1
|
Na SB, Seo BJ, Hong TK, Oh SY, Hong YJ, Song JH, Uhm SJ, Hong K, Do JT. Altered Mitochondrial Function and Accelerated Aging Phenotype in Neural Stem Cells Derived from Dnm1l Knockout Embryonic Stem Cells. Int J Mol Sci 2023; 24:14291. [PMID: 37762596 PMCID: PMC10532274 DOI: 10.3390/ijms241814291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria are crucial for cellular energy metabolism and are involved in signaling, aging, and cell death. They undergo dynamic changes through fusion and fission to adapt to different cellular states. In this study, we investigated the effect of knocking out the dynamin 1-like protein (Dnm1l) gene, a key regulator of mitochondrial fission, in neural stem cells (NSCs) differentiated from Dnm1l knockout embryonic stem cells (Dnm1l-/- ESCs). Dnm1l-/- ESC-derived NSCs (Dnm1l-/- NSCs) exhibited similar morphology and NSC marker expression (Sox2, Nestin, and Pax6) to brain-derived NSCs, but lower Nestin and Pax6 expression than both wild-type ESC-derived NSCs (WT-NSCs) and brain-derived NSCs. In addition, compared with WT-NSCs, Dnm1l-/- NSCs exhibited distinct mitochondrial morphology and function, contained more elongated mitochondria, showed reduced mitochondrial respiratory capacity, and showed a metabolic shift toward glycolysis for ATP production. Notably, Dnm1l-/- NSCs exhibited impaired self-renewal ability and accelerated cellular aging during prolonged culture, resulting in decreased proliferation and cell death. Furthermore, Dnm1l-/- NSCs showed elevated levels of inflammation and cell stress markers, suggesting a connection between Dnm1l deficiency and premature aging in NSCs. Therefore, the compromised self-renewal ability and accelerated cellular aging of Dnm1l-/- NSCs may be attributed to mitochondrial fission defects.
Collapse
Affiliation(s)
- Seung-Bin Na
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.-B.N.); (B.-J.S.); (T.-K.H.); (S.-Y.O.); (Y.-J.H.); (J.-H.S.); (K.H.)
| | - Bong-Jong Seo
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.-B.N.); (B.-J.S.); (T.-K.H.); (S.-Y.O.); (Y.-J.H.); (J.-H.S.); (K.H.)
| | - Tae-Kyung Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.-B.N.); (B.-J.S.); (T.-K.H.); (S.-Y.O.); (Y.-J.H.); (J.-H.S.); (K.H.)
| | - Seung-Yeon Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.-B.N.); (B.-J.S.); (T.-K.H.); (S.-Y.O.); (Y.-J.H.); (J.-H.S.); (K.H.)
| | - Yean-Ju Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.-B.N.); (B.-J.S.); (T.-K.H.); (S.-Y.O.); (Y.-J.H.); (J.-H.S.); (K.H.)
| | - Jae-Hoon Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.-B.N.); (B.-J.S.); (T.-K.H.); (S.-Y.O.); (Y.-J.H.); (J.-H.S.); (K.H.)
| | - Sang-Jun Uhm
- Department of Animal Science, Sangji University, Wonju 26339, Republic of Korea;
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.-B.N.); (B.-J.S.); (T.-K.H.); (S.-Y.O.); (Y.-J.H.); (J.-H.S.); (K.H.)
| | - Jeong-Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.-B.N.); (B.-J.S.); (T.-K.H.); (S.-Y.O.); (Y.-J.H.); (J.-H.S.); (K.H.)
