1
|
Case JB, Jain S, Suthar MS, Diamond MS. SARS-CoV-2: The Interplay Between Evolution and Host Immunity. Annu Rev Immunol 2025; 43:29-55. [PMID: 39705164 DOI: 10.1146/annurev-immunol-083122-043054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
The persistence of SARS-CoV-2 infections at a global level reflects the repeated emergence of variant strains encoding unique constellations of mutations. These variants have been generated principally because of a dynamic host immune landscape, the countermeasures deployed to combat disease, and selection for enhanced infection of the upper airway and respiratory transmission. The resulting viral diversity creates a challenge for vaccination efforts to maintain efficacy, especially regarding humoral aspects of protection. Here, we review our understanding of how SARS-CoV-2 has evolved during the pandemic, the immune mechanisms that confer protection, and the impact viral evolution has had on transmissibility and adaptive immunity elicited by natural infection and/or vaccination. Evidence suggests that SARS-CoV-2 evolution initially selected variants with increased transmissibility but currently is driven by immune escape. The virus likely will continue to drift to maintain fitness until countermeasures capable of disrupting transmission cycles become widely available.
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Shilpi Jain
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mehul S Suthar
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael S Diamond
- Department of Pathology & Immunology; Department of Molecular Microbiology; and Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
2
|
Nham E, Noh JY, Park O, Choi WS, Song JY, Cheong HJ, Kim WJ. COVID-19 Vaccination Strategies in the Endemic Period: Lessons from Influenza. Vaccines (Basel) 2024; 12:514. [PMID: 38793765 PMCID: PMC11125835 DOI: 10.3390/vaccines12050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious zoonotic respiratory disease with many similarities to influenza. Effective vaccines are available for both; however, rapid viral evolution and waning immunity make them virtually impossible to eradicate with vaccines. Thus, the practical goal of vaccination is to reduce the incidence of serious illnesses and death. Three years after the introduction of COVID-19 vaccines, the optimal vaccination strategy in the endemic period remains elusive, and health authorities worldwide have begun to adopt various approaches. Herein, we propose a COVID-19 vaccination strategy based on the data available until early 2024 and discuss aspects that require further clarification for better decision making. Drawing from comparisons between COVID-19 and influenza vaccination strategies, our proposed COVID-19 vaccination strategy prioritizes high-risk groups, emphasizes seasonal administration aligned with influenza vaccination campaigns, and advocates the co-administration with influenza vaccines to increase coverage.
Collapse
Affiliation(s)
- Eliel Nham
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| | - Ok Park
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| | - Won Suk Choi
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| | - Woo Joo Kim
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Hickerson BT, Huang BK, Petrovskaya SN, Ilyushina NA. Genomic Analysis of Influenza A and B Viruses Carrying Baloxavir Resistance-Associated Substitutions Serially Passaged in Human Epithelial Cells. Viruses 2023; 15:2446. [PMID: 38140689 PMCID: PMC10748225 DOI: 10.3390/v15122446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Baloxavir marboxil (baloxavir) is an FDA-approved inhibitor of the influenza virus polymerase acidic (PA) protein. Here, we used next-generation sequencing to compare the genomic mutational profiles of IAV H1N1 and H3N2, and IBV wild type (WT) and mutants (MUT) viruses carrying baloxavir resistance-associated substitutions (H1N1-PA I38L, I38T, and E199D; H3N2-PA I38T; and IBV-PA I38T) during passaging in normal human bronchial epithelial (NHBE) cells. We determined the ratio of nonsynonymous to synonymous nucleotide mutations (dN/dS) and identified the location and type of amino acid (AA) substitutions that occurred at a frequency of ≥30%. We observed that IAV H1N1 WT and MUT viruses remained relatively stable during passaging. While the mutational profiles for IAV H1N1 I38L, I38T, and E199D, and IBV I38T MUTs were relatively similar after each passage compared to the respective WTs, the mutational profile of the IAV H3N2 I38T MUT was significantly different for most genes compared to H3N2 WT. Our work provides insight into how baloxavir resistance-associated substitutions may impact influenza virus evolution in natural settings. Further characterization of the potentially adaptive mutations identified in this study is needed.
