1
|
Mohamadzadeh O, Hajinouri M, Moammer F, Tamehri Zadeh SS, Omid Shafiei G, Jafari A, Ostadian A, Talaei Zavareh SA, Hamblin MR, Yazdi AJ, Sheida A, Mirzaei H. Non-coding RNAs and Exosomal Non-coding RNAs in Traumatic Brain Injury: the Small Player with Big Actions. Mol Neurobiol 2023; 60:4064-4083. [PMID: 37020123 DOI: 10.1007/s12035-023-03321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
Nowadays, there is an increasing concern regarding traumatic brain injury (TBI) worldwide since substantial morbidity is observed after it, and the long-term consequences that are not yet fully recognized. A number of cellular pathways related to the secondary injury in brain have been identified, including free radical production (owing to mitochondrial dysfunction), excitotoxicity (regulated by excitatory neurotransmitters), apoptosis, and neuroinflammatory responses (as a result of activation of the immune system and central nervous system). In this context, non-coding RNAs (ncRNAs) maintain a fundamental contribution to post-transcriptional regulation. It has been shown that mammalian brains express high levels of ncRNAs that are involved in several brain physiological processes. Furthermore, altered levels of ncRNA expression have been found in those with traumatic as well non-traumatic brain injuries. The current review highlights the primary molecular mechanisms participated in TBI that describes the latest and novel results about changes and role of ncRNAs in TBI in both clinical and experimental research.
Collapse
Affiliation(s)
- Omid Mohamadzadeh
- Department of Neurological Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsasadat Hajinouri
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Moammer
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Ostadian
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | | | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
2
|
Łukasiuk K, Lasoń W. Emerging Molecular Targets for Anti-Epileptogenic and Epilepsy Modifying Drugs. Int J Mol Sci 2023; 24:ijms24032928. [PMID: 36769250 PMCID: PMC9917847 DOI: 10.3390/ijms24032928] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The pharmacological treatment of epilepsy is purely symptomatic. Despite many decades of intensive research, causal treatment of this common neurologic disorder is still unavailable. Nevertheless, it is expected that advances in modern neuroscience and molecular biology tools, as well as improved animal models may accelerate designing antiepileptogenic and epilepsy-modifying drugs. Epileptogenesis triggers a vast array of genomic, epigenomic and transcriptomic changes, which ultimately lead to morphological and functional transformation of specific neuronal circuits resulting in the occurrence of spontaneous convulsive or nonconvulsive seizures. Recent decades unraveled molecular processes and biochemical signaling pathways involved in the proepileptic transformation of brain circuits including oxidative stress, apoptosis, neuroinflammatory and neurotrophic factors. The "omics" data derived from both human and animal epileptic tissues, as well as electrophysiological, imaging and neurochemical analysis identified a plethora of possible molecular targets for drugs, which could interfere with various stages of epileptogenetic cascade, including inflammatory processes and neuroplastic changes. In this narrative review, we briefly present contemporary views on the neurobiological background of epileptogenesis and discuss the advantages and disadvantages of some more promising molecular targets for antiepileptogenic pharmacotherapy.
Collapse
Affiliation(s)
- Katarzyna Łukasiuk
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Władysław Lasoń
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
- Correspondence:
| |
Collapse
|
3
|
Tang Q, Song M, Zhao R, Han X, Deng L, Xue H, Li W, Li G. Comprehensive RNA Expression Analysis Revealed Biological Functions of Key Gene Sets and Identified Disease-Associated Cell Types Involved in Rat Traumatic Brain Injury. J Clin Med 2022; 11:jcm11123437. [PMID: 35743506 PMCID: PMC9224987 DOI: 10.3390/jcm11123437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 12/29/2022] Open
Abstract
Traumatic brain injury (TBI) is a worldwide public health concern without major therapeutic breakthroughs over the past decades. Developing effective treatment options and improving the prognosis of TBI depends on a better understanding of the mechanisms underlying TBI. This study performed a comprehensive analysis of 15 RNA expression datasets of rat TBIs from the GEO database. By integrating the results from the various analyses, this study investigated the biological processes, pathways, and cell types associated with TBI and explored the activity of these cells during various TBI phases. The results showed the response to cytokine, inflammatory response, bacteria-associated response, metabolic and biosynthetic processes, and pathways of neurodegeneration to be involved in the pathogenesis of TBI. The cellular abundance of microglia, perivascular macrophages (PM), and neurons were found to differ after TBI and at different times postinjury. In conclusion, immune- and inflammation-related pathways, as well as pathways of neurodegeneration, are closely related to TBI. Microglia, PM, and neurons are thought to play roles in TBI with different activities that vary by phase of TBI.