| |
Collapse
|
2
|
Vinel C, Rosser G, Guglielmi L, Constantinou M, Pomella N, Zhang X, Boot JR, Jones TA, Millner TO, Dumas AA, Rakyan V, Rees J, Thompson JL, Vuononvirta J, Nadkarni S, El Assan T, Aley N, Lin YY, Liu P, Nelander S, Sheer D, Merry CLR, Marelli-Berg F, Brandner S, Marino S. Comparative epigenetic analysis of tumour initiating cells and syngeneic EPSC-derived neural stem cells in glioblastoma. Nat Commun 2021; 12:6130. [PMID: 34675201 PMCID: PMC8531305 DOI: 10.1038/s41467-021-26297-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic mechanisms which play an essential role in normal developmental processes, such as self-renewal and fate specification of neural stem cells (NSC) are also responsible for some of the changes in the glioblastoma (GBM) genome. Here we develop a strategy to compare the epigenetic and transcriptional make-up of primary GBM cells (GIC) with patient-matched expanded potential stem cell (EPSC)-derived NSC (iNSC). Using a comparative analysis of the transcriptome of syngeneic GIC/iNSC pairs, we identify a glycosaminoglycan (GAG)-mediated mechanism of recruitment of regulatory T cells (Tregs) in GBM. Integrated analysis of the transcriptome and DNA methylome of GBM cells identifies druggable target genes and patient-specific prediction of drug response in primary GIC cultures, which is validated in 3D and in vivo models. Taken together, we provide a proof of principle that this experimental pipeline has the potential to identify patient-specific disease mechanisms and druggable targets in GBM.
Collapse
Affiliation(s)
- Claire Vinel
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Gabriel Rosser
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Loredana Guglielmi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Myrianni Constantinou
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Nicola Pomella
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Xinyu Zhang
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - James R Boot
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Tania A Jones
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Thomas O Millner
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Anaelle A Dumas
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Vardhman Rakyan
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Jeremy Rees
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, UK
| | - Jamie L Thompson
- Stem Cell Glycobiology Group, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Juho Vuononvirta
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Suchita Nadkarni
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Tedani El Assan
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, UK
| | - Natasha Aley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Yung-Yao Lin
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
- Stem Cell Laboratory, National Bowel Research Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London, UK
| | - Pentao Liu
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Sven Nelander
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Denise Sheer
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Catherine L R Merry
- Stem Cell Glycobiology Group, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Federica Marelli-Berg
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK.
| |
Collapse
|
3
|
Yoon SH, Bae MR, La H, Song H, Hong K, Do JT. Efficient Generation of Neural Stem Cells from Embryonic Stem Cells Using a Three-Dimensional Differentiation System. Int J Mol Sci 2021; 22:ijms22158322. [PMID: 34361088 PMCID: PMC8348082 DOI: 10.3390/ijms22158322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) are useful tools for studying early embryonic development and tissue formation in mammals. Since neural lineage differentiation is a major subject of organogenesis, the development of efficient techniques to induce neural stem cells (NSCs) from pluripotent stem cells must be preceded. However, the currently available NSC differentiation methods are complicated and time consuming. This study aimed to propose an efficient method for the derivation of NSCs from mouse ESCs; early neural lineage commitment was achieved using a three-dimensional (3D) culture system, followed by a two-dimensional (2D) NSC derivation. To select early neural lineage cell types during differentiation, Sox1-GFP transgenic ESCs were used. They were differentiated into early neural lineage, forming spherical aggregates, which were subsequently picked for the establishment of 2D NSCs. The latter showed a morphology similar to that of brain-derived NSCs and expressed NSC markers, Musashi, Nestin, N-cadherin, and Sox2. Moreover, the NSCs could differentiate into three subtypes of neural lineages, neurons, astrocytes, and oligodendrocytes. The results together suggested that ESCs could efficiently differentiate into tripotent NSCs through specification in 3D culture (for approximately 10 days) followed by 2D culture (for seven days).
