1
|
Vanderkolff SM, Maibauer I, Amin N. Beyond sight: environmental interaction with the hands or feet? J Neurophysiol 2025; 133:622-624. [PMID: 39819198 DOI: 10.1152/jn.00548.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
How humans perceive the texture of a surface can inform and guide how their interaction takes place. From grasping a glass to walking on icy steps, the information we gather from the surfaces we interact with is instrumental to the success of our movements. However, the hands and feet differ in their ability to explore and identify textures. Higher concentrations of mechanoreceptors in the fingertips provide tactile information to help modulate force and grip whereas the receptors of the feet help to inform surface texture and aid in balance. Cleland et al. (J Neurophysiol 132: 643-652, 2024), explores the relationship between texture perception, mode of exploration, and region of body used to explore said texture (hands vs. feet). This research is especially important in the context of understanding how texture perception affects stability, how hands and feet differ in their management and execution of tasks, and how this is adjusted in special populations of visually impaired individuals.
Collapse
Affiliation(s)
- Samia M Vanderkolff
- School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, Indiana, United States
| | - Isaac Maibauer
- School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, Indiana, United States
| | - Niyati Amin
- School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, Indiana, United States
| |
Collapse
|
2
|
Spasokukotskiy K. Synthetic consciousness architecture. Front Robot AI 2024; 11:1437496. [PMID: 39669909 PMCID: PMC11634756 DOI: 10.3389/frobt.2024.1437496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024] Open
Abstract
This paper presents a theoretical inquiry into the domain of secure artificial superintelligence (ASI). The paper introduces an architectural pattern tailored to fulfill friendly alignment criteria. Friendly alignment refers to a failsafe artificial intelligence alignment that lacks supervision while still having a benign effect on humans. The proposed solution is based on a biomimetic approach to emulate the functional aspects of biological consciousness. It establishes "morality" that secures alignment in large systems. The emulated function set is drawn from a cross section of evolutionary and psychiatric frameworks. Furthermore, the paper assesses the architectural potential, practical utility, and limitations of this approach. Notably, the architectural pattern supports straightforward implementation by activating existing foundation models. The models can be underpinned by simple algorithms. Simplicity does not hinder the production of high derivatives, which contribute to alignment strength. The architectural pattern enables the adjustment of alignment strength, enhancing the adaptability and usability of the solution in practical applications.
Collapse
|
3
|
Sacco A, Gordon SG, Lomber SG. Gray matter volume of the feline cerebral cortex and structural plasticity following perinatal deafness. Neuroimage 2024; 299:120813. [PMID: 39182711 DOI: 10.1016/j.neuroimage.2024.120813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024] Open
Abstract
In response to sensory deprivation, the brain adapts according to contemporary demands to efficiently navigate a modified perceptual environment. This reorganization may result in improved processing of the remaining senses-a phenomenon referred to as compensatory crossmodal plasticity. One approach to explore this neuroplasticity is to consider the macrostructural changes in neural tissue that mirror this functional optimization. The current study is the first of its kind to measure MRI-derived gray matter (GM) volumes of control felines (n=30), while additionally identifying volumetric differences in response to perinatal deafness (30 ototoxically-deafened cats). To accomplish this purpose, regional and morphometric methods were performed in parallel. The regional analysis evaluated volumetric alterations of global GM, as well as the volumes of 146 regions of interest (ROIs) and 12 functional subgroupings of these ROIs. Results revealed whole-brain GM preservation; however, somatosensory and visual cortices exhibited an overall increase in volume. On a smaller scale, this analysis uncovered two auditory ROIs (second auditory cortex, A2, and ventral auditory field, VAF) that decreased in volume alongside two visual regions (anteromedial lateral suprasylvian area, AMLS and splenial visual area, SVA) that increased-all localized within the right hemisphere. Comparatively, the findings of tensor-based morphometry (TBM) generally aligned with those of the ROI-based method, as this voxel-wise approach demonstrated clusters of expansion coincident with visual- and somatosensory-related loci; although, it failed to detect any GM reductions following deafness. As distinct differences were identified in each analysis, the current study highlights the importance of employing multiple methods when exploring MRI volumetry. Overall, this study proposes that volumetric alterations within sensory loci allude to a redistribution of cortical space arising from modified perceptual demands following auditory deprivation.
Collapse
Affiliation(s)
- Alessandra Sacco
- Integrated Program in Nseuroscience, McGill University, Montreal, Quebec, Canada
| | - Stephen G Gordon
- Integrated Program in Nseuroscience, McGill University, Montreal, Quebec, Canada
| | - Stephen G Lomber
- Integrated Program in Nseuroscience, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Jiao S, Wang K, Luo Y, Zeng J, Han Z. Plastic reorganization of the topological asymmetry of hemispheric white matter networks induced by congenital visual experience deprivation. Neuroimage 2024; 299:120844. [PMID: 39260781 DOI: 10.1016/j.neuroimage.2024.120844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/01/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024] Open
Abstract
Congenital blindness offers a unique opportunity to investigate human brain plasticity. The influence of congenital visual loss on the asymmetry of the structural network remains poorly understood. To address this question, we recruited 21 participants with congenital blindness (CB) and 21 age-matched sighted controls (SCs). Employing diffusion and structural magnetic resonance imaging, we constructed hemispheric white matter (WM) networks using deterministic fiber tractography and applied graph theory methodologies to assess topological efficiency (i.e., network global efficiency, network local efficiency, and nodal local efficiency) within these networks. Statistical analyses revealed a consistent leftward asymmetry in global efficiency across both groups. However, a different pattern emerged in network local efficiency, with the CB group exhibiting a symmetric state, while the SC group showed a leftward asymmetry. Specifically, compared to the SC group, the CB group exhibited a decrease in local efficiency in the left hemisphere, which was caused by a reduction in the nodal properties of some key regions mainly distributed in the left occipital lobe. Furthermore, interhemispheric tracts connecting these key regions exhibited significant structural changes primarily in the splenium of the corpus callosum. This result confirms the initial observation that the reorganization in asymmetry of the WM network following congenital visual loss is associated with structural changes in the corpus callosum. These findings provide novel insights into the neuroplasticity and adaptability of the brain, particularly at the network level.
