1
|
Luo X, Masanja F, Liu Y, Zhao L. Behavioral responses of clams to recurrent marine heatwaves. MARINE POLLUTION BULLETIN 2025; 210:117362. [PMID: 39616904 DOI: 10.1016/j.marpolbul.2024.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Marine heatwaves (MHWs) have increased strikingly in past decades, leading to dramatic changes in global marine ecosystems. As dominant infaunal species in coastal ecosystems, clams play a critical ecological role, but little is known about their behavioral responses to intensifying MHWs. Here, we investigated behavioral performances and associated gene expressions of an ecologically and economically important clam species, Ruditapes philippinarum, under recurrent scenarios of MHWs. While burrowing behaviors of R. philippinarum were not significantly affected by low-intensity MHWs, its burrowing ability decreased significantly when acutely exposed to MHWs occurring at high-intensity. Virtually unaffected behavioral performances, yet, were shown in clams under repeated scenarios of MHWs, in line with significantly increased expressions of genes closely associated with energy metabolism and behavioral neuroscience. These findings contribute to a better understanding of behavioral responses of infaunal organisms to MHWs and make a leap forward in linking climate change to bioturbation in marine ecosystems.
Collapse
Affiliation(s)
- Xin Luo
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | | | - Yong Liu
- Pearl Research Institute, Guangdong Ocean University, Zhanjiang, China
| | - Liqiang Zhao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, China; Guangdong Science and Technology Innovation Center of Marine Invertebrate, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
2
|
Smith A, Erber J, Watson A, Johnson C, Gato WE, George SB. The Physiological and Biochemical Response of Ribbed Mussels to Rising Temperatures: Benefits of Salt Marsh Cordgrass. Integr Org Biol 2024; 6:obae031. [PMID: 39282253 PMCID: PMC11398905 DOI: 10.1093/iob/obae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Salt marsh ecosystems are heavily reliant on ribbed mussel (Geukensia demissa) populations to aid in rapid recovery from droughts. The focus of this study was thus to document the effects of rising temperatures on ribbed mussel populations in a Georgia salt marsh. Seven lab and eight field experiments were used to assess the effects of current air temperatures on mussels at two high marsh (HM) sites with short and sparse cordgrass and one mid marsh (MM) site with tall and dense cordgrass. Field results in 2018 and 2019 indicate that ribbed mussels were experiencing extremely high temperatures for prolonged periods of time at the landlocked high marsh (LHM) site. In 2018, the highest temperature (54°C) and longest high temperature events, HTEs (58 days), that is, consecutive days with temperatures ≥40°C, were recorded at this site. When laboratory temperatures were increased from 20 to 36°C, mean heart rates increased by an average of 19 bpm for mussels from both high and MM sites respectively. When field temperatures rose from 20°C in April to 40°C in September 2019, mean heart rates increased by an average of 10 bpm for HM mussels and by 26.3 bpm for MM mussels. Under identical laboratory and field conditions, mean heart rates for mussels from the LHM site with the highest temperatures, increased by <1 bpm and 3.7 bpm respectively. Evidence of the potential role of shade on mussel aggregates was provided by examining whether mussels from the edge of mussel aggregates with little to no cordgrass for shade were more stressed than those living at the center of mussel aggregates. In the absence of shade, mean body temperatures for mussels at the edge of mussel aggregates were up to 8°C higher than for those living in the center underneath a dense tuft of cordgrass. Despite high body temperatures, mean heart rates and Hsp70 gene expression were lower for mussels living at the edges. This agrees with the strategy that during prolong exposure to high temperatures, mussels may reduce their heart rate to conserve energy and enhance survival. Alternatively, heat-stressed mussels at the edges of aggregates may not have the resources to express high levels of Hsp70. Increase in the frequency, intensity, and duration of HTEs may stress the physiological and biochemical function of mussel populations to the limit, dictate mussel aggregate size, and threaten the functionality of SE salt marshes.
Collapse
Affiliation(s)
- A Smith
- B iology Department, Georgia Southern University, Statesboro, GA 30460, USA
| | - J Erber
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, USA
| | - A Watson
- B iology Department, Georgia Southern University, Statesboro, GA 30460, USA
| | - C Johnson
- B iology Department, Georgia Southern University, Statesboro, GA 30460, USA
| | - W E Gato
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, USA
| | - S B George
- B iology Department, Georgia Southern University, Statesboro, GA 30460, USA
| |
Collapse
|
3
|
Delorme NJ, King N, Cervantes-Loreto A, South PM, Baettig CG, Zamora LN, Knight BR, Ericson JA, Smith KF, Ragg NLC. Genetics and ontogeny are key factors influencing thermal resilience in a culturally and economically important bivalve. Sci Rep 2024; 14:19130. [PMID: 39160258 PMCID: PMC11333593 DOI: 10.1038/s41598-024-70034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
Increasing seawater temperatures coupled with more intense and frequent heatwaves pose an increasing threat to marine species. In this study, the New Zealand green-lipped mussel, Perna canaliculus, was used to investigate the effect of genetics and ontogeny on thermal resilience. The culturally and economically significant mussel P. canaliculus (Gmelin, 1971) has been selectively-bred in New Zealand for two decades, making it a unique biological resource to investigate genetic interactions in a temperate bivalve species. Six selectively-bred full sibling families and four different ages, from early juveniles (6, 8, 10 weeks post-fertilisation) to sub-adults (52 weeks post-fertilisation), were used for experimentation. At each age, each family was exposed to a three-hour heat challenge, followed by recovery, and survival assessments. The shell lengths of live and dead juvenile mussels were also measured. Gill tissue samples from sub-adults were collected after the thermal challenge to quantify the 70 kDa heat shock protein gene (hsp70). Results showed that genetics, ontogeny and size influence thermal resilience in P. canaliculus, with LT50 values ranging between 31.3 and 34.4 °C for all studied families and ages. Juveniles showed greater thermotolerance compared to sub-adults, while the largest individuals within each family/age class tended to be more heat sensitive than their siblings. Sub-adults differentially upregulated hsp70 in a pattern that correlated with net family survival following heat challenge, reinforcing the perceived role of inducible HSP70 protein in molluscs. This study provides insights into the complex interactions of age and genotype in determining heat tolerance of a key mussel species. As marine temperatures increase, equally complex selection pressure responses may therefore occur. Future research should focus on transcriptomic and genomic approaches for key species such as P. canaliculus to further understand and predict the effect of genetic variation and ontogeny on their survival in the context of climate change.
