1
|
Yang Y, Gong Z, Lu Y, Lu X, Zhang J, Meng Y, Peng Y, Chu S, Cao W, Hao X, Sun J, Wang H, Qin A, Wang C, Shang S, Yang Z. Dairy Cows Experimentally Infected With Bovine Leukemia Virus Showed an Increased Milk Production in Lactation Numbers 3–4: A 4-Year Longitudinal Study. Front Microbiol 2022; 13:946463. [PMID: 35898913 PMCID: PMC9309534 DOI: 10.3389/fmicb.2022.946463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Bovine leukemia virus (BLV) is widespread in global cattle populations, but the effects of its infection on milk quantity and quality have not been clearly elucidated in animal models. In this study, 30 healthy first-lactation cows were selected from ≈2,988 cows in a BLV-free farm with the same criteria of parity, age, lactation number, as well as milk yield, SCS, and composition (fat, protein, and lactose). Subsequently, these cows were randomly assigned to the intervention (n = 15) or control (n = 15) group, and reared in different cowsheds. Cows in the intervention group were inoculated with 1 × phosphate-buffered solution (PBS) resuspended in peripheral blood mononuclear cells (PBMC) from a BLV-positive cow, while the controls were inoculated with the inactivated PBMC from the same individual. From June 2016 to July 2021, milk weight (kg) was automatically recorded by milk sensors, and milk SCS and composition were originated from monthly performed dairy herd improvement (DHI) testing. Fluorescence resonance energy transfer (FRET)–qPCR and ELISA showed that cows in the intervention group were successfully infected with BLV, while cows in the control group were free of BLV for the entire period. At 45 days post-inoculation (DPI), the numbers of whole blood cells (WBCs) (P = 0.010), lymphocytes (LYMs) (P = 0.002), and monocytes (MNCs) (P = 0.001) and the expression levels of IFN-γ (P = 0.013), IL-10 (P = 0.031), and IL-12p70 (P = 0.008) increased significantly in the BLV infected cows compared to the non-infected. In lactation numbers 2–4, the intervention group had significantly higher overall milk yield (P < 0.001), fat (P = 0.031), and protein (P = 0.050) than the control group, while milk SCS (P = 0.038) and lactose (P = 0.036) decreased significantly. Further analysis indicated that BLV infection was associated with increased milk yield at each lactation stage in lactation numbers 3–4 (P = 0.021 or P < 0.001), but not with SCS and milk composition. Together, this 4-year longitudinal study revealed that artificial inoculation of BLV increased the milk yield in cows in this BLV challenge model.
Collapse
Affiliation(s)
- Yi Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, China
- *Correspondence: Yi Yang
| | - Zaicheng Gong
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yi Lu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ye Meng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yalan Peng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuangfeng Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wenqiang Cao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaoli Hao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jie Sun
- Shenzhen Academy of Inspection and Quarantine Sciences, Shenzhen, China
| | - Heng Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Aijian Qin
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, China
| | - Chengming Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Shaobin Shang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, China
- Shaobin Shang
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Zhangping Yang
| |
Collapse
|
2
|
Gainor K, Ghosh S. A comprehensive review of viruses in terrestrial animals from the Caribbean islands of Greater and Lesser Antilles. Transbound Emerg Dis 2022; 69:e1299-e1325. [PMID: 35578793 DOI: 10.1111/tbed.14595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
Viruses pose a major threat to animal health worldwide, causing significant mortalities and morbidities in livestock, companion animals and wildlife, with adverse implications on human health, livelihoods, food safety and security, regional/national economies, and biodiversity. The Greater and Lesser Antilles consist of a cluster of islands between the North and South Americas and is habitat to a wide variety of animal species. This review is the first to put together decades of information on different viruses circulating in companion animals, livestock, and wildlife from the Caribbean islands of Greater and Lesser Antilles. Although animal viral diseases have been documented in the Caribbean region since the 1940s, we found that studies on different animal viruses are limited, inconsistent, and scattered. Furthermore, a significant number of the reports were based on serological assays, yielding preliminary data. The available information was assessed to identify knowledge gaps and limitations, and accordingly, recommendations were made, with the overall goal to improve animal health and production, and combat zoonoses in the region. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kerry Gainor
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| |
Collapse
|
3
|
Nishikaku K, Noguchi T, Murakami S, Torii Y, Kobayashi T. Molecular analysis of bovine leukemia virus in early epidemic phase in Japan using archived formalin fixed paraffin embedded histopathological specimens. J Vet Med Sci 2022; 84:350-357. [PMID: 35046241 PMCID: PMC8983278 DOI: 10.1292/jvms.21-0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine leukemia virus (BLV) is an important pathogen associated with enzootic bovine leukosis. In this study, we performed PCR and sequencing analysis to characterize BLVgp51 sequences from
formalin-fixed paraffin-embedded (FFPE) specimens made from 1974 to 2000 and successfully obtained BLV proviral genome sequences from 94% of the analyzed samples. Furthermore, from these
samples, we reconstructed eight full-length and nearly full-length BLVgp51 sequences. These sequences were classified as BLV genotype 1, implying that genotype1 has already been circulating
in Japan since the 1970s. In our results, the proviral DNA was detected in the 1970s, 1980s, and 1990s in the same manner, indicating that the detection of BLV proviral genome depends on
storage conditions rather than storage period. The sequences obtained in this study provide direct insights into BLV sequences before 2000, which serves as a good calibrator for inferring
ancient BLV diversity.
