 °C in the lab or in naturally fluctuating temperatures in the field. Expression levels of genes in the IIS pathway, cell cycle regulators, and transcription factors were measured. Overall our findings showed that a few key targets of the insulin signaling pathway, along with growth regulators, change during overwintering, suggesting that only cell cycle regulators, and not the IIS pathway as a whole, change across the phases of diapause. To answer our second question, we compared gene expression levels between temperature treatments at each month for a given gene. We observed significantly more differences in expression of IIS pathway targets, indicating that overwintering conditions impact insulin pathway gene expression and leads to altered expression profiles. With differences seen between temperature treatment groups, these findings indicate that constant temperatures like those used in agricultural storage protocols, lead to different expression profiles and possibly different diapause phenotypes for alfalfa leafcutting bees.
Collapse
Affiliation(s)
| | | | - Kathleen M Yeater
- USDA-ARS, Plains Area Office of the Director, Fort Collins, CO, United States of America
| | | |
Collapse
|
23
|
Erickson PA, Weller CA, Song DY, Bangerter AS, Schmidt P, Bergland AO. Unique genetic signatures of local adaptation over space and time for diapause, an ecologically relevant complex trait, in Drosophila melanogaster. PLoS Genet 2020; 16:e1009110. [PMID: 33216740 PMCID: PMC7717581 DOI: 10.1371/journal.pgen.1009110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/04/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Organisms living in seasonally variable environments utilize cues such as light and temperature to induce plastic responses, enabling them to exploit favorable seasons and avoid unfavorable ones. Local adapation can result in variation in seasonal responses, but the genetic basis and evolutionary history of this variation remains elusive. Many insects, including Drosophila melanogaster, are able to undergo an arrest of reproductive development (diapause) in response to unfavorable conditions. In D. melanogaster, the ability to diapause is more common in high latitude populations, where flies endure harsher winters, and in the spring, reflecting differential survivorship of overwintering populations. Using a novel hybrid swarm-based genome wide association study, we examined the genetic basis and evolutionary history of ovarian diapause. We exposed outbred females to different temperatures and day lengths, characterized ovarian development for over 2800 flies, and reconstructed their complete, phased genomes. We found that diapause, scored at two different developmental cutoffs, has modest heritability, and we identified hundreds of SNPs associated with each of the two phenotypes. Alleles associated with one of the diapause phenotypes tend to be more common at higher latitudes, but these alleles do not show predictable seasonal variation. The collective signal of many small-effect, clinally varying SNPs can plausibly explain latitudinal variation in diapause seen in North America. Alleles associated with diapause are segregating in Zambia, suggesting that variation in diapause relies on ancestral polymorphisms, and both pro- and anti-diapause alleles have experienced selection in North America. Finally, we utilized outdoor mesocosms to track diapause under natural conditions. We found that hybrid swarms reared outdoors evolved increased propensity for diapause in late fall, whereas indoor control populations experienced no such change. Our results indicate that diapause is a complex, quantitative trait with different evolutionary patterns across time and space.