Collapse
Affiliation(s)
- Qilin Tang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
| | - Mengmeng Song
- Department of Nuclear Medicine, Qilu Hospital, Shandong University, Jinan 250012, China;
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
| | - Xiao Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
- Department of Neurosurgery, Children’s Hospital Affiliated to Shandong University, Jinan 250012, China
| | - Lin Deng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
| | - Weiguo Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
- Correspondence:
| |
Collapse
|
4
|
Transfer RNA-Derived Fragments and isomiRs Are Novel Components of Chronic TBI-Induced Neuropathology. Biomedicines 2022; 10:biomedicines10010136. [PMID: 35052815 PMCID: PMC8773447 DOI: 10.3390/biomedicines10010136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroinflammation is a secondary injury mechanism that evolves in the brain for months after traumatic brain injury (TBI). We hypothesized that an altered small non-coding RNA (sncRNA) signature plays a key role in modulating post-TBI secondary injury and neuroinflammation. At 3threemonths post-TBI, messenger RNA sequencing (seq) and small RNAseq were performed on samples from the ipsilateral thalamus and perilesional cortex of selected rats with a chronic inflammatory endophenotype, and sham-operated controls. The small RNAseq identified dysregulation of 2 and 19 miRNAs in the thalamus and cortex, respectively. The two candidates from the thalamus and the top ten from the cortex were selected for validation. In the thalamus, miR-146a-5p and miR-155-5p levels were upregulated, and in the cortex, miR-375-3p and miR-211-5p levels were upregulated. Analysis of isomiRs of differentially expressed miRNAs identified 3′ nucleotide additions that were increased after TBI. Surprisingly, we found fragments originating from 16 and 13 tRNAs in the thalamus and cortex, respectively. We further analyzed two upregulated fragments, 3′tRF-IleAAT and 3′tRF-LysTTT. Increased expression of the full miR-146a profile, and 3′tRF-IleAAT and 3′tRF-LysTTT was associated with a worse behavioral outcome in animals with chronic neuroinflammation. Our results highlight the importance of understanding the regulatory roles of as-yet unknown sncRNAs for developing better strategies to treat TBI and neuroinflammation.
Collapse
|
5
|
Guedes VA, Lai C, Devoto C, Edwards KA, Mithani S, Sass D, Vorn R, Qu BX, Rusch HL, Martin CA, Walker WC, Wilde EA, Diaz-Arrastia R, Gill JM, Kenney K. Extracellular Vesicle Proteins and MicroRNAs Are Linked to Chronic Post-Traumatic Stress Disorder Symptoms in Service Members and Veterans With Mild Traumatic Brain Injury. Front Pharmacol 2021; 12:745348. [PMID: 34690777 PMCID: PMC8526745 DOI: 10.3389/fphar.2021.745348] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/06/2021] [Indexed: 01/20/2023] Open
Abstract
Symptoms of post-traumatic stress disorder (PTSD) are common in military populations, and frequently associated with a history of combat-related mild traumatic brain injury (mTBI). In this study, we examined relationships between severity of PTSD symptoms and levels of extracellular vesicle (EV) proteins and miRNAs measured in the peripheral blood in a cohort of military service members and Veterans (SMs/Vs) with chronic mTBI(s). Participants (n = 144) were divided into groups according to mTBI history and severity of PTSD symptoms on the PTSD Checklist for DSM-5 (PCL-5). We analyzed EV levels of 798 miRNAs (miRNAs) as well as EV and plasma levels of neurofilament light chain (NfL), Tau, Amyloid beta (Aβ) 42, Aβ40, interleukin (IL)-10, IL-6, tumor necrosis factor-alpha (TNFα), and vascular endothelial growth factor (VEGF). We observed that EV levels of neurofilament light chain (NfL) were elevated in participants with more severe PTSD symptoms (PCL-5 ≥ 38) and positive mTBI history, when compared to TBI negative controls (p = 0.024) and mTBI participants with less severe PTSD symptoms (p = 0.006). Levels of EV NfL, plasma NfL, and hsa-miR-139–5p were linked to PCL-5 scores in regression models. Our results suggest that levels of NfL, a marker of axonal damage, are associated with PTSD symptom severity in participants with remote mTBI. Specific miRNAs previously linked to neurodegenerative and inflammatory processes, and glucocorticoid receptor signaling pathways, among others, were also associated with the severity of PTSD symptoms. Our findings provide insights into possible signaling pathways linked to the development of persistent PTSD symptoms after TBI and biological mechanisms underlying susceptibility to PTSD.