Collapse
|
4
|
Jin L, Chen Y, Crossman DK, Datta A, Vu T, Mobley JA, Basu MK, Scarduzio M, Wang H, Chang C, Datta PK. STRAP regulates alternative splicing fidelity during lineage commitment of mouse embryonic stem cells. Nat Commun 2020; 11:5941. [PMID: 33230114 PMCID: PMC7684319 DOI: 10.1038/s41467-020-19698-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Alternative splicing (AS) is involved in cell fate decisions and embryonic development. However, regulation of these processes is poorly understood. Here, we have identified the serine threonine kinase receptor-associated protein (STRAP) as a putative spliceosome-associated factor. Upon Strap deletion, there are numerous AS events observed in mouse embryoid bodies (EBs) undergoing a neuroectoderm-like state. Global mapping of STRAP-RNA binding in mouse embryos by enhanced-CLIP sequencing (eCLIP-seq) reveals that STRAP preferably targets transcripts for nervous system development and regulates AS through preferred binding positions, as demonstrated for two neuronal-specific genes, Nnat and Mark3. We have found that STRAP involves in the assembly of 17S U2 snRNP proteins. Moreover, in Xenopus, loss of Strap leads to impeded lineage differentiation in embryos, delayed neural tube closure, and altered exon skipping. Collectively, our findings reveal a previously unknown function of STRAP in mediating the splicing networks of lineage commitment, alteration of which may be involved in early embryonic lethality in mice.
Collapse
Affiliation(s)
- Lin Jin
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35233, USA
| | - Yunjia Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Arunima Datta
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35233, USA
| | - Trung Vu
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35233, USA
| | - James A Mobley
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Malay Kumar Basu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Mariangela Scarduzio
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutic, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Chenbei Chang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Pran K Datta
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35233, USA.
| |
Collapse
|
5
|
Niibe K, Ohori-Morita Y, Zhang M, Mabuchi Y, Matsuzaki Y, Egusa H. A Shaking-Culture Method for Generating Bone Marrow Derived Mesenchymal Stromal/Stem Cell-Spheroids With Enhanced Multipotency in vitro. Front Bioeng Biotechnol 2020; 8:590332. [PMID: 33195156 PMCID: PMC7641632 DOI: 10.3389/fbioe.2020.590332] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs), which generally expand into adherent monolayers, readily lose their proliferative and multilineage potential following repeated passages. Floating culture systems can be used to generate MSC spheroids, which are expected to overcome limitations associated with conventional adherent cultures while facilitating scaffold-free cell transplantation. However, the phenotypic characteristics of spheroids after long-term culture are unknown. In addition, regenerative therapies require new culture systems to maintain their undifferentiated state. In this study, we established a novel culture method employing three-dimensional (3D) “shaking” to generate MSC spheroids using bone marrow derived MSCs. Floating 3D cultures of mouse or human MSCs formed spheroids after shaking (85–95 rpm), within 1 month. These spheroids maintained their osteogenic-, adipogenic-, and chondrogenic-differentiation capacity. The adipogenic-differentiation capacity of adherent cultured mouse and human MSCs, which is lost following several passages, was remarkedly restored by shaking-culture. Notably, human MSC spheroids exhibited a renewable “undifferentiated MSC-pool” property, wherein undifferentiated MSCs grew from spheroids seeded repeatedly on a plastic culture dish. These data suggest that the shaking-culture method maintains and restores multipotency that is lost following monolayer expansion and thereby shows potential as a promising strategy for regenerative therapies with mesenchymal tissues.
