1
|
Tunçyürekli M, Tülüce Y, Erciyas FL. Evaluation of the toxicity potential of exercise and atorvastatin/metformin combination therapy on STZ-diabetic rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5989-6007. [PMID: 39625487 DOI: 10.1007/s00210-024-03663-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/20/2024] [Indexed: 04/11/2025]
Abstract
Exercise is recommended for individuals with diabetes, and metformin and atorvastatin are commonly prescribed to diabetic patients. However, these two drugs have potential effects that may lead to toxicity in the skeletal muscle system. Therefore, the effects and potential interactions of combining these two drugs on skeletal muscle performance and structure were investigated in vivo in an experimental diabetes model. Male Wistar rats were divided into six groups: a sedentary control group (N) and five treatment groups-exercise (C), diabetes (D), diabetes with metformin (MET), diabetes with atorvastatin (ATO), and diabetes with metformin and atorvastatin (MET + ATO). In the diabetes model experimentally created with streptozotocin (STZ; 45 mg/kg, i.p.) and metformin (300 mg/kg/day), atorvastatin (10 mg/kg/day) was administered to drug groups by gavage during the 4-week study period. The rats were allowed to run (at moderate level) for 30 min, 5 days a week, on the treadmill. At the end of the study, blood samples and gastrocnemius muscle tissues of the rats were obtained under ketamine anesthesia (100 mg/kg; i.p). The effects of combining exercise and medication on skeletal muscle were assessed by examining the levels of significant biomarkers including PGC-1α, UCP-3, and MyHCs, as well as analyzing oxidative stress/antioxidant capacity parameters in muscle tissue samples. Additionally, relevant biochemical indicators were determined in serum samples. The quantity and morphology of mitochondria in muscle tissue were assessed using transmission electron microscopy. It was observed in the study that some toxic effects associated with the use of drugs alone were reduced by combination therapy. It is thought that this study will contribute to the literature in the evaluation of the effects of drugs and their combined use in Type 1 diabetes under exercise conditions.
Collapse
MESH Headings
- Animals
- Atorvastatin/toxicity
- Atorvastatin/administration & dosage
- Male
- Rats, Wistar
- Metformin/toxicity
- Metformin/administration & dosage
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/blood
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/ultrastructure
- Muscle, Skeletal/pathology
- Physical Conditioning, Animal
- Hypoglycemic Agents/toxicity
- Hypoglycemic Agents/administration & dosage
- Drug Therapy, Combination
- Rats
- Streptozocin
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Oxidative Stress/drug effects
Collapse
Affiliation(s)
- Merve Tunçyürekli
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Van Yüzüncü Yıl University, Van, Türkiye
| | - Yasin Tülüce
- Department of Medical Biology, Faculty of Medicine, Van Yüzüncü Yıl University, Van, Türkiye.
| | | |
Collapse
|
2
|
González-Casanova JE, Navarro-Marquez M, Saez-Tamayo T, Angarita L, Durán-Agüero S, Fuentes-Barría H, Bermúdez V, Rojas-Gómez DM. New Perspectives on the Molecular Action of Metformin in the Context of Cellular Transduction and Adipogenesis. Int J Mol Sci 2025; 26:3690. [PMID: 40332335 PMCID: PMC12027591 DOI: 10.3390/ijms26083690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025] Open
Abstract
Metformin, a widely used antidiabetic drug, modulates the cellular physiology and metabolism of various body tissues, including adipose tissue. Adipogenesis, a complex process in which mesenchymal stem cells (MSC) differentiate into functional adipocytes, plays a key role in metabolic health and represents a potential therapeutic target for diverse metabolic disorders. Notably, recent evidence suggests that metformin modulates adipocyte differentiation. This narrative review explores the effects of metformin on cellular metabolism, with a particular focus on adipogenesis. The findings compiled in this review show that metformin regulates glucose and lipid metabolism in multiple tissues, including skeletal muscle, adipose tissue, liver, and intestine. Furthermore, metformin modulates adipogenesis through AMP-activated protein kinase (AMPK)-dependent and independent mechanisms in 3T3-L1 cells and adipose-derived stem cells. The review also emphasizes that metformin can promote or inhibit adipogenesis and lipid accumulation, depending on its concentration. Additionally, metformin attenuates inflammatory pathways by reducing the production of proinflammatory cytokines such as IL-6, MCP-1, and COX-2. Finally, evidence supports that vitamin D enhances the anti-inflammatory actions of metformin and promotes cell differentiation toward a beige adipocyte phenotype. In summary, this review examines the molecular actions of metformin to propose potential new therapeutic strategies for managing obesity and related metabolic diseases.
Collapse
Affiliation(s)
| | - Mario Navarro-Marquez
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago 8370321, Chile; (M.N.-M.); (T.S.-T.)
| | - Tamara Saez-Tamayo
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago 8370321, Chile; (M.N.-M.); (T.S.-T.)
| | - Lissé Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Concepción 4260000, Chile;
| | - Samuel Durán-Agüero
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Rehabilitación y Calidad de Vida, Universidad San Sebastián, Sede Los Leones, Lota 2465, Providencia, Santiago 7500000, Chile;
| | - Héctor Fuentes-Barría
- Vicerrectoría de Investigación e Innovación, Universidad Arturo Prat, Iquique 1100000, Chile;
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la vida, Universidad Simón Bolívar, Barranquilla 080022, Colombia
| | - Diana Marcela Rojas-Gómez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370321, Chile
| |
Collapse
|
3
|
Biagioni EM, Rowe JC, Yendamuri S, Wisseman BL, Zheng D, Zhang G, Muoio DM, DeVente JE, Fisher-Wellman KH, Darrell Neufer P, May LE, Broskey NT. Effect of in utero metformin exposure in gestational diabetes mellitus on infant mesenchymal stem cell metabolism. Am J Physiol Endocrinol Metab 2025; 328:E567-E578. [PMID: 40072921 PMCID: PMC12051473 DOI: 10.1152/ajpendo.00428.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/24/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Offspring exposed to metformin treatment for gestational diabetes mellitus (GDM) experience altered growth patterns that increase the risk for developing cardiometabolic diseases later in life. The adaptive cellular mechanisms underlying these patterns remain unclear. Therefore, the objective of this study was to determine whether chronic in utero metformin exposure associated with GDM treatment elicits infant cellular metabolic adaptations. In a cross-sectional design, 22 pregnant women diagnosed with GDM and treated exclusively with metformin (Met; n = 12) or diet (A1DM; n = 10) were compared. Umbilical cord-derived mesenchymal stem cells (MSCs) were used as a model to study infant metabolism in vitro. OXPHOS and citrate synthase content were assessed by Western blot and intracellular lipid content was measured by Oil Red-O staining. Substrate oxidation and insulin action were measured with 14C radiolabeled glucose and oleate at baseline and following a 24-h lipid challenge. Mitochondrial respiration was assessed by high-resolution respirometry. Although no differences in infant birth measures were observed between groups, MSC outcomes revealed lower oleate oxidation rates (P = 0.03) and lower mitochondrial capacity (P = 0.009) among Met-MSCs. These findings suggest differences in energy metabolism may be present at birth among offspring exposed to metformin in utero. Lower oleate oxidation and mitochondrial capacity in infant MSC may contribute to altered growth patterns that have been reported among offspring of metformin-treated pregnant women with GDM.NEW & NOTEWORTHY Mesenchymal stem cells (MSCs) of infants born to women with gestational diabetes mellitus (GDM) treated by metformin display lower rates of oleate oxidation despite no limitations in lipid availability compared with GDM treated by diet. Mitochondrial capacity was also lower among infant MSCs from metformin-treated GDM.
Collapse
Affiliation(s)
- Ericka M. Biagioni
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States
- Human Performance Laboratory, East Carolina University, Greenville, North Carolina, United States
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States
| | - John C. Rowe
- Department of Kinesiology, University of Rhode Island, Kingston, Rhode Island, United States
| | - Sripallavi Yendamuri
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States
- Human Performance Laboratory, East Carolina University, Greenville, North Carolina, United States
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States
| | - Breanna L. Wisseman
- Department of Kinesiology, University of Rhode Island, Kingston, Rhode Island, United States
| | - Donghai Zheng
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States
- Human Performance Laboratory, East Carolina University, Greenville, North Carolina, United States
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States
| | - Guofang Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States
| | - Deborah M. Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States
| | - James E. DeVente
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States
- Department of Obstetrics and Gynecology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | | | - P. Darrell Neufer
- Wake Forest University, School of Medicine, Winston-Salem, North Carolina, United States
| | - Linda E. May
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States
- Human Performance Laboratory, East Carolina University, Greenville, North Carolina, United States
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States
| | - Nicholas T. Broskey
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States
- Human Performance Laboratory, East Carolina University, Greenville, North Carolina, United States
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
4
|
Huang PF, Wang QY, Chen RB, Wang YD, Wang YY, Liu JH, Xiao XH, Liao ZZ. A New Strategy for Obesity Treatment: Revealing the Frontiers of Anti-obesity Medications. Curr Mol Med 2025; 25:13-26. [PMID: 38289639 DOI: 10.2174/0115665240270426231123155924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 02/19/2025]
Abstract
Obesity dramatically increases the risk of type 2 diabetes, fatty liver, hypertension, cardiovascular disease, and cancer, causing both declines in quality of life and life expectancy, which is a serious worldwide epidemic. At present, more and more patients with obesity are choosing drug therapy. However, given the high failure rate, high cost, and long design and testing process for discovering and developing new anti-obesity drugs, drug repurposing could be an innovative method and opportunity to broaden and improve pharmacological tools in this context. Because different diseases share molecular pathways and targets in the cells, anti-obesity drugs discovered in other fields are a viable option for treating obesity. Recently, some drugs initially developed for other diseases, such as treating diabetes, tumors, depression, alcoholism, erectile dysfunction, and Parkinson's disease, have been found to exert potential anti-obesity effects, which provides another treatment prospect. In this review, we will discuss the potential benefits and barriers associated with these drugs being used as obesity medications by focusing on their mechanisms of action when treating obesity. This could be a viable strategy for treating obesity as a significant advance in human health.
Collapse
Affiliation(s)
- Pan-Feng Huang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qi-Yu Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Rong-Bin Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ya-Di Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yuan-Yuan Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhe-Zhen Liao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| |
Collapse
|
5
|
Lee JE, Kim BG, Won JC. Molecular Pathways in Diabetic Cardiomyopathy and the Role of Anti-hyperglycemic Drugs Beyond Their Glucose Lowering Effect. J Lipid Atheroscler 2025; 14:54-76. [PMID: 39911956 PMCID: PMC11791414 DOI: 10.12997/jla.2025.14.1.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 02/07/2025] Open
Abstract
Epidemiological evidence has shown that diabetes is associated with overt heart failure (HF) and worse clinical outcomes. However, the presence of a distinct primary diabetic cardiomyopathy (DCM) has not been easy to prove because the association between diabetes and HF is confounded by hypertension, obesity, microvascular dysfunction, and autonomic neuropathy. In addition, the molecular mechanisms underlying DCM are not yet fully understood, DCM usually remains asymptomatic in the early stage, and no specific biomarkers have been identified. Nonetheless, several mechanistic associations at the systemic, cardiac, and cellular/molecular levels explain different aspects of myocardial dysfunction, including impaired cardiac relaxation, compliance, and contractility. In this review, we focus on recent clinical and preclinical advances in our understanding of the molecular mechanisms of DCM and the role of anti-hyperglycemic agents in preventing DCM beyond their glucose lowering effect.
Collapse
Affiliation(s)
- Jie-Eun Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Byung Gyu Kim
- Division of Cardiology, Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Jong Chul Won
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Azócar-Gallardo J, Ojeda-Aravena A, Báez-San Martín E, Herrera-Valenzuela T, Tuesta M, González-Rojas L, Calvo-Rico B, García-García JM. Effect of a Concurrent Training Program with and Without Metformin Treatment on Metabolic Markers and Cardiorespiratory Fitness in Individuals with Insulin Resistance: A Retrospective Analysis. Biomolecules 2024; 14:1470. [PMID: 39595646 PMCID: PMC11592327 DOI: 10.3390/biom14111470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus is a metabolic disorder characterized by insulin resistance (IR), which is prevalent worldwide and has significant adverse health effects. Metformin is commonly prescribed as a pharmacological treatment. Physical exercise is also recognized as an effective regulator of glycemia, independent of metformin. However, the effects of inter-day concurrent training (CT)-which includes both endurance and resistance exercises-combined with metformin treatment on metabolic markers and cardiorespiratory fitness in individuals with IR remain controversial. OBJECTIVE This study aimed to analyze the effects of a 12-week inter-day CT program on metabolic markers and cardiorespiratory fitness in overweight/obese individuals with IR, both with and without metformin treatment. Additionally, inter-individual responses to CT were examined. MATERIALS AND METHODS Data from the 2022-2023 Obesity Center database were retrospectively analyzed. According to the eligibility criteria, 20 overweight/obese individuals diagnosed with IR participated in a 12-week CT program (three weekly sessions: two endurance and one resistance exercise session). Participants were divided into three groups: the exercise group (E-G: n = 7, 32.86 ± 8.32 years, 85.2 ± 19.67 kg), the exercise-metformin group (E-MG: n = 6, 34.83 ± 12.91 years, 88.13 ± 12.66 kg), and the metformin-only control group (M-G: n = 7, 34.43 ± 13.96 years, 94.23 ± 13.93 kg). The M-G did not perform physical exercise during the 12 weeks but continued pharmacological treatment. Body composition, metabolic markers, and cardiorespiratory fitness were assessed before and after the 12-week CT program. RESULTS A group-by-time interaction was observed for fasting insulin (F2,17 = 34.059, p < 0.001, η2p = 0.88), the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) (F2,17 = 35.597, p < 0.001, η2p = 0.80), and maximal fat oxidation (MFO) (F2,17 = 4.541, p = 0.026, η2p = 0.348) following the CT program. The maximal oxygen uptake (VO2max) showed significant improvements in the E-G (F = 4.888, p = 0.041, ∆+13.3%). Additionally, the percentage of fat mass (%FM) and body mass (BM) were significantly reduced across all groups (F = 125.244, p < 0.001 and F = 91.130, p < 0.001, respectively). The BM decreased by ∆-9.43% in the E-G (five responders, Rs), ∆+9.21% in the EM-G (5 Rs), and ∆+5.15% in the M-G (3 Rs). The %FM was reduced in the E-G by ∆-22.52% (seven Rs). Fasting insulin and the HOMA-IR significantly improved in both the E-G and EM-G, with fasting insulin showing a ∆-82.1% reduction in the E-G (five Rs) and a ∆-85% reduction in the EM-G (six Rs). Similarly, the HOMA-IR improved by ∆+82.6% in the E-G (three Rs) and by ∆+84.6% in the EM-G (six Rs). CONCLUSIONS The 12-week inter-day concurrent training program, whether combined with metformin or not, was similarly effective in improving metabolic markers in patients with insulin resistance as metformin treatment alone. Both exercise groups demonstrated a significant reduction in insulin sensitivity and an increase in maximal fat oxidation. Meanwhile, exclusive pharmacological treatment with metformin markedly decreased cardiorespiratory fitness, and consequently, fat oxidation.