Collapse
Affiliation(s)
- Vivian A Guedes
- Tissue Injury Branch, National Institutes of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Chen Lai
- Tissue Injury Branch, National Institutes of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Christina Devoto
- Tissue Injury Branch, National Institutes of Nursing Research, National Institutes of Health, Bethesda, MD, United States.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Katie A Edwards
- Tissue Injury Branch, National Institutes of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Sara Mithani
- Tissue Injury Branch, National Institutes of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Dilorom Sass
- Tissue Injury Branch, National Institutes of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Rany Vorn
- Tissue Injury Branch, National Institutes of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Bao-Xi Qu
- Tissue Injury Branch, National Institutes of Nursing Research, National Institutes of Health, Bethesda, MD, United States.,Center for Neuroscience and Rehabilitation Medicine, Uniformed Services University of the Health Sciences and National Institutes of Health, Bethesda, MD, United States
| | - Heather L Rusch
- Tissue Injury Branch, National Institutes of Nursing Research, National Institutes of Health, Bethesda, MD, United States.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Carina A Martin
- Tissue Injury Branch, National Institutes of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - William C Walker
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - Elisabeth A Wilde
- CENC Neuroimaging Core, George E. Wahlen VA Salt Lake City Healthcare System and Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Jessica M Gill
- CENC Biorepository, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Johns Hopkins University School of Nursing and Medicine, Baltimore, MD, United States
| | - Kimbra Kenney
- CENC Biorepository, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
6
|
Osgood C, Ahmed Z, Di Pietro V. Co-Expression Network Analysis of MicroRNAs and Proteins in Severe Traumatic Brain Injury: A Systematic Review. Cells 2021; 10:cells10092425. [PMID: 34572074 PMCID: PMC8465595 DOI: 10.3390/cells10092425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) represents one of the leading causes of mortality and morbidity worldwide, placing an enormous socioeconomic burden on healthcare services and communities around the world. Survivors of TBI can experience complications ranging from temporary neurological and psychosocial problems to long-term, severe disability and neurodegenerative disease. The current lack of therapeutic agents able to mitigate the effects of secondary brain injury highlights the urgent need for novel target discovery. This study comprises two independent systematic reviews, investigating both microRNA (miRNA) and proteomic expression in rat models of severe TBI (sTBI). The results were combined to perform integrated miRNA-protein co-expression analyses with the aim of uncovering the potential roles of miRNAs in sTBI and to ultimately identify new targets for therapy. Thirty-four studies were included in total. Bioinformatic analysis was performed to identify any miRNA–protein associations. Endocytosis and TNF signalling pathways were highlighted as common pathways involving both miRNAs and proteins found to be differentially expressed in rat brain tissue following sTBI, suggesting efforts to find novel therapeutic targets that should be focused here. Further high-quality investigations are required to ascertain the involvement of these pathways and their miRNAs in the pathogenesis of TBI and other CNS diseases and to therefore uncover those targets with the greatest therapeutic potential.
Collapse
Affiliation(s)
- Claire Osgood
- Neuroscience and Ophthalmology Group, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Zubair Ahmed
- Neuroscience and Ophthalmology Group, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Surgical Reconstruction and Microbiology Research Centre, National Institute for Health Research, Queen Elizabeth Hospital, Birmingham B15 2TH, UK
- Correspondence: (Z.A.); (V.D.P.)
| | - Valentina Di Pietro
- Neuroscience and Ophthalmology Group, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Surgical Reconstruction and Microbiology Research Centre, National Institute for Health Research, Queen Elizabeth Hospital, Birmingham B15 2TH, UK
- Correspondence: (Z.A.); (V.D.P.)