Collapse
Affiliation(s)
| | - Nick King
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | | | - Paul M South
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | | | | | | | | | - Kirsty F Smith
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Norman L C Ragg
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| |
Collapse
|
4
|
García-Souto D, Martínez-Mariño V, Morán P, Olabarria C, Vázquez E. Hiding from heat: The transcriptomic response of two clam species is modulated by behaviour and habitat. J Therm Biol 2024; 119:103776. [PMID: 38163416 DOI: 10.1016/j.jtherbio.2023.103776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Rising occurrence of extreme warming events are profoundly impacting ecosystems, altering their functioning and services with significant socio-economic consequences. Particularly susceptible to heatwaves are intertidal shellfish beds, located in estuarine areas already stressed by factors such as rainfall events, red tides, eutrophication, and pollution. In Galicia, Northwestern Spain, these beds support vital shellfisheries, featuring the native clam Ruditapes decussatus and the non-indigenous R. philippinarum. Over recent decades, these populations have experienced notable abundance shifts due to various anthropogenic impacts, including climate change. In this habitat, patches of the seagrass Zostera noltei that coexist with bare sand can act as thermal refuges for benthic organisms such as clams. To assess the impact of heatwaves on these ecosystems, a mesocosm experiment was conducted. Juveniles of both clam species in two habitat types-bare sand and sand with Z. noltei-were exposed to simulated atmospheric heatwaves during diurnal low tide for four consecutive days. Subsequent transcriptomic analysis revealed that high temperatures had a more pronounced impact on the transcriptome of R. philippinarum compared to R. decussatus. The habitat type played a crucial role in mitigating heat stress in R. philippinarum, with the presence of Z. noltei notably ameliorating the transcriptomic response. These findings have direct applications in shellfishery management, emphasizing the importance of preserving undisturbed patches of Z. noltei as thermal refuges, contributing to the mitigation of heatwave effects on shellfish populations.
Collapse
Affiliation(s)
- Daniel García-Souto
- Genomas y Enfermedad, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain; Departamento de Zoología, Genética y Antropología Física, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Víctor Martínez-Mariño
- Centro de Investigación Mariña (CIM) and Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo, 36310, Vigo, Spain.
| | - Paloma Morán
- Centro de Investigación Mariña (CIM) and Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo, 36310, Vigo, Spain.
| | - Celia Olabarria
- Centro de Investigación Mariña (CIM) and Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, 36310, Vigo, Spain.
| | - Elsa Vázquez
- Centro de Investigación Mariña (CIM) and Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, 36310, Vigo, Spain.
| |
Collapse
|
5
|
Gu S, Qi T, Rohr JR, Liu X. Meta-analysis reveals less sensitivity of non-native animals than natives to extreme weather worldwide. Nat Ecol Evol 2023; 7:2004-2027. [PMID: 37932385 DOI: 10.1038/s41559-023-02235-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/21/2023] [Indexed: 11/08/2023]
Abstract
Extreme weather events (EWEs; for example, heatwaves, cold spells, storms, floods and droughts) and non-native species invasions are two major threats to global biodiversity and are increasing in both frequency and consequences. Here we synthesize 443 studies and apply multilevel mixed-effects metaregression analyses to compare the responses of 187 non-native and 1,852 native animal species across terrestrial, freshwater and marine ecosystems to different types of EWE. Our results show that marine animals, regardless of whether they are non-native or native, are overall insensitive to EWEs, except for negative effects of heatwaves on native mollusks, corals and anemone. By contrast, terrestrial and freshwater non-native animals are only adversely affected by heatwaves and storms, respectively, whereas native animals negatively respond to heatwaves, cold spells and droughts in terrestrial ecosystems and are vulnerable to most EWEs except cold spells in freshwater ecosystems. On average, non-native animals displayed low abundance in terrestrial ecosystems, and decreased body condition and life history traits in freshwater ecosystems, whereas native animals displayed declines in body condition, life history traits, abundance, distribution and recovery in terrestrial ecosystems, and community structure in freshwater ecosystems. By identifying areas with high overlap between EWEs and EWE-tolerant non-native species, we also provide locations where native biodiversity might be adversely affected by their joint effects and where EWEs might facilitate the establishment and/or spread of non-native species under continuing global change.