Collapse
Affiliation(s)
- Saiyi Jiao
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Ke Wang
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; School of System Science, Beijing Normal University, Beijing 100875, China
| | - Yudan Luo
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Department of Psychology and Art Education, Chengdu Education Research Institute, Chengdu 610036, China
| | - Jiahong Zeng
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Zaizhu Han
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
5
|
Cui W, Chen B, He J, Fan G, Wang S. Dynamic functional network connectivity in children with profound bilateral congenital sensorineural hearing loss. Pediatr Radiol 2024; 54:1738-1747. [PMID: 39134864 DOI: 10.1007/s00247-024-06022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Functional magnetic resonance imaging (fMRI) studies have revealed extensive functional reorganization in patients with sensorineural hearing loss (SNHL). However, almost no study focuses on the dynamic functional connectivity after hearing loss. OBJECTIVE This study aimed to investigate dynamic functional connectivity changes in children with profound bilateral congenital SNHL under the age of 3 years. MATERIALS AND METHODS Thirty-two children with profound bilateral congenital SNHL and 24 children with normal hearing were recruited for the present study. Independent component analysis identified 18 independent components composing five resting-state networks. A sliding window approach was used to acquire dynamic functional matrices. Three states were identified using the k-means algorithm. Then, the differences in temporal properties and the variance of network efficiency between groups were compared. RESULTS The children with SNHL showed longer mean dwell time and decreased functional connectivity between the auditory network and sensorimotor network in state 3 (P < 0.05), which was characterized by relatively stronger functional connectivity between high-order resting-state networks and motion and perception networks. There was no difference in the variance of network efficiency. CONCLUSIONS These results indicated the functional reorganization due to hearing loss. This study also provided new perspectives for understanding the state-dependent connectivity patterns in children with SNHL.
Collapse
Affiliation(s)
- Wenzhuo Cui
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Boyu Chen
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Jiachuan He
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Shanshan Wang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China.
| |
Collapse
|
6
|
Ahulló-Fuster MA, Sánchez-Sánchez ML, Varela-Donoso E, Ortiz T. Early attentional processing and cortical remapping strategies of tactile stimuli in adults with an early and late-onset visual impairment: A cross-sectional study. PLoS One 2024; 19:e0306478. [PMID: 38980866 PMCID: PMC11232978 DOI: 10.1371/journal.pone.0306478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
Neuroplastic changes appear in people with visual impairment (VI) and they show greater tactile abilities. Improvements in performance could be associated with the development of enhanced early attentional processes based on neuroplasticity. Currently, the various early attentional and cortical remapping strategies that are utilized by people with early (EB) and late-onset blindness (LB) remain unclear. Thus, more research is required to develop effective rehabilitation programs and substitution devices. Our objective was to explore the differences in spatial tactile brain processing in adults with EB, LB and a sighted control group (CG). In this cross-sectional study 27 participants with VI were categorized into EB (n = 14) and LB (n = 13) groups. They were then compared with a CG (n = 15). A vibrotactile device and event-related potentials (ERPs) were utilized while participants performed a spatial tactile line recognition task. The P100 latency and cortical areas of maximal activity were analyzed during the task. The three groups had no statistical differences in P100 latency (p>0.05). All subjects showed significant activation in the right superior frontal areas. Only individuals with VI activated the left superior frontal regions. In EB subjects, a higher activation was found in the mid-frontal and occipital areas. A higher activation of the mid-frontal, anterior cingulate cortex and orbitofrontal zones was observed in LB participants. Compared to the CG, LB individuals showed greater activity in the left orbitofrontal zone, while EB exhibited greater activity in the right superior parietal cortex. The EB had greater activity in the left orbitofrontal region compared to the LB. People with VI may not have faster early attentional processing. EB subjects activate the occipital lobe and right superior parietal cortex during tactile stimulation because of an early lack of visual stimuli and a multimodal information processing. In individuals with LB and EB the orbitofrontal area is activated, suggesting greater emotional processing.
Collapse
Affiliation(s)
- Mónica-Alba Ahulló-Fuster
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, Complutense University of Madrid, Madrid, Spain
| | - M. Luz Sánchez-Sánchez
- Physiotherapy in Motion, Multispeciality Research Group (PTinMOTION), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Enrique Varela-Donoso
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, Complutense University of Madrid, Madrid, Spain
| | - Tomás Ortiz
- Department of Legal Medicine, Psychiatry and Pathology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
7
|
Shindo M, Terao M, Takada S, Ichinose M, Matsuzaka E, Yokoi T, Azuma N, Mizuno S, Tsumura H. Establishment and visual analysis of CBA/J-Pde6b Y347Y/Y347X and C3H/HeJ-Pde6b Y347Y/Y347X mice. Exp Anim 2024; 73:203-210. [PMID: 38171880 PMCID: PMC11091356 DOI: 10.1538/expanim.23-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
In CBA/J and C3H/HeJ mice, retinitis pigmentosa is inherited as an autosomal-recessive trait due to a mutation in Pde6b, which encodes cGMP phosphodiesterase subunit b. In these strains, the Y347X mutation in Pde6b leads to the upregulation of cGMP levels, increased Ca2+ influx induces rod death, and the outer segment and rod cells entirely disappeared by 35 days after birth. In the present study, we utilized the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9-mediated gene editing to repair the Y347X mutation in CBA/J and C3H/HeJ mice. Evaluation of the established CBA/J-Pde6bY347Y/Y347X and C3H/HeJ-Pde6bY347Y/Y347X mice, which were confirmed to have normal retinal layers by live fundoscopic imaging and histopathological analysis, revealed improved visual acuity based on the visual cliff and light/dark latency tests. Furthermore, our analyses revealed that the visible platform test was a more effective tool for testing visual behavior in these mice. The results suggest that the established strains can serve as control groups for CBA/J and C3H/HeJ in ophthalmology studies involving retinitis pigmentosa.
