1
|
Limbu S, McCloskey KE. An Endothelial Cell Is Not Simply an Endothelial Cell. Stem Cells Dev 2024; 33:517-527. [PMID: 39030822 PMCID: PMC11564855 DOI: 10.1089/scd.2024.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024] Open
Abstract
Endothelial cells (ECs) are a multifaceted component of the vascular system with roles in immunity, maintaining tissue fluid balance, and vascular tone. Dysregulation or dysfunction of ECs can have far-reaching implications, leading pathologies ranging from cardiovascular diseases, such as hypertension and atherosclerosis, ischemia, chronic kidney disease, blood-brain barrier integrity, dementia, and tumor metastasis. Recent advancements in regenerative medicine have highlighted the potential of stem cell-derived ECs, particularly from induced pluripotent stem cells, to treat ischemic tissues, as well as models of vascular integrity. This review summarizes what is known in the generation of ECs with an emphasis on tissue-specific ECs and EC subphenotypes important in the development of targeted cell-based therapies for patient treatment.
Collapse
Affiliation(s)
- Shiwani Limbu
- Quantitative and System Biology Graduate Program, University of California, Merced, USA
| | - Kara E. McCloskey
- Quantitative and System Biology Graduate Program, University of California, Merced, USA
- Materials Science and Engineering Department, University of California, Merced, USA
| |
Collapse
|
2
|
Zamora Alvarado JE, McCloskey KE, Gopinathan A. Migration and proliferation drive the emergence of patterns in co-cultures of differentiating vascular progenitor cells. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:6731-6757. [PMID: 39483091 PMCID: PMC11556463 DOI: 10.3934/mbe.2024295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Vascular cells self-organize into unique structures guided by cell proliferation, migration, and/or differentiation from neighboring cells, mechanical factors, and/or soluble signals. However, the relative contribution of each of these factors remains unclear. Our objective was to develop a computational model to explore the different factors affecting the emerging micropatterns in 2D. This was accomplished by developing a stochastic on-lattice population-based model starting with vascular progenitor cells with the potential to proliferate, migrate, and/or differentiate into either endothelial cells or smooth muscle cells. The simulation results yielded patterns that were qualitatively and quantitatively consistent with experimental observations. Our results suggested that post-differentiation cell migration and proliferation when balanced could generate between 30-70% of each cell type enabling the formation of vascular patterns. Moreover, the cell-to-cell sensing could enhance the robustness of this patterning. These findings computationally supported that 2D patterning is mechanistically similar to current microfluidic platforms that take advantage of the migration-directed self-assembly of mature endothelial and mural cells to generate perfusable 3D vasculature in permissible hydrogel environments and suggest that stem or progenitor cells may not be fully necessary components in many tissue formations like those formed by vasculogenesis.
Collapse
Affiliation(s)
- Jose E. Zamora Alvarado
- School of Engineering, University of California Merced, Merced, CA 95343, USA
- Graduate Program in Materials and Biomaterials Science and Engineering, University of California Merced, Merced, CA 95343, USA
| | - Kara E. McCloskey
- School of Engineering, University of California Merced, Merced, CA 95343, USA
- Graduate Program in Materials and Biomaterials Science and Engineering, University of California Merced, Merced, CA 95343, USA
| | - Ajay Gopinathan
- Graduate Program in Materials and Biomaterials Science and Engineering, University of California Merced, Merced, CA 95343, USA
- Department of Physics, University of California Merced, Merced, CA 95343, USA
| |
Collapse
|
3
|
Shen EM, Salmeron LV, Sanchez G, McCloskey KE. Evaluation of Antibodies for Vascular Smooth Muscle Cell Characterization. STEM CELL AND REGENERATIVE MEDICINE (WILMINGTON, DEL.) 2024; 8:3335. [PMID: 39512442 PMCID: PMC11542737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Flow cytometry, paired with fluorescent antibodies, is a popular method for characterizing cell phenotypes. Our laboratory is interested in deriving and characterizing vascular smooth muscle cells from embryonic and induced pluripotent stem cells, one of the few stem cell differentiation methods that remain underdeveloped. In our studies, we found that most commercially available antibodies advertised for smooth muscle cell identification using flow-activated cell scanning (FACS) were, in fact, not able to distinguish between positive and negative controls. Attempts to resolve the issues included exploring a range of incubation times, blocking reagents, staining kits, and titrating dilutions against both positive and negative control cells. In the end, we found that only the smooth muscle myosin heavy chain (SMMHC) antibody at a narrow titrating dilution range could distinctly bind to its intended epitope. Moreover, without more adequate and specific antibodies for labelling smooth muscle cells, we were not able to continue with our studies on smooth muscle cell fate.