Collapse
Affiliation(s)
- Shimin Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tianyi Qi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jason R Rohr
- Department of Biological Sciences, Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Román M, Gilbert F, Viejo RM, Román S, Troncoso JS, Vázquez E, Olabarria C. Are clam-seagrass interactions affected by heatwaves during emersion? MARINE ENVIRONMENTAL RESEARCH 2023; 186:105906. [PMID: 36773414 DOI: 10.1016/j.marenvres.2023.105906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The increased frequency of heatwaves expected in the context of global warming will affect socio-ecological systems such as shellfish beds at intertidal seagrass meadows. A mesocosm experiment was performed to assess the effects of a simulated atmospheric heatwave during low tide on the bioturbation indicators and growth of the commercial juvenile native Ruditapes decussatus and the introduced clam R. philippinarum, and on their interactions with the seagrass Zostera noltei. Under the heatwave, heat dissipation at 5 cm depth was significantly greater in the sediments below Z. noltei than below bare sand, the photosynthetic efficiency (Fv/Fm) of Z. noltei decreased and the clams tended to grow less. Furthermore, after the heatwave clams below bare sand tended to burrow deeper than those below Z. noltei, indicating that seagrass provided a refuge for clams. Ruditapes philippinarum grew less, and did not burrow as deeply as R. decussatus, which may imply greater vulnerability to desiccation and heat at low tide. The particle displacement coefficient (PDC) of R. philippinarum indicated lower bioturbation values in Z. noltei than in bare sand and was a suitable bioturbation indicator for juvenile Ruditapes spp. clams. In Z. noltei coexisting with R. philippinarum, the Fv/Fm values were higher than without clams after a recovery period, which may be linked to the assimilation of phosphate excreted by the clams and suggests a facilitative interaction. No such interaction was observed with R. deccusatus, probably because of its deeper burrowing depth. The findings suggest reciprocal facilitative interactions between R. philippinarum and Z. noltei and the potential contribution of Z. noltei to the sustainability of clams under global warming scenarios, which may support management actions aimed at enhancing the coexistence between shellfishing activities and seagrass conservation.
Collapse
Affiliation(s)
- Marta Román
- Centro de Investigación Mariña, Universidade de Vigo, EcoCost, Facultade de Ciencias do Mar, Edificio CC Experimentais, Campus de Vigo, As Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Franck Gilbert
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France.
| | - Rosa M Viejo
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, ES-28933, Móstoles, Madrid, Spain.
| | - Salvador Román
- Centro de Investigación Mariña, Universidade de Vigo, EcoCost, Facultade de Ciencias do Mar, Edificio CC Experimentais, Campus de Vigo, As Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Jesús S Troncoso
- Centro de Investigación Mariña, Universidade de Vigo, EcoCost, Facultade de Ciencias do Mar, Edificio CC Experimentais, Campus de Vigo, As Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Elsa Vázquez
- Centro de Investigación Mariña, Universidade de Vigo, EcoCost, Facultade de Ciencias do Mar, Edificio CC Experimentais, Campus de Vigo, As Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Celia Olabarria
- Centro de Investigación Mariña, Universidade de Vigo, EcoCost, Facultade de Ciencias do Mar, Edificio CC Experimentais, Campus de Vigo, As Lagoas-Marcosende, 36310, Vigo, Spain.
| |
Collapse
|
7
|
He G, Peng Y, Liu X, Liu Y, Liang J, Xu X, Yang K, Masanja F, Xu Y, Deng Y, Zhao L. Post-responses of intertidal bivalves to recurrent heatwaves. MARINE POLLUTION BULLETIN 2022; 184:114223. [PMID: 36240632 DOI: 10.1016/j.marpolbul.2022.114223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Heatwaves are becoming hotter, longer and more frequent, threatening the survival of intertidal bivalves and devastating their ecosystems. Yet, substantially overlooked are heatwave-induced post-responses, which are important to assess cascading consequences. Here, we investigated responses of intertidal bivalves, Ruditapes philippinarum, to recurrent heatwaves. Physiological and gene expression analyses demonstrated that the mantle tissue of R. philippinarum did not sensitively respond to heatwaves, but revealed post-responses under recovery scenarios. Of 20 genes related to essential physiology and fitness, 18 were down-regulated during the 1st recovery period, but following repeated exposure, 13 genes were up-regulated, in line with significantly increased activities of energy-metabolizing enzymes, and antioxidant and nonspecific enzymes. The down-regulation of genes involved in biomineralization, nevertheless, was observed under recovery scenarios, implying the trade-off between essential physiological and fitness-related functions. These findings pave the way for understanding the physiological plasticity of marine bivalves in response to intensifying heatwaves.