Collapse
Affiliation(s)
- Jairo Azócar-Gallardo
- Facultad de Ciencias del Deporte, Universidad de Castilla-La Mancha (UCLM), 45071 Toledo, Spain; (B.C.-R.); (J.M.G.-G.)
- Programa de Investigación en Deporte, Sociedad y Buen Vivir (DSBv), Universidad de Los Lagos, Osorno 5290000, Chile
- Departamento de Ciencias de la Actividad Física, Universidad de Los Lagos, Osorno 5290000, Chile
| | | | - Eduardo Báez-San Martín
- Carrera de Entrenador Deportivo, Escuela de Educación, Universidad Viña del Mar, Viña del Mar 2580022, Chile;
- Laboratorio de Evaluación y Prescripción de Ejercicio, Facultad de Ciencias de la Actividad Física y del Deporte, Universidad de Playa Ancha, Valparaíso 2340000, Chile
| | - Tomás Herrera-Valenzuela
- School of Physical Activity, Sports and Health Sciences, Faculty of Medical Sciences, Universidad de Santiago, Santiago 7591538, Chile;
| | - Marcelo Tuesta
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile;
- Laboratory of Sports Sciences, Sports Medicine Centre Sports MD, Viña del Mar 2580022, Chile
| | - Luis González-Rojas
- Centro Tratamiento de la Obesidad, Pontificia Universidad Católica de Chile, Santiago 8320165, Chile;
| | - Bibiana Calvo-Rico
- Facultad de Ciencias del Deporte, Universidad de Castilla-La Mancha (UCLM), 45071 Toledo, Spain; (B.C.-R.); (J.M.G.-G.)
| | - José Manuel García-García
- Facultad de Ciencias del Deporte, Universidad de Castilla-La Mancha (UCLM), 45071 Toledo, Spain; (B.C.-R.); (J.M.G.-G.)
| |
Collapse
|
7
|
Mohamed S. Metformin: Diverse molecular mechanisms, gastrointestinal effects and overcoming intolerance in type 2 Diabetes Mellitus: A review. Medicine (Baltimore) 2024; 103:e40221. [PMID: 39470509 PMCID: PMC11521032 DOI: 10.1097/md.0000000000040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Metformin, the first line treatment for patients with type 2 diabetes mellitus, has alternative novel roles, including cancer and diabetes prevention. This narrative review aims to explore its diverse mechanisms, effects and intolerance, using sources obtained by searching Scopus, PubMed and Web of Science databases, and following Scale for the Assessment of Narrative Review Articles reporting guidelines. Metformin exerts it actions through duration influenced, and organ specific, diverse mechanisms. Its use is associated with inhibition of hepatic gluconeogenesis targeted by mitochondria and lysosomes, reduction of cholesterol levels involving brown adipose tissue, weight reduction influenced by growth differentiation factor 15 and novel commensal bacteria, in addition to counteraction of meta-inflammation alongside immuno-modulation. Interactions with the gastrointestinal tract include alteration of gut microbiota, enhancement of glucose uptake and glucagon like peptide 1 and reduction of bile acid absorption. Though beneficial, they may be linked to intolerance. Metformin related gastrointestinal adverse effects are associated with dose escalation, immediate release formulations, gut microbiota alteration, epigenetic predisposition, inhibition of organic cation transporters in addition to interactions with serotonin, histamine and the enterohepatic circulation. Potentially effective measures to overcome intolerance encompasses carefully objective targeted dose escalation, prescription of fixed dose combination, microbiome modulators and prebiotics, in addition to use of extended release formulations.
Collapse
Affiliation(s)
- Sami Mohamed
- Department of Clinical Sciences, Dubai Medical University, Dubai, United Arab Emirates
| |
Collapse
|
8
|
Tsygankova OV, Apartseva NE, Latyntseva LD, Ryabikov AN. Extended-release metformin in patients with prediabetes, chronic heart failure and abdominal obesity in light of the effect on fat depot compartments and glucose metabolism parameters. DIABETES MELLITUS 2024; 27:357-367. [DOI: 10.14341/dm13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
BACKGROUND: Considering the role of visceral adipose tissue deposition in the pathogenesis of heart failure with preserved ejection fraction (HFpEF) and the positive effect of metformin on weight loss, the effect of this drug on adipose tissue compartments in patients with HFpEF is interest.AIM: To study the effect of extended-release metformin (XR) on various fat depots and parameters of insulin-glucose homeostasis in patients with HFpEF, prediabetes and abdominal obesity (AO).MATERIALS AND METHODS: Study design: single-center, open-ended, randomized, prospective, controlled. The registration numbers of the study in the NARNIS register RNI.25.004. The study included 64 people (50% men, median age 58 [55.25; 59.75] years) with HFpEF, prediabetes and AO. All patients (groups A and B) received optimal HFpEF therapy. In group A (n=32), metformin XR 1000–1500 mg/day was additionally prescribed. All patients underwent general clinical examination, calculation of insulin resistance indices, ultrasound lipometry to determine the thickness of epicardial, preperitoneal and subcutaneous fat initially and after 6 months.RESULTS: In group A patients, there was a decrease in waist circumference by 0.9% (p=0.002), hip circumference by 1.25% (p=0.001), body weight by 4.7% (p<0.0001), body mass index by 1.8% (p=0.001) compared with baseline. In the control group, the anthropometric parameters of the dynamics did not change. Also, in the metformin XR group, glucose levels decreased by 4.6% (p=0.009), glycated hemoglobin by 3.3% (p=0.047), insulin by 12.5% (p=0.024) and insulin resistance indices: HOMA-IR by 19.8% (p=0.009), FIRI by 19.8% (p=0.009). In contrast, patients from group B had an increase in fasting plasma insulin levels by 33.6% (p=0.035), with an increase in HOMA-IR indices by 27.4% (p=0.026) and FIRI by 26.9% (p=0.025). The dynamics of ultrasound lipometry parameters was observed only in group A: the thickness of the preperitoneal fat decreased by 14.5% (p<0.0001), the thickness of the subcutaneous fat decreased by 12.3% (p<0.0001).CONCLUSION: In patients with prediabetes, HFpEF and AO, taking metformin XR 1000-1500 mg/day for 6 months against the background of optimal basic HFpEF therapy was associated with a decrease in subcutaneous and preperitoneal fat, also had a beneficial effect on glucose metabolism parameters compared with the control group.
Collapse
Affiliation(s)
- O. V. Tsygankova
- Novosibirsk State Medical University; Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
| | - N. E. Apartseva
- Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
| | - L. D. Latyntseva
- Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
| | - A. N. Ryabikov
- Novosibirsk State Medical University; Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
| |
Collapse
|
9
|
Abrosimov R, Baeken MW, Hauf S, Wittig I, Hajieva P, Perrone CE, Moosmann B. Mitochondrial complex I inhibition triggers NAD +-independent glucose oxidation via successive NADPH formation, "futile" fatty acid cycling, and FADH 2 oxidation. GeroScience 2024; 46:3635-3658. [PMID: 38267672 PMCID: PMC11226580 DOI: 10.1007/s11357-023-01059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Inhibition of mitochondrial complex I (NADH dehydrogenase) is the primary mechanism of the antidiabetic drug metformin and various unrelated natural toxins. Complex I inhibition can also be induced by antidiabetic PPAR agonists, and it is elicited by methionine restriction, a nutritional intervention causing resistance to diabetes and obesity. Still, a comprehensible explanation to why complex I inhibition exerts antidiabetic properties and engenders metabolic inefficiency is missing. To evaluate this issue, we have systematically reanalyzed published transcriptomic datasets from MPP-treated neurons, metformin-treated hepatocytes, and methionine-restricted rats. We found that pathways leading to NADPH formation were widely induced, together with anabolic fatty acid biosynthesis, the latter appearing highly paradoxical in a state of mitochondrial impairment. However, concomitant induction of catabolic fatty acid oxidation indicated that complex I inhibition created a "futile" cycle of fatty acid synthesis and degradation, which was anatomically distributed between adipose tissue and liver in vivo. Cofactor balance analysis unveiled that such cycling would indeed be energetically futile (-3 ATP per acetyl-CoA), though it would not be redox-futile, as it would convert NADPH into respirable FADH2 without any net production of NADH. We conclude that inhibition of NADH dehydrogenase leads to a metabolic shift from glycolysis and the citric acid cycle (both generating NADH) towards the pentose phosphate pathway, whose product NADPH is translated 1:1 into FADH2 by fatty acid cycling. The diabetes-resistant phenotype following hepatic and intestinal complex I inhibition is attributed to FGF21- and GDF15-dependent fat hunger signaling, which remodels adipose tissue into a glucose-metabolizing organ.
Collapse
Affiliation(s)
- Roman Abrosimov
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marius W Baeken
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Samuel Hauf
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ilka Wittig
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Parvana Hajieva
- Institute for Translational Medicine, MSH Medical School, Hamburg, Germany
| | - Carmen E Perrone
- Orentreich Foundation for the Advancement of Science, Cold Spring-On-Hudson, NY, USA
| | - Bernd Moosmann
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
10
|
Bailey CJ. Metformin: Therapeutic profile in the treatment of type 2 diabetes. Diabetes Obes Metab 2024; 26 Suppl 3:3-19. [PMID: 38784991 DOI: 10.1111/dom.15663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Metformin (dimethyl-biguanide) can claim its origins in the use of Galega officinalis as a plant treatment for symptoms ascribed to diabetes. Since the first clinical use of metformin as a glucose-lowering agent in 1957, this medicine has emerged as a first-line pharmacological option to support lifestyle interventions in the management of type 2 diabetes (T2D). It acts through multiple cellular pathways, principally in the gut, liver and muscle, to counter insulin resistance and lower blood glucose without weight gain or risk of overt hypoglycaemia. Other effects include improvements in lipid metabolism, decreased inflammation and lower long-term cardiovascular risk. Metformin is conveniently combined with other diabetes medications, can be prescribed in prediabetes to reduce the risk of progression to T2D, and is used in some regions to assist glycaemic control in pregnancy. Consistent with its diversity of actions, established safety profile and cost-effectiveness, metformin is being assessed for further possible clinical applications. The use of metformin requires adequate renal function for drug elimination, and may cause initial gastrointestinal side effects, which can be moderated by taking with meals or using an extended-release formulation. Thus, metformin serves as a valuable therapeutic resource for use throughout the natural history of T2D.
Collapse
|
11
|
Zhang M, Zhou W, Cao Y, Kou L, Liu C, Li X, Zhang B, Guo W, Xu B, Li S. O-GlcNAcylation regulates long-chain fatty acid metabolism by inhibiting ACOX1 ubiquitination-dependent degradation. Int J Biol Macromol 2024; 266:131151. [PMID: 38547945 DOI: 10.1016/j.ijbiomac.2024.131151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Cold as a common environmental stress, causes increased heat production, accelerated metabolism and even affects its production performance. How to improve the adaptability of the animal organism to cold has been an urgent problem. As a key hub of lipid metabolism, the liver can regulate lipid metabolism to maintain energy balance, and O-GlcNAcylation is a kind of important PTMs, which participates in a variety of signaling and mechanism regulation, and at the same time, is very sensitive to changes in stress and nutritional levels, and is the body's "stress receptors" and "nutrient receptors". Therefore, the aim of this experiment was to investigate the effect of cold-induced O-GlcNAcylation on hepatic lipid metabolism, and to explore the potential connection between O-GlcNAcylation and hepatic lipid metabolism. METHODS To investigate the loss of O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and the precise impacts of additional cold-induced circumstances on liver mass, shape, and metabolic profile, C57 mice were used as an animal model. Using the protein interactions approach, the mechanism of O-GlcNAcylation, as well as the degradation pathway of acyl-Coenzyme A oxidase 1 (ACOX1), were clarified. Additional in vitro analyses of oleic acid (OA) and OGT inhibitor tetraoxan (Alloxan) (Sigma, 2244-11-3) on lipid breakdown in AML-12 cells. RESULTS In C57BL/6 mice, deletion of O-GlcNAcylation disrupted lipid metabolism, caused hepatic edema and fibrosis, and altered mitochondrial apoptosis. This group of modifications was made worse by cold induction. The accumulation of medium- and long-chain fatty acids is a hallmark of lipolysis, which is accelerated by the deletion of O-GlcNAcylation, whereas lipid synthesis is slowed down. The association between ACOX1 and OGT at the K48 gene precludes ubiquitinated degradation.