Collapse
Affiliation(s)
- Edwin M Shen
- Graduate Program in Biological Engineering and Small-scale Technologies, University of California, Merced
| | | | | | - Kara E McCloskey
- Graduate Program in Biological Engineering and Small-scale Technologies, University of California, Merced
- School of Engineering, University of California, Merced
| |
Collapse
|
4
|
Jezierski A, Huang J, Haqqani AS, Haukenfrers J, Liu Z, Baumann E, Sodja C, Charlebois C, Delaney CE, Star AT, Liu Q, Stanimirovic DB. Mouse embryonic stem cell-derived blood-brain barrier model: applicability to studying antibody triggered receptor mediated transcytosis. Fluids Barriers CNS 2023; 20:36. [PMID: 37237379 DOI: 10.1186/s12987-023-00437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Blood brain barrier (BBB) models in vitro are an important tool to aid in the pre-clinical evaluation and selection of BBB-crossing therapeutics. Stem cell derived BBB models have recently demonstrated a substantial advantage over primary and immortalized brain endothelial cells (BECs) for BBB modeling. Coupled with recent discoveries highlighting significant species differences in the expression and function of key BBB transporters, the field is in need of robust, species-specific BBB models for improved translational predictability. We have developed a mouse BBB model, composed of mouse embryonic stem cell (mESC-D3)-derived brain endothelial-like cells (mBECs), employing a directed monolayer differentiation strategy. Although the mBECs showed a mixed endothelial-epithelial phenotype, they exhibited high transendothelial electrical resistance, inducible by retinoic acid treatment up to 400 Ω cm2. This tight cell barrier resulted in restricted sodium fluorescein permeability (1.7 × 10-5 cm/min), significantly lower than that of bEnd.3 cells (1.02 × 10-3 cm/min) and comparable to human induced pluripotent stem cell (iPSC)-derived BECs (2.0 × 10-5 cm/min). The mBECs expressed tight junction proteins, polarized and functional P-gp efflux transporter and receptor mediated transcytosis (RMT) receptors; collectively important criteria for studying barrier regulation and drug delivery applications in the CNS. In this study, we compared transport of a panel of antibodies binding species selective or cross-reactive epitopes on BBB RMT receptors in both the mBEC and human iPSC-derived BEC model, to demonstrate discrimination of species-specific BBB transport mechanisms.
Collapse
Affiliation(s)
- Anna Jezierski
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Jez Huang
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Julie Haukenfrers
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Ziying Liu
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Ewa Baumann
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Caroline Sodja
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Claudie Charlebois
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Christie E Delaney
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Alexandra T Star
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Qing Liu
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| |
Collapse
|
5
|
Nakatani E, Okajima R, Ohnuma K. Slow diffusion on the monolayer culture enhances auto/paracrine effects of Noggin in differentiation of human iPS cells induced by BMP. Biochem Biophys Rep 2022; 29:101195. [PMID: 35005256 PMCID: PMC8717143 DOI: 10.1016/j.bbrep.2021.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Auto/paracrine factors secreted from cells affect differentiation of human pluripotent stem cells (hPSCs). However, the molecular mechanisms underlying the role of secreted factors are not well known. We previously showed that pattern formation in hPSCs induced by BMP4 could be reproduced by a simple reaction-diffusion of BMP and Noggin, a cell-secreted BMP4 inhibitor. However, the amount of Noggin secreted is unknown. In this study, we measured the concentration of Noggin secreted during the differentiation of hPSCs induced by BMP4. The Noggin concentration in the supernatant before and after differentiation was constant at approximately 0.69 ng/mL, which is approximately 50–200 times less than expected in the model. To explain the difference between the experiment and model, we assumed that macromolecules such as heparan sulfate proteoglycan on the cell surface act as a diffusion barrier structure, where the diffusion slows down to 1/400. The model with the diffusion barrier structure reduced the Noggin concentration required to suppress differentiation in the static culture model. The model also qualitatively reproduced the pattern formation, in which only the upstream but not the downstream hPSCs were differentiated in a one-directional perfusion culture chamber, with a small change in the amount of secreted Noggin resulting in a large change in the differentiation position. These results suggest that the diffusion barrier on the cell surface might enhance the auto/paracrine effects on monolayer hPSC culture. Noggin was constantly secreted at about 0.69 ng/mL irrespective of cell state. Noggin concentration was 1/145 than expected in the mere diffusion-reaction model. Slow diffusion on the cell surface reduced the Noggin concentration in the medium. The diffusion barrier reproduced pattern formation in the microchamber.