Collapse
Affiliation(s)
- Miyuki Shindo
- Division of Laboratory Animal Resources, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Minoru Ichinose
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Emiko Matsuzaka
- Department of Ophthalmology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Tadashi Yokoi
- Department of Ophthalmology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Noriyuki Azuma
- Department of Ophthalmology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hideki Tsumura
- Division of Laboratory Animal Resources, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
8
|
Hamadah K, Velagapudi M, Navarro JJ, Pirotte A, Obersteadt C. Best Practices for Treating Blind and Visually Impaired Patients in the Emergency Department: A Scoping Review. West J Emerg Med 2024; 25:350-357. [PMID: 38801041 PMCID: PMC11112656 DOI: 10.5811/westjem.61686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/21/2023] [Accepted: 01/19/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Blind and visually impaired individuals, an under-represented population of the emergency department (ED), possess comorbidities and have a higher chance of in-hospital sequelae, including falls. This potentially vulnerable population, if not treated mindfully, can be subject to decreased quality of care, recurrent and/or longer hospitalizations, persistence of health issues, increased incidence of falls, and higher healthcare costs. For these reasons, it is crucial to implement holistic practices and train clinicians to treat blind and visually impaired patients in the ED setting. Methods We identified and used a comprehensive article describing best practices for the care of blind and visually impaired patients to establish the ED-specific recommendations presented in this paper. A scoping review of the literature was then performed using PubMed to identify additional articles to support each recommendation. To ensure that recommendations could be implemented in a representative, scalable, and sustainable manner, we consulted an advocate for the blind to help refine and provide additional suggestions. Results We identified 14 recommendations that focus on communication strategies, ED resource access, and continuity of care. The main recommendation is for the clinician to support the unique healthcare needs of the visually impaired individual and maintain the patient's autonomy. Another recommendation is the consistent use of assistive devices (eg, canes, guide dogs) to aid patients to safely ambulate in the ED. Also identified as best practices were discharge education with the use of a screen reader and timely follow-up with a primary care physician. Conclusion While we summarize a variety of recommendations in this article, it is important to implement only the strategies that work best for the patients, personnel, and environment specific to your ED. After implementation, it is vital to refine (as frequently as needed) the interventions to optimize the strategies. This will enable the provision of exceptional and equal care to blind and visually impaired patients in the ED.
Collapse
Affiliation(s)
- Kareem Hamadah
- University of Kansas School of Medicine, Kansas City, Kansas
- University of Kansas Medical Center, Kansas City, Kansas
| | - Mary Velagapudi
- University of Kansas Health System, Kansas City, Kansas
- University of Kansas Medical Center, Kansas City, Kansas
| | - Juliana J. Navarro
- University of Kansas Health System, Kansas City, Kansas
- University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew Pirotte
- University of Kansas Health System, Kansas City, Kansas
- University of Kansas Medical Center, Kansas City, Kansas
- University of Kansas Medical Center, Department of Emergency Medicine, Kansas City, Kansas
- University of Kansas Medical Center, Office of Student Affairs, Kansas City, Kansas
| | - Chris Obersteadt
- University of Kansas Health System, Kansas City, Kansas
- University of Kansas Medical Center, Kansas City, Kansas
- Rockhurst University, Kansas City, Kansas
| |
Collapse
|
9
|
Sirithunge C, Wang H, Iida F. Soft touchless sensors and touchless sensing for soft robots. Front Robot AI 2024; 11:1224216. [PMID: 38312746 PMCID: PMC10830750 DOI: 10.3389/frobt.2024.1224216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Soft robots are characterized by their mechanical compliance, making them well-suited for various bio-inspired applications. However, the challenge of preserving their flexibility during deployment has necessitated using soft sensors which can enhance their mobility, energy efficiency, and spatial adaptability. Through emulating the structure, strategies, and working principles of human senses, soft robots can detect stimuli without direct contact with soft touchless sensors and tactile stimuli. This has resulted in noteworthy progress within the field of soft robotics. Nevertheless, soft, touchless sensors offer the advantage of non-invasive sensing and gripping without the drawbacks linked to physical contact. Consequently, the popularity of soft touchless sensors has grown in recent years, as they facilitate intuitive and safe interactions with humans, other robots, and the surrounding environment. This review explores the emerging confluence of touchless sensing and soft robotics, outlining a roadmap for deployable soft robots to achieve human-level dexterity.
Collapse
Affiliation(s)
| | - Huijiang Wang
- Bio-Inspired Robotics Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
10
|
Paré S, Bleau M, Dricot L, Ptito M, Kupers R. Brain structural changes in blindness: a systematic review and an anatomical likelihood estimation (ALE) meta-analysis. Neurosci Biobehav Rev 2023; 150:105165. [PMID: 37054803 DOI: 10.1016/j.neubiorev.2023.105165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/23/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
In recent decades, numerous structural brain imaging studies investigated purported morphometric changes in early (EB) and late onset blindness (LB). The results of these studies have not yielded very consistent results, neither with respect to the type, nor to the anatomical locations of the brain morphometric alterations. To better characterize the effects of blindness on brain morphometry, we performed a systematic review and an Anatomical-Likelihood-Estimation (ALE) coordinate-based-meta-analysis of 65 eligible studies on brain structural changes in EB and LB, including 890 EB, 466 LB and 1257 sighted controls. Results revealed atrophic changes throughout the whole extent of the retino-geniculo-striate system in both EB and LB, whereas changes in areas beyond the occipital lobe occurred in EB only. We discuss the nature of some of the contradictory findings with respect to the used brain imaging methodologies and characteristics of the blind populations such as the onset, duration and cause of blindness. Future studies should aim for much larger sample sizes, eventually by merging data from different brain imaging centers using the same imaging sequences, opt for multimodal structural brain imaging, and go beyond a purely structural approach by combining functional with structural connectivity network analyses.