Collapse
Affiliation(s)
- Priscilla A. Erickson
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Cory A. Weller
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Daniel Y. Song
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alyssa S. Bangerter
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alan O. Bergland
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
24
|
EYES ABSENT and TIMELESS integrate photoperiodic and temperature cues to regulate seasonal physiology in Drosophila. Proc Natl Acad Sci U S A 2020; 117:15293-15304. [PMID: 32541062 PMCID: PMC7334534 DOI: 10.1073/pnas.2004262117] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Extracting information regarding calendar time from seasonal changes in photoperiod and temperature is critical for organisms to maintain annual cycles in physiology and behavior. Here we found that, in flies, EYES ABSENT (EYA) protein acts as a seasonal sensor by adjusting its abundance and phase in response to changes in photoperiod and temperature. We show that the manipulation of EYA levels is sufficient to impair the ability of female Drosophila to regulate seasonal variation in reproductive dormancy. Finally, our results suggest an important role for the circadian clock protein TIMELESS (TIM) in modulating EYA level through its ability to measure night length, linking the circadian clock to seasonal timing. Organisms possess photoperiodic timing mechanisms to detect variations in day length and temperature as the seasons progress. The nature of the molecular mechanisms interpreting and signaling these environmental changes to elicit downstream neuroendocrine and physiological responses are just starting to emerge. Here, we demonstrate that, in Drosophila melanogaster, EYES ABSENT (EYA) acts as a seasonal sensor by interpreting photoperiodic and temperature changes to trigger appropriate physiological responses. We observed that tissue-specific genetic manipulation of eya expression is sufficient to disrupt the ability of flies to sense seasonal cues, thereby altering the extent of female reproductive dormancy. Specifically, we observed that EYA proteins, which peak at night in short photoperiod and accumulate at higher levels in the cold, promote reproductive dormancy in female D. melanogaster. Furthermore, we provide evidence indicating that the role of EYA in photoperiodism and temperature sensing is aided by the stabilizing action of the light-sensitive circadian clock protein TIMELESS (TIM). We postulate that increased stability and level of TIM at night under short photoperiod together with the production of cold-induced and light-insensitive TIM isoforms facilitate EYA accumulation in winter conditions. This is supported by our observations that tim null mutants exhibit reduced incidence of reproductive dormancy in simulated winter conditions, while flies overexpressing tim show an increased incidence of reproductive dormancy even in long photoperiod.
Collapse
|
25
|
Durmaz E, Rajpurohit S, Betancourt N, Fabian DK, Kapun M, Schmidt P, Flatt T. A clinal polymorphism in the insulin signaling transcription factor foxo contributes to life-history adaptation in Drosophila. Evolution 2019; 73:1774-1792. [PMID: 31111462 PMCID: PMC6771989 DOI: 10.1111/evo.13759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
A fundamental aim of adaptation genomics is to identify polymorphisms that underpin variation in fitness traits. In Drosophila melanogaster, latitudinal life-history clines exist on multiple continents and make an excellent system for dissecting the genetics of adaptation. We have previously identified numerous clinal single-nucleotide polymorphism in insulin/insulin-like growth factor signaling (IIS), a pathway known from mutant studies to affect life history. However, the effects of natural variants in this pathway remain poorly understood. Here we investigate how two clinal alternative alleles at foxo, a transcriptional effector of IIS, affect fitness components (viability, size, starvation resistance, fat content). We assessed this polymorphism from the North American cline by reconstituting outbred populations, fixed for either the low- or high-latitude allele, from inbred DGRP lines. Because diet and temperature modulate IIS, we phenotyped alleles across two temperatures (18°C, 25°C) and two diets differing in sugar source and content. Consistent with clinal expectations, the high-latitude allele conferred larger body size and reduced wing loading. Alleles also differed in starvation resistance and expression of insulin-like receptor, a transcriptional target of FOXO. Allelic reaction norms were mostly parallel, with few GxE interactions. Together, our results suggest that variation in IIS makes a major contribution to clinal life-history adaptation.
Collapse
Affiliation(s)
- Esra Durmaz
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Subhash Rajpurohit
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
- Division of Biological and Life SciencesAhmedabad UniversityAhmedabadIndia
| | - Nicolas Betancourt
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
| | - Daniel K. Fabian
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteWellcome Genome Campus, HinxtonCambridgeUnited Kingdom
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
- Vienna Graduate School of Population, GeneticsViennaAustria
| | - Martin Kapun
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Paul Schmidt
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
| | - Thomas Flatt
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
26
|
Drummond-Barbosa D. Local and Physiological Control of Germline Stem Cell Lineages in Drosophila melanogaster. Genetics 2019; 213:9-26. [PMID: 31488592 PMCID: PMC6727809 DOI: 10.1534/genetics.119.300234] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
The long-term survival of any multicellular species depends on the success of its germline in producing high-quality gametes and maximizing survival of the offspring. Studies in Drosophila melanogaster have led our growing understanding of how germline stem cell (GSC) lineages maintain their function and adjust their behavior according to varying environmental and/or physiological conditions. This review compares and contrasts the local regulation of GSCs by their specialized microenvironments, or niches; discusses how diet and diet-dependent factors, mating, and microorganisms modulate GSCs and their developing progeny; and briefly describes the tie between physiology and development during the larval phase of the germline cycle. Finally, it concludes with broad comparisons with other organisms and some future directions for further investigation.