Collapse
Affiliation(s)
- Eri Nakatani
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, 940-2188, Japan
| | - Riho Okajima
- Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, 940-2188, Japan
| | - Kiyoshi Ohnuma
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, 940-2188, Japan.,Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, 940-2188, Japan
| |
Collapse
|
6
|
Burns AB, Doris C, Vehar K, Saxena V, Bardliving C, Shamlou PA, Phillips MI. Novel low shear 3D bioreactor for high purity mesenchymal stem cell production. PLoS One 2021; 16:e0252575. [PMID: 34133442 PMCID: PMC8208585 DOI: 10.1371/journal.pone.0252575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 05/18/2021] [Indexed: 01/24/2023] Open
Abstract
Bone marrow derived human Mesenchymal Stem Cells (hMSCs) are an attractive candidate for regenerative medicine. However, their harvest can be invasive, painful, and expensive, making it difficult to supply the enormous amount of pure hMSCs needed for future allogeneic therapies. Because of this, a robust method of scaled bioreactor culture must be designed to supply the need for high purity, high density hMSC yields. Here we test a scaled down model of a novel bioreactor consisting of an unsubmerged 3D printed Polylactic Acid (PLA) lattice matrix wetted by culture media. The growth matrix is uniform, replicable, and biocompatible, enabling homogenous cell culture in three dimensions. The goal of this study was to prove that hMSCs would culture well in this novel bioreactor design. The system tested resulted in comparable stem cell yields to other cell culture systems using bone marrow derived hMSCs, while maintaining viability (96.54% ±2.82), high purity (>98% expression of combined positive markers), and differentiation potential.
Collapse
Affiliation(s)
- Andrew B. Burns
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Corinna Doris
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Kevin Vehar
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Vinit Saxena
- Sepragen Corporation, Hayward, California, United States of America
| | - Cameron Bardliving
- Jefferson Institute for Bioprocessing, Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Parviz A. Shamlou
- Jefferson Institute for Bioprocessing, Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - M. Ian Phillips
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| |
Collapse
|
7
|
Jahan B, McCloskey KE. Differentiation and expansion of endothelial cells requires pre-optimization of KDR+ expression kinetics. Stem Cell Res 2019; 42:101685. [PMID: 31896485 DOI: 10.1016/j.scr.2019.101685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Human endothelial cells (ECs) are important tools in research and development of new therapies in the fields of angiogenesis, vasculogenesis, engineering organoids and multicellular tissues, drug discovery, and disease modeling. Efficient and robust induction of ECs from human pluripotent stem cells (hPSCs) serve as a renewable and indefinite cell sources. However, individual lines of embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) are distinct and can often respond very differently to the same microenvironmental cues. Therefore, we set out to develop a differentiation methodology specifically designed for robustness across multiple human iPSC lines. In general, the key soluble signals remain consistent across cell lines, but because the differentiation and proliferation kinetics can differ slightly in hESC and iPSC cell lines, the time point for KDR+ cell sorting must be pre-determined for each cell line. This three-stage induction method uses three different chemically defined medium formulations and generates highly purified populations of actively proliferating and functional VE-cadherin+ ECs within 30 days.