Collapse
Affiliation(s)
- Brady T. Hickerson
- Division of Biotechnology Review and Research II, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Bruce K. Huang
- Division of Biotechnology Review and Research II, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Svetlana N. Petrovskaya
- Division of Biotechnology Review and Research III, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Natalia A. Ilyushina
- Division of Biotechnology Review and Research II, Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
4
|
Lee K, Seok JH, Kim H, Park S, Lee S, Bae JY, Jeon K, Kang JG, Yoo JR, Heo ST, Cho NH, Lee KH, Kim K, Park MS, Kim JI. Genome-informed investigation of the molecular evolution and genetic reassortment of severe fever with thrombocytopenia syndrome virus. PLoS Negl Trop Dis 2023; 17:e0011630. [PMID: 37713429 PMCID: PMC10529592 DOI: 10.1371/journal.pntd.0011630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/27/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome virus (SFTSV) is a viral pathogen causing significant clinical signs from mild fever with thrombocytopenia to severe hemorrhages. World Health Organization has paid special attention to the dramatic increase in human SFTS cases in China, Japan, and South Korea since the 2010s. The present study investigated the molecular evolution and genetic reassortment of SFTSVs using complete genomic sequences. METHODS/PRINCIPAL FINDING We collected the complete genome sequences of SFTSVs globally isolated until 2019 (L segment, n = 307; M segment, n = 326; and S segment, n = 564) and evaluated the evolutionary profiles of SFTSVs based on phylogenetic and molecular selection pressure analyses. By employing a time-scaled Bayesian inference method, we found the geographical heterogeneity of dominant SFTSV genotypes in China, Japan, and South Korea around several centuries before and locally spread by tick-born spillover with infrequent long-distance transmission. Purifying selection predominated the molecular evolution of SFTSVs with limited gene reassortment and fixed substitution, but almost all three gene segments appeared to harbor at least one amino acid residue under positive selection. Specifically, the nonstructural protein and glycoprotein (Gn/Gc) genes were preferential selective targets, and the Gn region retained the highest number of positively selected residues. CONCLUSION/SIGNIFICANCE Here, the large-scale genomic analyses of SFTSVs improved prior knowledge of how this virus emerged and evolved in China, Japan, and South Korea. Our results highlight the importance of SFTSV surveillance in both human and non-human reservoirs at the molecular level to fight against fatal human infection with the virus.
Collapse
Affiliation(s)
- Kyuyoung Lee
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jong Hyeon Seok
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyunbeen Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sejik Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sohyun Lee
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyeongseok Jeon
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun-Gu Kang
- Laboratory for Vector Borne Disease, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Jeong Rae Yoo
- Department of Internal Medicine, College of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Sang Taek Heo
- Department of Internal Medicine, College of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Keun Hwa Lee
- Department of Microbiology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Kisoon Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
- Vaccine Innovation Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
- Vaccine Innovation Center, College of Medicine, Korea University, Seoul, Republic of Korea
- Biosafety Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
- Vaccine Innovation Center, College of Medicine, Korea University, Seoul, Republic of Korea
- Biosafety Center, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Kawasaki Y, Abe H, Yasuda J. Comparison of genome replication fidelity between SARS-CoV-2 and influenza A virus in cell culture. Sci Rep 2023; 13:13105. [PMID: 37567927 PMCID: PMC10421855 DOI: 10.1038/s41598-023-40463-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023] Open
Abstract
Since the emergence of COVID-19, several SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) variants have emerged and spread widely. These variants are produced through replication errors of the viral genome by viral RNA-dependent RNA polymerase (RdRp). Seasonal epidemics of influenza are also known to occur because of new variants of influenza A virus (IAV), which are generated by the introduction of mutations by viral RdRp with low fidelity. Variants with different antigenicities appear because of mutations in envelope glycoproteins. In this study, we calculated and compared the mutation rates in genome replication of IAV and SARS-CoV-2. Average mutation rates per passage were 9.01 × 10-5 and 3.76 × 10-6 substitutions/site for IAV and SARS-CoV-2, respectively. The mutation rate of SARS-CoV-2 was 23.9-fold lower than that of IAV because of the proofreading activity of the SARS-CoV-2 RdRp complex. Our data could be useful in establishing effective countermeasures against COVID-19.
Collapse
Affiliation(s)
- Yoshiko Kawasaki
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Haruka Abe
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan.
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan.
- Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan.
| |
Collapse
|
6
|
Naeem A, Elbakkouri K, Alfaiz A, Hamed ME, Alsaran H, AlOtaiby S, Enani M, Alosaimi B. Antigenic drift of hemagglutinin and neuraminidase in seasonal H1N1 influenza viruses from Saudi Arabia in 2014 to 2015. J Med Virol 2020; 92:3016-3027. [PMID: 32159230 PMCID: PMC7228267 DOI: 10.1002/jmv.25759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/04/2020] [Indexed: 01/19/2023]
Abstract
Antigenic drift of the hemagglutinin (HA) and neuraminidase (NA) proteins of the influenza virus cause a decrease in vaccine efficacy. Since the information about the evolution of these viruses in Saudi is deficient so we investigated the genetic diversity of circulating H1N1 viruses. Nasopharyngeal aspirates/swabs collected from 149 patients hospitalized with flu-like symptoms during 2014 and 2015 were analyzed. Viral RNA extraction was followed by a reverse transcription-polymerase chain reaction and genetic sequencing. We analyzed complete gene sequences of HA and NA from 80 positive isolates. Phylogenetic analysis of HA and NA genes of 80 isolates showed similar topologies and co-circulation of clades 6b. Genetic diversity was observed among circulating viruses belonging to clade 6B.1A. The amino acid residues in the HA epitope domain were under purifying selection. Amino acid changes at key antigenic sites, such as position S101N, S179N (antigenic site-Sa), I233T (antigenic site-Sb) in the head domain might have resulted in antigenic drift and emergence of variant viruses. For NA protein, 36% isolates showed the presence of amino acid changes such as V13I (n = 29), I314M (n = 29) and 12% had I34V (n = 10). However, H257Y mutation responsible for resistance to neuraminidase inhibitors was missing. The presence of amino acid changes at key antigenic sites and their topologies with structural mapping of residues under purifying selection highlights the importance of antigenic drift and warrants further characterization of recently circulating viruses in view of vaccine effectiveness. The co-circulation of several clades and the predominance of clade 6B.1 suggest multiple introductions in Saudi.
Collapse
MESH Headings
- Humans
- Neuraminidase/genetics
- Saudi Arabia/epidemiology
- Influenza, Human/virology
- Influenza, Human/epidemiology
- Phylogeny
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/enzymology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Adult
- Male
- Female
- Young Adult
- Genetic Variation
- Middle Aged
- Adolescent
- Genetic Drift
- Child
- Child, Preschool
- Amino Acid Substitution
- Viral Proteins/genetics
- Nasopharynx/virology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- RNA, Viral/genetics
- Antigenic Variation
- Aged
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Asif Naeem
- Research CenterKing Fahad Medical CityRiyadhSaudi Arabia
| | | | - Ali Alfaiz
- Research CenterKing Fahad Medical CityRiyadhSaudi Arabia
| | | | - Hadel Alsaran
- Research CenterKing Fahad Medical CityRiyadhSaudi Arabia
| | | | - Mushira Enani
- Medical Specialties Department, Section of Infectious DiseasesKing Fahad Medical CityRiyadhSaudi Arabia
| | - Bandar Alosaimi
- Research CenterKing Fahad Medical CityRiyadhSaudi Arabia
- College of MedicineKing Fahad Medical CityRiyadhSaudi Arabia
| |
Collapse
|
7
|
Shi W, Ke C, Fang S, Li J, Song H, Li X, Hu T, Wu J, Chen T, Yi L, Song Y, Wang X, Xing W, Huang W, Xiao H, Liang L, Peng B, Wu W, Liu H, Liu WJ, Holmes EC, Gao GF, Wang D. Co-circulation and persistence of multiple A/H3N2 influenza variants in China. Emerg Microbes Infect 2019; 8:1157-1167. [PMID: 31373538 PMCID: PMC6713139 DOI: 10.1080/22221751.2019.1648183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The spread of influenza A/H3N2 variants possessing the hemagglutinin 121 K mutation and the unexpectedly high incidence of influenza in the 2017–2018 northern hemisphere influenza season have raised serious concerns about the next pandemic. We summarized the national surveillance data of seasonal influenza in China and identified marked differences in influenza epidemics between northern and southern China, particularly the predominating subtype and the presence of an additional summer peak in southern China. Notably, a minor spring peak of influenza caused by a different virus subtype was also observed. We also revealed that the 3C.2a lineage was dominant from the summer of 2015 to the end of the 2015–2016 peak season in China, after which the 3C.2a2 lineage predominated despite the importation and co-circulation of the 121 K variants of 3C.2a1 and 3C.2a3 lineages at the global level. Finally, an analysis based on genetic distances revealed a delay in A/H3N2 vaccine strain update. Overall, our results highlight the complicated circulation pattern of seasonal influenza in China and the necessity for a timely vaccine strain update worldwide.