Collapse
Affiliation(s)
- Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
27
|
Barberà M, Cañas-Cañas R, Martínez-Torres D. Insulin-like peptides involved in photoperiodism in the aphid Acyrthosiphon pisum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 112:103185. [PMID: 31291597 DOI: 10.1016/j.ibmb.2019.103185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/28/2019] [Accepted: 07/06/2019] [Indexed: 06/09/2023]
Abstract
Aphids were the first animals reported as photoperiodic as their life cycles are strongly determined by the photoperiod. During the favourable seasons (characterised by long days) aphid populations consist exclusively of viviparous parthenogenetic females (known as virginoparae). Shortening of the photoperiod in autumn is perceived by aphids as the signal that anticipates the harsh season, leading to a switch in the reproductive mode giving place to the sexual morphs (oviparae females and males) that mate and lay winter-resistant (diapause-like) eggs. The molecular and cellular basis governing the switch between the two reproductive modes are far from being understood. Classical experiments identified a group of neurosecretory cells in the pars intercerebralis of the aphid brain (the so called group I of neurosecretory cells) that were essential for the development of embryos as parthenogenetic females and were thus proposed to synthesise a parthenogenesis promoting substance that was termed "virginoparin". Since insulin-like peptides (ILPs) have been implicated in the control of diapause in other insects, we investigated their involvement in aphid photoperiodism. We compared the expression of two ILPs (ILP1 and ILP4) and an Insulin receptor coding genes in A. pisum aphids reared under long- and short-day conditions. The three genes showed higher expression in long-day reared aphids. In addition, we localised the site of expression of the two ILP genes in the aphid brain. Both genes were found to be expressed in the group I of neurosecretory cells. Altogether, our results suggest that ILP1 and ILP4 play an important role in the control of the aphid life-cycle by promoting the parthenogenetic development during long-day seasons while their repression by short days would activate the sexual development. Thus we propose these ILPs correspond to the so called "virginoparin" by early bibliography. A possible connection with the circadian system is also discussed.
Collapse
Affiliation(s)
- Miquel Barberà
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de València, C/ Catedrático José Beltrán nº 2, 46980, Paterna, València, Spain
| | - Rubén Cañas-Cañas
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de València, C/ Catedrático José Beltrán nº 2, 46980, Paterna, València, Spain
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de València, C/ Catedrático José Beltrán nº 2, 46980, Paterna, València, Spain.
| |
Collapse
|
28
|
Regan JC, Froy H, Walling CA, Moatt JP, Nussey DH. Dietary restriction and insulin‐like signalling pathways as adaptive plasticity: A synthesis and re‐evaluation. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13418] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jennifer C. Regan
- Institute of Immunology and Infection Research, School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Hannah Froy
- Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| | - Craig A. Walling
- Institute for Evolutionary Biology, School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Joshua P. Moatt
- Institute for Evolutionary Biology, School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Daniel H. Nussey
- Institute of Immunology and Infection Research, School of Biological Sciences University of Edinburgh Edinburgh UK
- Institute for Evolutionary Biology, School of Biological Sciences University of Edinburgh Edinburgh UK
| |
Collapse
|
29
|
Nagy D, Cusumano P, Andreatta G, Anduaga AM, Hermann-Luibl C, Reinhard N, Gesto J, Wegener C, Mazzotta G, Rosato E, Kyriacou CP, Helfrich-Förster C, Costa R. Peptidergic signaling from clock neurons regulates reproductive dormancy in Drosophila melanogaster. PLoS Genet 2019; 15:e1008158. [PMID: 31194738 PMCID: PMC6592559 DOI: 10.1371/journal.pgen.1008158] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/25/2019] [Accepted: 04/25/2019] [Indexed: 11/18/2022] Open
Abstract
With the approach of winter, many insects switch to an alternative protective developmental program called diapause. Drosophila melanogaster females overwinter as adults by inducing a reproductive arrest that is characterized by inhibition of ovarian development at previtellogenic stages. The insulin producing cells (IPCs) are key regulators of this process, since they produce and release insulin-like peptides that act as diapause-antagonizing hormones. Here we show that in D. melanogaster two neuropeptides, Pigment Dispersing Factor (PDF) and short Neuropeptide F (sNPF) inhibit reproductive arrest, likely through modulation of the IPCs. In particular, genetic manipulations of the PDF-expressing neurons, which include the sNPF-producing small ventral Lateral Neurons (s-LNvs), modulated the levels of reproductive dormancy, suggesting the involvement of both neuropeptides. We expressed a genetically encoded cAMP sensor in the IPCs and challenged brain explants with synthetic PDF and sNPF. Bath applications of both neuropeptides increased cAMP levels in the IPCs, even more so when they were applied together, suggesting a synergistic effect. Bath application of sNPF additionally increased Ca2+ levels in the IPCs. Our results indicate that PDF and sNPF inhibit reproductive dormancy by maintaining the IPCs in an active state.