Collapse
Affiliation(s)
- Basharat Jahan
- Graduate Program in Biological Engineering and Small-scale Technologies, University of California, Merced, United States
| | - Kara E McCloskey
- Graduate Program in Biological Engineering and Small-scale Technologies, University of California, Merced, United States; Department of Materials Science and Engineering, University of California, Merced, United States.
| |
Collapse
|
8
|
Taniguchi D, Matsumoto K, Machino R, Takeoka Y, Elgalad A, Taura Y, Oyama S, Tetsuo T, Moriyama M, Takagi K, Kunizaki M, Tsuchiya T, Miyazaki T, Hatachi G, Matsuo N, Nakayama K, Nagayasu T. Human lung microvascular endothelial cells as potential alternatives to human umbilical vein endothelial cells in bio-3D-printed trachea-like structures. Tissue Cell 2019; 63:101321. [PMID: 32223949 DOI: 10.1016/j.tice.2019.101321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND We have been trying to produce scaffold-free structures for airway regeneration using a bio-3D-printer with spheroids, to avoid scaffold-associated risks such as infection. Previous studies have shown that human umbilical vein endothelial cells (HUVECs) play an important role in such structures, but HUVECs cannot be isolated from adult humans. The aim of this study was to identify alternatives to HUVECs for use in scaffold-free structures. METHODS Three types of structure were compared, made of chondrocytes and mesenchymal stem cells with HUVECs, human lung microvascular endothelial cells (HMVEC-Ls), and induced pluripotent stem cell (iPSC)-derived endothelial cells. RESULTS No significant difference in tensile strength was observed between the three groups. Histologically, some small capillary-like tube formations comprising CD31-positive cells were observed in all groups. The number and diameters of such formations were significantly lower in the iPSC-derived endothelial cell group than in other groups. Glycosaminoglycan content was significantly lower in the iPSC-derived endothelial cell group than in the HUVEC group, while no significant difference was observed between the HUVEC and HMVEC-L groups. CONCLUSIONS HMVEC-Ls can replace HUVECs as a cell source for scaffold-free trachea-like structures. However, some limitations were associated with iPSC-derived endothelial cells.
Collapse
Affiliation(s)
- D Taniguchi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - K Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - R Machino
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Y Takeoka
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - A Elgalad
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Y Taura
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - S Oyama
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - T Tetsuo
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - M Moriyama
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - K Takagi
- Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - M Kunizaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - T Tsuchiya
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - T Miyazaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - G Hatachi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - N Matsuo
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - K Nakayama
- Department of Regenerative Medicine and Biomedical Engineering Faculty of Medicine, Saga University, 1 Honjocho, Saga, 840-8502, Japan
| | - T Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
9
|
Wong L, Kumar A, Gabela-Zuniga B, Chua J, Singh G, Happe CL, Engler AJ, Fan Y, McCloskey KE. Substrate stiffness directs diverging vascular fates. Acta Biomater 2019; 96:321-329. [PMID: 31326665 DOI: 10.1016/j.actbio.2019.07.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022]
Abstract
Embryonic stem cells (ESC) are excellent cell culture systems for elucidating developmental signals that may be part of the stem cell niche. Although stem cells are traditionally induced using predominately soluble signals, the mechanical environment of the niche can also play a role in directing cells towards differential cell lineages. Interested in diverging vascular fates, we set out to examine to what extent mechanical signaling played a role in endothelial cell and/or smooth muscle fate. Using chemically-defined staged vascular differentiation methods, vascular progenitor cells (VPC) fate was examined on single stiffness polyacrylamide hydrogels of 10 kPa, 40 kPa and >0.1 GPa. Emergence of vascular cell populations aligned with corresponding hydrogel stiffness: EC-lineages favoring the softer material and SMC lineages favoring the stiffest material. Statistical significance was observed on both cell lines on almost all days. Transcriptome analysis indicated that the populations on the varying stiffness emerge in distinct categories. Lastly, blocking studies show that αvβ1, and not αvβ6, activation mediates stiffness-directed vascular differentiation. Overall, these studies indicate that softer materials direct VPCs into a more EC-like fate compared to stiffer materials. STATEMENT OF SIGNIFICANCE: Although stem cells are traditionally induced using predominately soluble signals, the mechanical environment of the niche also plays a role in directing cell fate. Several studies have examined the stiffness-induced cell fate from mesenchymal stem cells (MSCs) and undifferentiated embryonic stem cells (ESCs). This is the first study that rigorously examines the role of matrix stiffness in diverging vascular fates from a purified population of vascular progenitor cells (VPCs). We show that the emergence of endothelial cell (EC) versus smooth muscle cell (SMC) populations corresponds with hydrogel stiffness: EC-lineages favoring the softness material and SMC lineages favoring the stiffest material, and that αvβ1 activation mediates this stiffness-directed vascular differentiation.