Collapse
Affiliation(s)
- Guixiang He
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yalan Peng
- Zhuhai Central Station of Marine Environmental Monitoring, Ministry of Natural Resources, Zhuhai 519015, China.
| | - Xiaolong Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yong Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jian Liang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xin Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ke Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | | | - Yang Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Liqiang Zhao
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
8
|
He G, Zou J, Liu X, Liang F, Liang J, Yang K, Masanja F, Xu Y, Zheng Z, Deng Y, Zhao L. Assessing the impact of atmospheric heatwaves on intertidal clams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156744. [PMID: 35716751 DOI: 10.1016/j.scitotenv.2022.156744] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Heatwaves have become more frequent and intense in the last two decades, resulting in detrimental effects on marine bivalves and ecosystems they sustain. Intertidal clams inhabit the most physiologically challenging habitats in coastal areas and live already near their thermal tolerance limits. However, whether and to what extent atmospheric heatwaves affect intertidal bivalves remain poorly understood. Here, we investigated physiological responses of the Manila clam, Ruditapes philippinarum, to heatwaves at air temperature regimes of 40 °C and 50 °C occurring frequently and occasionally at the present day in the Beibu Gulf, South China Sea. With the increasing intensity of heatwaves and following only two days of aerial exposure, Manila clams suffered 100 % mortality at 50 °C, indicating that they succumb to near future heatwaves, although they survived under various scenarios of moderate heatwaves. The latter is couched in energetic terms across levels of biological organization. Specifically, Manila clams acutely exposed to heatwaves enhanced their standard metabolic rate to fuel essential physiological maintenance, such as increasing activities of SOD, CAT, MDA, and AKP, and expression of HSP70. These strategies occur likely at the expense of fitness-related functions, as best exemplified by significant depressions in activities of enzymes (NKA, CMA, and T-ATP) and expression levels of genes (PT, KHK, CA, CAS, TYR, TNF-BP, and OSER). When heatwaves occurred again, Manila clams can respond and acclimate to thermal stress by implementing a suite of more ATP-efficient and less energy-costly compensatory mechanisms at various levels of biological organization. It is consequently becoming imperative to uncover underlying mechanisms responsible for such positive response and rapid acclimation to recurrent heatwaves.
Collapse
Affiliation(s)
- Guixiang He
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Jie Zou
- Guangxi Institute of Oceanology Co., Ltd, Guangxi Academy of Sciences, Beihai, China
| | - Xiaolong Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Feilong Liang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Jian Liang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China; Department of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Ke Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | | | - Yang Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Zhe Zheng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Laboratory of Marine Ecological Early Warning and Monitoring, Zhanjiang, China.
| | - Liqiang Zhao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
9
|
De Marchi L, Vieira LR, Intorre L, Meucci V, Battaglia F, Pretti C, Soares AMVM, Freitas R. Will extreme weather events influence the toxic impacts of caffeine in coastal systems? Comparison between two widely used bioindicator species. CHEMOSPHERE 2022; 297:134069. [PMID: 35218782 DOI: 10.1016/j.chemosphere.2022.134069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
In the recent years, marine heatwaves (MHWs) have caused devastating impacts on marine life. The understanding of the combined effects of these extreme events and anthropogenic pollution is a vital challenge. In particular, the combined effect of MHWs on the toxicity of pharmaceuticals to aquatic life remains unclear. To contribute to these issues, the main goal of the present investigation was to evaluate how MHWs may increase caffeine (CAF) toxicity on the clam Ruditapes philippinarum and the mussel Mytilus galloprovincialis. Bioaccumulation levels and changes on oxidative stress, metabolic capacity and neurotoxic status related biomarkers were investigated. The obtained results revealed the absence of CAF accumulation in both species. However, the used contaminant generated in both bivalve species alteration on neurotransmission, detoxification mechanisms induction as well as cellular damage. The increase of antioxidant defence mechanisms was complemented by an increase of metabolic activity and decrease of energy reserves. The obtained results seemed magnified under a simulated MHWs, suggesting to a climate-induced toxicant sensitivities' response. On this perspective, understanding of how toxicological mechanisms interact with climate-induced stressors will provide a solid platform to improve effect assessments for both humans and wildlife.
Collapse
Affiliation(s)
- L De Marchi
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - L R Vieira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - L Intorre
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, PI, 56122, Italy
| | - V Meucci
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, PI, 56122, Italy
| | - F Battaglia
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, PI, 56122, Italy
| | - C Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, PI, 56122, Italy
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - R Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
10
|
Miller LP. Monitoring Bivalve Behavior and Physiology in the Laboratory and Field Using Open Source Tools. Integr Comp Biol 2022; 62:1096-1110. [PMID: 35595513 DOI: 10.1093/icb/icac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/14/2022] Open
Abstract
Bivalve molluscs have been the focus of behavioral and physiological studies for over a century, due in part to the relative ease with which their traits can be observed. I review historical methods for monitoring behavior and physiology in bivalves and how modern methods with electronic sensors can allow for a number of parameters to be measured in a variety of conditions using low cost components and open source tools. Open source hardware and software tools can allow researchers to design and build custom monitoring systems to sample organismal processes and the environment, systems that can be tailored to the particular needs of a research program. The ability to leverage shared hardware and software can streamline the development process, providing greater flexibility to researchers looking to expand the number of traits they can measure, the frequency and duration of sampling, and the number of replicate devices they can afford to deploy.