Collapse
Affiliation(s)
- Samuel Paré
- School of Optometry, University of Montreal, Montreal, Qc, Canada
| | - Maxime Bleau
- School of Optometry, University of Montreal, Montreal, Qc, Canada
| | - Laurence Dricot
- Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Bruxelles, Belgium
| | - Maurice Ptito
- School of Optometry, University of Montreal, Montreal, Qc, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Qc, Canada; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ron Kupers
- School of Optometry, University of Montreal, Montreal, Qc, Canada; Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Bruxelles, Belgium; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Yizhar O, Tal Z, Amedi A. Loss of action-related function and connectivity in the blind extrastriate body area. Front Neurosci 2023; 17:973525. [PMID: 36968509 PMCID: PMC10035577 DOI: 10.3389/fnins.2023.973525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
The Extrastriate Body Area (EBA) participates in the visual perception and motor actions of body parts. We recently showed that EBA’s perceptual function develops independently of visual experience, responding to stimuli with body-part information in a supramodal fashion. However, it is still unclear if the EBA similarly maintains its action-related function. Here, we used fMRI to study motor-evoked responses and connectivity patterns in the congenitally blind brain. We found that, unlike the case of perception, EBA does not develop an action-related response without visual experience. In addition, we show that congenital blindness alters EBA’s connectivity profile in a counterintuitive way—functional connectivity with sensorimotor cortices dramatically decreases, whereas connectivity with perception-related visual occipital cortices remains high. To the best of our knowledge, we show for the first time that action-related functions and connectivity in the visual cortex could be contingent on visuomotor experience. We further discuss the role of the EBA within the context of visuomotor control and predictive coding theory.
Collapse
Affiliation(s)
- Or Yizhar
- Department of Cognitive and Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Ivcher School of Psychology, The Institute for Brain, Mind and Technology, Reichman University, Herzliya, Israel
- Research Group Adaptive Memory and Decision Making, Max Planck Institute for Human Development, Berlin, Germany
- *Correspondence: Or Yizhar,
| | - Zohar Tal
- Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Amir Amedi
- Ivcher School of Psychology, The Institute for Brain, Mind and Technology, Reichman University, Herzliya, Israel
- The Ruth & Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| |
Collapse
|
12
|
Maimon A, Wald IY, Ben Oz M, Codron S, Netzer O, Heimler B, Amedi A. The Topo-Speech sensory substitution system as a method of conveying spatial information to the blind and vision impaired. Front Hum Neurosci 2023; 16:1058093. [PMID: 36776219 PMCID: PMC9909096 DOI: 10.3389/fnhum.2022.1058093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 01/27/2023] Open
Abstract
Humans, like most animals, integrate sensory input in the brain from different sensory modalities. Yet humans are distinct in their ability to grasp symbolic input, which is interpreted into a cognitive mental representation of the world. This representation merges with external sensory input, providing modality integration of a different sort. This study evaluates the Topo-Speech algorithm in the blind and visually impaired. The system provides spatial information about the external world by applying sensory substitution alongside symbolic representations in a manner that corresponds with the unique way our brains acquire and process information. This is done by conveying spatial information, customarily acquired through vision, through the auditory channel, in a combination of sensory (auditory) features and symbolic language (named/spoken) features. The Topo-Speech sweeps the visual scene or image and represents objects' identity by employing naming in a spoken word and simultaneously conveying the objects' location by mapping the x-axis of the visual scene or image to the time it is announced and the y-axis by mapping the location to the pitch of the voice. This proof of concept study primarily explores the practical applicability of this approach in 22 visually impaired and blind individuals. The findings showed that individuals from both populations could effectively interpret and use the algorithm after a single training session. The blind showed an accuracy of 74.45%, while the visually impaired had an average accuracy of 72.74%. These results are comparable to those of the sighted, as shown in previous research, with all participants above chance level. As such, we demonstrate practically how aspects of spatial information can be transmitted through non-visual channels. To complement the findings, we weigh in on debates concerning models of spatial knowledge (the persistent, cumulative, or convergent models) and the capacity for spatial representation in the blind. We suggest the present study's findings support the convergence model and the scenario that posits the blind are capable of some aspects of spatial representation as depicted by the algorithm comparable to those of the sighted. Finally, we present possible future developments, implementations, and use cases for the system as an aid for the blind and visually impaired.
Collapse
Affiliation(s)
- Amber Maimon
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Iddo Yehoshua Wald
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Meshi Ben Oz
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Sophie Codron
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Ophir Netzer
- Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Benedetta Heimler
- Center of Advanced Technologies in Rehabilitation (CATR), Sheba Medical Center, Ramat Gan, Israel
| | - Amir Amedi
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| |
Collapse
|
13
|
Nadvar N, Stiles N, Choupan J, Patel V, Ameri H, Shi Y, Liu Z, Jonides J, Weiland J. Sight restoration reverses blindness-induced cross-modal functional connectivity changes between the visual and somatosensory cortex at rest. Front Neurosci 2022; 16:902866. [PMID: 36213743 PMCID: PMC9539921 DOI: 10.3389/fnins.2022.902866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
Resting-state functional connectivity (rsFC) has been used to assess the effect of vision loss on brain plasticity. With the emergence of vision restoration therapies, rsFC analysis provides a means to assess the functional changes following sight restoration. Our study demonstrates a partial reversal of blindness-induced rsFC changes in Argus II retinal prosthesis patients compared to those with severe retinitis pigmentosa (RP). For 10 healthy control (HC), 10 RP, and 7 Argus II subjects, four runs of resting-state functional magnetic resonance imaging (fMRI) per subject were included in our study. rsFC maps were created with the primary visual cortex (V1) as the seed. The rsFC group contrast maps for RP > HC, Argus II > RP, and Argus II > HC revealed regions in the post-central gyrus (PostCG) with significant reduction, significant enhancement, and no significant changes in rsFC to V1 for the three contrasts, respectively. These findings were also confirmed by the respective V1-PostCG ROI-ROI analyses between test groups. Finally, the extent of significant rsFC to V1 in the PostCG region was 5,961 in HC, 0 in RP, and 842 mm3 in Argus II groups. Our results showed a reduction of visual-somatosensory rsFC following blindness, consistent with previous findings. This connectivity was enhanced following sight recovery with Argus II, representing a reversal of changes in cross-modal functional plasticity as manifested during rest, despite the rudimentary vision obtained by Argus II patients. Future investigation with a larger number of test subjects into this rare condition can further unveil the profound ability of our brain to reorganize in response to vision restoration.