Collapse
Affiliation(s)
- Kohei Nishikaku
- Department of Animal Science, Faculty of agriculture, Tokyo University of Agriculture
| | - Tatsuo Noguchi
- Department of Animal Science, Faculty of agriculture, Tokyo University of Agriculture
| | - Satoshi Murakami
- Department of Animal Science, Faculty of agriculture, Tokyo University of Agriculture
| | - Yasushi Torii
- Department of Animal Science, Faculty of agriculture, Tokyo University of Agriculture
| | - Tomoko Kobayashi
- Department of Animal Science, Faculty of agriculture, Tokyo University of Agriculture
| |
Collapse
|
4
|
Blazhko N, Shatokhin K, Khripko Y, Ngirande C, Kochnev N. Mutational and phylogenetic status of west siberian strains of BLV. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213606025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The study is devoted of full-genome BLV sequences circulating in cattle populations of the Novosibirsk region, Russia. The phylogenetic tree shows that the West Siberian isolates are quite closely related to such previously isolated strains as AF399704 (Brazil), AP018007, AP018016, AP018019, LC007988, LC007991 (Japan) and EF065638 (Belgium) we calculations show that the number of mutations that could independently occur in parallel evolving BLV strains significantly exceeds the expected number based on the probability of corresponding substitutions. It was also found that the studied isolates have some mutations, the presence of which, at first glance, is possible only with their divergent development in different independently evolving branches. However, calculations show that the probability of an independent origin of an identical mutation is extremely small, which indicates the possibility of exchanging RNA sites between isolates circulating in West Siberian cattle populations.
Collapse
|
5
|
Genotypes diversity of env gene of Bovine leukemia virus in Western Siberia. BMC Genet 2020; 21:70. [PMID: 33092552 PMCID: PMC7586112 DOI: 10.1186/s12863-020-00874-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND This study describes the biodiversity and properties of Bovine leukemia virus in Western Siberia. This paper explores the effect of different genotypes of the env gene of the cattle leukemia virus on hematological parameters of infected animals. The researchers focused on exploring the polymorphism of the env gene and, in doing so, discovered the new genotypes Ia and Ib, which differ from genotype I. Several hypotheses on the origin of the different genotypes in Siberia are discussed. RESULTS We obtained varying length of the restriction fragments for genotypes I. Additionally using restrictase Hae III were received fragments was named genotype Ia, and genotype Ib. There are 2.57 ± 0.55% (20 out of 779) samples of genotype Ib which does not differ significantly from 1% (χ2 = 2.46). Other genotypes were observed in the cattle of Siberia as wild type genotypes (their frequency varied from 17.84 to 32.73%). The maximum viral load was observed in animals with the II and IV viral genotypes (1000-1400 viral particles per 1000 healthy cells), and the minimum viral load was observed animals with genotype Ib (from 700 to 900 viral particles per 1000 healthy cells). CONCLUSIONS The probability of the direct introduction of genotype II from South America to Siberia is extremely small and it is more likely that the strain originated independently in an autonomous population with its distribution also occurring independently. A new variety of genotype I (Ib) was found, which can be both a neoplasm and a relict strain.