Collapse
Affiliation(s)
- Luke P Miller
- Coastal and Marine Institute and Department of Biology, San Diego State University, San Diego, CA 92182
| |
Collapse
|
11
|
Using a clustering algorithm to identify patterns of valve-gaping behaviour in mussels reared under different environmental conditions. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Rodríguez-Velarte P, Babarro JMF, Cobelo-García A. Bioaccumulation patterns of trace elements by native (M. galloprovincialis) and invasive (X. securis) mussels in coastal systems (Vigo Ria, NW Iberian Peninsula). MARINE POLLUTION BULLETIN 2022; 176:113463. [PMID: 35219078 DOI: 10.1016/j.marpolbul.2022.113463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
A number of trace elements (Mn, Fe, Co, Ni, Cu, Zn, As, Nb, Mo, Ag, Cd, Pb, U and the rare earth elements - REE) were analyzed in the dissolved phase, suspended particulate matter and in different organs (gills, hepatopancreas, and the rest of soft tissue) in mussels of the native Mytilus galloprovincialis and invasive Xenostrobus securis species in the Vigo Ria (NW Iberian Peninsula) in order to assess potential differences in their bioaccumulation patterns. Results obtained do not show significant differences in the bioaccumulation of trace elements by M. galloprovincialis and X. securis, except for Zn and Ag. In the case of Zn, a 4-fold enrichment in M. galloprovincialis compared to X. securis was found. The most important differences between species were observed for Ag, with approximately 40-fold higher concentrations in X. securis. Such elevated Ag bioaccumulation by X. securis can be useful for Ag biomonitoring using these invasive species in this area.
Collapse
Affiliation(s)
- P Rodríguez-Velarte
- Instituto de Investigacións Mariñas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - J M F Babarro
- Instituto de Investigacións Mariñas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - A Cobelo-García
- Instituto de Investigacións Mariñas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain.
| |
Collapse
|
13
|
Boutet I, Lacroix C, Devin S, Tanguy A, Moraga D, Auffret M. Does the environmental history of mussels have an effect on the physiological response to additional stress under experimental conditions? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:149925. [PMID: 34555605 DOI: 10.1016/j.scitotenv.2021.149925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/11/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Expected effects on marine biota of the ongoing elevation of water temperature and high latitudes is of major concern when considering the reliability of coastal ecosystem production. To compare the capacity of coastal organisms to cope with a temperature increase depending on their environmental history, responses of adult blue mussels (Mytilus spp.) taken from two sites differentially exposed to chemical pollution were investigated during an experimental exposure to a thermal stress. Immune parameters were notably altered by extreme warming and transcriptional changes for a broad selection of genes were associated to the temperature increase following a two-step response pattern. Site-specific responses suggested an influence of environmental history and support the possibility of a genetic basis in the physiological response. However no meaningful difference was detected between the response of hybrids and M galloprovincialis. This study brings new information about the capacity of mussels to cope with the ongoing elevation of water temperature in these coastal ecosystems.
Collapse
Affiliation(s)
- Isabelle Boutet
- Station Biologique de Roscoff, Laboratoire Adaptation et Diversité en Milieu Marin (UMR 7144 AD2M CNRS-Sorbonne Université), Place Georges Tessier, 29680 Roscoff, France
| | - Camille Lacroix
- Institut Universitaire Européen de la Mer, Laboratoire de Sciences de l'Environnement Marin (UMR 6539 LEMAR CNRS-UBO-IFREMER-IRD), Technopôle Brest-Iroise, 29280 Plouzané, France; CEDRE Conseil et Expertise en Pollutions Accidentelles des Eaux, 715 Rue Alain Colas, CS 41836, 29218 Brest Cedex 2, France
| | - Simon Devin
- Laboratoire Interdisciplinaire des Environnements Continentaux (UMR 7360 LIEC CNRS-Université de Lorraine), 8 rue du Général Delestraint, 57070 Metz. France
| | - Arnaud Tanguy
- Station Biologique de Roscoff, Laboratoire Adaptation et Diversité en Milieu Marin (UMR 7144 AD2M CNRS-Sorbonne Université), Place Georges Tessier, 29680 Roscoff, France
| | - Dario Moraga
- Institut Universitaire Européen de la Mer, Laboratoire de Sciences de l'Environnement Marin (UMR 6539 LEMAR CNRS-UBO-IFREMER-IRD), Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Michel Auffret
- Institut Universitaire Européen de la Mer, Laboratoire de Sciences de l'Environnement Marin (UMR 6539 LEMAR CNRS-UBO-IFREMER-IRD), Technopôle Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
14
|
Domínguez R, Vázquez E, Smallegange IM, Woodin SA, Wethey DS, Peteiro LG, Olabarria C. Predation risk increases in estuarine bivalves stressed by low salinity. MARINE BIOLOGY 2021; 168:132. [PMID: 34720192 PMCID: PMC8550793 DOI: 10.1007/s00227-021-03942-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Salinity drops in estuaries after heavy rains are expected to increase in frequency and intensity over the next decades, with physiological and ecological consequences for the inhabitant organisms. It was investigated whether low salinity stress increases predation risk on three relevant commercial bivalves in Europe. In laboratory, juveniles of Venerupis corrugata, Cerastoderma edule, and the introduced Ruditapes philippinarum were subjected to low salinities (5, 10 and control 35) during two consecutive days and, afterwards, exposed to one of two common predators in the shellfish beds: the shore crab Carcinus maenas and the gastropod Bolinus brandaris, a non-indigenous species present in some Galician shellfish beds. Two types of choice experiment were done: one offering each predator one prey species previously exposed to one of the three salinities, and the other offering each predator the three prey species at the same time, previously exposed to one of the three salinities. Consumption of both predators and predatory behaviour of C. maenas (handling time, rejections, consumption rate) were measured. Predation rates and foraging behaviour differed, with B. brandaris being more generalist than C. maenas. Still, both predators consumed significantly more stressed (salinity 5 and 10) than non-stressed prey. The overall consumption of the native species C. edule and V. corrugata was greater than that of R. philippinarum, likely due to their vulnerability to low salinity and physical traits (e.g., thinner shell, valve gape). Increasing precipitations can alter salinity gradients in shellfish beds, and thus affect the population dynamics of harvested bivalves via predator-prey interactions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00227-021-03942-8.
