1
|
Silva BRS, Jara CP, Sidarta-Oliveira D, Velloso LA, Velander WH, Araújo EP. Downregulation of the Protein C Signaling System Is Associated with COVID-19 Hypercoagulability-A Single-Cell Transcriptomics Analysis. Viruses 2022; 14:2753. [PMID: 36560757 PMCID: PMC9785999 DOI: 10.3390/v14122753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Because of the interface between coagulation and the immune response, it is expected that COVID-19-associated coagulopathy occurs via activated protein C signaling. The objective was to explore putative changes in the expression of the protein C signaling network in the liver, peripheral blood mononuclear cells, and nasal epithelium of patients with COVID-19. Single-cell RNA-sequencing data from patients with COVID-19 and healthy subjects were obtained from the COVID-19 Cell Atlas database. A functional protein-protein interaction network was constructed for the protein C gene. Patients with COVID-19 showed downregulation of protein C and components of the downstream protein C signaling cascade. The percentage of hepatocytes expressing protein C was lower. Part of the liver cell clusters expressing protein C presented increased expression of ACE2. In PBMC, there was increased ACE2, inflammatory, and pro-coagulation transcripts. In the nasal epithelium, PROC, ACE2, and PROS1 were expressed by the ciliated cell cluster, revealing co-expression of ACE-2 with transcripts encoding proteins belonging to the coagulation and immune system interface. Finally, there was upregulation of coagulation factor 3 transcript in the liver and PBMC. Protein C could play a mechanistic role in the hypercoagulability syndrome affecting patients with severe COVID-19.
Collapse
Affiliation(s)
- Bruna Rafaela Santos Silva
- Nursing School, University of Campinas, Tessalia Vieira de Camargo, 126, Campinas 13084-970, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Center, OCRC, University of Campinas, Carl Von Linnaeus, s/n, Campinas 13084-864, Brazil
| | - Carlos Poblete Jara
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE 68588-0643, USA
| | - Davi Sidarta-Oliveira
- Laboratory of Cell Signalling, Obesity and Comorbidities Center, OCRC, University of Campinas, Carl Von Linnaeus, s/n, Campinas 13084-864, Brazil
- School of Medical Sciences, University of Campinas, Tessalia Vieira de Camargo, 126, Campinas 13083-887, Brazil
| | - Licio A. Velloso
- Laboratory of Cell Signalling, Obesity and Comorbidities Center, OCRC, University of Campinas, Carl Von Linnaeus, s/n, Campinas 13084-864, Brazil
- School of Medical Sciences, University of Campinas, Tessalia Vieira de Camargo, 126, Campinas 13083-887, Brazil
| | - William H. Velander
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE 68588-0643, USA
| | - Eliana P. Araújo
- Nursing School, University of Campinas, Tessalia Vieira de Camargo, 126, Campinas 13084-970, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Center, OCRC, University of Campinas, Carl Von Linnaeus, s/n, Campinas 13084-864, Brazil
| |
Collapse
|
2
|
Chen C, Ji H, Jiang N, Wang Y, Zhou Y, Zhu Z, Hu Y, Wang Y, Li A, Guo A. Thrombin increases the expression of cholesterol 25-hydroxylase in rat astrocytes after spinal cord injury. Neural Regen Res 2022; 18:1339-1346. [PMID: 36453421 PMCID: PMC9838143 DOI: 10.4103/1673-5374.357905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Astrocytes are important cellular centers of cholesterol synthesis and metabolism that help maintain normal physiological function at the organism level. Spinal cord injury results in aberrant cholesterol metabolism by astrocytes and excessive production of oxysterols, which have profound effects on neuropathology. 25-Hydroxycholesterol (25-HC), the main product of the membrane-associated enzyme cholesterol-25-hydroxylase (CH25H), plays important roles in mediating neuroinflammation. However, whether the abnormal astrocyte cholesterol metabolism induced by spinal cord injury contributes to the production of 25-HC, as well as the resulting pathological effects, remain unclear. In the present study, spinal cord injury-induced activation of thrombin was found to increase astrocyte CH25H expression. A protease-activated receptor 1 inhibitor was able to attenuate this effect in vitro and in vivo. In cultured primary astrocytes, thrombin interacted with protease-activated receptor 1, mainly through activation of the mitogen-activated protein kinase/nuclear factor-kappa B signaling pathway. Conditioned culture medium from astrocytes in which ch25h expression had been knocked down by siRNA reduced macrophage migration. Finally, injection of the protease activated receptor 1 inhibitor SCH79797 into rat neural sheaths following spinal cord injury reduced migration of microglia/macrophages to the injured site and largely restored motor function. Our results demonstrate a novel regulatory mechanism for thrombin-regulated cholesterol metabolism in astrocytes that could be used to develop anti-inflammatory drugs to treat patients with spinal cord injury.