Collapse
|
6
|
Cerón Téllez F, González Méndez AS, Tórtora Pérez JL, Loza-Rubio E, Ramírez Álvarez H. Lack of association between amino acid sequences of the bovine leukemia virus envelope and varying stages of infection in dairy cattle. Virus Res 2020; 278:197866. [PMID: 31968223 DOI: 10.1016/j.virusres.2020.197866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 02/05/2023]
Abstract
We collected 724 blood samples from dairy cattle from six Mexican states, and tested them for the presence of antibodies against BLV using a commercial ELISA test. Our study groups consisted of 32 samples: 12 asymptomatic cows, 12 cows with lymphocytosis and 8 samples of tumor tissue of the abomasum and heart of cattle with lymphoma. We designed three pairs of primers to amplify the complete BLV env gene, and obtained a fragment of 1548 nucleotides in length with the sequenced products. According to the phylogenetic tree we constructed to identify the viral genotype, 96.87 % of the sequences grouped into genotype 1, while a single sample from a cow with lymphocytosis (3.13 %) was associated with genotype 3 sequences. The similarity between the Mexican BLV sequences ranged from 0.985-1.00. In addition, the proportion of non-synonymous and synonymous mutations indicated negative selection. We did not identify any conserved residues in the viral protein sequences that could be related to BLV infection stage in cattle. Proviral quantification was performed using quantitative polymerase chain reaction, and we used Mood´s median test as statistical analysis. We found no significant association between proviral load and phase of infection. The sequences showed high similarity without any association between BLV surface glycoprotein and the different infection stages, nor differences in the proviral load. BLV genotype 1 was identified as prevalent in the studied samples, and for the first time in Mexico, we identified BLV genotype 3 in cattle.
Collapse
Affiliation(s)
- Fernando Cerón Téllez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlan, Veterinary Medicine, Campus 4, National Autonomous University of Mexico, Km. 2.5 Carretera Cuautitlán-Teoloyucan San Sebastián Xhala, Cuautitlán Izcalli Estado de México, C.P. 54714, Mexico.
| | - Ana Silvia González Méndez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlan, Veterinary Medicine, Campus 4, National Autonomous University of Mexico, Km. 2.5 Carretera Cuautitlán-Teoloyucan San Sebastián Xhala, Cuautitlán Izcalli Estado de México, C.P. 54714, Mexico.
| | - Jorge Luis Tórtora Pérez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlan, Veterinary Medicine, Campus 4, National Autonomous University of Mexico, Km. 2.5 Carretera Cuautitlán-Teoloyucan San Sebastián Xhala, Cuautitlán Izcalli Estado de México, C.P. 54714, Mexico.
| | - Elizabeth Loza-Rubio
- National Center of Research in Animal Microbiology and Innocuity, INIFAP, CP. 05110, Mexico City, Mexico.
| | - Hugo Ramírez Álvarez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlan, Veterinary Medicine, Campus 4, National Autonomous University of Mexico, Km. 2.5 Carretera Cuautitlán-Teoloyucan San Sebastián Xhala, Cuautitlán Izcalli Estado de México, C.P. 54714, Mexico.
| |
Collapse
|
7
|
Phiri MM, Kaimoyo E, Changula K, Silwamba I, Chambaro HM, Kapila P, Kajihara M, Simuunza M, Muma JB, Pandey GS, Takada A, Mweene AS, Chitanga S, Simulundu E. Molecular detection and characterization of genotype 1 bovine leukemia virus from beef cattle in the traditional sector in Zambia. Arch Virol 2019; 164:2531-2536. [PMID: 31300890 DOI: 10.1007/s00705-019-04350-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/29/2019] [Indexed: 11/28/2022]
Abstract
Whilst bovine leukemia virus (BLV) causes considerable economic losses to the dairy industry worldwide, information on its molecular epidemiology and economic impact in beef cattle is limited. Here, blood from 880 animals from Zambia's major cattle-rearing provinces was screened for BLV by nested PCR. Positive pools were sequenced and phylogenetically analyzed. The estimated pooled prevalence was 2.1%. All strains belonged to genotype 1 and formed a distinct phylogenetic cluster. The study suggests circulation of genotype 1 BLV in beef cattle in these regions. This is the first report on molecular detection and characterization of BLV from beef cattle in Africa.