| |
Collapse
|
7
|
Huibregtse ME, Bazarian JJ, Shultz SR, Kawata K. The biological significance and clinical utility of emerging blood biomarkers for traumatic brain injury. Neurosci Biobehav Rev 2021; 130:433-447. [PMID: 34474049 DOI: 10.1016/j.neubiorev.2021.08.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022]
Abstract
HUIBREGTSE, M.E, Bazarian, J.J., Shultz, S.R., and Kawata K. The biological significance and clinical utility of emerging blood biomarkers for traumatic brain injury. NEUROSCI BIOBEHAV REV XX (130) 433-447, 2021.- Blood biomarkers can serve as objective measures to gauge traumatic brain injury (TBI) severity, identify patients at risk for adverse outcomes, and predict recovery duration, yet the clinical use of blood biomarkers for TBI is limited to a select few and only to rule out the need for CT scanning. The biomarkers often examined in neurotrauma research are proteomic markers, which can reflect a range of pathological processes such as cellular damage, astrogliosis, or neuroinflammation. However, proteomic blood biomarkers are vulnerable to degradation, resulting in short half-lives. Emerging biomarkers for TBI may reflect the complex genetic and neurometabolic alterations that occur following TBI that are not captured by proteomics, are less vulnerable to degradation, and are comprised of microRNA, extracellular vesicles, and neurometabolites. Therefore, this review aims to summarize our understanding of how biomarkers for brain injury escape the brain parenchymal space and appear in the bloodstream, update recent research findings in several proteomic biomarkers, and characterize biological significance and examine clinical utility of microRNA, extracellular vesicles, and neurometabolites.
Collapse
Affiliation(s)
- Megan E Huibregtse
- Department of Kinesiology, School of Public Health, Indiana University, 1025 E 7th St, Suite 112, Bloomington, IN 47405, USA.
| | - Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester Medical Center, 200 E River Rd, Rochester, NY 14623, USA.
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, The Alfred Centre, Level 6, 99 Commercial Road, Melbourne, VIC 3004, Australia; Department of Medicine, University of Melbourne, Clinical Sciences Building, 4th Floor, 300 Grattan St, Parkville, VIC 3050, Australia.
| | - Keisuke Kawata
- Department of Kinesiology, School of Public Health, Indiana University, 1025 E 7th St, Suite 112, Bloomington, IN 47405, USA; Program in Neuroscience, College of Arts and Sciences, Indiana University, 1101 E 10th St, Bloomington, IN 47405, USA.
| |
Collapse
|
8
|
miRNAs as Potential Biomarkers for Traumatic Brain Injury: Pathway From Diagnosis to Neurorehabilitation. J Head Trauma Rehabil 2020; 36:E155-E169. [PMID: 33201038 DOI: 10.1097/htr.0000000000000632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Biomarkers that can advance precision neurorehabilitation of the traumatic brain injury (TBI) are needed. MicroRNAs (miRNAs) have biological properties that could make them well suited for playing key roles in differential diagnoses and prognoses and informing likelihood of responsiveness to specific treatments. OBJECTIVE To review the evidence of miRNA alterations after TBI and evaluate the state of science relative to potential neurorehabilitation applications of TBI-specific miRNAs. METHODS This scoping review includes 57 animal and human studies evaluating miRNAs after TBI. PubMed, Scopus, and Google Scholar search engines were used. RESULTS Gold standard analytic steps for miRNA biomarker assessment are presented. Published studies evaluating the evidence for miRNAs as potential biomarkers for TBI diagnosis, severity, natural recovery, and treatment-induced outcomes were reviewed including statistical evaluation. Growing evidence for specific miRNAs, including miR21, as TBI biomarkers is presented. CONCLUSIONS There is evidence of differential miRNA expression in TBI in both human and animal models; however, gaps need to be filled in terms of replication using rigorous, standardized methods to isolate a consistent set of miRNA changes. Longitudinal studies in TBI are needed to understand how miRNAs could be implemented as biomarkers in clinical practice.