Collapse
Affiliation(s)
- Chen Chen
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Huiyuan Ji
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Nan Jiang
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yue Zhou
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhenjie Zhu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yuming Hu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Aihong Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China,Correspondence to: Aisong Guo, ; Aihong Li, .
| | - Aisong Guo
- Department of Traditional Chinese Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China,Correspondence to: Aisong Guo, ; Aihong Li, .
| |
Collapse
|
3
|
Yang T, Jiang H, Luo X, Hou Y, Li A, He B, Zhang X, Hao H, Song H, Cai R, Wang X, Wang Y, Yao C, Qi L, Wang Y. Thrombin acts as inducer of proinflammatory macrophage migration inhibitory factor in astrocytes following rat spinal cord injury. J Neuroinflammation 2022; 19:120. [PMID: 35624475 PMCID: PMC9137112 DOI: 10.1186/s12974-022-02488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The danger-associated molecular patterns (DAMPs) are critical contributors to the progressive neuropathology and thereafter affect the functional outcomes following spinal cord injury (SCI). Up to now, the regulatory mechanisms on their inducible production from the living cells remain elusive, aside from their passive release from the necrotic cells. Thrombin is immediately activated by the damaged or stressed central nervous system (CNS), which potently mediates inflammatory astrocytic responses through proteolytic cleavage of protease-activated receptors (PARs). Therefore, SCI-activated thrombin is conceived to induce the production of DAMPs from astrocytes at lesion site. METHODS Rat SCI model was established by the cord contusion at T8-T10. The expression of thrombin and macrophage migration inhibitory factor (MIF) was determined by ELISA and Western blot. The PAR1, PAR3, and PAR4 receptors of thrombin were examined by PCR and immunohistochemistry. Primary astrocytes were isolated and purified from the spinal cord, followed by stimulation with different concentrations of thrombin either for transcriptome sequencing or for analysis of thrombin-mediated expression of MIF and related signal pathways in the presence or absence of various inhibitors. The post-injury locomotor functions were assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. RESULTS MIF protein levels were significantly elevated in parallel with those of thrombin induced by SCI. Immunostaining demonstrated that PAR1 receptor, together with MIF, was abundantly expressed in astrocytes. By transcriptome sequencing and bioinformatical analysis of thrombin-stimulated primary astrocytes, MIF was identified to be dynamically regulated by the serine protease. Investigation of the underlying mechanism using various inhibitors revealed that thrombin-activated PAR1 was responsible for the MIF production of astrocytes through modulation of JNK/NFκB pathway. Administration of PAR1 inhibitor at lesion sites following SCI significantly reduced the protein levels of MIF and ameliorated functional deficits of rat locomotion. CONCLUSION SCI-activated thrombin is a robust inducer of MIF production from astrocytes. Exploring the roles of thrombin in promoting the production of DAMPs from astrocytes at lesion site will provide an alternative strategy for the clinical therapy of CNS inflammation.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Haiyan Jiang
- Health Management Center, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Xinye Luo
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Yuxuan Hou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Aicheng Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Bingqiang He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Xingyuan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Huifei Hao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Honghua Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Rixin Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, School of Public Health, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China.
