1
|
Bekier ME, Pinarbasi E, Mesojedec JJ, Ghaffari L, de Majo M, Ullian E, Koontz M, Coleman S, Li X, Tank EMH, Waksmacki J, Barmada S. Nemo-like kinase disrupts nuclear import and drives TDP43 mislocalization in ALS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635090. [PMID: 39975323 PMCID: PMC11838369 DOI: 10.1101/2025.01.27.635090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Cytoplasmic TDP43 mislocalization and aggregation are pathological hallmarks of amyotrophic lateral sclerosis (ALS). However, the initial cellular insults that lead to TDP43 mislocalization remain unclear. In this study, we demonstrate that Nemo-like kinase (NLK)-a proline-directed serine/threonine kinase-promotes the mislocalization of TDP43 and other RNA-binding proteins by disrupting nuclear import. NLK levels are selectively elevated in neurons exhibiting TDP43 mislocalization in ALS patient tissues, while genetic reduction of NLK reduces toxicity in human neuron models of ALS. Our findings suggest that NLK is a promising therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael E. Bekier
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Emile Pinarbasi
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Jack J. Mesojedec
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
| | | | | | - Erik Ullian
- Department of Ophthalmology & Physiology, University of California San Francisco, San Francisco, CA, 94143, United States
| | - Mark Koontz
- Synapticure, Chicago, IL, United States 60612
| | | | - Xingli Li
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Elizabeth M. H. Tank
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Jacob Waksmacki
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Sami Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
| |
Collapse
|
2
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Liu X, Zeng Y, Liu Z, Li W, Wang L, Wu M. Bioinformatics analysis of the circRNA-miRNA-mRNA network for atrial fibrillation. Medicine (Baltimore) 2022; 101:e30221. [PMID: 36042613 PMCID: PMC9410607 DOI: 10.1097/md.0000000000030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Atrial fibrillation (AF) is a chronic and progressive disease, with advancing age, the morbidity of which will increase exponentially. Circular ribonucleic acids (RNAs; circRNAs) have gained a growing attention in the development of AF in recent years. The purpose of this study is to explore the mechanism of circRNA regulation in AF, in particular, the intricate interactions among circRNA, microRNA (miRNA), and messenger RNA (mRNA). Three datasets (GSE129409, GSE68475, and GSE79768) were obtained from the Gene Expression Omnibus database to screen differentially expressed (DE) circRNAs, DE miRNAs, and DE mRNAs in AF, respectively. Based on circRNA-miRNA pairs and miRNA-mRNA pairs, a competing endogenous RNAs (ceRNAs) network was built. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis of DE mRNAs in the network were performed and protein-protein interaction (PPI) networks were established to identify hub genes. Finally, a circRNA-miRNA-hub gene subnetwork was constructed. A total of 103 DE circRNAs, 16 DE miRNAs, and 110 DE mRNAs were screened in AF. Next, ceRNAs network in AF was constructed with 3 upregulated circRNAs, 2 downregulated circRNAs, 2 upregulated miRNAs, 2 downregulated miRNAs, 17 upregulated mRNAs, and 24 downregulated mRNAs. Thirty GO terms and 6 KEGG pathways were obtained. Besides, 6 hub genes (C-X-C chemokine receptor type 4 [CXCR4], C-X-C chemokine receptor type 2 [CXCR2], C-X-C motif chemokine 11 [CXCL11], neuromedin-U, B1 bradykinin receptor, and complement C3) were screened from constructing a PPI network. Finally, a circRNA-miRNA-hub gene subnetwork with 10 regulatory axes was constructed to describe the interactions among the differential circRNAs, miRNA, and hub genes. We speculated that hsa_circRNA_0056281/hsa_circRNA_0006665 -hsa-miR-613-CXCR4/CXCR2/CXCL11 regulatory axes and hsa_circRNA_0003638-hsa-miR-1207-3p-CXCR4 regulatory axis may be associated with the pathogenesis of AF.
Collapse
Affiliation(s)
- Xing Liu
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Yiqian Zeng
- Department of Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Zhao Liu
- Department of Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Wenbin Li
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Lei Wang
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Mingxing Wu
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
- *Correspondence: Mingxing Wu, Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, China (e-mail: )
| |
Collapse
|
4
|
Liu X, Zhong G, Li W, Zeng Y, Wu M. The Construction and Comprehensive Analysis of a ceRNA Immunoregulatory Network and Tissue-Infiltrating Immune Cells in Atrial Fibrillation. Int J Gen Med 2021; 14:9051-9066. [PMID: 34876841 PMCID: PMC8643171 DOI: 10.2147/ijgm.s338797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background At present, the mechanisms behind atrial fibrillation (AF) pathogenesis are still unclear. We construct a ceRNA immunoregulatory network to further understand the mechanism of AF. Methods Four AF mRNA datasets from the Gene Expression Omnibus (GEO) database were integrated by SVA method. AF-related immune genes (AF-IRGs) were selected via combining ImmPort database with the genes in the module most associated with AF obtained by a weighted gene coexpression network analysis (WGCNA). Then, circRNA and miRNA expressions from the GEO database were extracted and mapped with related databases. Next, an immune-related circRNA-miRNA-mRNA ceRNA network was constructed and hub genes were filtered from a protein–protein interaction (PPI) network, and the differentially expressed (DE) hub genes in AF were further screened. Additionally, immune infiltration was investigated in AF by using CIBERSORT. Subsequently, the relationships between DE hub genes and AF-related infiltrating immune cells were performed by using Pearson correlation coefficients. Ulteriorly, the immune-cells-related ceRNA subnetwork in AF was built. Results A total of 95 AF-IRGs were detected, and an immune-related ceRNA network in AF was constructed with 12 circRNAs, 7 miRNAs and 50 mRNAs. The immune infiltration analysis indicated that a higher level of neutrophils, as well as a lower level of T cells regulatory (Tregs) and NK cells activated in AF. Four DE hub genes (CXCL12, IL7R, TNFSF13B, CD8A) were associated with Tregs or NK cells activated immune cells (P < 0.05). Tregs or NK cells activated immune cells-related ceRNA subnetwork including 5 circRNAs (has_circ_0001190, has_circ_0006725, has_circ_0079284, has_circ_0005299, and has_circ_0002103), 4 miRNAs (has-miR-198, has-miR-623, has-miR-1246, and has-miR-339-3p) and 4 DE hub genes was eventually constructed in AF. Conclusion Our results provide new insights into the molecular mechanisms governing AF progression from the perspective of immune-related ceRNA network.
Collapse
Affiliation(s)
- Xing Liu
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, People's Republic of China
| | - Guoqiang Zhong
- Department of Cardiology, Guangxi Cardiovascular Institute, The First Affiliated Hospital of Guangxi Medical University, Guangxi, People's Republic of China
| | - Wenbin Li
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, People's Republic of China
| | - Yiqian Zeng
- Department of Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, Hunan, People's Republic of China
| | - Mingxing Wu
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, People's Republic of China
| |
Collapse
|