Collapse
|
9
|
Korotkov A, Puhakka N, Gupta SD, Vuokila N, Broekaart DWM, Anink JJ, Heiskanen M, Karttunen J, van Scheppingen J, Huitinga I, Mills JD, van Vliet EA, Pitkänen A, Aronica E. Increased expression of miR142 and miR155 in glial and immune cells after traumatic brain injury may contribute to neuroinflammation via astrocyte activation. Brain Pathol 2020; 30:897-912. [PMID: 32460356 PMCID: PMC7540383 DOI: 10.1111/bpa.12865] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/17/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is associated with the pathological activation of immune-competent cells in the brain, such as astrocytes, microglia and infiltrating immune blood cells, resulting in chronic inflammation and gliosis. This may contribute to the secondary injury after TBI, thus understanding of these processes is crucial for the development of effective treatments of post-traumatic pathologies. MicroRNAs (miRNAs, miRs) are small noncoding RNAs, functioning as posttranscriptional regulators of gene expression. The increased expression of inflammation-associated microRNAs miR155 and miR142 has been reported after TBI in rats. However, expression of these miRNAs in the human brain post-TBI is not studied and their functions are not well understood. Moreover, circulating miR155 and miR142 are candidate biomarkers. Therefore, we characterized miR142 and miR155 expression in the perilesional cortex and plasma of rats that underwent lateral fluid-percussion injury, a model for TBI and in the human perilesional cortex post-TBI. We demonstrated higher miR155 and miR142 expression in the perilesional cortex of rats 2 weeks post-TBI. In plasma, miR155 was associated with proteins and miR142 with extracellular vesicles, however their expression did not change. In the human perilesional cortex miR155 was most prominently expressed by activated astrocytes, whereas miR142 was expressed predominantly by microglia, macrophages and lymphocytes. Pro-inflammatory medium from macrophage-like cells stimulated miR155 expression in astrocytes and overexpression of miR142 in these cells further potentiated a pro-inflammatory state of activated astrocytes. We conclude that miR155 and miR142 promote brain inflammation via astrocyte activation and may be involved in the secondary brain injury after TBI.
Collapse
Affiliation(s)
- Anatoly Korotkov
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
| | - Noora Puhakka
- Department of Neurology, A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Shalini Das Gupta
- Department of Neurology, A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Niina Vuokila
- Department of Neurology, A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Diede W. M. Broekaart
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
| | - Jasper J. Anink
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
| | - Mette Heiskanen
- Department of Neurology, A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Jenni Karttunen
- Department of Neurology, A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Jackelien van Scheppingen
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
- Department of NeuroimmunologyNetherlands Institute for NeuroscienceMeibergdreef 47Amsterdam1105 BAthe Netherlands
| | - Inge Huitinga
- Department of NeuroimmunologyNetherlands Institute for NeuroscienceMeibergdreef 47Amsterdam1105 BAthe Netherlands
| | - James D. Mills
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
| | - Erwin A. van Vliet
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
- Swammerdam Institute for Life Sciences, Center for NeuroscienceUniversity of AmsterdamScience Park 904Amsterdam1090 GEthe Netherlands
| | - Asla Pitkänen
- Department of Neurology, A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamMeibergdreef 9Amsterdam1105 AZthe Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN)Heemstedethe Netherlands
| |
Collapse
|
10
|
Vuokila N, Aronica E, Korotkov A, van Vliet EA, Nuzhat S, Puhakka N, Pitkänen A. Chronic Regulation of miR-124-3p in the Perilesional Cortex after Experimental and Human TBI. Int J Mol Sci 2020; 21:ijms21072418. [PMID: 32244461 PMCID: PMC7177327 DOI: 10.3390/ijms21072418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) dysregulates microRNAs, which are the master regulators of gene expression. Here we investigated the changes in a brain-enriched miR-124-3p, which is known to associate with major post-injury pathologies, such as neuroinflammation. RT-qPCR of the rat tissue sampled at 7 d and 3 months in the perilesional cortex adjacent to the necrotic lesion core (aPeCx) revealed downregulation of miR-124-3p at 7 d (fold-change (FC) 0.13, p < 0.05 compared with control) and 3 months (FC 0.40, p < 0.05) post-TBI. In situ hybridization confirmed the downregulation of miR-124-3p at 7 d and 3 months post-TBI in the aPeCx (both p < 0.01). RT-qPCR confirmed the upregulation of the miR-124-3p target Stat3 in the aPeCx at 7 d post-TBI (7-fold, p < 0.05). mRNA-Seq revealed 312 downregulated and 311 upregulated miR-124 targets (p < 0.05). To investigate whether experimental findings translated to humans, we performed in situ hybridization of miR-124-3p in temporal lobe autopsy samples of TBI patients. Our data revealed downregulation of miR-124-3p in individual neurons of cortical layer III. These findings indicate a persistent downregulation of miR-124-3p in the perilesional cortex that might contribute to post-injury neurodegeneration and inflammation.