| |
Collapse
|
4
|
Kim HN, Triplet EM, Radulovic M, Bouchal S, Kleppe LS, Simon WL, Yoon H, Scarisbrick IA. The thrombin receptor modulates astroglia-neuron trophic coupling and neural repair after spinal cord injury. Glia 2021; 69:2111-2132. [PMID: 33887067 PMCID: PMC8672305 DOI: 10.1002/glia.24012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 12/15/2022]
Abstract
Excessive activation of the thrombin receptor, protease activated receptor 1 (PAR1) is implicated in diverse neuropathologies from neurodegenerative conditions to neurotrauma. PAR1 knockout mice show improved outcomes after experimental spinal cord injury (SCI), however information regarding the underpinning cellular and molecular mechanisms is lacking. Here we demonstrate that genetic blockade of PAR1 in female mice results in improvements in sensorimotor co-ordination after thoracic spinal cord lateral compression injury. We document improved neuron preservation with increases in Synapsin-1 presynaptic proteins and GAP43, a growth cone marker, after a 30 days recovery period. These improvements were coupled to signs of enhanced myelin resiliency and repair, including increases in the number of mature oligodendrocytes, their progenitors and the abundance of myelin basic protein. These significant increases in substrates for neural recovery were accompanied by reduced astrocyte (Serp1) and microglial/monocyte (CD68 and iNOS) pro-inflammatory markers, with coordinate increases in astrocyte (S100A10 and Emp1) and microglial (Arg1) markers reflective of pro-repair activities. Complementary astrocyte-neuron co-culture bioassays suggest astrocytes with PAR1 loss-of-function promote both neuron survival and neurite outgrowth. Additionally, the pro-neurite outgrowth effects of switching off astrocyte PAR1 were blocked by inhibiting TrkB, the high affinity receptor for brain derived neurotrophic factor. Altogether, these studies demonstrate unique modulatory roles for PAR1 in regulating glial-neuron interactions, including the capacity for neurotrophic factor signaling, and underscore its position at neurobiological intersections critical for the response of the CNS to injury and the capacity for regenerative repair and restoration of function.
Collapse
Affiliation(s)
- Ha Neui Kim
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Erin M. Triplet
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
- Neuroscience Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester MN 55905
| | - Maja Radulovic
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Samantha Bouchal
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Laurel S. Kleppe
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Whitney L. Simon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Isobel A. Scarisbrick
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
- Neuroscience Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester MN 55905
| |
Collapse
|
5
|
Neutrophil, Extracellular Matrix Components, and Their Interlinked Action in Promoting Secondary Pathogenesis After Spinal Cord Injury. Mol Neurobiol 2021; 58:4652-4665. [PMID: 34159551 DOI: 10.1007/s12035-021-02443-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023]
Abstract
Secondary pathogenesis following primary mechanical damage to the spinal cord is believed to be the ultimate reason for the limitation of currently available therapies. Precisely, the complex cascade of secondary events-mediated scar formation is the sole hurdle in the recovery process due to its inhibitory effect on axonal regeneration, plasticity, and remyelination. Neutrophils initiate this secondary injury along with other extracellular matrix components such as matrix metalloproteinase (MMPs), and chondroitin sulfate proteoglycans (CSPGs). Together, they mediate inflammation, necrosis, apoptosis, lesion, and scar formation at the injury site. Activated neutrophil releases several proteases, cytokines, and chemokines that cause complete tissue destruction. Thus, neutrophil activation and infiltration in the acute phase of injury act as a roadmap for inducing tissue destruction. MMPs, are extracellular proteolytic enzymes that degrade the ECM proteins, increases vascular permeability, and are predominantly released by neutrophils. These MMPs, in turn, cleave NG2 proteoglycan, a subtype of CSPG, into the active form. This active or shed form is involved in both the fibrotic as well as glial scar formation. Since neutrophils and ECM components are closely associated with each other in pathological conditions. Herein, we emphasize the interaction of neutrophils and their influence on ECM protein expression during the acute and chronic phases to identify a promising targets for designing a therapeutic approach in spinal cord injury.