Collapse
Affiliation(s)
- Meng Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Wanhui Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Yu Cao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, No.61 Shenjiang Road, Longsha District, Qiqihar, 161005, Heilongjiang Province, China
| | - Lele Kou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Chunwei Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Xiaoshuang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Boxi Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Wenjin Guo
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130000, PR China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| |
Collapse
|
12
|
Galal MA, Al-Rimawi M, Hajeer A, Dahman H, Alouch S, Aljada A. Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int J Mol Sci 2024; 25:4083. [PMID: 38612893 PMCID: PMC11012626 DOI: 10.3390/ijms25074083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer continues to pose a significant global health challenge, as evidenced by the increasing incidence rates and high mortality rates, despite the advancements made in chemotherapy. The emergence of chemoresistance further complicates the effectiveness of treatment. However, there is growing interest in the potential of metformin, a commonly prescribed drug for type 2 diabetes mellitus (T2DM), as an adjuvant chemotherapy agent in cancer treatment. Although the precise mechanism of action of metformin in cancer therapy is not fully understood, it has been found to have pleiotropic effects, including the modulation of metabolic pathways, reduction in inflammation, and the regulation of cellular proliferation. This comprehensive review examines the anticancer properties of metformin, drawing insights from various studies conducted in vitro and in vivo, as well as from clinical trials and observational research. This review discusses the mechanisms of action involving both insulin-dependent and independent pathways, shedding light on the potential of metformin as a therapeutic agent for different types of cancer. Despite promising findings, there are challenges that need to be addressed, such as conflicting outcomes in clinical trials, considerations regarding dosing, and the development of resistance. These challenges highlight the importance of further research to fully harness the therapeutic potential of metformin in cancer treatment. The aims of this review are to provide a contemporary understanding of the role of metformin in cancer therapy and identify areas for future exploration in the pursuit of effective anticancer strategies.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Mohammed Al-Rimawi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | | | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Samhar Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| |
Collapse
|
13
|
Goglia U, Hasballa I, Teti C, Boschetti M, Ferone D, Albertelli M. Ianus Bifrons: The Two Faces of Metformin. Cancers (Basel) 2024; 16:1287. [PMID: 38610965 PMCID: PMC11011026 DOI: 10.3390/cancers16071287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The ancient Roman god Ianus was a mysterious divinity with two opposite faces, one looking at the past and the other looking to the future. Likewise, metformin is an "old" drug, with one side looking at the metabolic role and the other looking at the anti-proliferative mechanism; therefore, it represents a typical and ideal bridge between diabetes and cancer. Metformin (1,1-dimethylbiguanidine hydrochloride) is a drug that has long been in use for the treatment of type 2 diabetes mellitus, but recently evidence is growing about its potential use in other metabolic conditions and in proliferative-associated diseases. The aim of this paper is to retrace, from a historical perspective, the knowledge of this molecule, shedding light on the subcellular mechanisms of action involved in metabolism as well as cellular and tissue growth. The intra-tumoral pharmacodynamic effects of metformin and its possible role in the management of different neoplasms are evaluated and debated. The etymology of the name Ianus is probably from the Latin term ianua, which means door. How many new doors will this old drug be able to open?
Collapse
Affiliation(s)
- Umberto Goglia
- Endocrinology and Diabetology Unit, Local Health Authority CN1, 12100 Cuneo, Italy
| | - Iderina Hasballa
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy (M.B.); (D.F.); (M.A.)
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, 16132 Genoa, Italy
| | - Claudia Teti
- Endocrinology and Diabetology Unit, Local Health Autorithy Imperia 1, 18100 Imperia, Italy;
| | - Mara Boschetti
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy (M.B.); (D.F.); (M.A.)
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, 16132 Genoa, Italy
| | - Diego Ferone
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy (M.B.); (D.F.); (M.A.)
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, 16132 Genoa, Italy
| | - Manuela Albertelli
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy (M.B.); (D.F.); (M.A.)
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, 16132 Genoa, Italy
| |
Collapse
|
14
|
Naja K, Anwardeen N, Malki AM, Elrayess MA. Metformin increases 3-hydroxy medium chain fatty acids in patients with type 2 diabetes: a cross-sectional pharmacometabolomic study. Front Endocrinol (Lausanne) 2024; 15:1313597. [PMID: 38370354 PMCID: PMC10869496 DOI: 10.3389/fendo.2024.1313597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Background Metformin is a drug with a long history of providing benefits in diabetes management and beyond. The mechanisms of action of metformin are complex, and continue to be actively debated and investigated. The aim of this study is to identify metabolic signatures associated with metformin treatment, which may explain the pleiotropic mechanisms by which metformin works, and could lead to an improved treatment and expanded use. Methods This is a cross-sectional study, in which clinical and metabolomic data for 146 patients with type 2 diabetes were retrieved from Qatar Biobank. Patients were categorized into: Metformin-treated, treatment naïve, and non-metformin treated. Orthogonal partial least square discriminate analysis and linear models were used to analyze differences in the level of metabolites between the metformin treated group with each of the other two groups. Results Patients on metformin therapy showed, among other metabolites, a significant increase in 3-hydroxyoctanoate and 3-hydroxydecanoate, which may have substantial effects on metabolism. Conclusions This is the first study to report an association between 3-hydroxy medium chain fatty acids with metformin therapy in patients with type 2 diabetes. This opens up new directions towards repurposing metformin by comprehensively understanding the role of these metabolites.
Collapse
Affiliation(s)
- Khaled Naja
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Ahmed M. Malki
- Biomedical Science Department, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha, Qatar
- Biomedical Science Department, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| |
Collapse
|
15
|
Jagannath S, Mallanna SH, Nandini CD. Diet-inducing hypercholesterolemia show decreased O-GlcNAcylation of liver proteins through modulation of AMPK. J Physiol Biochem 2024; 80:205-218. [PMID: 37996652 DOI: 10.1007/s13105-023-00997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
O-GlcNAcylation, a nutritionally driven, post-translational modification of proteins, is gaining importance because of its health implications. Changes in O-GlcNAcylation are observed in various disease conditions. Changes in O-GlcNAcylation by diet that causes hypercholesterolemia are not critically looked into in the liver. To address it, both in vitro and in vivo approaches were employed. Hypercholesterolemia was induced individually by feeding cholesterol (H)/high-fat (HF) diet. Global O-GlcNAcylation levels and modulation of AMPK activation in both preventive and curative approaches were looked into. Diet-induced hypercholesterolemia resulted in decreased O-GlcNAcylation of liver proteins which was associated with decreased O-linked N-acetylglucosaminyltransferase (OGT) and Glutamine fructose-6-phosphate amidotransferase-1 (GFAT1). Activation of AMPK by metformin in preventive mode restored the O-GlcNAcylation levels; however, metformin treatment of HepG2 cells in curative mode restored O-GlcNAcylation levels in HF but failed to in H condition (at 24 h). Further, maternal faulty diet resulted in decreased O-GlcNAcylation in pup liver despite feeding normal diet till adulthood. A faulty diet modulates global O-GlcNAcylation of liver proteins which is accompanied by decreased AMPK activation which could exacerbate metabolic syndromes through fat accumulation in the liver.
Collapse
Affiliation(s)
- Sanjana Jagannath
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Smitha Honnalagere Mallanna
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C D Nandini
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Boachie J, Zammit V, Saravanan P, Adaikalakoteswari A. Metformin Inefficiency to Lower Lipids in Vitamin B12 Deficient HepG2 Cells Is Alleviated via Adiponectin-AMPK Axis. Nutrients 2023; 15:5046. [PMID: 38140305 PMCID: PMC10745523 DOI: 10.3390/nu15245046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Background: Prolonged metformin treatment decreases vitamin B12 (B12) levels, whereas low B12 is associated with dyslipidaemia. Some studies have reported that metformin has no effect on intrahepatic triglyceride (TG) levels. Although AMP-activated protein kinase (AMPK) activation via adiponectin lowers hepatic TG content, its role in B12 deficiency and metformin has not been explored. We investigated whether low B12 impairs the beneficial effect of metformin on hepatic lipid metabolism via the AMPK-adiponectin axis. Methods: HepG2 was cultured using custom-made B12-deficient Eagle's Minimal Essential Medium (EMEM) in different B12-medium concentrations, followed by a 24-h metformin/adiponectin treatment. Gene and protein expressions and total intracellular TG were measured, and radiochemical analysis of TG synthesis and seahorse mitochondria stress assay were undertaken. Results: With low B12, total intracellular TG and synthesized radiolabelled TG were increased. Regulators of lipogenesis, cholesterol and genes regulating fatty acids (FAs; TG; and cholesterol biosynthesis were increased. FA oxidation (FAO) and mitochondrial function were decreased, with decreased pAMPKα and pACC levels. Following metformin treatment in hepatocytes with low B12, the gene and protein expression of the above targets were not alleviated. However, in the presence of adiponectin, intrahepatic lipid levels with low B12 decreased via upregulated pAMPKα and pACC levels. Again, combined adiponectin and metformin treatment ameliorated the low B12 effect and resulted in increased pAMPKα and pACC, with a subsequent reduction in lipogenesis, increased FAO and mitochondrion function. Conclusions: Adiponectin co-administration with metformin induced a higher intrahepatic lipid-lowering effect. Overall, we emphasize the potential therapeutic implications for hepatic AMPK activation via adiponectin for a clinical condition associated with B12 deficiency and metformin treatment.
Collapse
Affiliation(s)
- Joseph Boachie
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital-Walsgrave Campus, Coventry CV2 2DX, UK; (J.B.); (V.Z.); (P.S.)
| | - Victor Zammit
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital-Walsgrave Campus, Coventry CV2 2DX, UK; (J.B.); (V.Z.); (P.S.)
| | - Ponnusamy Saravanan
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital-Walsgrave Campus, Coventry CV2 2DX, UK; (J.B.); (V.Z.); (P.S.)
- Diabetes Centre, George Eliot Hospital NHS Trust, College Street, Nuneaton CV10 7DJ, UK
- Populations, Evidence and Technologies, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7HL, UK
| | - Antonysunil Adaikalakoteswari
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital-Walsgrave Campus, Coventry CV2 2DX, UK; (J.B.); (V.Z.); (P.S.)
- Department of Bioscience, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
17
|
Veneti S, Grammatikopoulou MG, Kintiraki E, Mintziori G, Goulis DG. Ketone Bodies in Diabetes Mellitus: Friend or Foe? Nutrients 2023; 15:4383. [PMID: 37892458 PMCID: PMC10609881 DOI: 10.3390/nu15204383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
In glucose-deprived conditions, ketone bodies are produced by the liver mitochondria, through the catabolism of fatty acids, and are used peripherally, as an alternative energy source. Ketones are produced in the body under normal conditions, including during pregnancy and the neonatal period, when following a ketogenic diet (KD), fasting, or exercising. Additionally, ketone synthesis is also augmented under pathological conditions, including cases of diabetic ketoacidosis (DKA), alcoholism, and several metabolic disorders. Nonetheless, diet is the main regulator of total body ketone concentrations. The KDs are mimicking the fasting state, altering the default metabolism towards the use of ketones as the primary fuel source. Recently, KD has gained recognition as a medical nutrition therapy for a plethora of metabolic conditions, including obesity and diabetes mellitus (DM). The present review aims to discuss the role of ketones, KDs, ketonemia, and ketonuria in DM, presenting all the available new evidence in a comprehensive manner.
Collapse
Affiliation(s)
- Stavroula Veneti
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (S.V.); (E.K.)
| | - Maria G. Grammatikopoulou
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (S.V.); (E.K.)
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Evangelia Kintiraki
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (S.V.); (E.K.)
| | - Gesthimani Mintziori
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (S.V.); (E.K.)
| | - Dimitrios G. Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (S.V.); (E.K.)
| |
Collapse
|
18
|
Garrib A, Kivuyo S, Bates K, Ramaiya K, Wang D, Majaliwa E, Simbauranga R, Charles G, van Widenfelt E, Luo H, Alam U, Nyirenda MJ, Jaffar S, Mfinanga S. Metformin for the prevention of diabetes among people with HIV and either impaired fasting glucose or impaired glucose tolerance (prediabetes) in Tanzania: a Phase II randomised placebo-controlled trial. Diabetologia 2023; 66:1882-1896. [PMID: 37460828 PMCID: PMC10474205 DOI: 10.1007/s00125-023-05968-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/12/2023] [Indexed: 09/02/2023]
Abstract
AIMS/HYPOTHESIS In sub-Saharan Africa (SSA), 5% of adults are living with type 2 diabetes and this is rising sharply, with a greater increase among people with HIV. Evidence on the efficacy of prevention strategies in this cohort is scarce. We conducted a Phase II double-blind placebo-controlled trial that aimed to determine the impact of metformin on blood glucose levels among people with prediabetes (defined as impaired fasting glucose [IFG] and/or impaired glucose tolerance [IGT]) and HIV in SSA. METHODS Adults (≥18 years old) who were stable in HIV care and found to have prediabetes (IFG and/or IGT) and who were attending hospitals in Dar es Salaam, Tanzania, were randomised to receive sustained-release metformin, 2000 mg daily, or matching placebo between 4 November 2019 and 21 July 2020. Randomisation used permuted blocks. Allocation was concealed in the trial database and made visible only to the Chief Pharmacist after consent was taken. All participants, research and clinical staff remained blinded to the allocation. Participants were provided with information on diet and lifestyle and had access to various health information following the start of the coronavirus disease 2019 (COVID-19) pandemic. Participants were followed up for 12 months. The primary outcome measure was capillary blood glucose measured 2 h following a 75 g glucose load. Analyses were by intention-to-treat. RESULTS In total, 364 participants (182 in each arm) were randomised to the metformin or placebo group. At enrolment, in the metformin and placebo arms, mean fasting glucose was 6.37 mmol/l (95% CI 6.23, 6.50) and 6.26 mmol/l (95% CI 6.15, 6.36), respectively, and mean 2 h glucose levels following a 75 g oral glucose load were 8.39 mmol/l (95% CI 8.22, 8.56) and 8.24 mmol/l (95% CI 8.07, 8.41), respectively. At the final assessment at 12 months, 145/182 (79.7%) individuals randomised to metformin compared with 158/182 (86.8%) randomised to placebo indicated that they had taken >95% of their medicines in the previous 28 days (p=0.068). At this visit, in the metformin and placebo arms, mean fasting glucose levels were 6.17 mmol/l (95% CI 6.03, 6.30) and 6.30 mmol/l (95% CI 6.18, 6.42), respectively, and mean 2 h glucose levels following a 75 g oral glucose load were 7.88 mmol/l (95% CI 7.65, 8.12) and 7.71 mmol/l (95% CI 7.49, 7.94), respectively. Using a linear mixed model controlling for respective baseline values, the mean difference between the metformin and placebo group (metformin-placebo) was -0.08 mmol/l (95% CI -0.37, 0.20) for fasting glucose and 0.20 mmol/l (95% CI -0.17, 0.58) for glucose levels 2 h post a 75 g glucose load. Weight was significantly lower in the metformin arm than in the placebo arm: using the linear mixed model adjusting for baseline values, the mean difference in weight was -1.47 kg (95% CI -2.58, -0.35). In total, 16/182 (8.8%) individuals had a serious adverse event (Grade 3 or Grade 4 in the Division of Acquired Immunodeficiency Syndrome [DAIDS] adverse event grading table) or died in the metformin arm compared with 18/182 (9.9%) in the placebo arm; these events were either unrelated to or unlikely to be related to the study drugs. CONCLUSIONS/INTERPRETATION Blood glucose decreased over time in both the metformin and placebo arms during the trial but did not differ significantly between the arms at 12 months of follow up. Metformin therapy was found to be safe for use in individuals with HIV and prediabetes. A larger trial with longer follow up is needed to establish if metformin can be safely used for the prevention of diabetes in people who have HIV. TRIAL REGISTRATION The trial is registered on the International Standard Randomised Controlled Trial Number (ISRCTN) registry ( www.isrctn.com/ ), registration number: ISCRTN76157257. FUNDING This research was funded by the National Institute for Health Research using UK aid from the UK Government to support global health research.