Collapse
Affiliation(s)
- Negin Nadvar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Noelle Stiles
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Jeiran Choupan
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Vivek Patel
- Irvine School of Medicine, The University of California, Irvine, Irvine, CA, United States
| | - Hossein Ameri
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Yonggang Shi
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Zhongming Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States
| | - John Jonides
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - James Weiland
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Ahulló-Fuster MA, Ortiz T, Varela-Donoso E, Nacher J, Sánchez-Sánchez ML. The Parietal Lobe in Alzheimer’s Disease and Blindness. J Alzheimers Dis 2022; 89:1193-1202. [DOI: 10.3233/jad-220498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The progressive aging of the population will notably increase the burden of those diseases which leads to a disabling situation, such as Alzheimer’s disease (AD) and ophthalmological diseases that cause a visual impairment (VI). Eye diseases that cause a VI raise neuroplastic processes in the parietal lobe. Meanwhile, the aforementioned lobe suffers a severe decline throughout AD. From this perspective, diving deeper into the particularities of the parietal lobe is of paramount importance. In this article, we discuss the functions of the parietal lobe, review the parietal anatomical and pathophysiological peculiarities in AD, and also describe some of the changes in the parietal region that occur after VI. Although the alterations in the hippocampus and the temporal lobe have been well documented in AD, the alterations of the parietal lobe have been less thoroughly explored. Recent neuroimaging studies have revealed that some metabolic and perfusion impairments along with a reduction of the white and grey matter could take place in the parietal lobe during AD. Conversely, it has been speculated that blinding ocular diseases induce a remodeling of the parietal region which is observable through the improvement of the integration of multimodal stimuli and in the increase of the volume of this cortical region. Based on current findings concerning the parietal lobe in both pathologies, we hypothesize that the increased activity of the parietal lobe in people with VI may diminish the neurodegeneration of this brain region in those who are visually impaired by oculardiseases.
Collapse
Affiliation(s)
- Mónica Alba Ahulló-Fuster
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, University Complutense of Madrid, Spain
| | - Tomás Ortiz
- Department of Legal Medicine, Psychiatry and Pathology, Faculty of Medicine, University Complutense of Madrid, Spain
| | - Enrique Varela-Donoso
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, University Complutense of Madrid, Spain
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
- CIBERSAM, Spanish National Network for Research in Mental Health, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - M. Luz Sánchez-Sánchez
- Physiotherapy in Motion, Multispeciality Research Group (PTinMOTION), Department of Physiotherapy, University of Valencia, Valencia, Spain
| |
Collapse
|
15
|
Cui W, Wang S, Chen B, Fan G. White matter structural network alterations in congenital bilateral profound sensorineural hearing loss children: A graph theory analysis. Hear Res 2022; 422:108521. [PMID: 35660126 DOI: 10.1016/j.heares.2022.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/22/2022] [Accepted: 05/14/2022] [Indexed: 11/25/2022]
Abstract
Functional magnetic resonance imaging (fMRI) studies have revealed a functional reorganization in patients with sensorineural hearing loss (SNHL). The structural basement of functional changes has also been investigated recently. Graph theory analysis brings a new understanding of the structural connectome and topological features in central neural system diseases. However, little is known about the structural network connectome changes in SNHL patients, especially in children. We explored the differences in topologic organization, rich-club organization, and structural connection between children with congenital bilateral profound SNHL and normal hearing under the age of three using graph theory analysis and probabilistic tractography. Compared with the normal-hearing (NH) group, the SNHL group showed no difference in global and nodal topological parameters. Increased structural connection strength were found in the right cortico-striatal-thalamus-cortical circuity. Decreased cross-hemisphere connections were found between the right precuneus and the left auditory cortex as well as the left subcortical regions. Rich-club organization analysis found increased local connection in the SNHL group. These results revealed structural organizations after hearing deprivation in congenital bilateral profound SNHL children.
Collapse
Affiliation(s)
- Wenzhuo Cui
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, LN, China
| | - Shanshan Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, LN, China
| | - Boyu Chen
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, LN, China
| | - Guoguang Fan
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, LN, China.
| |
Collapse
|
16
|
Searching for individual multi-sensory fingerprints and their links with adiposity – New insights from meta-analyses and empirical data. Food Qual Prefer 2022. [DOI: 10.1016/j.foodqual.2022.104574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Topologic Reorganization of White Matter Connectivity Networks in Early-Blind Adolescents. Neural Plast 2022; 2022:8034757. [PMID: 35529452 PMCID: PMC9072039 DOI: 10.1155/2022/8034757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/28/2021] [Accepted: 04/05/2022] [Indexed: 11/18/2022] Open
Abstract
Blindness studies are important models for the comprehension of human brain development and reorganization, after visual deprivation early in life. To investigate the global and local topologic alterations and to identify specific reorganized neural patterns in early-blind adolescents (EBAs), we applied diffusion tensor tractography and graph theory to establish and analyze the white matter connectivity networks in 21 EBAs and 22 age- and sex-matched normal-sighted controls (NSCs). The network profiles were compared between the groups using a linear regression model, and the associations between clinical variables and network profiles were analyzed. Graph theory analysis revealed “small-world” attributes in the structural connection networks of both EBA and NSC cohorts. The EBA cohort exhibited significant lower network density and global and local efficiency, as well as significantly elevated shortest path length, compared to the NSC group. The network efficiencies were markedly reduced in the EBA cohort, with the largest alterations in the default-mode, visual, and limbic areas. Moreover, decreased regional efficiency and increased nodal path length in some visual and default-mode areas were strongly associated with the period of blindness in EBA cohort, suggesting that the function of these areas would gradually weaken in the early-blind brains. Additionally, the differences in hub distribution between the two groups were mainly within the occipital and frontal areas, suggesting that neural reorganization occurred in these brain regions after early visual deprivation during adolescence. This study revealed that the EBA brain structural network undergoes both convergent and divergent topologic reorganizations to circumvent early visual deprivation. Our research will add to the growing knowledge of underlying neural mechanisms that govern brain reorganization and development, under conditions of early visual deprivation.