Collapse
Affiliation(s)
- Rula Domínguez
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, 36331 Vigo, Spain
| | - Elsa Vázquez
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, 36331 Vigo, Spain
| | - Isabel M. Smallegange
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Sarah A. Woodin
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208 USA
| | - David S. Wethey
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208 USA
| | - Laura G. Peteiro
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, 36331 Vigo, Spain
- Instituto de Investigacións Mariñas Consejo Superior de Investigaciones Científicas, C/Eduardo Cabello, 6, 36208 Vigo, Spain
| | - Celia Olabarria
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, 36331 Vigo, Spain
| |
Collapse
|
15
|
Domínguez R, Olabarria C, Woodin SA, Wethey DS, Peteiro LG, Macho G, Vázquez E. Contrasting responsiveness of four ecologically and economically important bivalves to simulated heat waves. MARINE ENVIRONMENTAL RESEARCH 2021; 164:105229. [PMID: 33316606 DOI: 10.1016/j.marenvres.2020.105229] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Heat waves are expected to increase in duration and frequency, impacting coastal ecosystems, especially intertidal organisms living near their thermal tolerance limits. Sedentary infaunal species are limited to some extent in escapes from sudden temperature changes, rather modifications to their physiology and behaviour are expected. This may lead to strong ecological and economic impacts on commercial bivalve species, such as Venerupis corrugata, Ruditapes decussatus, the introduced Ruditapes philippinarum and Cerastoderma edule, the most relevant in NW Spain. We investigated lethal and sublethal effects of heat during low tide on these species in the laboratory. Summer temperatures experienced within field, shallow sediments at approximately 2 cm depth i.e. 20 °C (control), 27 °C, 32 °C, and 37 °C, were replicated during four consecutive days and the diffusion of heat at the burrowing depth of each species was estimated; temperature exposure was expressed as degree hours above 22 °C. After two days of tidal exposure, C. edule and V. corrugata suffered significant mortalities, and also the most dramatic decrease in scope for growth (SFG) as well as reduction in burrowing activity. After four days under stress, all species had negative SFG. On recovery, species showed compensation at longer exposures, particularly C. edule. These effects of temperature on mortality, growth potential and burrowing ability may increase the time to achieve commercial size and exposure to predation. Particularly, V. corrugata, with a center of distribution lower in the intertidal and subtidal, and C. edule, shallower in the sediment, may be the most affected. Clearly the intensity and frequency of heat waves will affect these key species in the intertidal sediment flats changing ecosystem functioning and fisheries management strategies.
Collapse
Affiliation(s)
- Rula Domínguez
- Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias Do Mar, Campus As Lagoas-Marcosende s/n and Centro de Investigación Mariña, Universidade de Vigo, Illa de Toralla s/n, 36331, Vigo, Spain.
| | - Celia Olabarria
- Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias Do Mar, Campus As Lagoas-Marcosende s/n and Centro de Investigación Mariña, Universidade de Vigo, Illa de Toralla s/n, 36331, Vigo, Spain
| | - Sarah A Woodin
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - David S Wethey
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Laura G Peteiro
- Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias Do Mar, Campus As Lagoas-Marcosende s/n and Centro de Investigación Mariña, Universidade de Vigo, Illa de Toralla s/n, 36331, Vigo, Spain; Instituto de Investigacións Mariñas - Consejo Superior de Investigaciones Científicas, C/ Eduardo Cabello, 6, 36208, Vigo, Spain
| | - Gonzalo Macho
- Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias Do Mar, Campus As Lagoas-Marcosende s/n and Centro de Investigación Mariña, Universidade de Vigo, Illa de Toralla s/n, 36331, Vigo, Spain
| | - Elsa Vázquez
- Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias Do Mar, Campus As Lagoas-Marcosende s/n and Centro de Investigación Mariña, Universidade de Vigo, Illa de Toralla s/n, 36331, Vigo, Spain
| |
Collapse
|
16
|
Delorme NJ, Frost EJ, Sewell MA. Effect of acclimation on thermal limits and hsp70 gene expression of the New Zealand sea urchin Evechinus chloroticus. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110806. [DOI: 10.1016/j.cbpa.2020.110806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
|
17
|
Miler K, Stec D, Czarnoleski M. Heat wave effects on the behavior and life-history traits of sedentary antlions. Behav Ecol 2020; 31:1326-1333. [PMID: 33380898 PMCID: PMC7755325 DOI: 10.1093/beheco/araa085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 07/27/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Research on the behavioral responses of animals to extreme weather events, such as heat wave, is lacking even though their frequency and intensity in nature are increasing. Here, we investigated the behavioral response to a simulated heat wave in two species of antlions (Neuroptera: Myrmeleontidae). These insects spend the majority of their lives as larvae and live in sandy areas suitable for a trap-building hunting strategy. We used larvae of Myrmeleon bore and Euroleon nostras, which are characterized by different microhabitat preferences-sunlit in the case of M. bore and shaded in the case of E. nostras. Larvae were exposed to fluctuating temperatures (40 °C for 10 h daily and 25 °C for the remaining time) or a constant temperature (25 °C) for an entire week. We found increased mortality of larvae under heat. We detected a reduction in the hunting activity of larvae under heat, which corresponded to changes in the body mass of individuals. Furthermore, we found long-term consequences of the simulated heat wave, as it prolonged the time larvae needed to molt. These effects were pronounced in the case of E. nostras but did not occur or were less pronounced in the case of M. bore, suggesting that microhabitat-specific selective pressures dictate how well antlions handle heat waves. We, thus, present results demonstrating the connection between behavior and the subsequent changes to fitness-relevant traits in the context of a simulated heat wave. These results illustrate how even closely related species may react differently to the same event.