Collapse
Affiliation(s)
- Anupam Garrib
- UCL Institute for Global Health, University College London, London, UK.
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Sokoine Kivuyo
- Muhimbili Medical Research Centre, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Katie Bates
- UCL Institute for Global Health, University College London, London, UK
- Institute of Medical Statistics and Informatics, Medical University Innsbruck, Innsbruck, Austria
| | | | - Duolao Wang
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Edna Majaliwa
- Shree Hindu Mandal Hospital, Dar es Salaam, Tanzania
| | - Rehema Simbauranga
- Muhimbili Medical Research Centre, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Godbless Charles
- Muhimbili Medical Research Centre, National Institute for Medical Research, Dar es Salaam, Tanzania
| | | | - Huanyan Luo
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Liverpool University NHS Hospital Foundation Trust, Liverpool, UK
- Department of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Moffat J Nyirenda
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine (LSHTM), London, UK
- NCD Theme, MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Shabbar Jaffar
- UCL Institute for Global Health, University College London, London, UK
| | - Sayoki Mfinanga
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Muhimbili Medical Research Centre, National Institute for Medical Research, Dar es Salaam, Tanzania
| |
Collapse
|
19
|
Koshizaka M, Ishibashi R, Ishikawa K, Shoji M, Ide K, Ide S, Kato H, Teramoto N, Terayama R, Maezawa Y, Yokote K. Urinary α1 microglobulin level is useful for selecting sodium-glucose transporter 2 inhibitor or metformin for visceral fat reduction in patients with type 2 diabetes. Diabetes Obes Metab 2023; 25:3071-3075. [PMID: 37385959 DOI: 10.1111/dom.15188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
Affiliation(s)
- Masaya Koshizaka
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Ryoichi Ishibashi
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Kimitsu Chuo Hospital, Chiba, Japan
| | - Ko Ishikawa
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mayumi Shoji
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kana Ide
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shintaro Ide
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hisaya Kato
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naoya Teramoto
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ryo Terayama
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshiro Maezawa
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Koutaro Yokote
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
20
|
Foretz M, Guigas B, Viollet B. Metformin: update on mechanisms of action and repurposing potential. Nat Rev Endocrinol 2023; 19:460-476. [PMID: 37130947 PMCID: PMC10153049 DOI: 10.1038/s41574-023-00833-4] [Citation(s) in RCA: 267] [Impact Index Per Article: 133.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/04/2023]
Abstract
Currently, metformin is the first-line medication to treat type 2 diabetes mellitus (T2DM) in most guidelines and is used daily by >200 million patients. Surprisingly, the mechanisms underlying its therapeutic action are complex and are still not fully understood. Early evidence highlighted the liver as the major organ involved in the effect of metformin on reducing blood levels of glucose. However, increasing evidence points towards other sites of action that might also have an important role, including the gastrointestinal tract, the gut microbial communities and the tissue-resident immune cells. At the molecular level, it seems that the mechanisms of action vary depending on the dose of metformin used and duration of treatment. Initial studies have shown that metformin targets hepatic mitochondria; however, the identification of a novel target at low concentrations of metformin at the lysosome surface might reveal a new mechanism of action. Based on the efficacy and safety records in T2DM, attention has been given to the repurposing of metformin as part of adjunct therapy for the treatment of cancer, age-related diseases, inflammatory diseases and COVID-19. In this Review, we highlight the latest advances in our understanding of the mechanisms of action of metformin and discuss potential emerging novel therapeutic uses.
Collapse
Affiliation(s)
- Marc Foretz
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France.
| |
Collapse
|
21
|
Dong Y, Qi Y, Jiang H, Mi T, Zhang Y, Peng C, Li W, Zhang Y, Zhou Y, Zang Y, Li J. The development and benefits of metformin in various diseases. Front Med 2023; 17:388-431. [PMID: 37402952 DOI: 10.1007/s11684-023-0998-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/01/2023] [Indexed: 07/06/2023]
Abstract
Metformin has been used for the treatment of type II diabetes mellitus for decades due to its safety, low cost, and outstanding hypoglycemic effect clinically. The mechanisms underlying these benefits are complex and still not fully understood. Inhibition of mitochondrial respiratory-chain complex I is the most described downstream mechanism of metformin, leading to reduced ATP production and activation of AMP-activated protein kinase (AMPK). Meanwhile, many novel targets of metformin have been gradually discovered. In recent years, multiple pre-clinical and clinical studies are committed to extend the indications of metformin in addition to diabetes. Herein, we summarized the benefits of metformin in four types of diseases, including metabolic associated diseases, cancer, aging and age-related diseases, neurological disorders. We comprehensively discussed the pharmacokinetic properties and the mechanisms of action, treatment strategies, the clinical application, the potential risk of metformin in various diseases. This review provides a brief summary of the benefits and concerns of metformin, aiming to interest scientists to consider and explore the common and specific mechanisms and guiding for the further research. Although there have been countless studies of metformin, longitudinal research in each field is still much warranted.
Collapse
Affiliation(s)
- Ying Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yingbei Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tian Mi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yunkai Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanchen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongmei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Lingang Laboratory, Shanghai, 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
22
|
Morais T, Seabra AL, Patrício BG, Carrageta DF, Guimarães M, Nora M, Oliveira PF, Alves MG, Monteiro MP. Dysglycemia Shapes Visceral Adipose Tissue's Response to GIP, GLP-1 and Glucagon in Individuals with Obesity. Metabolites 2023; 13:metabo13050587. [PMID: 37233628 DOI: 10.3390/metabo13050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/01/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023] Open
Abstract
Visceral adipose tissue (VAT) metabolic fingerprints differ according to body mass index (BMI) and glycemic status. Glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon are gut-associated hormones that play an important role in regulating energy and glucose homeostasis, although their metabolic actions in VAT are still poorly characterized. Our aim was to assess whether GLP-1, GIP and glucagon influence the VAT metabolite profile. To achieve this goal, VAT harvested during elective surgical procedures from individuals (N = 19) with different BMIs and glycemic statuses was stimulated with GLP-1, GIP or glucagon, and culture media was analyzed using proton nuclear magnetic resonance. In the VAT of individuals with obesity and prediabetes, GLP-1 shifted its metabolic profile by increasing alanine and lactate production while also decreasing isoleucine consumption, whereas GIP and glucagon decreased lactate and alanine production and increased pyruvate consumption. In summary, GLP-1, GIP and glucagon were shown to distinctively modulate the VAT metabolic profile depending on the subject's BMI and glycemic status. In VAT from patients with obesity and prediabetes, these hormones induced metabolic shifts toward gluconeogenesis suppression and oxidative phosphorylation enhancement, suggesting an overall improvement in AT mitochondrial function.
Collapse
Affiliation(s)
- Tiago Morais
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
| | - Alexandre L Seabra
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
| | - Bárbara G Patrício
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
| | - David F Carrageta
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
- Laboratory of Physiology, Department of Imuno-Physiology and Pharmacology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Marta Guimarães
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
- Department of General Surgery, Centro Hospitalar de Entre o Douro e Vouga, 4520-220 Santa Maria da Feira, Portugal
| | - Mário Nora
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
- Department of General Surgery, Centro Hospitalar de Entre o Douro e Vouga, 4520-220 Santa Maria da Feira, Portugal
| | - Pedro F Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marco G Alves
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
- Laboratory of Physiology, Department of Imuno-Physiology and Pharmacology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Mariana P Monteiro
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
23
|
Ziqubu K, Mazibuko-Mbeje SE, Mthembu SXH, Mabhida SE, Jack BU, Nyambuya TM, Nkambule BB, Basson AK, Tiano L, Dludla PV. Anti-Obesity Effects of Metformin: A Scoping Review Evaluating the Feasibility of Brown Adipose Tissue as a Therapeutic Target. Int J Mol Sci 2023; 24:2227. [PMID: 36768561 PMCID: PMC9917329 DOI: 10.3390/ijms24032227] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Brown adipose tissue (BAT) is increasingly recognized as the major therapeutic target to promote energy expenditure and ameliorate diverse metabolic complications. There is a general interest in understanding the pleiotropic effects of metformin against metabolic complications. Major electronic databases and search engines such as PubMed/MEDLINE, Google Scholar, and the Cochrane library were used to retrieve and critically discuss evidence reporting on the impact of metformin on regulating BAT thermogenic activity to ameliorate complications linked with obesity. The summarized evidence suggests that metformin can reduce body weight, enhance insulin sensitivity, and improve glucose metabolism by promoting BAT thermogenic activity in preclinical models of obesity. Notably, this anti-diabetic agent can affect the expression of major thermogenic transcriptional factors such as uncoupling protein 1 (UCP1), nuclear respiratory factor 1 (NRF1), and peroxisome-proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α) to improve BAT mitochondrial function and promote energy expenditure. Interestingly, vital molecular markers involved in glucose metabolism and energy regulation such as AMP-activated protein kinase (AMPK) and fibroblast growth factor 21 (FGF21) are similarly upregulated by metformin treatment in preclinical models of obesity. The current review also discusses the clinical relevance of BAT and thermogenesis as therapeutic targets. This review explored critical components including effective dosage and appropriate intervention period, consistent with the beneficial effects of metformin against obesity-associated complications.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Sithandiwe E. Mazibuko-Mbeje
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Sinenhlanhla X. H. Mthembu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Sihle E. Mabhida
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Babalwa U. Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Tawanda M. Nyambuya
- Department of Health Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Albertus K. Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| |
Collapse
|
24
|
Azócar-Gallardo J, Ramirez-Campillo R, Afonso J, Sá M, Granacher U, González-Rojas L, Ojeda-Aravena A, García-García JM. Overweight and Obese Adult Patients Show Larger Benefits from Concurrent Training Compared with Pharmacological Metformin Treatment on Insulin Resistance and Fat Oxidation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14331. [PMID: 36361210 PMCID: PMC9655487 DOI: 10.3390/ijerph192114331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Metformin, a drug widely used to treat insulin resistance, and training that combines aerobic and strength exercise modalities (i.e., concurrent training) may improve insulin sensitivity. However, there is a paucity of clinical trials investigating the effects of concurrent training, particularly on insulin resistance and fat oxidation in overweight and obese patients. Furthermore, only a few studies have compared the effects of concurrent training with metformin treatment. Therefore, the aim of this study was to examine the effects of a 12-week concurrent training program versus pharmaceutical treatment with metformin on maximum fat oxidation, glucose metabolism, and insulin resistance in overweight or obese adult patients. Male and female patients with insulin resistance were allocated by convenience to a concurrent training group (n = 7 (2 males); age = 32.9 ± 8.3 years; body mass index = 30 ± 4.0 kg·m-2) or a metformin group (n = 7 (2 males); age = 34.4 ± 14.0 years; body mass index = 34.4 ± 6.0 kg·m-2). Before and after the interventions, all participants were assessed for total body mass, body mass index, fat mass, fat-free mass, maximum oxygen consumption, maximal fat oxidization during exercise, fasting glucose, and insulin resistance through the homeostatic model assessment (HOMA-IR). Due to non-normal distribution of the variable maximal fat oxidation, the Mann-Whitney U test was applied and revealed better maximal fat oxidization (Δ = 308%) in the exercise compared with the metformin group (Δ = -30.3%; p = 0.035). All other outcome variables were normally distributed, and significant group-by-time interactions were found for HOMA-IR (p < 0.001, Δ = -84.5%), fasting insulin (p < 0.001, Δ = -84.6%), and increased maximum oxygen consumption (p = 0.046, Δ = 12.3%) in favor of the exercise group. Similar changes were found in both groups for the remaining dependent variables. Concurrent training seems to be more effective compared with pharmaceutical metformin treatment to improve insulin resistance and fat oxidation in overweight and obese adult patients with insulin resistance. The rather small sample size calls for more research in this area.