Collapse
Affiliation(s)
- Dóra Nagy
- Department of Biology, University of Padova, Padova, Italy
| | - Paola Cusumano
- Department of Biology, University of Padova, Padova, Italy
| | | | - Ane Martin Anduaga
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Christiane Hermann-Luibl
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nils Reinhard
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - João Gesto
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Ezio Rosato
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Charalambos P. Kyriacou
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
30
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
31
|
Ojima N, Hara Y, Ito H, Yamamoto D. Genetic dissection of stress-induced reproductive arrest in Drosophila melanogaster females. PLoS Genet 2018; 14:e1007434. [PMID: 29889831 PMCID: PMC5995346 DOI: 10.1371/journal.pgen.1007434] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/18/2018] [Indexed: 11/19/2022] Open
Abstract
By genetic manipulations, we study the roles played by insulin-producing cells (IPCs) in the brain and their target, the corpora allata (CA), for reproductive dormancy in female Drosophila melanogaster, which is induced by exposing them to a combination of low temperature (11°C), short-day photoperiod (10L:14D) and starvation (water only) for 7 days immediately after eclosion (dormancy-inducing conditions). Artificial inactivation of IPCs promotes, whereas artificial activation impedes, the induction of reproductive dormancy. A transcriptional reporter assay reveals that the IPC activity is reduced when the female flies are exposed to dormancy-inducing conditions. The photoperiod sensitivity of reproductive dormancy is lost in pigment-dispersing factor (pdf), but not cry, mutants, suggesting that light input to IPCs is mediated by pdf-expressing neurons. Genetic manipulations to upregulate and downregulate insulin signaling in the CA, a pair of endocrine organs that synthesize the juvenile hormone (JH), decrease and increase the incidence of reproductive dormancy, respectively. These results demonstrate that the IPC-CA axis constitutes a key regulatory pathway for reproductive dormancy.
Collapse
Affiliation(s)
- Noriyuki Ojima
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Yusuke Hara
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, Japan
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Hiroki Ito
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Daisuke Yamamoto
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, Japan
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
- * E-mail:
| |
Collapse
|
32
|
Lirakis M, Dolezal M, Schlötterer C. Redefining reproductive dormancy in Drosophila as a general stress response to cold temperatures. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:175-185. [PMID: 29649483 DOI: 10.1016/j.jinsphys.2018.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/07/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
Organisms regularly encounter unfavorable conditions and the genetic adaptations facilitating survival have been of long-standing interest to evolutionary biologists. Winter is one particularly stressful condition for insects, during which they encounter low temperatures and scarcity of food. Despite dormancy being a well-studied adaptation to facilitate overwintering, there is still considerable controversy about the distribution of dormancy among natural populations and between species in Drosophila. The current definition of dormancy as developmental arrest of oogenesis at the previtellogenic stage (stage 7) distinguishes dormancy from general stress related block of oogenesis at early vitellogenic stages (stages 8 - 9). In an attempt to resolve this, we scrutinized reproductive dormancy in D. melanogaster and D. simulans. We show that dormancy shows the same hallmarks of arrest of oogenesis at stage 9, as described for other stressors and propose a new classification for dormancy. Applying this modified classification, we show that both species express dormancy in cosmopolitan and African populations, further supporting that dormancy uses an ancestral pathway induced by environmental stress. While we found significant differences between individuals and the two Drosophila species in their sensitivity to cold temperature stress, we also noted that extreme temperature stress (8 °C) resulted in very strong dormancy incidence, which strongly reduced the differences seen at less extreme temperatures. We conclude that dormancy in Drosophila should not be considered a special trait, but is better understood as a generic stress response occurring at low temperatures.