Collapse
|
18
|
Grégoire A, Deggouj N, Dricot L, Decat M, Kupers R. Brain Morphological Modifications in Congenital and Acquired Auditory Deprivation: A Systematic Review and Coordinate-Based Meta-Analysis. Front Neurosci 2022; 16:850245. [PMID: 35418829 PMCID: PMC8995770 DOI: 10.3389/fnins.2022.850245] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 12/02/2022] Open
Abstract
Neuroplasticity following deafness has been widely demonstrated in both humans and animals, but the anatomical substrate of these changes is not yet clear in human brain. However, it is of high importance since hearing loss is a growing problem due to aging population. Moreover, knowing these brain changes could help to understand some disappointing results with cochlear implant, and therefore could improve hearing rehabilitation. A systematic review and a coordinate-based meta-analysis were realized about the morphological brain changes highlighted by MRI in severe to profound hearing loss, congenital and acquired before or after language onset. 25 papers were included in our review, concerning more than 400 deaf subjects, most of them presenting prelingual deafness. The most consistent finding is a volumetric decrease in gray matter around bilateral auditory cortex. This change was confirmed by the coordinate-based meta-analysis which shows three converging clusters in this region. The visual areas of deaf children is also significantly impacted, with a decrease of the volume of both gray and white matters. Finally, deafness is responsible of a gray matter increase within the cerebellum, especially at the right side. These results are largely discussed and compared with those from deaf animal models and blind humans, which demonstrate for example a much more consistent gray matter decrease along their respective primary sensory pathway. In human deafness, a lot of other factors than deafness could interact on the brain plasticity. One of the most important is the use of sign language and its age of acquisition, which induce among others changes within the hand motor region and the visual cortex. But other confounding factors exist which have been too little considered in the current literature, such as the etiology of the hearing impairment, the speech-reading ability, the hearing aid use, the frequent associated vestibular dysfunction or neurocognitive impairment. Another important weakness highlighted by this review concern the lack of papers about postlingual deafness, whereas it represents most of the deaf population. Further studies are needed to better understand these issues, and finally try to improve deafness rehabilitation.
Collapse
Affiliation(s)
- Anaïs Grégoire
- Department of ENT, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Naïma Deggouj
- Department of ENT, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Laurence Dricot
- Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Monique Decat
- Department of ENT, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Ron Kupers
- Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
- Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Ecole d’Optométrie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
19
|
Neural correlates associated with impaired global motion perception in cerebral visual impairment (CVI). Neuroimage Clin 2022; 32:102821. [PMID: 34628303 PMCID: PMC8501506 DOI: 10.1016/j.nicl.2021.102821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/07/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022]
Abstract
Cerebral visual impairment (CVI) is associated with impaired global motion processing. Mean motion coherence thresholds was higher in individuals with CVI. fMRI responses in area hMT+ showed an aberrant response profile in CVI. White matter tract reconstruction revealed cortico-cortical dysmyelination in CVI.
Cerebral visual impairment (CVI) is associated with a wide range of visual perceptual deficits including global motion processing. However, the underlying neurophysiological basis for these impairments remain poorly understood. We investigated global motion processing abilities in individuals with CVI compared to neurotypical controls using a combined behavioral and multi-modal neuroimaging approach. We found that CVI participants had a significantly higher mean motion coherence threshold (determined using a random dot kinematogram pattern simulating optic flow motion) compared to controls. Using functional magnetic resonance imaging (fMRI), we investigated activation response profiles in functionally defined early (i.e. primary visual cortex; area V1) and higher order (i.e. middle temporal cortex; area hMT+) stages of motion processing. In area V1, responses to increasing motion coherence were similar in both groups. However, in the CVI group, activation in area hMT+ was significantly reduced compared to controls, and consistent with a surround facilitation (rather than suppression) response profile. White matter tract reconstruction obtained from high angular resolution diffusion imaging (HARDI) revealed evidence of increased mean, axial, and radial diffusivities within cortico-cortical (i.e. V1-hMT+), but not thalamo-hMT+ connections. Overall, our results suggest that global motion processing deficits in CVI may be associated with impaired signal integration and segregation mechanisms, as well as white matter integrity at the level of area hMT+.
Collapse
|
20
|
Pieniak M, Lachowicz-Tabaczek K, Karwowski M, Oleszkiewicz A. Sensory compensation beliefs among blind and sighted individuals. Scand J Psychol 2021; 63:72-82. [PMID: 34708412 DOI: 10.1111/sjop.12781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/23/2021] [Indexed: 11/29/2022]
Abstract
The process of neural and behavioral reorganization following sensory loss is known as sensory compensation. Typically, it is believed that sensory loss is followed by increased acuity of the intact modalities. Indeed, many studies compared blind and sighted individuals' sensitivity of the intact sensory modalities. Yet, it remains poorly understood whether sensory compensation is reflected in the lay beliefs of those, whom it concerns. We examined whether blind and sighted individuals believe that their lack of vision is compensated by increased sensitivity of the intact senses. Study 1 (n = 63) aimed to compare the ratings of sensory sensitivity made by blind and sighted people. Participants rated the sensory sensitivity of a blind population in four modalities (i.e., olfaction, audition, gustation, touch) and compared it to the sensory sensitivity of a sighted population. In Study 2 (n = 191) participants rated their own sensory sensitivity in four modalities. Each participant referred to (1) people of the same sensory status and (2) people of the opposite sensory status. The level of global self-esteem was controlled to verify self-enhancing nature of these beliefs. The results of both studies showed that the beliefs about sensory compensation are shared by blind and sighted participants on group and on individual levels. The self-enhancement underpinning of these beliefs was most pronounced in gustatory sensitivity assessment. Psychological and medical consequences of sensory compensation beliefs are discussed.