Collapse
Affiliation(s)
- Jairo Azócar-Gallardo
- Programa de Investigación en Deporte, Sociedad y Buen Vivir (DSBv), Universidad de Los Lagos, Osorno 5290000, Chile
- Departamento de Ciencias de la Actividad Física, Universidad de Los Lagos, Puerto Montt 5480000, Chile
- Facultad de Ciencias del Deporte, Universidad de Castilla-La Mancha (UCLM), 45071 Toledo, Spain
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile
| | - José Afonso
- Centre for Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Mário Sá
- Faculdade de Motricidade Humana, Universidade de Lisboa, 1495-751 Lisboa, Portugal
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, 79102 Freiburg, Germany
| | - Luis González-Rojas
- Centro Tratamiento de la Obesidad, Pontificia Universidad Católica de Chile, Santiago 7550000, Chile
| | - Alex Ojeda-Aravena
- IRyS Group, Physical Education School, Pontificia Universidad Católica de Valparaíso, Valparaíso 2581967, Chile
| | | |
Collapse
|
25
|
Stephan D, Taege N, Dore R, Folberth J, Jöhren O, Schwaninger M, Lehnert H, Schulz C. Knockdown of Endogenous Nucb2/Nesfatin-1 in the PVN Leads to Obese-Like Phenotype and Abolishes the Metformin- and Stress-Induced Thermogenic Response in Rats. Horm Metab Res 2022; 54:768-779. [PMID: 36195118 DOI: 10.1055/a-1926-7280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Nesfatin-1, the cleavage product of nucleobindin-2, is an anorexigenic peptide and major regulator of energy homeostasis. Beyond reducing food intake and increasing energy expenditure, it is also involved in regulating the stress response. Interaction of nucleobindin-2/nesfatin-1 and glucose homeostasis has been observed and recent findings suggest a link between the action of the antidiabetic drug metformin and the nesfatinergic system. Hence, this study aimed to clarify the role of nucleobindin-2/nesfatin-1 in the paraventricular nucleus of the hypothalamus in energy homeostasis as well as its involvement in stress- and metformin-mediated changes in energy expenditure. Knockdown of nucleobindin-2/nesfatin-1 in male Wistar rats led to significantly increased food intake, body weight, and reduced energy expenditure compared to controls. Nucleobindin-2/nesfatin-1 knockdown animals developed an obese-like phenotype represented by significantly increased fat mass and overall increase of circulating lipids. Concomitantly, expression of nucleobindin-2 and melanocortin receptor type 3 and 4 mRNA in the paraventricular nucleus was decreased indicating successful knockdown and impairment at the level of the melanocortin system. Additionally, stress induced activation of interscapular brown adipose tissue was significantly decreased in nucleobindin-2/nesfatin-1 knockdown animals and accompanied by lower adrenal weight. Finally, intracerebroventricular administration of metformin significantly increased energy expenditure in controls and this effect was absent in nucleobindin-2/nesfatin-1 knockdown animals. Overall, we clarified the crucial role of nucleobindin-2/nesfatin-1 in the paraventricular nucleus of the hypothalamus in the regulation of energy homeostasis. The nesfatinergic system was further identified as important mediator in stress- and metformin-induced thermogenesis.
Collapse
Affiliation(s)
- Daniel Stephan
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Department of Oral- and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Natalie Taege
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Institute of Human Genetics, Section Epigenetics & Metabolism, University of Lübeck, Lübeck, Germany
| | - Riccardo Dore
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Institute of Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Julica Folberth
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Olaf Jöhren
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Rektorat, Paris Lodron Universität Salzburg, Salzburg, Austria
| | - Carla Schulz
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
26
|
Alser M, Elrayess MA. From an Apple to a Pear: Moving Fat around for Reversing Insulin Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192114251. [PMID: 36361131 PMCID: PMC9659102 DOI: 10.3390/ijerph192114251] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 06/02/2023]
Abstract
Type 2 diabetes (T2D) is a chronic condition where the body is resistant to insulin, leading to an elevated blood glucose state. Obesity is a main factor leading to T2D. Many clinical studies, however, have described a proportion of obese individuals who express a metabolically healthy profile, whereas some lean individuals could develop metabolic disorders. To study obesity as a risk factor, body fat distribution needs to be considered rather than crude body weight. Different individuals' bodies favor storing fat in different depots; some tend to accumulate more fat in the visceral depot, while others tend to store it in the femoral depot. This tendency relies on different factors, including genetic background and lifestyle. Consuming some types of medications can cause a shift in this tendency, leading to fat redistribution. Fat distribution plays an important role in the progression of risk of insulin resistance (IR). Apple-shaped individuals with enhanced abdominal obesity have a higher risk of IR compared to BMI-matched pear-shaped individuals, who store their fat in the gluteal-femoral depots. This is related to the different adipose tissue physiology between these two depots. In this review, we will summarize the recent evidence highlighting the underlying protective mechanisms in gluteal-femoral subcutaneous adipose tissues compared to those associated with abdominal adipose tissue, and we will revise the recent evidence showing antidiabetic drugs that impact fat distribution as they manage the T2D condition.
Collapse
Affiliation(s)
- Maha Alser
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
27
|
Gao Y, Liu Y, Han X, Zhou F, Guo J, Huang W, Zhan J, You Y. Coconut oil and medium-chain fatty acids attenuate high-fat diet-induced obesity in mice through increased thermogenesis by activating brown adipose tissue. Front Nutr 2022; 9:896021. [PMID: 36386906 PMCID: PMC9650104 DOI: 10.3389/fnut.2022.896021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
Coconut oil (CO) and its main ingredients, medium-chain fatty acids (MCFA), present many benefits. Whether MCFA and CO play an equally valuable role in anti-obesity remains unclear. This study compared the anti-obesity effects of CO and MCFA [octanoic acid (C8:0) and decanoic acid (C10:0)] to gain insight into the underlying mechanism. Male C57BL/6J mice were fed either a low-fat diet (LFD) or high-fat diet (100% HFD) replaced with 2.5% MCFA (97.5% HFD + 2.5% MCFA) or 5% CO (95% HFD + 5% CO) for 17 weeks. CO and MCFA ameliorated the HFD-induced abnormal body and adipose depot weights, insulin sensitivity, and energy expenditure (EE), which was associated with brown adipose tissue (BAT) thermogenesis. Furthermore, CO enhanced the expression of thermogenesis markers in BAT, which was consistent with increased BAT activity. CO showed a better effect than MCFA in activating BAT to increase thermogenesis and energy metabolism to combat obesity, which may be attributed to the cooperation of MCFA and other substances in CO. This work provides evidence for the anti-obesity effects of CO, which could be a better alternative to lard in daily diet, rather than pure MCFA.
Collapse
Affiliation(s)
- Yunxiao Gao
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yiwen Liu
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xue Han
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Fang Zhou
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Jielong Guo
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Marrocco A, Ortiz LA. Role of metabolic reprogramming in pro-inflammatory cytokine secretion from LPS or silica-activated macrophages. Front Immunol 2022; 13:936167. [PMID: 36341426 PMCID: PMC9633986 DOI: 10.3389/fimmu.2022.936167] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
In the lungs, macrophages constitute the first line of defense against pathogens and foreign bodies and play a fundamental role in maintaining tissue homeostasis. Activated macrophages show altered immunometabolism and metabolic changes governing immune effector mechanisms, such as cytokine secretion characterizing their classic (M1) or alternative (M2) activation. Lipopolysaccharide (LPS)-stimulated macrophages demonstrate enhanced glycolysis, blocked succinate dehydrogenase (SDH), and increased secretion of interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). Glycolysis suppression using 2 deoxyglucose in LPS-stimulated macrophages inhibits IL-1β secretion, but not TNF-α, indicating metabolic pathway specificity that determines cytokine production. In contrast to LPS, the nature of the immunometabolic responses induced by non-organic particles, such as silica, in macrophages, its contribution to cytokine specification, and disease pathogenesis are not well understood. Silica-stimulated macrophages activate pattern recognition receptors (PRRs) and NLRP3 inflammasome and release IL-1β, TNF-α, and interferons, which are the key mediators of silicosis pathogenesis. In contrast to bacteria, silica particles cannot be degraded, and the persistent macrophage activation results in an increased NADPH oxidase (Phox) activation and mitochondrial reactive oxygen species (ROS) production, ultimately leading to macrophage death and release of silica particles that perpetuate inflammation. In this manuscript, we reviewed the effects of silica on macrophage mitochondrial respiration and central carbon metabolism determining cytokine specification responsible for the sustained inflammatory responses in the lungs.
Collapse
Affiliation(s)
- Antonella Marrocco
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Luis A. Ortiz
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
29
|
Metformin Improves the Hepatic Steatosis Index in Non-Obese Patients with Polycystic Ovary Syndrome. J Clin Med 2022; 11:jcm11154294. [PMID: 35893386 PMCID: PMC9331742 DOI: 10.3390/jcm11154294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common yet little recognized health problem in women with polycystic ovary syndrome (PCOS). In a retrospective setting, we investigated the effects of metformin treatment on the hepatic steatosis index (HSI) as a readily available biomarker panel for NAFLD. HSI values of >36 are considered to be highly suggestive for NAFLD. In our cohort, HSI values indicating NAFLD were found in 60/81 (74.1%) women at baseline. The mean HSI improved significantly after the metformin treatment from 43.2 ± 1.0 to 41.0 ± 1.1. Subgroup analyses of non-obese (body mass index (BMI) < 30 kg/m2), obese (BMI 30−35 kg/m2) and very obese (BMI > 35 kg/m2) women yielded mean baseline HSI values of 35.5 ± 4.5, 41.2 ± 2.7 and 51.2 ± 4.7, respectively. A significant improvement in the HSI of 1.5 ± 2.1 was observed after metformin treatment in non-obese women but not in the obese subgroups. The data suggest a new aspect of metformin treatment in non-obese PCOS patients, namely, a possible improvement in NAFLD. This study highlighted hepatic steatosis as a common comorbidity in PCOS patients that can severely affect their long-term health, and therefore, deserves more attention in the management of PCOS patients.
Collapse
|
30
|
Conte M, Petraglia L, Cabaro S, Valerio V, Poggio P, Pilato E, Attena E, Russo V, Ferro A, Formisano P, Leosco D, Parisi V. Epicardial Adipose Tissue and Cardiac Arrhythmias: Focus on Atrial Fibrillation. Front Cardiovasc Med 2022; 9:932262. [PMID: 35845044 PMCID: PMC9280076 DOI: 10.3389/fcvm.2022.932262] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 01/02/2023] Open
Abstract
Atrial Fibrillation (AF) is the most frequent cardiac arrhythmia and its prevalence increases with age. AF is strongly associated with an increased risk of stroke, heart failure and cardiovascular mortality. Among the risk factors associated with AF onset and severity, obesity and inflammation play a prominent role. Numerous recent evidence suggested a role of epicardial adipose tissue (EAT), the visceral fat depot of the heart, in the development of AF. Several potential arrhythmogenic mechanisms have been attributed to EAT, including myocardial inflammation, fibrosis, oxidative stress, and fat infiltration. EAT is a local source of inflammatory mediators which potentially contribute to atrial collagen deposition and fibrosis, the anatomical substrate for AF. Moreover, the close proximity between EAT and myocardium allows the EAT to penetrate and generate atrial myocardium fat infiltrates that can alter atrial electrophysiological properties. These observations support the hypothesis of a strong implication of EAT in structural and electrical atrial remodeling, which underlies AF onset and burden. The measure of EAT, through different imaging methods, such as echocardiography, computed tomography and cardiac magnetic resonance, has been proposed as a useful prognostic tool to predict the presence, severity and recurrence of AF. Furthermore, EAT is increasingly emerging as a promising potential therapeutic target. This review aims to summarize the recent evidence exploring the potential role of EAT in the pathogenesis of AF, the main mechanisms by which EAT can promote structural and electrical atrial remodeling and the potential therapeutic strategies targeting the cardiac visceral fat.
Collapse
Affiliation(s)
- Maddalena Conte
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Casa di Cura San Michele, Maddaloni, Italy
| | - Laura Petraglia
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Serena Cabaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | | | - Emanuele Pilato
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy
| | - Emilio Attena
- Department of Cardiology, Monaldi Hospital, Naples, Italy
| | - Vincenzo Russo
- Chair of Cardiology, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli” – Monaldi and Cotugno Hospital, Naples, Italy
| | - Adele Ferro
- Institute of Biostructure and Bioimaging, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Dario Leosco
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
31
|
Yahsi B, Gunaydin G. Immunometabolism - The Role of Branched-Chain Amino Acids. Front Immunol 2022; 13:886822. [PMID: 35812393 PMCID: PMC9259854 DOI: 10.3389/fimmu.2022.886822] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Immunometabolism has been the focus of extensive research over the last years, especially in terms of augmenting anti-tumor immune responses. Regulatory T cells (Tregs) are a subset of CD4+ T cells, which have been known for their immunosuppressive roles in various conditions including anti-tumor immune responses. Even though several studies aimed to target Tregs in the tumor microenvironment (TME), such approaches generally result in the inhibition of the Tregs non-specifically, which may cause immunopathologies such as autoimmunity. Therefore, specifically targeting the Tregs in the TME would be vital in terms of achieving a successful and specific treatment. Recently, an association between Tregs and isoleucine, which represents one type of branched-chain amino acids (BCAAs), has been demonstrated. The presence of isoleucine seems to affect majorly Tregs, rather than conventional T cells. Considering the fact that Tregs bear several distinct metabolic features in the TME, targeting their immunometabolic pathways may be a rational approach. In this Review, we provide a general overview on the potential distinct metabolic features of T cells, especially focusing on BCAAs in Tregs as well as in their subtypes.