Collapse
|
10
|
Zou T, Jiang S, Dissanayaka WL, Heng BC, Xu J, Gong T, Huang X, Zhang C. Sema4D/PlexinB1 promotes endothelial differentiation of dental pulp stem cells via activation of AKT and ERK1/2 signaling. J Cell Biochem 2019; 120:13614-13624. [PMID: 30937968 DOI: 10.1002/jcb.28635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 01/05/2023]
Abstract
Inducing of dental pulp stem cells (DPSCs) into endothelial cells (ECs) to prevascularize pulp tissue constructs may offer a novel and viable approach for enhancing pulp regeneration. However, there are numerous challenges in current methods for the acquisition of sufficient translational ECs. It was known that Sema4D/PlexinB1 signaling exerts profound effects on enhancing vascular endothelial growth factor (VEGF) secretion and angiogenesis. Whether Sema4D/PlexinB1 could regulate endothelial differentiation of DPSCs is not yet investigated. In this study, when DPSCs were treated with Sema4D (2 μg/mL), ECs-specific (VEGFR1, VEGFR2, CD31, and vWF), and angiogenic genes and proteins were significantly upregulated. The induced ECs exhibited similar endothelial vessel formation ability to that of human umbilical vein endothelial cells (HUVECs). Furthermore, phosphorylation of AKT increased dramatically within 5 minutes (from 0.93 to 21.8), while p-ERK1/2 was moderately elevated (from 0.94 to 2.65). In summary, our results demonstrated that Sema4D/PlexinB1 signaling induces endothelial differentiation of DPSCs. The interactions of Sema4D, VEGF, ANGPTL4, ANG1, and HIF-1α may play a crucial role in mediating the differentiation process.
Collapse
Affiliation(s)
- Ting Zou
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Shan Jiang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | | | - Boon Chin Heng
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Jianguang Xu
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ting Gong
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Xiaojing Huang
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
11
|
Toms D, Deardon R, Ungrin M. Climbing the mountain: experimental design for the efficient optimization of stem cell bioprocessing. J Biol Eng 2017; 11:35. [PMID: 29213303 PMCID: PMC5712411 DOI: 10.1186/s13036-017-0078-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/27/2017] [Indexed: 12/26/2022] Open
Abstract
"To consult the statistician after an experiment is finished is often merely to ask him to conduct a post mortem examination. He can perhaps say what the experiment died of." - R.A. Fisher While this idea is relevant across research scales, its importance becomes critical when dealing with the inherently large, complex and expensive process of preparing material for cell-based therapies (CBTs). Effective and economically viable CBTs will depend on the establishment of optimized protocols for the production of the necessary cell types. Our ability to do this will depend in turn on the capacity to efficiently search through a multi-dimensional problem space of possible protocols in a timely and cost-effective manner. In this review we discuss approaches to, and illustrate examples of the application of statistical design of experiments to stem cell bioprocess optimization.
Collapse
Affiliation(s)
- Derek Toms
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, T2N 4Z6 Canada
| | - Rob Deardon
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, T2N 4Z6 Canada
- Department of Mathematics and Statistics, Faculty of Science, University of Calgary, 612 Campus Place NW, Calgary, T2N 4N1 Canada
| | - Mark Ungrin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, T2N 4Z6 Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4 Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1 Canada
- Alberta Diabetes Institute, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, T6G 2E1 Canada
- Centre for Bioengineering Research and Education, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4 Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, 3280 Hospital Drive NW, Calgary, T2N 4Z6 Canada
| |
Collapse
|
12
|
Weinstein N, Mendoza L, Gitler I, Klapp J. A Network Model to Explore the Effect of the Micro-environment on Endothelial Cell Behavior during Angiogenesis. Front Physiol 2017; 8:960. [PMID: 29230182 PMCID: PMC5711888 DOI: 10.3389/fphys.2017.00960] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/10/2017] [Indexed: 01/07/2023] Open
Abstract
Angiogenesis is an important adaptation mechanism of the blood vessels to the changing requirements of the body during development, aging, and wound healing. Angiogenesis allows existing blood vessels to form new connections or to reabsorb existing ones. Blood vessels are composed of a layer of endothelial cells (ECs) covered by one or more layers of mural cells (smooth muscle cells or pericytes). We constructed a computational Boolean model of the molecular regulatory network involved in the control of angiogenesis. Our model includes the ANG/TIE, HIF, AMPK/mTOR, VEGF, IGF, FGF, PLCγ/Calcium, PI3K/AKT, NO, NOTCH, and WNT signaling pathways, as well as the mechanosensory components of the cytoskeleton. The dynamical behavior of our model recovers the patterns of molecular activation observed in Phalanx, Tip, and Stalk ECs. Furthermore, our model is able to describe the modulation of EC behavior due to extracellular micro-environments, as well as the effect due to loss- and gain-of-function mutations. These properties make our model a suitable platform for the understanding of the molecular mechanisms underlying some pathologies. For example, it is possible to follow the changes in the activation patterns caused by mutations that promote Tip EC behavior and inhibit Phalanx EC behavior, that lead to the conditions associated with retinal vascular disorders and tumor vascularization. Moreover, the model describes how mutations that promote Phalanx EC behavior are associated with the development of arteriovenous and venous malformations. These results suggest that the network model that we propose has the potential to be used in the study of how the modulation of the EC extracellular micro-environment may improve the outcome of vascular disease treatments.