Collapse
Affiliation(s)
- Kunimichi Niibe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yumi Ohori-Morita
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Maolin Zhang
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yumi Matsuzaki
- Department of Life Science, Faculty of Medicine, Shimane University, Matsue, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
6
|
Han MJ, Lee WJ, Choi J, Hong YJ, Uhm SJ, Choi Y, Do JT. Inhibition of neural stem cell aging through the transient induction of reprogramming factors. J Comp Neurol 2020; 529:595-604. [DOI: 10.1002/cne.24967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Min Ji Han
- Department of Stem Cell and Regenerative Biotechnology KU Institute of Science and Technology, Konkuk University Seoul Republic of Korea
| | - Won Ji Lee
- Department of Stem Cell and Regenerative Biotechnology KU Institute of Science and Technology, Konkuk University Seoul Republic of Korea
| | - Joonhyuk Choi
- Department of Stem Cell and Regenerative Biotechnology KU Institute of Science and Technology, Konkuk University Seoul Republic of Korea
| | - Yean Ju Hong
- Department of Stem Cell and Regenerative Biotechnology KU Institute of Science and Technology, Konkuk University Seoul Republic of Korea
| | - Sang Jun Uhm
- Department of Animal Science Sangji University Wonju Republic of Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology KU Institute of Science and Technology, Konkuk University Seoul Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology KU Institute of Science and Technology, Konkuk University Seoul Republic of Korea
| |
Collapse
|
7
|
Hong YJ, Do JT. Neural Lineage Differentiation From Pluripotent Stem Cells to Mimic Human Brain Tissues. Front Bioeng Biotechnol 2019; 7:400. [PMID: 31867324 PMCID: PMC6908493 DOI: 10.3389/fbioe.2019.00400] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/22/2019] [Indexed: 01/22/2023] Open
Abstract
Recent advances in induced pluripotent stem cell (iPSC) research have turned limitations of prior and current research into possibilities. iPSCs can differentiate into the desired cell types, are easier to obtain than embryonic stem cells (ESCs), and more importantly, in case they are to be used in research on diseases, they can be obtained directly from the patient. With these advantages, differentiation of iPSCs into various cell types has been conducted in the fields of basic development, cell physiology, and cell therapy research. Differentiation of stem cells into nervous cells has been prevalent among all cell types studied. Starting with the monolayer 2D differentiation method where cells were attached to a dish, substantial efforts have been made to better mimic the in vivo environment and produce cells grown in vitro that closely resemble in vivo state cells. Having surpassed the stage of 3D differentiation, we have now reached the stage of creating tissues called organoids that resemble organs, rather than growing simple cells. In this review, we focus on the central nervous system (CNS) and describe the challenges faced in 2D and 3D differentiation research studies and the processes of overcoming them. We also discuss current studies and future perspectives on brain organoid researches.
Collapse
Affiliation(s)
- Yean Ju Hong
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, South Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, South Korea
| |
Collapse
|
8
|
Csobonyeiova M, Polak S, Zamborsky R, Danisovic L. Recent Progress in the Regeneration of Spinal Cord Injuries by Induced Pluripotent Stem Cells. Int J Mol Sci 2019; 20:3838. [PMID: 31390782 PMCID: PMC6695701 DOI: 10.3390/ijms20153838] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
Regeneration of injuries occurring in the central nervous system, particularly spinal cord injuries (SCIs), is extremely difficult. The complex pathological events following a SCI often restrict regeneration of nervous tissue at the injury site and frequently lead to irreversible loss of motor and sensory function. Neural stem/progenitor cells (NSCs/NPCs) possess neuroregenerative and neuroprotective features, and transplantation of such cells into the site of damaged tissue is a promising stem cell-based therapy for SCI. However, NSC/NPCs have mostly been induced from embryonic stem cells or fetal tissue, leading to ethical concerns. The pioneering work of Yamanaka and colleagues gave rise to the technology to induce pluripotent stem cells (iPSCs) from somatic cells, overcoming these ethical issues. The advent of iPSCs technology has meant significant progress in the therapy of neurodegenerative disease and nerve tissue damage. A number of published studies have described the successful differentiation of NSCs/NPCs from iPSCs and their subsequent engraftment into SCI animal models, followed by functional recovery of injury. The aim of this present review is to summarize various iPSC- NPCs differentiation methods, SCI modelling, and the current status of possible iPSC- NPCs- based therapy of SCI.
Collapse
Affiliation(s)
- Maria Csobonyeiova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Stefan Polak
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Radoslav Zamborsky
- Department of Orthopaedics, Faculty of Medicine, Comenius University and National Institute of Children's Diseases, Limbova 1, 833 40 Bratislava, Slovakia
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia.