Collapse
Affiliation(s)
- Berkay Yahsi
- School of Medicine, Hacettepe University, Ankara, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| |
Collapse
|
32
|
Tian JJ, Levy M, Zhang X, Sinnott R, Maddela R. Counteracting Health Risks by Modulating Homeostatic Signaling. Pharmacol Res 2022; 182:106281. [PMID: 35661711 DOI: 10.1016/j.phrs.2022.106281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Homeostasis was initially conceptualized by Bernard and Cannon around a century ago as a steady state of physiological parameters that vary within a certain range, such as blood pH, body temperature, and heart rate1,2. The underlying mechanisms that maintain homeostasis are explained by negative feedbacks that are executed by the neuronal, endocrine, and immune systems. At the cellular level, homeostasis, such as that of redox and energy steady state, also exists and is regulated by various cell signaling pathways. The induction of homeostatic mechanism is critical for human to adapt to various disruptive insults (stressors); while on the other hand, adaptation occurs at the expense of other physiological processes and thus runs the risk of collateral damages, particularly under conditions of chronic stress. Conceivably, anti-stress protection can be achieved by stressor-mimicking medicinals that elicit adaptive responses prior to an insult and thereby serve as health risk countermeasures; and in situations where maladaptation may occur, downregulating medicinals could be used to suppress the responses and prevent subsequent pathogenesis. Both strategies are preemptive interventions particularly suited for individuals who carry certain lifestyle, environmental, or genetic risk factors. In this article, we will define and characterize a new modality of prophylactic intervention that forestalls diseases via modulating homeostatic signaling. Moreover, we will provide evidence from the literature that support this concept and distinguish it from other homeostasis-related interventions such as adaptogen, hormesis, and xenohormesis.
Collapse
Affiliation(s)
- Junqiang J Tian
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA.
| | - Mark Levy
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Xuekai Zhang
- Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing100029, China; US Center for Chinese Medicine, 14801 Physicians lane, 171 A 2nd Floor, #281, Rockville MD 20850, USA
| | - Robert Sinnott
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Rolando Maddela
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| |
Collapse
|
33
|
Schmitz K, Turnwald EM, Kretschmer T, Janoschek R, Bae-Gartz I, Voßbrecher K, Kammerer MD, Köninger A, Gellhaus A, Handwerk M, Wohlfarth M, Gründemann D, Hucklenbruch-Rother E, Dötsch J, Appel S. Metformin Prevents Key Mechanisms of Obesity-Related Complications in Visceral White Adipose Tissue of Obese Pregnant Mice. Nutrients 2022; 14:nu14112288. [PMID: 35684088 PMCID: PMC9182976 DOI: 10.3390/nu14112288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
With the gaining prevalence of obesity, related risks during pregnancy are rising. Inflammation and oxidative stress are considered key mechanisms arising in white adipose tissue (WAT) sparking obesity-associated complications and diseases. The established anti-diabetic drug metformin reduces both on a systemic level, but only little is known about such effects on WAT. Because inhibiting these mechanisms in WAT might prevent obesity-related adverse effects, we investigated metformin treatment during pregnancy using a mouse model of diet-induced maternal obesity. After mating, obese mice were randomised to metformin administration. On gestational day G15.5, phenotypic data were collected and perigonadal WAT (pgWAT) morphology and proteome were examined. Metformin treatment reduced weight gain and visceral fat accumulation. We detected downregulation of perilipin-1 as a correlate and observed indications of recovering respiratory capacity and adipocyte metabolism under metformin treatment. By regulating four newly discovered potential adipokines (alpha-1 antitrypsin, Apoa4, Lrg1 and Selenbp1), metformin could mediate anti-diabetic, anti-inflammatory and oxidative stress-modulating effects on local and systemic levels. Our study provides an insight into obesity-specific proteome alterations and shows novel modulating effects of metformin in pgWAT of obese dams. Accordingly, metformin therapy appears suitable to prevent some of obesity’s key mechanisms in WAT.
Collapse
Affiliation(s)
- Katrin Schmitz
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Eva-Maria Turnwald
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Tobias Kretschmer
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
- UFZ-Helmholtz Centre for Environmental Research, Department Environmental Immunology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Ruth Janoschek
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Inga Bae-Gartz
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Kathrin Voßbrecher
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Merlin D. Kammerer
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Angela Köninger
- Department of Obstetrics and Gynecology, University of Regensburg, St. Hedwigs Clinic of the Order of St. John, Steinmetzstrasse 1-3, 93049 Regensburg, Germany;
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany;
| | - Marion Handwerk
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Maria Wohlfarth
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Dirk Gründemann
- Department of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany;
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Jörg Dötsch
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Sarah Appel
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
- Correspondence: ; Tel.: +49-221-478-96890
| |
Collapse
|
34
|
Nasr A, Matthews K, Janssen I, Brooks MM, Barinas-Mitchell E, Orchard TJ, Billheimer J, Wang NC, McConnell D, Rader DJ, El Khoudary SR. Associations of Abdominal and Cardiovascular Adipose Tissue Depots With HDL Metrics in Midlife Women: the SWAN Study. J Clin Endocrinol Metab 2022; 107:e2245-e2257. [PMID: 35298649 PMCID: PMC9113818 DOI: 10.1210/clinem/dgac148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 12/14/2022]
Abstract
CONTEXT The menopause transition is accompanied by declines in the atheroprotective features of high-density lipoprotein (HDL), which are linked to deleterious cardiovascular (CV) outcomes. OBJECTIVE This work aimed to assess the relationship between abdominal and CV visceral adipose tissues (VAT) with future HDL metrics in midlife women, and the role of insulin resistance (IR) on these associations. METHODS Temporal associations compared abdominal and CV fat with later measures of HDL metrics. This community-based cohort comprised 299 women, baseline mean age 51.1 years (SD: 2.8 years), 67% White, 33% Black, from the Study of Women's Health Across the Nation (SWAN) HDL ancillary study. Exposures included volumes of abdominal VAT, epicardial AT (EAT), paracardial AT (PAT), or perivascular AT (PVAT). Main outcomes included HDL cholesterol efflux capacity (HDL-CEC); HDL phospholipids (HDL-PL), triglycerides (HDL-Tgs), and cholesterol (HDL-C); apolipoprotein A-I (ApoA-I), and HDL particles (HDL-P) and size. RESULTS In multivariable models, higher abdominal VAT was associated with lower HDL-CEC, HDL-PL, HDL-C, and large HDL-P and smaller HDL size. Higher PAT was associated with lower HDL-PL, HDL-C, and large HDL-P and smaller HDL size. Higher EAT was associated with higher small HDL-P. Higher PVAT volume was associated with lower HDL-CEC. The Homeostatic Model Assessment of Insulin Resistance partially mediated the associations between abdominal AT depots with HDL-CEC, HDL-C, large HDL-P, and HDL size; between PVAT with HDL-CEC; and PAT with HDL-C, large HDL-P, and HDL size. CONCLUSION In midlife women, higher VAT volumes predict HDL metrics 2 years later in life, possibly linking them to future CV disease. Managing IR may preclude the unfavorable effect of visceral fat on HDL metrics.
Collapse
Affiliation(s)
- Alexis Nasr
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Karen Matthews
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, Pennsylvania, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Imke Janssen
- Department of Preventive Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Maria M Brooks
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Emma Barinas-Mitchell
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Trevor J Orchard
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Jeffrey Billheimer
- Departments of Medicine and Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Norman C Wang
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dan McConnell
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel J Rader
- Departments of Medicine and Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Samar R El Khoudary
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
35
|
López-Cervantes SP, Sánchez NS, Calahorra M, Mena-Montes B, Pedraza-Vázquez G, Hernández-Álvarez D, Esparza-Perusquía M, Peña A, López-Díazguerrero NE, Alarcón-Aguilar A, Luna-López A, Flores-Herrera Ó, Königsberg M. Moderate exercise combined with metformin-treatment improves mitochondrial bioenergetics of the quadriceps muscle of old female Wistar rats. Arch Gerontol Geriatr 2022; 102:104717. [DOI: 10.1016/j.archger.2022.104717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 01/03/2023]
|
36
|
Zare M, Panahi G, Koushki M, Mostafavi-Pour Z, Meshkani R. Metformin reduces lipid accumulation in HepG2 cells via downregulation of miR-33b. Arch Physiol Biochem 2022; 128:333-340. [PMID: 31686542 DOI: 10.1080/13813455.2019.1680700] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Here, we aimed to investigate whether the beneficial effects of metformin on lipid accumulation is mediated through regulation of miR-33b. METHODS The expression of the genes and miRNAs and protein levels were evaluated using real-time PCR and western blot, respectively. To investigate the potential role of miR-33b in lipid accumulation, the mimic of the miR-33b was transfected into HepG2 cells. RESULTS We found that metformin reduces high glucose-induced lipid accumulation in HepG2 cells through inhibiting of SREBP1c and FAS and increasing the expression of CPT1 and CROT. Overexpression of miR-33b significantly prevented the decreasing effect of metformin on lipid content and intra and extra triglyceride levels. Importantly, miR-33b mimic inhibited the increasing effects of metformin on the expression of CPT1 and CROT. CONCLUSION These findings suggest that metformin attenuates high glucose-induced lipid accumulation in HepG2 cell by downregulating the expression of miR-33b.
Collapse
Affiliation(s)
- Mina Zare
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, I.R Iran
| | - Mehdi Koushki
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, I.R Iran
| | - Zohreh Mostafavi-Pour
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, I.R Iran
| |
Collapse
|
37
|
Udumula MP, Poisson LM, Dutta I, Tiwari N, Kim S, Chinna-Shankar J, Allo G, Sakr S, Hijaz M, Munkarah AR, Giri S, Rattan R. Divergent Metabolic Effects of Metformin Merge to Enhance Eicosapentaenoic Acid Metabolism and Inhibit Ovarian Cancer In Vivo. Cancers (Basel) 2022; 14:cancers14061504. [PMID: 35326656 PMCID: PMC8946838 DOI: 10.3390/cancers14061504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 02/01/2023] Open
Abstract
Metformin is being actively repurposed for the treatment of gynecologic malignancies including ovarian cancer. We investigated if metformin induces analogous metabolic changes across ovarian cancer cells. Functional metabolic analysis showed metformin caused an immediate and sustained decrease in oxygen consumption while increasing glycolysis across A2780, C200, and SKOV3ip cell lines. Untargeted metabolomics showed metformin to have differential effects on glycolysis and TCA cycle metabolites, while consistent increased fatty acid oxidation intermediates were observed across the three cell lines. Metabolite set enrichment analysis showed alpha-linolenic/linoleic acid metabolism as being most upregulated. Downstream mediators of the alpha-linolenic/linoleic acid metabolism, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), were abundant in all three cell lines. EPA was more effective in inhibiting SKOV3 and CaOV3 xenografts, which correlated with inhibition of inflammatory markers and indicated a role for EPA-derived specialized pro-resolving mediators such as Resolvin E1. Thus, modulation of the metabolism of omega-3 fatty acids and their anti-inflammatory signaling molecules appears to be one of the common mechanisms of metformin's antitumor activity. The distinct metabolic signature of the tumors may indicate metformin response and aid the preclinical and clinical interpretation of metformin therapy in ovarian and other cancers.
Collapse
Affiliation(s)
- Mary P. Udumula
- Department of Women’s Health Services, Henry Ford Hospital, Henry Ford Cancer Institute, Detroit, MI 48202, USA; (M.P.U.); (N.T.); (J.C.-S.); (M.H.); (A.R.M.)
| | - Laila M. Poisson
- Center for Bioinformatics, Department of Public Health Services, Henry Ford Cancer Institute, Detroit, MI 48202, USA; (L.M.P.); (I.D.)
| | - Indrani Dutta
- Center for Bioinformatics, Department of Public Health Services, Henry Ford Cancer Institute, Detroit, MI 48202, USA; (L.M.P.); (I.D.)
| | - Nivedita Tiwari
- Department of Women’s Health Services, Henry Ford Hospital, Henry Ford Cancer Institute, Detroit, MI 48202, USA; (M.P.U.); (N.T.); (J.C.-S.); (M.H.); (A.R.M.)
| | - Seongho Kim
- Biostatistics and Bioinformatics Core, Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - Jasdeep Chinna-Shankar
- Department of Women’s Health Services, Henry Ford Hospital, Henry Ford Cancer Institute, Detroit, MI 48202, USA; (M.P.U.); (N.T.); (J.C.-S.); (M.H.); (A.R.M.)
| | - Ghassan Allo
- Department of Pathology, Henry Ford Hospital, Henry Ford Cancer Institute, Detroit, MI 48202, USA;
| | - Sharif Sakr
- Department of Gynecology Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - Miriana Hijaz
- Department of Women’s Health Services, Henry Ford Hospital, Henry Ford Cancer Institute, Detroit, MI 48202, USA; (M.P.U.); (N.T.); (J.C.-S.); (M.H.); (A.R.M.)
| | - Adnan R. Munkarah
- Department of Women’s Health Services, Henry Ford Hospital, Henry Ford Cancer Institute, Detroit, MI 48202, USA; (M.P.U.); (N.T.); (J.C.-S.); (M.H.); (A.R.M.)
| | - Shailendra Giri
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA;
| | - Ramandeep Rattan
- Department of Women’s Health Services, Henry Ford Hospital, Henry Ford Cancer Institute, Detroit, MI 48202, USA; (M.P.U.); (N.T.); (J.C.-S.); (M.H.); (A.R.M.)