Collapse
|
6
|
Triplet EM, Kim HN, Yoon H, Radulovic M, Kleppe L, Simon WL, Choi CI, Walsh PJ, Dutton JR, Scarisbrick IA. The thrombin receptor links brain derived neurotrophic factor to neuron cholesterol production, resiliency and repair after spinal cord injury. Neurobiol Dis 2021; 152:105294. [PMID: 33549720 PMCID: PMC8021459 DOI: 10.1016/j.nbd.2021.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 11/28/2022] Open
Abstract
Despite concerted efforts to identify CNS regeneration strategies, an incomplete understanding of how the needed molecular machinery is regulated limits progress. Here we use models of lateral compression and FEJOTA clip contusion-compression spinal cord injury (SCI) to identify the thrombin receptor (Protease Activated Receptor 1 (PAR1)) as an integral facet of this machine with roles in regulating neurite growth through a growth factor- and cholesterol-dependent mechanism. Functional recovery and signs of neural repair, including expression of cholesterol biosynthesis machinery and markers of axonal and synaptic integrity, were all increased after SCI in PAR1 knockout female mice, while PTEN was decreased. Notably, PAR1 differentially regulated HMGCS1, a gene encoding a rate-limiting enzyme in cholesterol production, across the neuronal and astroglial compartments of the intact versus injured spinal cord. Pharmacologic inhibition of cortical neuron PAR1 using vorapaxar in vitro also decreased PTEN and promoted neurite outgrowth in a cholesterol dependent manner, including that driven by suboptimal brain derived neurotrophic factor (BDNF). Pharmacologic inhibition of PAR1 also augmented BDNF-driven HMGCS1 and cholesterol production by murine cortical neurons and by human SH-SY5Y and iPSC-derived neurons. The link between PAR1, cholesterol and BDNF was further highlighted by demonstrating that the deleterious effects of PAR1 over-activation are overcome by supplementing cultures with BDNF, cholesterol or by blocking an inhibitor of adenylate cyclase, Gαi. These findings document PAR1-linked neurotrophic coupling mechanisms that regulate neuronal cholesterol metabolism as an important component of the machinery regulating CNS repair and point to new strategies to enhance neural resiliency after injury.
Collapse
Affiliation(s)
- Erin M Triplet
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine and the Mayo Clinic Medical Scientist Training Program Sciences Rochester, United States of America
| | - Ha Neui Kim
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Maja Radulovic
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Laurel Kleppe
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Whitney L Simon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Chan-Il Choi
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Patrick J Walsh
- Department of Genetics and Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - James R Dutton
- Department of Genetics and Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Isobel A Scarisbrick
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine and the Mayo Clinic Medical Scientist Training Program Sciences Rochester, United States of America; Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America; Department of Physiology and Biomedical Engineering, Rochester, MN 55905, United States of America.
| |
Collapse
|
7
|
Slomnicki LP, Myers SA, Saraswat Ohri S, Parsh MV, Andres KR, Chariker JH, Rouchka EC, Whittemore SR, Hetman M. Improved locomotor recovery after contusive spinal cord injury in Bmal1 -/- mice is associated with protection of the blood spinal cord barrier. Sci Rep 2020; 10:14212. [PMID: 32848194 PMCID: PMC7450087 DOI: 10.1038/s41598-020-71131-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022] Open
Abstract
The transcription factor BMAL1/ARNTL is a non-redundant component of the clock pathway that regulates circadian oscillations of gene expression. Loss of BMAL1 perturbs organismal homeostasis and usually exacerbates pathological responses to many types of insults by enhancing oxidative stress and inflammation. Surprisingly, we observed improved locomotor recovery and spinal cord white matter sparing in Bmal1-/- mice after T9 contusive spinal cord injury (SCI). While acute loss of neurons and oligodendrocytes was unaffected, Bmal1 deficiency reduced the chronic loss of oligodendrocytes at the injury epicenter 6 weeks post SCI. At 3 days post-injury (dpi), decreased expression of genes associated with cell proliferation, neuroinflammation and disruption of the blood spinal cord barrier (BSCB) was also observed. Moreover, intraspinal extravasation of fibrinogen and immunoglobulins was decreased acutely at dpi 1 and subacutely at dpi 7. Subacute decrease of hemoglobin deposition was also observed. Finally, subacutely reduced levels of the leukocyte marker CD45 and even greater reduction of the pro-inflammatory macrophage receptor CD36 suggest not only lower numbers of those cells but also their reduced inflammatory potential. These data indicate that Bmal1 deficiency improves SCI outcome, in part by reducing BSCB disruption and hemorrhage decreasing cytotoxic neuroinflammation and attenuating the chronic loss of oligodendrocytes.
Collapse
Affiliation(s)
- Lukasz P Slomnicki
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Scott A Myers
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Sujata Saraswat Ohri
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA.
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA.