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia.
| |
Collapse
|
9
|
Yu C, Xia K, Gong Z, Ying L, Shu J, Zhang F, Chen Q, Li F, Liang C. The Application of Neural Stem/Progenitor Cells for Regenerative Therapy of Spinal Cord Injury. Curr Stem Cell Res Ther 2019; 14:495-503. [PMID: 30924422 DOI: 10.2174/1574888x14666190329095638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/11/2019] [Accepted: 03/08/2019] [Indexed: 12/27/2022]
Abstract
Spinal cord injury (SCI) is a devastating event, and there are still no effective therapies currently
available. Neural stem cells (NSCs) have gained increasing attention as promising regenerative
therapy of SCI. NSCs based therapies of various neural diseases in animal models and clinical trials
have been widely investigated. In this review we aim to summarize the development and recent progress
in the application of NSCs in cell transplantation therapy for SCI. After brief introduction on
sequential genetic steps regulating spinal cord development in vivo, we describe current experimental
approaches for neural induction of NSCs in vitro. In particular, we focus on NSCs induced from pluripotent
stem cells (PSCs). Finally, we highlight recent progress on the NSCs, which show great promise
in the application to regeneration therapy for SCI.
Collapse
Affiliation(s)
- Chao Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Zhe Gong
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Liwei Ying
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Jiawei Shu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Feng Zhang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Qixin Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Fangcai Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
10
|
Ferreira AF, Calin GA, Picanço-Castro V, Kashima S, Covas DT, de Castro FA. Hematopoietic stem cells from induced pluripotent stem cells - considering the role of microRNA as a cell differentiation regulator. J Cell Sci 2018; 131:131/4/jcs203018. [PMID: 29467236 DOI: 10.1242/jcs.203018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although hematopoietic stem cell (HSC) therapy for hematological diseases can lead to a good outcome from the clinical point of view, the limited number of ideal donors, the comorbidity of patients and the increasing number of elderly patients may limit the application of this therapy. HSCs can be generated from induced pluripotent stem cells (iPSCs), which requires the understanding of the bone marrow and liver niches components and function in vivo iPSCs have been extensively applied in several studies involving disease models, drug screening and cellular replacement therapies. However, the somatic reprogramming by transcription factors is a low-efficiency process. Moreover, the reprogramming process is also regulated by microRNAs (miRNAs), which modulate the expression of the transcription factors OCT-4 (also known as POU5F1), SOX-2, KLF-4 and MYC, leading somatic cells to a pluripotent state. In this Review, we present an overview of the challenges of cell reprogramming protocols with regard to HSC generation from iPSCs, and highlight the potential role of miRNAs in cell reprogramming and in the differentiation of induced pluripotent stem cells.
Collapse
Affiliation(s)
- Aline F Ferreira
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| | - George A Calin
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Virgínia Picanço-Castro
- Center of Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo 14051-140, Brazil
| | - Simone Kashima
- Center of Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo 14051-140, Brazil
| | - Dimas T Covas
- Center of Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo 14051-140, Brazil.,Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Fabiola A de Castro
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| |
Collapse
|
11
|
Tsai CY, Lin CL, Cheng NC, Yu J. Effects of nano-grooved gelatin films on neural induction of human adipose-derived stem cells. RSC Adv 2017. [DOI: 10.1039/c7ra09020j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The extra cellular matrix (ECM) and cell–cell interactions facilitate the survival, self-renewing and differentiation capabilities of stem cells.
Collapse
Affiliation(s)
- Chen-Yu Tsai
- Department of Chemical Engineering
- National Taiwan University
- Taipei City 106
- Taiwan
| | - Chih-Ling Lin
- Department of Chemical Engineering
- National Taiwan University
- Taipei City 106
- Taiwan
| | - Nai-Chen Cheng
- Department of Surgery
- National Taiwan University Hospital
- Taipei City 10048
- Republic of China
| | - Jiashing Yu
- Department of Chemical Engineering
- National Taiwan University
- Taipei City 106
- Taiwan
| |
Collapse
|