- Department of Oncology, Wayne State School of Medicine, Detroit, MI 48201, USA
- Correspondence: ; Tel.: +313-876-7381; Fax: +313-876-3415
| |
Collapse
|
38
|
Ma L, Zhao Z, Guo X, Li J, Xu L, Mei W, Dong G, Zhong Z, Yang Z. Tanshinone IIA and its derivative activate thermogenesis in adipocytes and induce "beiging" of white adipose tissue. Mol Cell Endocrinol 2022; 544:111557. [PMID: 35032625 DOI: 10.1016/j.mce.2022.111557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/08/2021] [Accepted: 01/07/2022] [Indexed: 02/05/2023]
Abstract
Tanshinone IIA (TAN2A) is a major active ingredient of Salvia miltiorrhiza used in traditional Chinese medicine and tanshinone 20 (TAN20) is a derivative of TAN2A. In this study, we examined the effects of TAN2A and TAN20 on adipogenesis, lipid metabolism, and thermogenesis. Our experiments showed that both TAN2A and TAN20 increased mitochondria content in adipose tissue, enhanced energy expenditure, reduced body weight, and improved insulin sensitivity and metabolic homeostasis in obese and diabetic mouse models. We demonstrated that TAN20 can facilitate the transformation from white to beige adipose tissue, as well as activate brown adipose tissue. In uncoupling protein 1 (UCP1) knockout mouse model, the effects of TAN2A and TAN20 on body weight and glucose tolerance were not observed, suggesting that such effects were UCP1 dependent. Furthermore, we found that TAN2A and TAN20 increased the expression of UCP1 and other thermogenic genes in adipocytes through AMPK-PGC-1α signaling pathway. Our findings indicate that TAN2A and its derivative TAN20 are potential interesting energy expenditure regulators and may be implicated in treatment of obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Lei Ma
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China.
| | - Zewei Zhao
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China.
| | - Xuemin Guo
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou, 514000, Guangdong Province, China; Meizhou People's Hospital, Meizhou, 514000, Guangdong Province, China.
| | - Jin Li
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, China.
| | - Lin Xu
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, China.
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong Province, China.
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China; Medical Informatics Research Center, Shantou University Medical College, Shantou, 515041, China.
| | - Zhixiong Zhong
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou, 514000, Guangdong Province, China; Meizhou People's Hospital, Meizhou, 514000, Guangdong Province, China.
| | - Zhonghan Yang
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China.
| |
Collapse
|
39
|
Haghparast Azad M, Niktab I, Dastjerdi S, Abedpoor N, Rahimi G, Safaeinejad Z, Peymani M, Forootan FS, Asadi-Shekaari M, Nasr Esfahani MH, Ghaedi K. The combination of endurance exercise and SGTC (Salvia-Ginseng-Trigonella-Cinnamon) ameliorate mitochondrial markers' overexpression with sufficient ATP production in the skeletal muscle of mice fed AGEs-rich high-fat diet. Nutr Metab (Lond) 2022; 19:17. [PMID: 35248109 PMCID: PMC8897771 DOI: 10.1186/s12986-022-00652-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/17/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Skeletal muscle mitochondria is one of the most important affected sites of T2DM and its molecular mechanism is yet to be elucidated. Some recent theories believed that mitochondrial markers are upregulated in response to high fat induced T2DM; however, the reasons and the affected factors are still uncertain. In this regard, we aimed to investigate the effect of high fat induced T2DM on mitochondrial markers of skeletal muscle, and an herbal component along with endurance exercise, as probable treatments, in AGE-rich high-fat diet (AGEs-HFD) induced T2DM mice. METHODS T2DM was induced by 16 weeks of AGEs-HFD consumption in male C57BL/6 mice, followed by 8 weeks of drugs ingestion and endurance exercise treatments (n = 6 in each group and total number of 42 mice). The herbal component was an aquatic extract of Salvia officinalis, Trigonella foenum-graecum, Panax ginseng, and Cinnamomum zeylanicum, termed "SGTC". We then examined the relative expression of several mitochondrial markers, including Ppargc1α, Tfam, and electron transport chain genes and ATP levels, in skeletal muscle samples. RESULTS T2DM was successfully induced according to morphological, biochemical, and molecular observations. All mitochondrial markers, including Ppargc1a, Tfam, Cpt2, and electron transport chain genes, were upregulated in T2DM group compared to controls with no significant changes in the ATP levels. Most mitochondrial markers were downregulated by drug treatment compared to T2DM, but the ATP level was not significantly altered. All mitochondrial markers were upregulated in exercised group compared to T2DM with mild increase in the ATP level. The Ex + SGTC group had moderate level of mitochondrial markers compared to T2DM, but the highest ATP production. CONCLUSION The highly significant overexpression of mitochondrial markers may be in response to free fatty acid overload. However, the lack of significant change in the ATP level may be a result of ROS generation due to electron leakage in the AGEsRAGE axis and electron transport chain. Almost all treatments ameliorate mitochondrial markers' overexpression. The SGTC appears to regulate this with its antioxidant properties. Instead, exercise upregulated mitochondrial markers efficiently; however, the most efficient results, i.e. the most ATP production among the treatments, were observed in the Ex + SGTC group.
Collapse
Affiliation(s)
- Maryam Haghparast Azad
- ACECR Institute of Higher Education, Isfahan, Iran.,Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Iman Niktab
- ACECR Institute of Higher Education, Isfahan, Iran.,Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Shaghayegh Dastjerdi
- ACECR Institute of Higher Education, Isfahan, Iran.,Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Navid Abedpoor
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Golbarg Rahimi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., P.O. Code 81746-73441, Isfahan, Iran
| | - Zahra Safaeinejad
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Farzad Seyed Forootan
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. .,Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran.
| | - Majid Asadi-Shekaari
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., P.O. Code 81746-73441, Isfahan, Iran.
| |
Collapse
|
40
|
Liu J, Aylor KW, Chai W, Barrett EJ, Liu Z. Metformin prevents endothelial oxidative stress and microvascular insulin resistance during obesity development in male rats. Am J Physiol Endocrinol Metab 2022; 322:E293-E306. [PMID: 35128961 PMCID: PMC8897003 DOI: 10.1152/ajpendo.00240.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
Insulin increases muscle microvascular perfusion, which contributes to its metabolic action in muscle, but this action is impaired in obesity. Metformin improves endothelial function beyond its glucose lowering effects. We aim to examine whether metformin could prevent microvascular insulin resistance and endothelial dysfunction during the development of obesity. Adult male rats were fed a high-fat diet (HFD) with or without simultaneous metformin administration for either 2 or 4 wk. Insulin's metabolic and microvascular actions were determined using a combined euglycemic-hyperinsulinemic clamp and contrast-enhanced ultrasound approach. Compared with chow-fed controls, HFD feeding increased body adiposity without excess body weight gain, and this was associated with a marked decrease in insulin-mediated whole body glucose disposal and abolishment of insulin-induced muscle microvascular recruitment. Simultaneous administration of metformin fully rescued insulin-induced muscle microvascular recruitment as early as 2 wk and normalized insulin-mediated whole body glucose disposal at week 4. The divergent responses between insulin's microvascular and metabolic actions seen at week 2 were accompanied with reduced endothelial oxidative stress and vascular inflammation, and improved endothelial function and vascular insulin signaling in metformin-treated rats. In conclusions, metformin could prevent the development of microvascular insulin resistance and endothelial dysfunction by alleviating endothelial oxidative stress and vascular inflammation during obesity development.NEW & NOTEWORTHY Muscle microvascular insulin action contributes to insulin-mediated glucose use. Microvascular insulin resistance is an early event in diet-induced obesity and is associated with vascular inflammation. Metformin effectively reduces endothelial oxidative stress, improves endothelial function, and prevents microvascular insulin resistance during obesity development. These may contribute to metformin's salutary diabetes prevention and cardiovascular protective actions.
Collapse
Affiliation(s)
- Jia Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Kevin W Aylor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Weidong Chai
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
41
|
Konwerski M, Gąsecka A, Opolski G, Grabowski M, Mazurek T. Role of Epicardial Adipose Tissue in Cardiovascular Diseases: A Review. BIOLOGY 2022; 11:355. [PMID: 35336728 PMCID: PMC8945130 DOI: 10.3390/biology11030355] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death worldwide. Epicardial adipose tissue (EAT) is defined as a fat depot localized between the myocardial surface and the visceral layer of the pericardium and is a type of visceral fat. EAT is one of the most important risk factors for atherosclerosis and cardiovascular events and a promising new therapeutic target in CVDs. In health conditions, EAT has a protective function, including protection against hypothermia or mechanical stress, providing myocardial energy supply from free fatty acid and release of adiponectin. In patients with obesity, metabolic syndrome, or diabetes mellitus, EAT becomes a deleterious tissue promoting the development of CVDs. Previously, we showed an adverse modulation of gene expression in pericoronary adipose tissue in patients with coronary artery disease (CAD). Here, we summarize the currently available evidence regarding the role of EAT in the development of CVDs, including CAD, heart failure, and atrial fibrillation. Due to the rapid development of the COVID-19 pandemic, we also discuss data regarding the association between EAT and the course of COVID-19. Finally, we present the potential therapeutic possibilities aiming at modifying EAT's function. The development of novel therapies specifically targeting EAT could revolutionize the prognosis in CVDs.
Collapse
Affiliation(s)
| | | | | | | | - Tomasz Mazurek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-097 Warszawa, Poland; (M.K.); (A.G.); (G.O.); (M.G.)
| |
Collapse
|
42
|
Dysregulated Epicardial Adipose Tissue as a Risk Factor and Potential Therapeutic Target of Heart Failure with Preserved Ejection Fraction in Diabetes. Biomolecules 2022; 12:biom12020176. [PMID: 35204677 PMCID: PMC8961672 DOI: 10.3390/biom12020176] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiovascular (CV) disease and heart failure (HF) are the leading cause of mortality in type 2 diabetes (T2DM), a metabolic disease which represents a fast-growing health challenge worldwide. Specifically, T2DM induces a cluster of systemic metabolic and non-metabolic signaling which may promote myocardium derangements such as inflammation, fibrosis, and myocyte stiffness, which represent the hallmarks of heart failure with preserved ejection fraction (HFpEF). On the other hand, several observational studies have reported that patients with T2DM have an abnormally enlarged and biologically transformed epicardial adipose tissue (EAT) compared with non-diabetic controls. This expanded EAT not only causes a mechanical constriction of the diastolic filling but is also a source of pro-inflammatory mediators capable of causing inflammation, microcirculatory dysfunction and fibrosis of the underlying myocardium, thus impairing the relaxability of the left ventricle and increasing its filling pressure. In addition to representing a potential CV risk factor, emerging evidence shows that EAT may guide the therapeutic decision in diabetic patients as drugs such as metformin, glucagon-like peptide‑1 (GLP-1) receptor agonists and sodium-glucose cotransporter 2 inhibitors (SGLT2-Is), have been associated with attenuation of EAT enlargement.
Collapse
|
43
|
Alfaraidi H, Samaan MC. Metformin therapy in pediatric type 2 diabetes mellitus and its comorbidities: A review. Front Endocrinol (Lausanne) 2022; 13:1072879. [PMID: 36814831 PMCID: PMC9939509 DOI: 10.3389/fendo.2022.1072879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/12/2022] [Indexed: 02/08/2023] Open
Abstract
Type 2 diabetes (T2D) rates in children and adolescents are rising globally. T2D is a complex and aggressive disease in children with several comorbidities, high treatment failure rates, and insulin needs within a few years from diagnosis. While myriads of pharmacotherapies are licensed to treat adults with T2D, treatments accessible to children and adolescents have been limited until recently. Metformin is an old drug with multiple beneficial metabolic health effects beyond glycemic control. This review discusses Metformin's origins, its mechanisms of action, and evidence for its use in the pediatric population to treat and prevent T2D. We also explore the evidence for its use as an obesity therapy, which is the primary driver of T2D, and T2D-driven comorbidities. While emerging therapies create new horizons for managing pediatric T2D, Metformin remains an inexpensive and safe part of the treatment plans of many T2D children globally for its beneficial metabolic effects.
Collapse
Affiliation(s)
- Haifa Alfaraidi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Pediatrics, King Abdullah Specialized Children’s Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - M. Constantine Samaan
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
- Michael G. De Groote School of Medicine, McMaster University, Hamilton, ON, Canada
- *Correspondence: M. Constantine Samaan,
| |
Collapse
|
44
|
PINHO ARYANEC, BURGEIRO ANA, PEREIRA MARIAJOÃO, CARVALHO EUGENIA. Drug-induced metabolic alterations in adipose tissue - with an emphasis in epicardial adipose tissue. AN ACAD BRAS CIENC 2022. [DOI: 10.1590/0001-3765202220201819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Affiliation(s)
| | | | | | - EUGENIA CARVALHO
- University of Coimbra, Portugal; University of Coimbra, Portugal; APDP-Portuguese Diabetes Association, Portugal
| |
Collapse
|
45
|
The effect of metformin on body mass index and metabolic parameters in non-diabetic HIV-positive patients: a meta-analysis. J Diabetes Metab Disord 2021; 20:1901-1911. [PMID: 34900832 DOI: 10.1007/s40200-021-00869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
We sought to evaluate the effetc of metformin on body mass index (BMI) and metabolic parameters in HIV-positive patients. We performed a comprehensive search through five major indexing databases, using keywords ("metformin" OR "dimethylguanylguanidine" OR "biguanide" OR "Glucophage") AND ("HIV" OR "human immunodeficiency virus" OR "AIDS" OR "Acquired immunodeficiency syndrome"), and all possible combinations until January 15, 2021. We measured standardized mean differences (SMD) and 95% confidence intervals (CI) for each outcome. We finally included 12 RCTs (577 participants, 274 in the metformin group and 303 in the comparators). Metformin did not significantly change BMI index compared to various comparators. Metformin generally improve LDL levels (SMD = 0.29, 95% CI: - 1.00 1.57, P = 0.01), HDL levels (SMD = - 0.15, 95% CI: - 0.72 0.41, P = 0.001), triglycerides values (SMD = 0.46, 95% CI: - 0.36 1.27, P < 0.00001), fasting glucose (SMD = - 0.82, 95% CI: - 1.80 0.15, P < 0.00001), insulin 120 min (SMD = - 0.82, 95% CI: - 1.59-0.04, P = 0.02), and glucose 120 min (SMD = - 1.24, 95% CI: - 2.57 0.10, P < 0.0001), but worsened total cholesterol values (SMD = 1.24, 95% CI: - 0.98 3.46, P = 0.0001). Metformin is safe for weight loss in obese people; however, this drug may not be suitable for everyone, especially those who are not overweight. Nevertheless the body of evidences may suggest that metformin had promising impacts on metabolic parameters in patients with both HIV, it is still unknown that such surrogate changes will translate to long-standing clinical advantages. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-021-00869-1.