Collapse
Affiliation(s)
- Manolis Lirakis
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria; Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria.
| | - Marlies Dolezal
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
| |
Collapse
|
33
|
Nagy D, Andreatta G, Bastianello S, Martín Anduaga A, Mazzotta G, Kyriacou CP, Costa R. A Semi-natural Approach for Studying Seasonal Diapause in Drosophila melanogaster Reveals Robust Photoperiodicity. J Biol Rhythms 2018; 33:117-125. [PMID: 29415605 DOI: 10.1177/0748730417754116] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fruit fly Drosophila melanogaster survives thermally stressful conditions in a state of reproductive dormancy (diapause), manifested by reduced metabolic activity and arrested ovarian development in females. Unlike insects that rely primarily on photoperiodic stimuli to initiate the diapause program, in this species dormancy is regulated by low temperature and enhanced by shorter photoperiods. Overwintering phenotypes are usually studied under simple laboratory conditions, where animals are exposed to rectangular light-dark (LD) cycles at a constant temperature. We sought to adopt more realistic diapause protocols by generating LD profiles that better mimic outdoor conditions. Experimental flies were subjected to semi-natural late autumn and summer days, while control females received the same amounts of light but in rectangular LD cycles (LD 8:16 and LD 15:9, respectively). We observed that semi-natural autumnal days induced a higher proportion of females to enter dormancy, while females in semi-natural summer days showed reduced diapause compared with their corresponding rectangular controls, generating an impressive photoperiodic response. In contrast, under rectangular light regimes, the diapause of Drosophila field lines exhibited minimal photoperiodicity. Our semi-natural method reveals that D. melanogaster diapause is considerably more photoperiodic than previously believed and suggests that this seasonal response is best studied under simulated natural lighting conditions.
Collapse
Affiliation(s)
- Dóra Nagy
- Department of Biology, University of Padova, Padova, Italy
| | | | | | - Ane Martín Anduaga
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | | | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
34
|
Abstract
In response to adverse environmental conditions many organisms from nematodes to mammals deploy a dormancy strategy, causing states of developmental or reproductive arrest that enhance somatic maintenance and survival ability at the expense of growth or reproduction. Dormancy regulation has been studied in C. elegans and in several insects, but how neurosensory mechanisms act to relay environmental cues to the endocrine system in order to induce dormancy remains unclear. Here we examine this fundamental question by genetically manipulating aminergic neurotransmitter signaling in Drosophila melanogaster. We find that both serotonin and dopamine enhance adult ovarian dormancy, while the downregulation of their respective signaling pathways in endocrine cells or tissues (insulin producing cells, fat body, corpus allatum) reduces dormancy. In contrast, octopamine signaling antagonizes dormancy. Our findings enhance our understanding of the ability of organisms to cope with unfavorable environments and illuminate some of the relevant signaling pathways.
Collapse
|
35
|
Anduaga AM, Nagy D, Costa R, Kyriacou CP. Diapause in Drosophila melanogaster - Photoperiodicity, cold tolerance and metabolites. JOURNAL OF INSECT PHYSIOLOGY 2018; 105:46-53. [PMID: 29339232 DOI: 10.1016/j.jinsphys.2018.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Unlike many insects where photoperiod per se induces diapause, reproductive arrest in Drosophila melanogaster adult females is observed at colder temperatures and can be enhanced by shorter photoperiods. Traditional experimental protocols raise flies at 25 °C from the larval stage and then the adults are placed at 12 °C for between 12 and 28 days. After 12 days diapause levels are usually higher than at 28 days, suggesting that the flies are in a cold induced quiescence, rather than a true diapause. By raising flies at more realistic lower temperatures, we observe quite dramatic and counter-intuitive effects on diapause, whose levels nevertheless correlate with various indices of cryoprotectant metabolites as well as resistance to chill shock. We also observe that photoperiodic effects are minimised when very small temperature oscillations associated with the light-dark incubator cycles are neutralised. Our results suggest that the reported photoperiodic component of fly diapause, at least in these strains, is mostly due to thermoperiodic rather than photoperiodic stimuli. In addition, the metabolite and chill shock analyses reveal that even by 12 days, flies are entering a state that is resistant to environmental stresses.