Collapse
Affiliation(s)
- Niina Vuokila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (N.V.); (S.N.); (A.P.)
| | - Eleonora Aronica
- Department of (Neuro)pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.A.); (A.K.); (E.A.v.V.)
- Stichting Epilepsie Instellingen Nederland (SEIN), 0397 Heemstede, The Netherlands
| | - Anatoly Korotkov
- Department of (Neuro)pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.A.); (A.K.); (E.A.v.V.)
| | - Erwin Alexander van Vliet
- Department of (Neuro)pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.A.); (A.K.); (E.A.v.V.)
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, P.O. Box 94246, 1090 GE Amsterdam, The Netherlands
| | - Salma Nuzhat
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (N.V.); (S.N.); (A.P.)
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (N.V.); (S.N.); (A.P.)
- Correspondence: ; Tel.: +358-40-861-4939
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (N.V.); (S.N.); (A.P.)
| |
Collapse
|
11
|
Anderson J, Patel M, Forenzo D, Ai X, Cai C, Wade Q, Risman R, Cai L. A novel mouse model for the study of endogenous neural stem and progenitor cells after traumatic brain injury. Exp Neurol 2020; 325:113119. [PMID: 31751572 PMCID: PMC10885014 DOI: 10.1016/j.expneurol.2019.113119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/23/2019] [Accepted: 11/16/2019] [Indexed: 11/29/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in the US. Neural stem/progenitor cells (NSPCs) persist in the adult brain and represent a potential cell source for tissue regeneration and wound healing after injury. The Notch signaling pathway is critical for embryonic development and adult brain injury response. However, the specific role of Notch signaling in the injured brain is not well characterized. Our previous study has established a Notch1CR2-GFP reporter mouse line in which the Notch1CR2 enhancer directs GFP expression in NSPCs and their progeny. In this study, we performed closed head injury (CHI) in the Notch1CR2-GFP mice to study the response of injury-activated NSPCs. We show that CHI induces neuroinflammation, cell death, and the expression of typical TBI markers (e.g., ApoE, Il1b, and Tau), validating the animal model. In addition, CHI induces cell proliferation in GFP+ cells expressing NSPC markers, e.g., Notch1 and Nestin. A significant higher percentage of GFP+ astrocytes and GABAergic neurons was observed in the injured brain, with no significant change in oligodendrocyte lineage between the CHI and sham animal groups. Since injury is known to activate astrogliosis, our results suggest that injury-induced GFP+ NSPCs preferentially differentiate into GABAergic neurons. Our study establishes that Notch1CR2-GFP transgenic mouse is a useful tool for the study of NSPC behavior in vivo after TBI. Unveiling the potential of NSPCs response to TBI (e.g., proliferation and differentiation) will identify new therapeutic strategy for the treatment of brain trauma.
Collapse
Affiliation(s)
- Jeremy Anderson
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Misaal Patel
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Dylan Forenzo
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Xin Ai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Catherine Cai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Quinn Wade
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Rebecca Risman
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Li Cai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America.
| |
Collapse
|
12
|
He XY, Dan QQ, Wang F, Li YK, Fu SJ, Zhao N, Wang TH. Protein Network Analysis of the Serum and Their Functional Implication in Patients Subjected to Traumatic Brain Injury. Front Neurosci 2019; 12:1049. [PMID: 30766469 PMCID: PMC6365836 DOI: 10.3389/fnins.2018.01049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/24/2018] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) often leads to severe neurobehavioral impairment, but the underlying molecular mechanism remains to be elucidated. Here, we collected the sera from 23 patients (aged from 19 to 81 years old, third day after TBI as TBI-third group) subjected to TBI from The First Hospital of Kunming City, and the sera from 22 healthy donors (aged from 18 to 81 years old and as control group). Then, three samples from TBI-third group and three samples from control group were subjected to the protein microarray detection, and bioinformatics analysis. Then, enzyme-linked immunosorbent assay (ELISA) was used to verify significantly altered protein levels. Results showed that, when compared with the control group, all significantly differentially expressed proteins [DEPs, P < 0.05, FDR < 0.05, fold change (FC) > 2] contained 172 molecules in the TBI-third group, in which 65 proteins were upregulated, while 107 proteins were downregulated. The biological processes of these DEPs, mostly happened in the extracellular region and the extracellular region parts, are mainly involved in the regulation of cellular process, signaling and signal transduction, cell communication, response to stimuli, the immune system process and multicellular organismal development. Moreover, the essential molecular functions of them are cytokine activity, growth factor activity and morphogen activity. Additionally, the most significant pathways are enriched in cytokine–cytokine receptor interaction and PI3K-Akt signaling pathways among downregulated proteins, and pathways in cancer and cytokine–cytokine receptor interaction among upregulated proteins. Of these, we focused on the NGF, NT-3, IGF-2, HGF, NPY, CRP, MMP-9, and ICAM-2 with a high number of interactors in Protein–Protein Interaction (PPI) Network indicated by bioinformatics report. Furthermore, using ELISA test, we confirmed that all increase in the levels of NGF, NT-3, IGF-2, HGF, NPY, CRP, MMP-9, and ICAM-2 in the serum from TBI patients. Together, we determined the screened protein expressional profiles in serum for TBI patients, in which the cross-network between inflammatory factors and growth factors may play a crucial role in TBI damage and repair. Our findings could contribute to indication for the diagnosis and treatment of TBI in future translational medicine and clinical practice.