Collapse
Affiliation(s)
- Mundia M Phiri
- School of Natural Sciences, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Evans Kaimoyo
- School of Natural Sciences, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Katendi Changula
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Isaac Silwamba
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Herman M Chambaro
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Penjaninge Kapila
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Masahiro Kajihara
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia.,Africa Center of Excellence of Infectious Diseases of Humans and Animals, University of Zambia, Lusaka, Zambia
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Girja S Pandey
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Ayato Takada
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia.,Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Aaron S Mweene
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia.,Africa Center of Excellence of Infectious Diseases of Humans and Animals, University of Zambia, Lusaka, Zambia
| | - Simbarashe Chitanga
- School of Health Sciences, The University of Zambia, PO Box 50110, Lusaka, 10101, Zambia
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia.
| |
Collapse
|
8
|
Nishikaku K, Ishikura R, Ohnuki N, Polat M, Aida Y, Murakami S, Kobayashi T. Broadly applicable PCR restriction fragment length polymorphism method for genotyping bovine leukemia virus. J Vet Med Sci 2019; 81:1157-1161. [PMID: 31189764 PMCID: PMC6715913 DOI: 10.1292/jvms.18-0603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bovine leukemia virus (BLV) is a causative agent of enzootic bovine lymphoma (EBL). BLV
is prevalent worldwide, and ten genotypes have been classified based on the sequence of
the envelope glycoprotein (gp51) gene. In this study, we present a simple and generally
applicable PCR restriction fragment length polymorphism (PCR-RFLP) method to identify BLV
genotypes. While the genotyping results obtained by previously described PCR-RFLP methods
matched only 78.96% to the results of phylogenetic analysis, we demonstrated that our
PCR-RFLP method can identify 90.4% of the sequences available in the database in
silico. The method was validated with 20 BLV sequences from EBL tumor tissues
and 3 BLV sequences from blood of BLV infected cattle, and was found to show high
specificity. We utilized this method to determine genotypes of blood samples from 18 BLV
seropositive cattle in Kanagawa and Niigata, as well as 12 EBL cattle in Chiba, Japan. Our
analysis with the modified PCR-RFLP detected two genotypes, Genotypes 1 and 3. Genotype 1
was detected as the main genotype, while Genotype 3 was sporadically observed. This
technique can be used as a reliable system for screening a large number of epidemiological
samples.
Collapse
Affiliation(s)
- Kohei Nishikaku
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Rina Ishikura
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Nagaki Ohnuki
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Meripet Polat
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirowasa, Wako, Saitama 351-0198, Japan.,Viral Infectious Disease Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoko Aida
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirowasa, Wako, Saitama 351-0198, Japan.,Viral Infectious Disease Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Satoshi Murakami
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Tomoko Kobayashi
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan.,Viral Infectious Disease Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Yu C, Wang X, Zhou Y, Wang Y, Zhang X, Zheng Y. Genotyping bovine leukemia virus in dairy cattle of Heilongjiang, northeastern China. BMC Vet Res 2019; 15:179. [PMID: 31142319 PMCID: PMC6542110 DOI: 10.1186/s12917-019-1863-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 04/05/2019] [Indexed: 12/14/2022] Open
Abstract
Background Bovine leukemia virus (BLV) causes enzootic bovine leukosis in cattle and leads to heavy economic losses in the husbandry industry. Heilongjiang Province, China, is rich in dairy cattle. However, its current BLV epidemiology and genotypes have still not been evaluated and confirmed. In this report, we investigated the BLV epidemiology in dairy cattle in the major regions of Heilongjiang Province via the nested PCR assay. Results A total of 730 blood samples were collected from nine different farms in six regions of Heilongjiang. The results showed that the infection rate of these regions ranged from null to 31%. With a clustering analysis of 60 published BLV env sequences, genotypes 1 and 6 were confirmed to be circulating in Heilongjiang. Importantly, a new genotype, 11, and a new subgenotype, 6E, were also identified in the Harbin and Daqing regions, respectively. An epitope analysis showed that a cluster of T-X-D-X-R-XXXX-A sequences in genotype 11 gp51 neutralizing domain 2 was unique among all currently known BLV isolates and was therefore a defining feature of this new genotype. Conclusions BLV epidemics and genotypes were initially investigated in dairy cattle of Heilongjiang. A relatively high infection rate was found in some regions of this province. A new genotype, G11, with a highly specific motif, was identified and thus added as a new member to the current BLV genotype family. This report provides an initial reference for future investigations and subsequent control of BLV transmission and spread in this region. Electronic supplementary material The online version of this article (10.1186/s12917-019-1863-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Changqing Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Xuefeng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Zhou
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xianfeng Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yonghui Zheng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, USA
| |
Collapse
|
10
|
Yang Y, Chu S, Shang S, Yang Z, Wang C. Short communication: Genotyping and single nucleotide polymorphism analysis of bovine leukemia virus in Chinese dairy cattle. J Dairy Sci 2019; 102:3469-3473. [PMID: 30712932 DOI: 10.3168/jds.2018-15481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/05/2018] [Indexed: 11/19/2022]
Abstract
Bovine leukemia virus (BLV) causes enzootic leucosis in cattle and is classified into 10 genotypes with a worldwide distribution, except for several European countries, Australia, and New Zealand. Although BLV is widespread in Chinese cows with the positive rate of 49.1% at the individual level, very little is known about the BLV genotype in dairy cattle in China. To determine BLV genetic variability in cows in China, 112 BLV-positive samples from 5 cities in China were used for BLV molecular characterization in this study. Phylogenetic analysis using the neighbor-joining method on partial env sequence encoding gp51 obtained from 5 Chinese cities and those available in GenBank (n = 53, representing BLV genotype 1-10) revealed the Chinese strains belonged to genotype 6. Seven unique SNP were identified among Yancheng, Shanghai, and Bengbu strains out of the total 12 SNP identified in Chinese strains. The genotyping coupled with SNP analysis of BLV can serve as a useful molecular epidemiological tool for tracing the source of pathogens. This study highlights the importance of genetic analysis of geographically diverse BLV strains to understand BLV global genetic diversity.