Collapse
Affiliation(s)
- Ane Martin Anduaga
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Dora Nagy
- Department of Biology, University of Padova, Padova 35131, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova 35131, Italy
| | - Charalambos P Kyriacou
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
36
|
Pegoraro M, Zonato V, Tyler ER, Fedele G, Kyriacou CP, Tauber E. Geographical analysis of diapause inducibility in European Drosophila melanogaster populations. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:238-244. [PMID: 28131702 DOI: 10.1016/j.jinsphys.2017.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
Seasonal overwintering in insects represents an adaptation to stressful environments and in European Drosophila melanogaster females, low temperatures and short photoperiods can induce an ovarian diapause. Diapause may represent a recent (<15Ky) adaptation to the colonisation of temperate Europe by D. melanogaster from tropical sub-Saharan Africa, because African D. melanogaster and the sibling species D. simulans, have been reported to fail to undergo diapause. Over the past few centuries, D. melanogaster have also invaded North America and Australia, and eastern populations on both continents show a predictable latitudinal cline in diapause induction. In Europe however, a new diapause-enhancing timeless allele, ls-tim, is observed at high levels in southern Italy (∼80%), where it appears to have arisen and has spread throughout the continent with a frequency of ∼20% in Scandinavia. Given the phenotype of ls-tim and its geographical distribution, we might predict that it would work against any latitudinal cline in diapause induction within Europe. Indeed we reveal that any latitudinal cline for diapause in Europe is very weak, as predicted by ls-tim frequencies. In contrast, we determine ls-tim frequencies in North America and observe that they would be expected to strengthen the latitudinal pattern of diapause. Our results reveal how a newly arisen mutation, can, via the stochastic nature of where it initially arose, blur an otherwise adaptive geographical pattern.
Collapse
Affiliation(s)
- Mirko Pegoraro
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Valeria Zonato
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Elizabeth R Tyler
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Giorgio Fedele
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | | | - Eran Tauber
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK; Department of Evolutionary & Environmental Biology, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
37
|
Zonato V, Collins L, Pegoraro M, Tauber E, Kyriacou CP. Is diapause an ancient adaptation in Drosophila? JOURNAL OF INSECT PHYSIOLOGY 2017; 98:267-274. [PMID: 28161445 DOI: 10.1016/j.jinsphys.2017.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
D. melanogaster enters a state of reproductive arrest when exposed to low temperatures (12°C) and shorter photoperiods. A number of studies have suggested that diapause has recently evolved in European D. melanogaster populations, that it is not present in the sibling species D. simulans, that it is non-photoperiodic in American D. melanogaster populations, and that it spontaneously terminates after 6-8weeks. We have studied the overwintering phenotype under different conditions and observe that American, European and, surprisingly, African D. melanogaster populations can show photoperiodic diapause, as can European, but not African D. simulans. Surprisingly other Drosophila species from pan-tropical regions can also show significant levels of photoperiodic diapause. We observe that spontaneous termination of diapause after a few weeks can be largely avoided with a more realistic winter simulation for D. melanogaster, but not D. simulans. Examining metabolite accumulation during diapause reveals that the shallow diapause of D. melanogaster has similar features to that of other more robustly-diapausing species. Our results suggest that diapause may be an ancient character that emerged in the tropics to resist unfavourable seasonal conditions and which has been enhanced during D. melanogaster's colonisation of temperate regions. Our results also highlight how different methodologies to quantify diapause can lead to apparently conflicting results that we believe can now largely be resolved.
Collapse
Affiliation(s)
- Valeria Zonato
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Lewis Collins
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Mirko Pegoraro
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Eran Tauber
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK; Department of Evolutionary & Environmental Biology, University of Haifa, Haifa 3498838, Israel(2)
| | | |
Collapse
|