Collapse
Affiliation(s)
- Weifeng Shi
- d Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences , Taian , People's Republic of China
| | - Changwen Ke
- e Guangdong Provincial Center for Disease Control and Prevention , Guangzhou , People's Republic of China
| | - Shisong Fang
- f Division of Microbiology Test, Shenzhen Centre for Disease Control and Prevention , Shenzhen , People's Republic of China
| | - Juan Li
- d Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences , Taian , People's Republic of China
| | - Hao Song
- g Chinese Academy of Sciences, Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science , Beijing , People's Republic of China
| | - Xiyan Li
- a Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China.,b WHO Collaborating Center for Reference and Research on Influenza , Beijing , People's Republic of China.,c Key Laboratory for Medical Virology, National Health Commission , Beijing , People's Republic of China
| | - Tao Hu
- d Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences , Taian , People's Republic of China
| | - Jie Wu
- e Guangdong Provincial Center for Disease Control and Prevention , Guangzhou , People's Republic of China
| | - Tao Chen
- a Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China.,b WHO Collaborating Center for Reference and Research on Influenza , Beijing , People's Republic of China.,c Key Laboratory for Medical Virology, National Health Commission , Beijing , People's Republic of China
| | - Lina Yi
- e Guangdong Provincial Center for Disease Control and Prevention , Guangzhou , People's Republic of China.,h Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention , Guangzhou , People's Republic of China
| | - Yingchao Song
- e Guangdong Provincial Center for Disease Control and Prevention , Guangzhou , People's Republic of China
| | - Xin Wang
- f Division of Microbiology Test, Shenzhen Centre for Disease Control and Prevention , Shenzhen , People's Republic of China
| | - Weijia Xing
- d Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences , Taian , People's Republic of China
| | - Weijuan Huang
- a Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China.,b WHO Collaborating Center for Reference and Research on Influenza , Beijing , People's Republic of China.,c Key Laboratory for Medical Virology, National Health Commission , Beijing , People's Republic of China
| | - Hong Xiao
- e Guangdong Provincial Center for Disease Control and Prevention , Guangzhou , People's Republic of China
| | - Lijun Liang
- e Guangdong Provincial Center for Disease Control and Prevention , Guangzhou , People's Republic of China
| | - Bo Peng
- f Division of Microbiology Test, Shenzhen Centre for Disease Control and Prevention , Shenzhen , People's Republic of China
| | - Weihua Wu
- f Division of Microbiology Test, Shenzhen Centre for Disease Control and Prevention , Shenzhen , People's Republic of China
| | - Hui Liu
- f Division of Microbiology Test, Shenzhen Centre for Disease Control and Prevention , Shenzhen , People's Republic of China
| | - William J Liu
- a Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China.,b WHO Collaborating Center for Reference and Research on Influenza , Beijing , People's Republic of China.,c Key Laboratory for Medical Virology, National Health Commission , Beijing , People's Republic of China
| | - Edward C Holmes
- i Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney , Sydney , Australia
| | - George F Gao
- j Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences , Beijing , People's Republic of China.,k Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences , Beijing , People's Republic of China.,l Chinese Center for Disease Control and Prevention (China CDC) , Beijing , People's Republic of China
| | - Dayan Wang
- a Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China.,b WHO Collaborating Center for Reference and Research on Influenza , Beijing , People's Republic of China.,c Key Laboratory for Medical Virology, National Health Commission , Beijing , People's Republic of China
| |
Collapse
|
8
|
Song JY, Noh JY, Lee JS, Wie SH, Kim YK, Lee J, Jeong HW, Kim SW, Lee SH, Park KH, Choi WS, Cheong HJ, Kim WJ. Effectiveness of repeated influenza vaccination among the elderly population with high annual vaccine uptake rates during the three consecutive A/H3N2 epidemics. Vaccine 2019; 38:318-322. [PMID: 31690467 DOI: 10.1016/j.vaccine.2019.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Annually, about 80% of the Korean elderly aged ≥65 years receive influenza vaccination. Repeated annual vaccination has been suggested as an important factor of poor influenza vaccine effectiveness (VE), though reported conflicting results. METHODS During the consecutive A/H3N2-dominant influenza seasons between 2012 and 2015, we comparatively evaluated the VE (repeated vs. current season only) against laboratory-confirmed influenza, pneumonia and hospitalization in the elderly aged ≥65 years with influenza-like illness (ILI). Clinical and demographic data were collected prospectively, and vaccination status of prior and current seasons was verified using the immunization registry data of Korean Centers for Disease Control and Prevention. RESULTS During the first A/H3N2-dominant season in 2012-2013, influenza vaccine showed statistically significant effectiveness against influenza A infection only and when vaccinated in the current season only (VE 53%, 95% CI 15-77). In the latter two seasons (2013-2015 years), the adjusted VE for influenza A was indistinguishable between repeated vaccination and vaccination in the current season only. CONCLUSION During consecutive influenza A/H3N2 epidemics, poor influenza vaccine effectiveness may be more pronounced among the elderly population with a high annual vaccine uptake rate.