Collapse
Affiliation(s)
- Michal Pieniak
- Institute of Psychology, University of Wrocław, Wrocław, Poland.,Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Dresden, Germany
| | | | | | - Anna Oleszkiewicz
- Institute of Psychology, University of Wrocław, Wrocław, Poland.,Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
21
|
Guerreiro MJS, Linke M, Lingareddy S, Kekunnaya R, Röder B. The effect of congenital blindness on resting-state functional connectivity revisited. Sci Rep 2021; 11:12433. [PMID: 34127748 PMCID: PMC8203782 DOI: 10.1038/s41598-021-91976-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Lower resting-state functional connectivity (RSFC) between 'visual' and non-'visual' neural circuits has been reported as a hallmark of congenital blindness. In sighted individuals, RSFC between visual and non-visual brain regions has been shown to increase during rest with eyes closed relative to rest with eyes open. To determine the role of visual experience on the modulation of RSFC by resting state condition-as well as to evaluate the effect of resting state condition on group differences in RSFC-, we compared RSFC between visual and somatosensory/auditory regions in congenitally blind individuals (n = 9) and sighted participants (n = 9) during eyes open and eyes closed conditions. In the sighted group, we replicated the increase of RSFC between visual and non-visual areas during rest with eyes closed relative to rest with eyes open. This was not the case in the congenitally blind group, resulting in a lower RSFC between 'visual' and non-'visual' circuits relative to sighted controls only in the eyes closed condition. These results indicate that visual experience is necessary for the modulation of RSFC by resting state condition and highlight the importance of considering whether sighted controls should be tested with eyes open or closed in studies of functional brain reorganization as a consequence of blindness.
Collapse
Affiliation(s)
- Maria J S Guerreiro
- Biological Psychology and Neuropsychology, Institute for Psychology, University of Hamburg, Von-Melle-Park 11, 20146, Hamburg, Germany.
- Biological Psychology, Department of Psychology, Carl Von Ossietzky University of Oldenburg, 26111, Oldenburg, Germany.
| | - Madita Linke
- Biological Psychology and Neuropsychology, Institute for Psychology, University of Hamburg, Von-Melle-Park 11, 20146, Hamburg, Germany
| | - Sunitha Lingareddy
- Department of Radiology, Lucid Medical Diagnostics, Banjara Hills, Hyderabad, Telengana, 500082, India
| | - Ramesh Kekunnaya
- Child Sight Institute, Jasti V. Ramanamma Children's Eye Care Center, Department of Pediatric Ophthalmology, Strabismus, and Neuro-Ophthalmology, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telengana, 500034, India
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, Institute for Psychology, University of Hamburg, Von-Melle-Park 11, 20146, Hamburg, Germany
| |
Collapse
|
22
|
Ankeeta A, Senthil Kumaran S, Saxena R, Dwivedi SN, Jagannathan NR. Visual Cortex Alterations in Early and Late Blind Subjects During Tactile Perception. Perception 2021; 50:249-265. [PMID: 33593140 DOI: 10.1177/0301006621991953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Involvement of visual cortex varies during tactile perception tasks in early blind (EB) and late blind (LB) human subjects. This study explored differences in sensory motor networks associated with tactile task in EB and LB subjects and between children and adolescents. A total of 40 EB subjects, 40 LB subjects, and 30 sighted controls were recruited in two subgroups: children (6-12 years) and adolescents (13-19 years). Data were acquired using a 3T MR scanner. Analyses of blood oxygen level dependent (BOLD), functional connectivity (FC), correlation, and post hoc test for multiple comparisons were carried out. Difference in BOLD activity was observed in EB and LB groups in visual cortex during tactile perception, with increased FC of visual with dorsal attention and sensory motor networks in EB. EB adolescents exhibited increased connectivity with default mode and salience networks when compared with LB. Functional results correlated with duration of training, suggestive of better performance in EB. Alteration in sensory and visual networks in EB and LB correlated with duration of tactile training. Age of onset of blindness has an effect in cross-modal reorganization of visual cortex in EB and multimodal in LB in children and adolescents.
Collapse
Affiliation(s)
- A Ankeeta
- 28730All India Institute of Medical Sciences, India
| | | | - Rohit Saxena
- 28730All India Institute of Medical Sciences, India
| | | | | |
Collapse
|
23
|
Büchel B, Spanninger T, Corman F. Empirical dynamics of railway delay propagation identified during the large-scale Rastatt disruption. Sci Rep 2020; 10:18584. [PMID: 33122669 PMCID: PMC7596077 DOI: 10.1038/s41598-020-75538-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/12/2020] [Indexed: 11/14/2022] Open
Abstract
Transport networks are becoming increasingly large and interconnected. This interconnectivity is a key enabler of accessibility; on the other hand, it results in vulnerability, i.e. reduced performance, in case any specific part is subject to disruptions. We analyse how railway systems are vulnerable to delay, and how delays propagate in railway networks, studying real-life delay propagation phenomena on empirical data, determining real-life impact and delay propagation for the uncommon case of railway disruptions. We take a unique approach by looking at the same system, in two different operating conditions, to disentangle processes and dynamics that are normally present and co-occurring in railway operations. We exploit the unique chance to observe a systematic change in railway operations conditions, without a correspondent system change of infrastructure or timetable, coming from the occurrence of the large-scale disruption at Rastatt, Germany, in 2017. We define new statistical methods able to detect weak signals in the noisy dataset of recorded punctuality for passenger traffic in Switzerland, in the disrupted and undisrupted state, along a period of 1 year. We determine how delay propagation changed, and quantify the heterogeneous, large-scale cascading effects of the Rastatt disruption towards the Swiss network, hundreds of kilometers away. Operational measures of transport performance (i.e. punctuality and delays), while globally being very decreased, had a statistically relevant positive increase (though very geographically heterogeneous) on the Swiss passenger traffic during the disruption period. We identify two factors for this: (1) the reduced delay propagation at an international scale; and (2) to a minor extent, rerouted railway freight traffic; which show to combine linearly in the observed outcomes.