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 S. Floyd St., MDR616, Louisville, KY, 40292, USA.
| | - Molly V Parsh
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Kariena R Andres
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Julia H Chariker
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40202, USA
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
| | - Eric C Rouchka
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40202, USA
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, 40202, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA.
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, 40202, USA.
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 S. Floyd St., MDR616, Louisville, KY, 40292, USA.
| |
Collapse
|
8
|
Kakuta Y, Adachi A, Yokohama M, Horii T, Mieda T, Iizuka Y, Takagishi K, Chikuda H, Iizuka H, Nakamura K. Spontaneous functional full recovery from motor and sensory deficits in adult mice after mild spinal cord injury. Heliyon 2019; 5:e01847. [PMID: 31194126 PMCID: PMC6546963 DOI: 10.1016/j.heliyon.2019.e01847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/28/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022] Open
Abstract
The extent of spontaneous recovery in patients with a spinal cord injury (SCI) has not been thoroughly investigated. It is essentially not known whether SCI animals exhibit full recovery from both motor and sensory deficits as well. Here, we developed an appropriate condition to produce a mild SCI in mice. Mice given a mild contusion SCI showed transient low performances in the Basso Mouse Scale for locomotion (BMS), rotarod and beam walking tests after the SCI, which was followed by complete restoration in a short time. The SCI mice also showed functional full recovery from low sensitivity to light touch using dynamic touch test. Nevertheless, the fully-recovered SCI mice still exhibited significant loss of myelin in the spinal cord. These results suggest a high potential of adaptation of motor and sensory systems in mice and might provide insight into the prognoses of SCI patients.
Collapse
Affiliation(s)
- Yohei Kakuta
- Department of Orthopedic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Anna Adachi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Marino Yokohama
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Toshiki Horii
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tokue Mieda
- Department of Orthopedic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yoichi Iizuka
- Department of Orthopedic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kenji Takagishi
- Department of Orthopedic Surgery, Saint-Pierre Hospital, 786-7, Kamisano-machi, Takasaki, Gunma, 370-0857, Japan
| | - Hirotaka Chikuda
- Department of Orthopedic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Haku Iizuka
- Department of Orthopedic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
9
|
Festoff BW, Citron BA. Thrombin and the Coag-Inflammatory Nexus in Neurotrauma, ALS, and Other Neurodegenerative Disorders. Front Neurol 2019; 10:59. [PMID: 30804878 PMCID: PMC6371052 DOI: 10.3389/fneur.2019.00059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
This review details our current understanding of thrombin signaling in neurodegeneration, with a focus on amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease) as well as future directions to be pursued. The key factors are multifunctional and involved in regulatory pathways, namely innate immune and the coagulation cascade activation, that are essential for normal nervous system function and health. These two major host defense systems have a long history in evolution and include elements and regulators of the coagulation pathway that have significant impacts on both the peripheral and central nervous system in health and disease. The clotting cascade responds to a variety of insults to the CNS including injury and infection. The blood brain barrier is affected by these responses and its compromise also contributes to these detrimental effects. Important molecules in signaling that contribute to or protect against neurodegeneration include thrombin, thrombomodulin (TM), protease activated receptor 1 (PAR1), damage associated molecular patterns (DAMPs), such as high mobility group box protein 1 (HMGB1) and those released from mitochondria (mtDAMPs). Each of these molecules are entangled in choices dependent upon specific signaling pathways in play. For example, the particular cleavage of PAR1 by thrombin vs. activated protein C (APC) will have downstream effects through coupled factors to result in toxicity or neuroprotection. Furthermore, numerous interactions influence these choices such as the interplay between HMGB1, thrombin, and TM. Our hope is that improved understanding of the ways that components of the coagulation cascade affect innate immune inflammatory responses and influence the course of neurodegeneration, especially after injury, will lead to effective therapeutic approaches for ALS, traumatic brain injury, and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Barry W Festoff
- pHLOGISTIX LLC, Fairway, KS, United States.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Bruce A Citron