Collapse
Affiliation(s)
- Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea; Asian Pacific Influenza Institute (APII), Seoul, South Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea; Asian Pacific Influenza Institute (APII), Seoul, South Korea
| | - Jin Soo Lee
- Division of Infectious Diseases, Department of Internal Medicine, Inha University School of Medicine, Incheon, South Korea
| | - Seong-Heon Wie
- Division of Infectious Diseases, Department of Internal Medicine, Catholic University Medical College, St. Vincent's Hospital, Suwon, South Korea
| | - Young Keun Kim
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University, Wonju College of Medicine, Wonju, South Korea
| | - Jacob Lee
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
| | - Hye Won Jeong
- Division of Infectious Diseases, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Shin Woo Kim
- Division of Infectious Diseases, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Sun Hee Lee
- Division of Infectious Diseases, Department of Internal Medicine, Pusan National University School of Medicine, Pusan, South Korea
| | - Kyung-Hwa Park
- Division of Infectious Diseases, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Won Suk Choi
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea; Asian Pacific Influenza Institute (APII), Seoul, South Korea
| | - Woo Joo Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea; Asian Pacific Influenza Institute (APII), Seoul, South Korea.
| |
Collapse
|
9
|
Effectiveness of influenza and pneumococcal polysaccharide vaccines against influenza-related outcomes including pneumonia and acute exacerbation of cardiopulmonary diseases: Analysis by dominant viral subtype and vaccine matching. PLoS One 2018; 13:e0207918. [PMID: 30521553 PMCID: PMC6283593 DOI: 10.1371/journal.pone.0207918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/08/2018] [Indexed: 12/29/2022] Open
Abstract
Background Influenza and pneumonia are leading causes of morbidity and mortality among the elderly. Although vaccination is a main strategy to prevent these infectious diseases, concerns remain with respect to vaccine effectiveness. Methods During three influenza seasons (2014–2015, 2015–2016 and 2016–2017), we evaluated the effectiveness of the influenza and pneumococcal vaccines against pneumonia and acute exacerbation of cardiopulmonary diseases among the elderly aged ≥65 years with influenza-like illness (ILI). Demographic and clinical data were collected prospectively. Results Among 2,119 enrolled cases, 1,302 (61.4%) and 871 (41.1%) received the influenza vaccine and 23-valent pneumococcal polysaccharide vaccine (PPV23), respectively. During an A/H3N2-dominant season with poor influenza vaccine effectiveness (2014–2015 season), neither the influenza vaccine nor PPV23 showed significant effectiveness against pneumonia or acute exacerbation of cardiopulmonary diseases. During seasons with good influenza vaccine effectiveness (2015–2016 and 2016–2017 seasons), the influenza vaccine was effective in preventing pneumonia, but PPV23 was not. In particular, the influenza vaccine was effective in preventing acute exacerbation of heart diseases (75.0%) during the A/H1N1-dominant 2015–2016 season. Conclusion The influenza vaccine was effective in preventing pneumonia only during vaccine-matched seasons with good effectiveness against circulating influenza viruses. In addition, the influenza vaccine was cardio-protective during a vaccine-matched A/H1N1-dominant season.
Collapse
|
10
|
Distinct molecular evolution of influenza H3N2 strains in the 2016/17 season and its implications for vaccine effectiveness. Mol Phylogenet Evol 2018; 131:29-34. [PMID: 30399431 DOI: 10.1016/j.ympev.2018.10.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 09/17/2018] [Accepted: 10/31/2018] [Indexed: 11/20/2022]
Abstract
Influenza virus is a respiratory pathogen that causes seasonal epidemics by resulting in a considerable number of influenza-like illness (ILI) patients. During the 2016/17 season, ILI rates increased unusually earlier and higher than previous seasons in Korea, and most viral isolates were subtyped as H3N2 strains. Notably, the hemagglutinin (HA) of most Korean H3N2 strains retained newly introduced lysine signatures in HA antigenic sites A and D, compared with that of clade 3C.2a vaccine virus, which affected antigenic distances to the standard vaccine antisera in a hemagglutination inhibition assay. The neuraminidase (NA) of Korean H3N2 strains also harbored amino acid mutations. However, neither consistent amino acid mutations nor common phylogenetic clustering patterns were observed. These suggest that Korean H3N2 strains of the 2016/17 season might be distantly related with the vaccine virus both in genotypic and phenotypic classifications, which would adversely affect vaccine effectiveness.
Collapse
|