Collapse
Affiliation(s)
- Nathan Weinstein
- ABACUS-Laboratorio de Matemáticas Aplicadas y Cómputo de Alto Rendimiento, Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados CINVESTAV-IPN, Mexico City, Mexico
| | - Luis Mendoza
- CompBioLab, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Isidoro Gitler
- ABACUS-Laboratorio de Matemáticas Aplicadas y Cómputo de Alto Rendimiento, Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados CINVESTAV-IPN, Mexico City, Mexico
| | - Jaime Klapp
- ABACUS-Laboratorio de Matemáticas Aplicadas y Cómputo de Alto Rendimiento, Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados CINVESTAV-IPN, Mexico City, Mexico
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Mexico City, Mexico
| |
Collapse
|
13
|
Ge Q, Zhang H, Hou J, Wan L, Cheng W, Wang X, Dong D, Chen C, Xia J, Guo J, Chen X, Wu X. VEGF secreted by mesenchymal stem cells mediates the differentiation of endothelial progenitor cells into endothelial cells via paracrine mechanisms. Mol Med Rep 2017; 17:1667-1675. [PMID: 29138837 PMCID: PMC5780109 DOI: 10.3892/mmr.2017.8059] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
Stem cell therapy is a promising treatment strategy for ischemic diseases. Mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) adhere to each other in the bone marrow cavity and in in vitro cultures. We have previously demonstrated that the adhesion between MSCs and EPCs is critical for MSC self-renewal and their multi-differentiation into osteoblasts and chondrocytes. In the present study, the influence of the indirect communication between EPCs and MSCs on the endothelial differentiation potential of EPCs was investigated, and the molecular mechanisms underlying MSC-mediated EPC differentiation were explored. The effects of vascular endothelial growth factor (VEGF), which is secreted by MSCs, on EPC differentiation via paracrine mechanisms were examined via co-culturing MSCs and EPCs. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were used to detect the expression of genes and proteins of interest. The present results demonstrated that co-culturing EPCs with MSCs enhanced the expression of cluster of differentiation 31 and von Willebrand factor, which are specific markers of an endothelial phenotype, thus indicating that MSCs may influence the endothelial differentiation of EPCs in vitro. VEGF appeared to be critical to this process. These findings are important for the understanding of the biological interactions between MSCs and EPCs, and for the development of applications of stem cell-based therapy in the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Quanhu Ge
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Hongwei Zhang
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Jixue Hou
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Longfei Wan
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Wenzhe Cheng
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Xiaoyi Wang
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Dan Dong
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Congzhe Chen
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Jie Xia
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Jun Guo
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Xueling Chen
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Xiangwei Wu
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
14
|
Lin Y, Gil CH, Yoder MC. Differentiation, Evaluation, and Application of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells. Arterioscler Thromb Vasc Biol 2017; 37:2014-2025. [PMID: 29025705 DOI: 10.1161/atvbaha.117.309962] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
The emergence of induced pluripotent stem cell (iPSC) technology paves the way to generate large numbers of patient-specific endothelial cells (ECs) that can be potentially delivered for regenerative medicine in patients with cardiovascular disease. In the last decade, numerous protocols that differentiate EC from iPSC have been developed by many groups. In this review, we will discuss several common strategies that have been optimized for human iPSC-EC differentiation and subsequent studies that have evaluated the potential of human iPSC-EC as a cell therapy or as a tool in disease modeling. In addition, we will emphasize the importance of using in vivo vessel-forming ability and in vitro clonogenic colony-forming potential as a gold standard with which to evaluate the quality of human iPSC-EC derived from various protocols.