Collapse
Affiliation(s)
- Y Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - S Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - S Shang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Z Yang
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, Jiangsu, China; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - C Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849
| |
Collapse
|
11
|
Murakami H, Uchiyama J, Suzuki C, Nikaido S, Shibuya K, Sato R, Maeda Y, Tomioka M, Takeshima SN, Kato H, Sakaguchi M, Sentsui H, Aida Y, Tsukamoto K. Variations in the viral genome and biological properties of bovine leukemia virus wild-type strains. Virus Res 2018; 253:103-111. [PMID: 29913249 DOI: 10.1016/j.virusres.2018.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 01/23/2023]
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis (EBL), which causes enormous economic losses in the livestock industry worldwide. To reduce the economic loss caused by BLV infection, it is important to clarify the characters associated with BLV transmissibility and pathogenesis in cattle. In this study, we focused on viral characters and examined spontaneous mutations in the virus and viral properties by analyses of whole genome sequences and BLV molecular clones derived from cows with and without EBL. Genomic analysis indicated that all 28 strains harbored limited genetic variations but no deletion mutations that allowed classification into three groups (A, B, and C), except for one strain. Some nucleotide/amino acid substitutions were specific to a particular group. On the other hand, these genetic variations were not associated with the host bovine leukocyte antigen-DRB3 allele, which is known to be related to BLV pathogenesis. The viral replication activity in vitro was high, moderate, and low in groups A, B, and C, respectively. In addition, the proviral load, which is related to BLV transmissibility and pathogenesis, was high in cows infected with group A strains and low in those infected with group B/C strains. Therefore, these results suggest that limited genetic variations could affect viral properties relating to BLV transmissibility and pathogenesis.
Collapse
Affiliation(s)
- Hironobu Murakami
- Laboratory of Animal Health II, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan.