Collapse
Affiliation(s)
- Krzysztof Miler
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska, Kraków, Poland
| | - Daniel Stec
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Marcin Czarnoleski
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa, Kraków, Poland
| |
Collapse
|
18
|
Collins CL, Burnett NP, Ramsey MJ, Wagner K, Zippay ML. Physiological responses to heat stress in an invasive mussel Mytilus galloprovincialis depend on tidal habitat. MARINE ENVIRONMENTAL RESEARCH 2020; 154:104849. [PMID: 32056704 DOI: 10.1016/j.marenvres.2019.104849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Mussels are ecologically important organisms that can survive in subtidal and intertidal zones where they experience thermal stress. We know little about how mussels from different tidal habitats respond to thermal stress. We used the mussel Mytilus galloprovincialis from separate subtidal and intertidal populations to test whether heart rate and indicators of potential aerobic (citrate synthase activity) and anaerobic (cytosolic malate dehydrogenase activity) metabolic capacity are affected by increased temperatures while exposed to air or submerged in water. Subtidal mussels were affected by warming when submerged in water (decreased heart rate) but showed no effect in air. In contrast, intertidal mussels were affected by exposure to air (increased anaerobic capacity) but not by warming. Overall, physiological responses of mussels to thermal stress were dependent on their tidal habitat. These results highlight the importance of considering the natural habitat of mussels when assessing their responses to environmental challenges.
Collapse
Affiliation(s)
- Christina L Collins
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA, 94928, USA
| | - Nicholas P Burnett
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Matthew J Ramsey
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA, 94928, USA
| | - Kaitlyn Wagner
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA, 94928, USA
| | - Mackenzie L Zippay
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA, 94928, USA.
| |
Collapse
|
19
|
Mamo LT, Benkendorff K, Butcherine P, Coleman MA, Ewere EE, Miranda RJ, Wernberg T, Kelaher BP. Resilience of a harvested gastropod, Turbo militaris, to marine heatwaves. MARINE ENVIRONMENTAL RESEARCH 2019; 151:104769. [PMID: 31431393 DOI: 10.1016/j.marenvres.2019.104769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/22/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Marine heatwaves (MHW) are predicted to occur with increased frequency, duration and intensity in a changing climate, with pervasive ecological and socioeconomic consequences. While there is a growing understanding of the ecological impacts of warming and marine heatwaves, much less is known about how they influence the underlying physiology and health of species, and the nutritional properties of tissue. We evaluated the effects of different heatwave scenarios and ocean warming on the nutritional properties and immune health of the harvested gastropod Turbo militaris. Neither heatwave scenarios nor elevated temperatures had significant impacts on morphometrics, proximate composition or inorganic content of T. militaris. However, an increased moisture content and non-significant trends, such as elevated amount of lipids, and an increased number of hemocytes in the blood of T. militaris in the heatwave treatments were suggestive of mild stress. Overall, our study suggests that T. militaris is resilient to marine heatwaves and warming, although delayed, additive or synergistic stress responses cannot be ruled out. Understanding the possible effects of ocean warming and heatwaves on fisheries species could improve management actions to avoid species impacts, socioeconomic losses and negative effects to ecosystem service provision in a changing climate.