Collapse
Affiliation(s)
- Yang Lin
- From the Department of Pediatrics, Herman B. Wells Center for Pediatric Research (Y.L., C.-H.G., M.C.Y.) and Department of Biochemistry and Molecular Biology (Y.L., M.C.Y.), Indiana University School of Medicine, Indianapolis
| | - Chang-Hyun Gil
- From the Department of Pediatrics, Herman B. Wells Center for Pediatric Research (Y.L., C.-H.G., M.C.Y.) and Department of Biochemistry and Molecular Biology (Y.L., M.C.Y.), Indiana University School of Medicine, Indianapolis
| | - Mervin C Yoder
- From the Department of Pediatrics, Herman B. Wells Center for Pediatric Research (Y.L., C.-H.G., M.C.Y.) and Department of Biochemistry and Molecular Biology (Y.L., M.C.Y.), Indiana University School of Medicine, Indianapolis.
| |
Collapse
|
15
|
Combinatorial Extracellular Matrix Microenvironments for Probing Endothelial Differentiation of Human Pluripotent Stem Cells. Sci Rep 2017; 7:6551. [PMID: 28747756 PMCID: PMC5529516 DOI: 10.1038/s41598-017-06986-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/21/2017] [Indexed: 12/02/2022] Open
Abstract
Endothelial cells derived from human pluripotent stem cells are a promising cell type for enhancing angiogenesis in ischemic cardiovascular tissues. However, our understanding of microenvironmental factors that modulate the process of endothelial differentiation is limited. We examined the role of combinatorial extracellular matrix (ECM) proteins on endothelial differentiation systematically using an arrayed microscale platform. Human pluripotent stem cells were differentiated on the arrayed ECM microenvironments for 5 days. Combinatorial ECMs composed of collagen IV + heparan sulfate + laminin (CHL) or collagen IV + gelatin + heparan sulfate (CGH) demonstrated significantly higher expression of CD31, compared to single-factor ECMs. These results were corroborated by fluorescence activated cell sorting showing a 48% yield of CD31+/VE-cadherin+ cells on CHL, compared to 27% on matrigel. To elucidate the signaling mechanism, a gene expression time course revealed that VE-cadherin and FLK1 were upregulated in a dynamically similar manner as integrin subunit β3 (>50 fold). To demonstrate the functional importance of integrin β3 in promoting endothelial differentiation, the addition of neutralization antibody inhibited endothelial differentiation on CHL-modified dishes by >50%. These data suggest that optimal combinatorial ECMs enhance endothelial differentiation, compared to many single-factor ECMs, in part through an integrin β3-mediated pathway.
Collapse
|
16
|
Ibrahim M, Richardson MK. Beyond organoids: In vitro vasculogenesis and angiogenesis using cells from mammals and zebrafish. Reprod Toxicol 2017; 73:292-311. [PMID: 28697965 DOI: 10.1016/j.reprotox.2017.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/12/2017] [Accepted: 07/05/2017] [Indexed: 12/24/2022]
Abstract
The ability to culture complex organs is currently an important goal in biomedical research. It is possible to grow organoids (3D organ-like structures) in vitro; however, a major limitation of organoids, and other 3D culture systems, is the lack of a vascular network. Protocols developed for establishing in vitro vascular networks typically use human or rodent cells. A major technical challenge is the culture of functional (perfused) networks. In this rapidly advancing field, some microfluidic devices are now getting close to the goal of an artificially perfused vascular network. Another development is the emergence of the zebrafish as a complementary model to mammals. In this review, we discuss the culture of endothelial cells and vascular networks from mammalian cells, and examine the prospects for using zebrafish cells for this objective. We also look into the future and consider how vascular networks in vitro might be successfully perfused using microfluidic technology.
Collapse
Affiliation(s)
- Muhammad Ibrahim
- Animal Science and Health Cluster, Institute of Biology Leiden, Leiden University, The Netherlands; Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Michael K Richardson
- Animal Science and Health Cluster, Institute of Biology Leiden, Leiden University, The Netherlands.
| |
Collapse
|