| | - Jumpei Uchiyama
- Laboratory of Veterinary Microbiology I, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Chihiro Suzuki
- Laboratory of Animal Health II, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Sae Nikaido
- Laboratory of Animal Health II, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Kaho Shibuya
- Laboratory of Animal Health II, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Reiichiro Sato
- Laboratory of Farm Animal Internal Medicine, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Yosuke Maeda
- Laboratory of Clinical Veterinary Medicine for Large Animal, School of Veterinary Medicine, Kitasato University, Higashi 23bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Michiko Tomioka
- Laboratory of Clinical Veterinary Medicine for Large Animal, School of Veterinary Medicine, Kitasato University, Higashi 23bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Shin-Nosuke Takeshima
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Food and Nutrition Faculty of Human Life, Jumonji University, 2-1-28, Sugasawa, Niiza, Saitama, 352-8510, Japan
| | - Hajime Kato
- Southern Nemuro Operation Center, Hokkaido Higashi Agricultural Mutual Aid Association, 119, Betsukai-Midorimachi, Betsukai, Notsuke-gun, Hokkaido 086-0292, Japan
| | - Masahiro Sakaguchi
- Laboratory of Veterinary Microbiology I, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Hiroshi Sentsui
- Laboratory of Veterinary Epizootiology, School of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Yoko Aida
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kenji Tsukamoto
- Laboratory of Animal Health II, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| |
Collapse
|
12
|
Pluta A, Albritton LM, Rola-Łuszczak M, Kuźmak J. Computational analysis of envelope glycoproteins from diverse geographical isolates of bovine leukemia virus identifies highly conserved peptide motifs. Retrovirology 2018; 15:2. [PMID: 29310678 PMCID: PMC5759284 DOI: 10.1186/s12977-017-0383-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/23/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV) is a deltaretrovirus infecting bovine B cells and causing enzootic bovine leucosis. The SU or surface subunit, gp51, of its envelope glycoprotein is involved in receptor recognition and virion attachment. It contains the major neutralizing and CD4+ and CD8+ T cell epitopes found in naturally infected animals. In this study, we aimed to determine global variation and conservation within gp51 in the context of developing an effective global BLV vaccine. RESULTS A total of 256 sequences extracted from the NCBI database and collected in different parts of the world, were studied to identify conserved segments along the env gene sequences that encode the gp51 protein. Using the MEME server and the conserved DNA Region module for analysis within DnaSP, we identified six conserved segments, referred to as A-F, and five semi-conserved segments, referred to as G-K. The amino acid conservation ranged from 98.8 to 99.8% in conserved segments A to F, while segments G to K had 89.6-95.2% conserved amino acid sequence. Selection analysis of individual segments revealed that residues of conserved segments had undergone purifying selection, whereas, particular residues in the semi-conserved segments are currently undergoing positive selection, specifically at amino acid positions 48 in segment K, 74 in segment G, 82 in segment I, 133 and 142 in segment J, and residue 291 in segment H. Each of the codons for these six residues contain the most highly variable nucleotides within their respective semi-conserved segments. CONCLUSIONS The data described here show that the consensus amino acid sequence constitutes a strong candidate from which a global vaccine can be derived for use in countries where eradication by culling is not economically feasible. The most conserved segments overlap with amino acids in known immunodeterminants, specifically in epitopes D-D', E-E', CD8+ T-cell epitopes, neutralizing domain 1 and CD4+ T-cell epitopes. Two of the segments reported here represent unique segments that do not overlap with previously identified antigenic determinants. We propose that evidence of positive selection in some residues of the semi-conserved segments suggests that their variation is involved in viral strategy to escape immune surveillance of the host.
Collapse
Affiliation(s)
- Aneta Pluta
- OIE Reference Laboratory for EBL, Department of Biochemistry, National Veterinary Research Institute, Pulawy, Poland
| | - Lorraine M. Albritton
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN USA
| | - Marzena Rola-Łuszczak
- OIE Reference Laboratory for EBL, Department of Biochemistry, National Veterinary Research Institute, Pulawy, Poland
| | - Jacek Kuźmak
- OIE Reference Laboratory for EBL, Department of Biochemistry, National Veterinary Research Institute, Pulawy, Poland
| |
Collapse
|
13
|
Bovine leukaemia virus genotypes 5 and 6 are circulating in cattle from the state of São Paulo, Brazil. J Med Microbiol 2017; 66:1790-1797. [DOI: 10.1099/jmm.0.000639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Polat M, Takeshima SN, Aida Y. Epidemiology and genetic diversity of bovine leukemia virus. Virol J 2017; 14:209. [PMID: 29096657 PMCID: PMC5669023 DOI: 10.1186/s12985-017-0876-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/24/2017] [Indexed: 11/10/2022] Open
Abstract
Bovine leukemia virus (BLV), an oncogenic member of the Deltaretrovirus genus, is closely related to human T-cell leukemia virus (HTLV-I and II). BLV infects cattle worldwide and causes important economic losses. In this review, we provide a summary of available information about commonly used diagnostic approaches for the detection of BLV infection, including both serological and viral genome-based methods. We also outline genotyping methods used for the phylogenetic analysis of BLV, including PCR restriction length polymorphism and modern DNA sequencing-based methods. In addition, detailed epidemiological information on the prevalence of BLV in cattle worldwide is presented. Finally, we summarize the various BLV genotypes identified by the phylogenetic analyses of the whole genome and env gp51 sequences of BLV strains in different countries and discuss the distribution of BLV genotypes worldwide.
Collapse
Affiliation(s)
- Meripet Polat
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Shin-nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Bovine Leukemia Virus Vaccine Laboratory RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Bovine Leukemia Virus Vaccine Laboratory RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| |
Collapse
|