Collapse
Affiliation(s)
- Xiu-Ying He
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qi-Qin Dan
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Wang
- Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| | - Yu-Kai Li
- Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| | - Song-Jun Fu
- Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| | - Nan Zhao
- Department of Neurosurgery, The First Hospital of Kunming, Kunming, China
| | - Ting-Hua Wang
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| |
Collapse
|
13
|
LaRocca D, Barns S, Hicks SD, Brindle A, Williams J, Uhlig R, Johnson P, Neville C, Middleton FA. Comparison of serum and saliva miRNAs for identification and characterization of mTBI in adult mixed martial arts fighters. PLoS One 2019; 14:e0207785. [PMID: 30601825 PMCID: PMC6314626 DOI: 10.1371/journal.pone.0207785] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide, with mild TBI (mTBI) accounting for 85% of cases. mTBI is also implicated in serious long-term sequelae including second impact syndrome and chronic traumatic encephalopathy. mTBI often goes undiagnosed due to delayed symptom onset and limited sensitivity of conventional assessment measures compared with severe TBI. Current efforts seek to identify accurate and reliable non-invasive biomarkers associated with functional measures relevant to long-term outcomes. Here we evaluated the utility of serum and salivary microRNAs (miRNAs) to serve as sensitive and specific peripheral biomarkers of possible mTBI. Our primary objectives were to establish the relationship between peripheral measures of miRNA, objective quantification of head impacts, and sensitive indices of balance and cognitive function in healthy young adult athletes. A secondary objective was to compare the sensitivity of miRNA versus commonly used blood-based protein biomarkers. 50 amateur mixed martial arts (MMA) fighters participated. 216 saliva and serum samples were collected at multiple time points, both pre- and post-fight. Levels of 10 serum proteins were compared in a subset of the fighters (n = 24). Levels of miRNAs were obtained by next generation sequencing. Functional outcomes were evaluated using a computerized assessment system that measured cognitive performance, body sway, and combined cognitive performance and body sway during dual task completion. Data were analyzed using multivariate logistic regression for predictive classification, analysis of variance, correlation analysis and principal component analysis. We identified a subset of salivary and serum miRNAs that showed robust utility at predicting TBI likelihood and demonstrated quantitative associations with head impacts as well as cognitive and balance measures. In contrast, serum proteins demonstrated far less utility. We also found that the timing of the responses varies in saliva and serum, which is a critical observation for biomarker studies to consider.