- Laboratory of Molecular Biology Research & Development, VA New Jersey Health Care System, East Orange, NJ, United States.,Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
10
|
Early Targeting of L-Selectin on Leukocytes Promotes Recovery after Spinal Cord Injury, Implicating Novel Mechanisms of Pathogenesis. eNeuro 2018; 5:eN-NWR-0101-18. [PMID: 30225356 PMCID: PMC6140118 DOI: 10.1523/eneuro.0101-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/27/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
L-selectin, a lectin-like receptor on all leukocyte classes, functions in adhesive and signaling roles in the recruitment of myeloid cells from the blood to sites of inflammation. Here, we consider L-selectin as a determinant of neurological recovery in a murine model of spinal cord injury (SCI). Spinal cord-injured, L-selectin knock-out (KO) mice (male) showed improved long-term recovery with greater white matter sparing relative to wild-type (WT) mice and reduced oxidative stress in the injured cord at 72 h post-SCI. There was a partial and transient reduction in accumulation of neutrophils in the injured spinal cords of KOs at 24 h post-injury. To complement these findings with KO mice, we sought a pharmacologic means for lowering L-selectin levels. We found that diclofenac, a nonsteroidal anti-inflammatory drug (NSAID), induced the shedding of L-selectin from the cell surface of myeloid subsets, specifically neutrophils and non-classical monocytes, in the blood and the injured spinal cord. Diclofenac administration to injured WT mice enhanced neurological recovery to a level comparable to that of KOs but did not improve recovery in KOs. While diclofenac treatment had no effect on myeloid cell accumulation, there was a reduction in oxidative stress at 72 h post-SCI. These findings implicate L-selectin in secondary pathogenesis beyond a role in leukocyte recruitment and raise the possibility of repurposing diclofenac for the treatment of SCI.
Collapse
|
11
|
De Luca C, Virtuoso A, Maggio N, Papa M. Neuro-Coagulopathy: Blood Coagulation Factors in Central Nervous System Diseases. Int J Mol Sci 2017; 18:E2128. [PMID: 29023416 PMCID: PMC5666810 DOI: 10.3390/ijms18102128] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/30/2017] [Accepted: 10/08/2017] [Indexed: 12/30/2022] Open
Abstract
Blood coagulation factors and other proteins, with modulatory effects or modulated by the coagulation cascade have been reported to affect the pathophysiology of the central nervous system (CNS). The protease-activated receptors (PARs) pathway can be considered the central hub of this regulatory network, mainly through thrombin or activated protein C (aPC). These proteins, in fact, showed peculiar properties, being able to interfere with synaptic homeostasis other than coagulation itself. These specific functions modulate neuronal networks, acting both on resident (neurons, astrocytes, and microglia) as well as circulating immune system cells and the extracellular matrix. The pleiotropy of these effects is produced through different receptors, expressed in various cell types, in a dose- and time-dependent pattern. We reviewed how these pathways may be involved in neurodegenerative diseases (amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases), multiple sclerosis, ischemic stroke and post-ischemic epilepsy, CNS cancer, addiction, and mental health. These data open up a new path for the potential therapeutic use of the agonist/antagonist of these proteins in the management of several central nervous system diseases.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Assunta Virtuoso
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Tel Hashomer, 52621 Ramat Gan, Israel.
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801 Tel Aviv, Israel.
| | - Michele Papa
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
- SYSBIO, Centre of Systems Biology, University of Milano-Bicocca, 20126 Milano, Italy.
| |
Collapse
|
12
|
Liu X, Yu J, Song S, Yue X, Li Q. Protease-activated receptor-1 (PAR-1): a promising molecular target for cancer. Oncotarget 2017; 8:107334-107345. [PMID: 29291033 PMCID: PMC5739818 DOI: 10.18632/oncotarget.21015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/27/2017] [Indexed: 12/18/2022] Open
Abstract
PAR-1 is expressed not only in epithelium, neurons, astrocytes, immune cells, but also in cancer-associated fibroblasts, ECs (epithelial cells), myocytes of blood vessels, mast cells, and macrophages in tumor microenvironment, whereas PAR-1 stimulates macrophages to synthesize and secrete thrombin as well as other growth factors, resulting in enhanced cell proliferation, tumor growth and metastasis. Therefore, considerable effort has been devoted to the development of inhibitors targeting PAR-1. Here, we provide a comprehensive review of PAR-1’s role in cancer invasiveness and dissemination, as well as potential therapeutic strategies targeting PAR-1 signaling.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jiahui Yu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Shangjin Song
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Qi Li
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|