Collapse
|
46
|
Eltokhy AK, Khattab HA, Rabah HM. The impact of cichorium intybus L. On GDF-15 level in obese diabetic albino mice as compared with metformin effect. J Diabetes Metab Disord 2021; 20:1119-1128. [PMID: 34900765 PMCID: PMC8630334 DOI: 10.1007/s40200-021-00828-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) and obesity comorbidity signify a frequent metabolic disorder, representing a huge public health burden. Metformin, the most used anti-diabetic medication, is found to reduce body weight via growth differentiation factor 15 (GDF-15) signalling pathways. The medicinal herb Cichorium intybus L. (chicory or cichorium) has a promising pharmacological impact on energy homeostasis. On the other hands, little data is available on its role in DM and obesity. Despite its irrefutable effect, its exact mechanism of action has not completely elucidated; the present study evaluated the effect of chicory on DM, antioxidant status, inflammation, and GDF-15 level in comparison with the metformin effect. MATERIAL AND METHODS Eighty albino mice were grouped as (control, obese diabetic group, metformin-treated, and Cichorium intybus L. -treated group). The study assessed blood glucose, lipid profile, inflammatory markers (IL-6, TNF-α), total antioxidant capacity (TAC) and caspase-3. Quantitative RT-PCR assessed GDF-15 and leptin relative mRNA expression. RESULTS Cichorium intybus L. has significantly lowered inflammatory, apoptotic markers, and leptin levels compared with the diseased group. Likewise, the plant upregulated GDF-15 and TAC's levels. The study documented a non-significant difference between the Cichorium intybus L. -treated and the metformin-treated groups in all estimated markers. CONCLUSION The Cichorium intybus L. is a promising herbal supplement with anti-inflammatory, antioxidant, anti-diabetic, and weight reduction effects via affecting GDF-15 signalling pathways. GRAPHICAL ABSTRACT GDF-15 has anti-inflammatory, anti-oxidative stress and anti-apoptotic effect in DM and obesity via targeting NF-κB mechanisms.
Collapse
Affiliation(s)
- Amira Kamel Eltokhy
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Hanem Mohamed Rabah
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
47
|
Mokwena MAM, Engwa GA, Nkeh-Chungag BN, Sewani-Rusike CR. Athrixia phylicoides tea infusion (bushman tea) improves adipokine balance, glucose homeostasis and lipid parameters in a diet-induced metabolic syndrome rat model. BMC Complement Med Ther 2021; 21:292. [PMID: 34844584 PMCID: PMC8628465 DOI: 10.1186/s12906-021-03459-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Central obesity and insulin resistance are associated with metabolic syndrome (MetS) which is aggravated by diet and sedentary lifestyle. Athrixia phylicoides (AP) is reported by rural communities to have medicinal benefits associated with MetS such as obesity and type 2 diabetes. This study was aimed to investigate the effects of AP on diet-induced MetS in Wistar rats to validate its ethnopharmacological use. METHODS AP was profiled for phytochemicals by LC-MS. After induction of MetS with high energy diet (HED), 30 male rats were divided into five treatment groups (n = 6): normal diet control, HED control, HED + AP 50 mg/Kg BW, HED + AP 100 mg/Kg BW and HED + 50 mg/Kg BW metformin. The rats were treated daily for 8 weeks orally after which weight gain, visceral fat, total cholesterol, free fatty acids (FFAs) and adipokine regulation; leptin: adiponectin ratio (LAR) were assessed. Also, glucose homeostatic parameters including fasting blood glucose (FBG), oral glucose tolerance test (OGTT), glucose transporter 4 (GLUT 4), insulin and homeostatic model assessment of insulin resistance (HOMA-IR) were determined. RESULTS Findings showed that AP was rich in polyphenols. The HED control group showed derangements of the selected blood parameters of MetS. AP reversed diet-induced weight gain by reducing visceral fat, total blood cholesterol and circulating FFAs (p ≤ 0.05). Treatment with AP improved adipokine regulation depicted by reduced LAR (p<0.05). Treatment with AP improved parameters of glucose homeostasis as demonstrated by reduced FBG and HOMA-IR (p ≤ 0.05) and increased GLUT 4 (p<0.05). CONCLUSION Athrixia phylicoides tea infusion was shown to possess anti-obesity and anti-inflammatory properties, improved glucose uptake and reduce insulin resistance in diet-induced MetS in rats which could be attributed to its richness in polyphenols. Therefore, AP could have potential benefits against type 2 diabetes and obesity which are components of MetS validating its ethnopharmacological use.
Collapse
Affiliation(s)
- Madigoahle A M Mokwena
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa
| | - Godwill Azeh Engwa
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa
| | - Benedicta N Nkeh-Chungag
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa
| | - Constance R Sewani-Rusike
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa.
| |
Collapse
|
48
|
Metformin treatment reverses high fat diet- induced non-alcoholic fatty liver diseases and dyslipidemia by stimulating multiple antioxidant and anti-inflammatory pathways. Biochem Biophys Rep 2021; 28:101168. [PMID: 34825068 PMCID: PMC8605070 DOI: 10.1016/j.bbrep.2021.101168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 01/06/2023] Open
Abstract
Purpose This current study investigated the effect of metformin treatment on hepatic oxidative stress and inflammation associated with nonalcoholic fatty liver disease (NADLD) in high fat diet (HFD) fed rats. Method Wistar rats were fed with a HFD or laboratory chow diet for 8 weeks. Metformin was administered orally at a dose of 200 mg/kg. Body weight, food and water intake were recorded on daily basis. Oral glucose tolerance test (OGTT), biochemical analysis and histological examinations were conducted on plasma and tissue samples. Antioxidant and anti-inflammatory mRNA expression was analyzed using reverse transcription polymeric chain reaction (RT-PCR). Results Metformin treatment for 8 weeks prevented HFD-induced weight gain and decreased fat deposition in HFD fed rats. Biochemical analysis revealed that metformin treatment significantly attenuated nitro-oxidative stress markers malondialdehyde (MDA), advanced protein oxidation product (APOP), and excessive nitric oxide (NO) levels in the liver of HFD fed rats. Gene expression analysis demonestrated that metformin treatment was associated with an enhanced expression of antioxidant genes such as Nrf-2, HO-1, SOD and catalase in liver of HFD fed rats. Metformin treatment also found to modulate the expression of fat metabolizing and anti-inflammatory genes including PPAR--γ, C/EBP-α, SREBP1c, FAS, AMPK and GLUT-4. Consistent with the biochemical and gene expression data, the histopathological examination unveiled that metformin treatment attenuated inflammatory cells infiltration, steatosis, hepatocyte necrosis, collagen deposition, and fibrosis in the liver of HFD fed rats. Conclusion In conclusion, this study suggests that metformin might be effective in the prevention and treatment of HFD-induced steatosis by reducing hepatic oxidative stress and inflammation in the liver.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AMPK, AMP-activated protein kinase
- APOP, advanced protein oxidation product
- AST, aspartate aminotransferase
- ATP, Adinosine triphosphate
- AUC, area under the curve
- CAT, catalase
- FAS, Fatty acid synthase
- HDL, high density lipoprotein
- HF, High fat
- HSCs, Hepatic stellate cells
- IACUC, Institutional Animal Care and Use Committee
- IL-6, interleukin-6
- Inflammation
- LDL, low density lipoprotein
- Lipid peroxidation
- MDA, Malondialdehyde
- MPO, Myeloperoxidase
- Met, Metformin
- Metformin
- NAFLD, nonalcoholic fatty liver disease
- NO, nitric oxide
- Non-alcoholic fatty liver disease
- OGTT, Oral glucose tolerance test
- Obesity
- PBS, Phosphate buffer saline
- PGC-1α, peroxisome proliferator-activated receptor γ coactivator 1
- PPAR-γ, peroxisome proliferator-activated receptor γ
- ROS, reactive oxygen species
- SOD, Superoxide dismutase
- SREBP1c, sterol regulatory element-binding protein 1c
- TBA, Thiobarbituric acid
- TBARS, Thiobarbituric acid reactive substances
Collapse
|
49
|
Stojnić B, Serrano A, Sušak L, Palou A, Bonet ML, Ribot J. Protective Effects of Individual and Combined Low Dose Beta-Carotene and Metformin Treatments against High-Fat Diet-Induced Responses in Mice. Nutrients 2021; 13:3607. [PMID: 34684608 PMCID: PMC8538788 DOI: 10.3390/nu13103607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022] Open
Abstract
Anti-obesity activity has been reported for beta-carotene (BC) supplementation at high doses and metformin (MET). We studied whether BC treatment at a closer to dietary dose and MET treatment at a lower than therapeutic dose are effective in ameliorating unwanted effects of an obesogenic diet and whether their combination is advantageous. Obesity-prone mice were challenged with a high-fat diet (HFD, 45% energy as fat) for 4 weeks while receiving a placebo or being treated orally with BC (3 mg/kg/day), MET (100 mg/kg/day), or their combination (BC+MET); a fifth group received a placebo and was kept on a normal-fat diet (10% energy as fat). HFD-induced increases in body weight gain and inguinal white adipose tissue (WAT) adipocyte size were attenuated maximally or selectively in the BC+MET group, in which a redistribution towards smaller adipocytes was noted. Cumulative energy intake was unaffected, yet results suggested increased systemic energy expenditure and brown adipose tissue activation in the treated groups. Unwanted effects of HFD on glucose control and insulin sensitivity were attenuated in the treated groups, especially BC and BC+MET, in which hepatic lipid content was also decreased. Transcriptional analyses suggested effects on skeletal muscle and WAT metabolism could contribute to better responses to the HFD, especially in the MET and BC+MET groups. The results support the benefits of the BC+MET cotreatment.
Collapse
Affiliation(s)
- Bojan Stojnić
- Grupo de Nutrigenómica, Biomarcadores y Evaluación de Riesgos, Laboratory of Molecular Biology, Nutrition and Biotechnology (LBNB), Universitat de les Illes Balears, 07122 Palma, Spain; (B.S.); (A.S.); (L.S.); (A.P.); (J.R.)
| | - Alba Serrano
- Grupo de Nutrigenómica, Biomarcadores y Evaluación de Riesgos, Laboratory of Molecular Biology, Nutrition and Biotechnology (LBNB), Universitat de les Illes Balears, 07122 Palma, Spain; (B.S.); (A.S.); (L.S.); (A.P.); (J.R.)
| | - Lana Sušak
- Grupo de Nutrigenómica, Biomarcadores y Evaluación de Riesgos, Laboratory of Molecular Biology, Nutrition and Biotechnology (LBNB), Universitat de les Illes Balears, 07122 Palma, Spain; (B.S.); (A.S.); (L.S.); (A.P.); (J.R.)
| | - Andreu Palou
- Grupo de Nutrigenómica, Biomarcadores y Evaluación de Riesgos, Laboratory of Molecular Biology, Nutrition and Biotechnology (LBNB), Universitat de les Illes Balears, 07122 Palma, Spain; (B.S.); (A.S.); (L.S.); (A.P.); (J.R.)
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07122 Palma, Spain
| | - M. Luisa Bonet
- Grupo de Nutrigenómica, Biomarcadores y Evaluación de Riesgos, Laboratory of Molecular Biology, Nutrition and Biotechnology (LBNB), Universitat de les Illes Balears, 07122 Palma, Spain; (B.S.); (A.S.); (L.S.); (A.P.); (J.R.)
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07122 Palma, Spain
| | - Joan Ribot
- Grupo de Nutrigenómica, Biomarcadores y Evaluación de Riesgos, Laboratory of Molecular Biology, Nutrition and Biotechnology (LBNB), Universitat de les Illes Balears, 07122 Palma, Spain; (B.S.); (A.S.); (L.S.); (A.P.); (J.R.)
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07122 Palma, Spain
| |
Collapse
|
50
|
Lee YF, Sim XY, Teh YH, Ismail MN, Greimel P, Murugaiyah V, Ibrahim B, Gam LH. The effects of high-fat diet and metformin on urinary metabolites in diabetes and prediabetes rat models. Biotechnol Appl Biochem 2021; 68:1014-1026. [PMID: 32931602 DOI: 10.1002/bab.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
High-fat diet (HFD) interferes with the dietary plan of patients with type 2 diabetes mellitus (T2DM). However, many diabetes patients consume food with higher fat content for a better taste bud experience. In this study, we examined the effect of HFD on rats at the early onset of diabetes and prediabetes by supplementing their feed with palm olein oil to provide a fat content representing 39% of total calorie intake. Urinary profile generated from liquid chromatography-mass spectrometry analysis was used to construct the orthogonal partial least squares discriminant analysis (OPLS-DA) score plots. The data provide insights into the physiological state of an organism. Healthy rats fed with normal chow (NC) and HFD cannot be distinguished by their urinary metabolite profiles, whereas diabetic and prediabetic rats showed a clear separation in OPLS-DA profile between the two diets, indicating a change in their physiological state. Metformin treatment altered the metabolomics profiles of diabetic rats and lowered their blood sugar levels. For prediabetic rats, metformin treatment on both NC- and HFD-fed rats not only reduced their blood sugar levels to normal but also altered the urinary metabolite profile to be more like healthy rats. The use of metformin is therefore beneficial at the prediabetes stage.
Collapse
Affiliation(s)
- Yan-Fen Lee
- USM-RIKEN International Centre of Aging Science, USM, Minden, Penang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Xuan-Yi Sim
- USM-RIKEN International Centre of Aging Science, USM, Minden, Penang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Ying-Hui Teh
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre (ABrC), USM, Minden, Penang, Malaysia
| | - Peter Greimel
- Laboratory for Cell Function Dynamics, RIKEN Centre for Brain Sciences, Wako, Saitama, Japan
| | | | - Baharudin Ibrahim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Lay-Harn Gam
- USM-RIKEN International Centre of Aging Science, USM, Minden, Penang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| |
Collapse
|