Collapse
Affiliation(s)
- Daria LaRocca
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY United States of America
| | - Sarah Barns
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY United States of America
- Quadrant Biosciences, Inc., 405 Irving Avenue, Syracuse, NY, United States of America
| | - Steven D. Hicks
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States of America
| | - Andrew Brindle
- Quadrant Biosciences, Inc., 405 Irving Avenue, Syracuse, NY, United States of America
| | - Jeremy Williams
- Quadrant Biosciences, Inc., 405 Irving Avenue, Syracuse, NY, United States of America
| | - Richard Uhlig
- Quadrant Biosciences, Inc., 405 Irving Avenue, Syracuse, NY, United States of America
| | - Paul Johnson
- College of Health Professions—Clinical Laboratory Science, SUNY Upstate Medical University, Syracuse, NY, United States of America
| | - Christopher Neville
- Department of Physical Therapy Education, SUNY Upstate Medical University, Syracuse, NY, United States of America
| | - Frank A. Middleton
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY United States of America
- Department of Psychiatry & Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, United States of America
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States of America
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, United States of America
- * E-mail:
| |
Collapse
|
14
|
Vuokila N, Lukasiuk K, Bot AM, van Vliet EA, Aronica E, Pitkänen A, Puhakka N. miR-124-3p is a chronic regulator of gene expression after brain injury. Cell Mol Life Sci 2018; 75:4557-4581. [PMID: 30155647 PMCID: PMC11105702 DOI: 10.1007/s00018-018-2911-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/02/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) initiates molecular and cellular pathologies that underlie post-injury morbidities, including hippocampus-related memory decline and epileptogenesis. Non-coding small RNAs are master regulators of gene expression with the potential to affect multiple molecular pathways. To evaluate whether hippocampal gene expression networks are chronically regulated by microRNAs after TBI, we sampled the dentate gyrus of rats with severe TBI induced by lateral fluid-percussion injury 3 months earlier. Ingenuity pathway analysis revealed 30 upregulated miR-124-3p targets, suggesting that miR-124-3p is downregulated post-TBI (z-score = - 5.146, p < 0.05). Droplet digital polymerase chain reaction (ddPCR) and in situ hybridization confirmed the chronic downregulation of miR-124-3p (p < 0.05). Quantitative PCR analysis of two targets, Plp2 and Stat3, indicated that their upregulation correlated with the miR-124-3p downregulation (r = - 0.647, p < 0.05; r = - 0.629, p < 0.05, respectively). Immunohistochemical staining of STAT3 confirmed the increased protein expression. STRING analysis showed that 9 of the 30 miR-124-3p targets belonged to a STAT3 network. Reactome analysis and data mining connected the targets especially to inflammation and signal transduction. L1000CDS2 software revealed drugs (e.g., importazole, trichostatin A, and IKK-16) that could reverse the observed molecular changes. The translational value of our data was emphasized by in situ hybridization showing chronic post-traumatic downregulation of miR-124-3p in the dentate gyrus of TBI patients. Analysis of another brain injury model, status epilepticus, highlighted the fact that chronic downregulation of miR-124 is a common phenomenon after brain injury. Together, our findings indicate that miR-124-3p is a chronic modulator of molecular networks relevant to post-injury hippocampal pathologies in experimental models and in humans.
Collapse
Affiliation(s)
- Niina Vuokila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland
| | - Katarzyna Lukasiuk
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str, 02-093, Warsaw, Poland
| | - Anna Maria Bot
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str, 02-093, Warsaw, Poland
| | - Erwin A van Vliet
- Department of (Neuro)pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Amsterdam, The Netherlands
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| | - Noora Puhakka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
15
|
Genetic Pathways of Neuroregeneration in a Novel Mild Traumatic Brain Injury Model in Adult Zebrafish. eNeuro 2018; 5:eN-NWR-0208-17. [PMID: 29302617 PMCID: PMC5752677 DOI: 10.1523/eneuro.0208-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022] Open
Abstract
Mild traumatic brain injuries (mTBIs) are one of the most prevalent neurological disorders, and humans are severely limited in their ability to repair and regenerate central nervous system (CNS) tissue postinjury. However, zebrafish (Danio rerio) maintain the remarkable ability to undergo complete and functional neuroregeneration as an adult. We wish to extend knowledge of the known mechanisms of neuroregeneration by analyzing the differentially expressed genes (DEGs) in a novel adult zebrafish model of mTBI. In this study, a rodent weight drop model of mTBI was adapted to the adult zebrafish. A memory test showed significant deficits in spatial memory in the mTBI group. We identified DEGs at 3 and 21 days postinjury (dpi) through RNA-sequencing analysis. The resulting DEGs were categorized according to gene ontology (GO) categories. At 3 dpi, GO categories consisted of peak injury response pathways. Significantly, at 21 dpi, GO categories consisted of neuroregeneration pathways. Ultimately, these results validate a novel zebrafish model of mTBI and elucidate significant DEGs of interest in CNS injury and neuroregeneration.
Collapse
|
16
|
Nagalakshmi B., Sagarkar S, Sakharkar AJ. Epigenetic Mechanisms of Traumatic Brain Injuries. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:263-298. [DOI: 10.1016/bs.pmbts.2017.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|