Collapse
Affiliation(s)
- Lea T Mamo
- National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW, 2450, Australia
| | - Kirsten Benkendorff
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, 2480, Lismore, NSW, Australia.
| | - Peter Butcherine
- National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW, 2450, Australia; Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, 2480, Lismore, NSW, Australia
| | - Melinda A Coleman
- National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW, 2450, Australia; Department of Primary Industries, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, NSW, 2450, Australia
| | - Endurance E Ewere
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, 2480, Lismore, NSW, Australia
| | - Ricardo J Miranda
- National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW, 2450, Australia; Institute of Biological and Health Sciences, Federal University of Alagoas, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-90, Maceió, AL, Brazil
| | - Thomas Wernberg
- UWA Oceans Institute, School of Plant Biology, University of Western Australia, Crawley, 6009, WA, Australia
| | - Brendan P Kelaher
- National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW, 2450, Australia; Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, 2480, Lismore, NSW, Australia
| |
Collapse
|
20
|
Climate warming reduces the reproductive advantage of a globally invasive intertidal mussel. Biol Invasions 2019. [DOI: 10.1007/s10530-019-01990-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Dong YW, Li XX, Choi FMP, Williams GA, Somero GN, Helmuth B. Untangling the roles of microclimate, behaviour and physiological polymorphism in governing vulnerability of intertidal snails to heat stress. Proc Biol Sci 2018; 284:rspb.2016.2367. [PMID: 28469014 DOI: 10.1098/rspb.2016.2367] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/28/2017] [Indexed: 12/16/2022] Open
Abstract
Biogeographic distributions are driven by cumulative effects of smaller scale processes. Thus, vulnerability of animals to thermal stress is the result of physiological sensitivities to body temperature (Tb), microclimatic conditions, and behavioural thermoregulation. To understand interactions among these variables, we analysed the thermal tolerances of three species of intertidal snails from different latitudes along the Chinese coast, and estimated potential Tb in different microhabitats at each site. We then empirically determined the temperatures at which heart rate decreased sharply with rising temperature (Arrhenius breakpoint temperature, ABT) and at which it fell to zero (flat line temperature, FLT) to calculate thermal safety margins (TSM). Regular exceedance of FLT in sun-exposed microhabitats, a lethal effect, was predicted for only one mid-latitude site. However, ABTs of some individuals were exceeded at sun-exposed microhabitats in most sites, suggesting physiological impairment for snails with poor behavioural thermoregulation and revealing inter-individual variations (physiological polymorphism) of thermal limits. An autocorrelation analysis of Tb showed that predictability of extreme temperatures was lowest at the hottest sites, indicating that the effectiveness of behavioural thermoregulation is potentially lowest at these sites. These results illustrate the critical roles of mechanistic studies at small spatial scales when predicting effects of climate change.
Collapse
Affiliation(s)
- Yun-Wei Dong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Xiao-Xu Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Francis M P Choi
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| | - Gray A Williams
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - George N Somero
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Brian Helmuth
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China.,Marine Science Center, Northeastern University, Nahant, MA 01908, USA.,School of Public Policy and Urban Affairs, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
22
|
Gleason LU, Miller LP, Winnikoff JR, Somero GN, Yancey PH, Bratz D, Dowd WW. Thermal history and gape of individual Mytilus californianus correlate with oxidative damage and thermoprotective osmolytes. J Exp Biol 2017; 220:4292-4304. [DOI: 10.1242/jeb.168450] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 09/24/2017] [Indexed: 12/22/2022]
Abstract
ABSTRACT
The ability of animals to cope with environmental stress depends – in part – on past experience, yet knowledge of the factors influencing an individual's physiology in nature remains underdeveloped. We used an individual monitoring system to record body temperature and valve gaping behavior of rocky intertidal zone mussels (Mytilus californianus). Thirty individuals were selected from two mussel beds (wave-exposed and wave-protected) that differ in thermal regime. Instrumented mussels were deployed at two intertidal heights (near the lower and upper edges of the mussel zone) and in a continuously submerged tidepool. Following a 23-day monitoring period, measures of oxidative damage to DNA and lipids, antioxidant capacities (catalase activity and peroxyl radical scavenging) and tissue contents of organic osmolytes were obtained from gill tissue of each individual. Univariate and multivariate analyses indicated that inter-individual variation in cumulative thermal stress is a predominant driver of physiological variation. Thermal history over the outplant period was positively correlated with oxidative DNA damage. Thermal history was also positively correlated with tissue contents of taurine, a thermoprotectant osmolyte, and with activity of the antioxidant enzyme catalase. Origin site differences, possibly indicative of developmental plasticity, were only significant for catalase activity. Gaping behavior was positively correlated with tissue contents of two osmolytes. Overall, these results are some of the first to clearly demonstrate relationships between inter-individual variation in recent experience in the field and inter-individual physiological variation, in this case within mussel beds. Such micro-scale, environmentally mediated physiological differences should be considered in attempts to forecast biological responses to a changing environment.
Collapse
Affiliation(s)
- Lani U. Gleason
- Loyola Marymount University, Department of Biology, 1 LMU Drive, Los Angeles, CA 90045, USA
| | - Luke P. Miller
- San Jose State University, Department of Biological Sciences, One Washington Square, San Jose, CA 95192, USA
| | - Jacob R. Winnikoff
- Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| | - George N. Somero
- Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| | - Paul H. Yancey
- Whitman College, Biology Department, 345 Boyer Avenue, Walla Walla, WA 99362, USA
| | - Dylan Bratz
- Whitman College, Biology Department, 345 Boyer Avenue, Walla Walla, WA 99362, USA
| | - W. Wesley Dowd
- Loyola Marymount University, Department of Biology, 1 LMU Drive, Los Angeles, CA 90045, USA
- Washington State University, School of Biological Sciences, PO Box 644236, Pullman, WA 99164, USA
| |
Collapse
|