Collapse
Affiliation(s)
- Beda Büchel
- Institute for Transport Planning and Systems, ETH Zürich, 8093, Zürich, Switzerland
| | - Thomas Spanninger
- Institute for Transport Planning and Systems, ETH Zürich, 8093, Zürich, Switzerland
| | - Francesco Corman
- Institute for Transport Planning and Systems, ETH Zürich, 8093, Zürich, Switzerland.
| |
Collapse
|
24
|
Peter MG, Fransson P, Mårtensson G, Postma EM, Nordin LE, Westman E, Boesveldt S, Lundström JN. Normal Olfactory Functional Connectivity Despite Lifelong Absence of Olfactory Experiences. Cereb Cortex 2020; 31:159-168. [PMID: 32810869 PMCID: PMC7727390 DOI: 10.1093/cercor/bhaa217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 01/18/2023] Open
Abstract
Congenital blindness is associated with atypical morphology and functional connectivity within and from visual cortical regions; changes that are hypothesized to originate from a lifelong absence of visual input and could be regarded as a general (re) organization principle of sensory cortices. Challenging this is the fact that individuals with congenital anosmia (lifelong olfactory sensory loss) display little to no morphological changes in the primary olfactory cortex. To determine whether olfactory input from birth is essential to establish and maintain normal functional connectivity in olfactory processing regions, akin to the visual system, we assessed differences in functional connectivity within the olfactory cortex between individuals with congenital anosmia (n = 33) and matched controls (n = 33). Specifically, we assessed differences in connectivity between core olfactory processing regions as well as differences in regional homogeneity and homotopic connectivity within the primary olfactory cortex. In contrast to congenital blindness, none of the analyses indicated atypical connectivity in individuals with congenital anosmia. In fact, post-hoc Bayesian analysis provided support for an absence of group differences. These results suggest that a lifelong absence of olfactory experience has a limited impact on the functional connectivity in the olfactory cortex, a finding that indicates a clear difference between sensory modalities in how sensory cortical regions develop.
Collapse
Affiliation(s)
- Moa G Peter
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Peter Fransson
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Gustav Mårtensson
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Elbrich M Postma
- Division of Human Nutrition and Health, Wageningen University, 6708 PB Wageningen, The Netherlands.,Smell and Taste Centre, Hospital Gelderse Vallei, 6716 RP Ede, The Netherlands
| | - Love Engström Nordin
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Stockholm, Sweden.,Department of Diagnostic Medical Physics, Karolinska University Hospital, 171 64 Solna, Sweden
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Stockholm, Sweden.,Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Sanne Boesveldt
- Division of Human Nutrition and Health, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Johan N Lundström
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.,Monell Chemical Senses Center, Philadelphia, PA 19104, USA.,Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Stockholm University Brain Imaging Centre, Stockholm University, 114 18 Stockholm, Sweden
| |
Collapse
|
25
|
Gilissen SR, Arckens L. Posterior parietal cortex contributions to cross-modal brain plasticity upon sensory loss. Curr Opin Neurobiol 2020; 67:16-25. [PMID: 32777707 DOI: 10.1016/j.conb.2020.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022]
Abstract
Sensory loss causes compensatory behavior, like echolocation upon vision loss or improved visual motion detection upon deafness. This is enabled by recruitment of the deprived cortical area by the intact senses. Such cross-modal plasticity can however hamper rehabilitation via sensory substitution devices. To steer rehabilitation towards the desired outcome for the patient, having control over the cross-modal take-over is essential. Evidence accumulates to support a role for the posterior parietal cortex (PPC) in multimodal plasticity. This area shows increased activity after sensory loss, keeping similar functions but driven by other senses. Patient-specific factors like stress, social situation, age and attention, have a significant influence on the PPC and on cross-modal plasticity. We propose that understanding the response of the PPC to sensory loss and context is extremely important for determining the best possible implant-based therapies, and that mouse research holds potential to help unraveling the underlying anatomical, cellular and neuromodulatory mechanisms.
Collapse
Affiliation(s)
- Sara Rj Gilissen
- KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Lutgarde Arckens
- KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
26
|
Stelmasiak A, Damaziak K, Riedel J, Zdanowska-Sąsiadek Ż, Bucław M, Gozdowski D, Kruziñska B. Assessment of poultry egg liking scores using sighted and blind people. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:421-430. [PMID: 31597199 DOI: 10.1002/jsfa.10073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/09/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Of the 18 043 bird species, the eggs of only hen and quail are generally available to consumers. Thus people are deprived of the opportunity to benefit from the huge diversity of eggs offered by nature. Poultry eggs can vary in their color of albumen and yolk, smell, taste and texture. In this study, sighted and blind people were employed for sensory evaluation with the aim of determining the preferences of consumers toward hard-boiled and scrambled eggs of different species of birds, and whether the appearance of these eggs has an effect on the perception of other sensory impressions. RESULTS Sighted people differently evaluated the texture of both boiled and scrambled eggs as compared with blind people. This was mainly because blind people largely used their sense of touch for evaluation. All other attributes of boiled eggs were evaluated similarly by both groups of panelists, whereas those of scrambled eggs were evaluated differently. CONCLUSION The obtained results unequivocally demonstrated that differences in taste of scrambled eggs when served hot are easier to evaluate than those of boiled eggs. On the basis of ranking by the sensory panel, it was established that eggs of birds belonging to the order Galliformes are more preferred by consumers than those of duck and goose. By contrast, eggs of ostrich and emu are characterized by unfavorable sensory profiles; moreover, the albumen of boiled ostrich eggs has an unsightly appearance. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Adrian Stelmasiak
- Department of Technique and Food Development, Division of Engineering in Nutrition, University of Life Sciences, Warsaw, Poland
| | - Krzysztof Damaziak
- Department of Animal Breeding and Production, Poultry Breeding Division, University of Life Sciences, Warsaw, Poland
| | - Julia Riedel
- Department of Animal Breeding and Production, Poultry Breeding Division, University of Life Sciences, Warsaw, Poland
| | - Żaneta Zdanowska-Sąsiadek
- Department of Animal Improvement, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Magdalenka, Poland
| | - Mateusz Bucław
- Department of Poultry and Ornamental Bird Breeding, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Szczecin, Poland
| | - Dariusz Gozdowski
- Department of Experimental Design and Bioinformatics, University of Life Sciences, Warsaw, Poland
| | - Brygida Kruziñska
- Department of Animal Breeding and Production, Poultry Breeding Division, University of Life Sciences, Warsaw, Poland
| |
Collapse
|
27
|
Bennett CR, Bauer CM, Bailin ES, Merabet LB. Neuroplasticity in cerebral visual impairment (CVI): Assessing functional vision and the neurophysiological correlates of dorsal stream dysfunction. Neurosci Biobehav Rev 2020; 108:171-181. [PMID: 31655075 PMCID: PMC6949360 DOI: 10.1016/j.neubiorev.2019.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/31/2022]
Abstract
Cerebral visual impairment (CVI) results from perinatal injury to visual processing structures and pathways and is the most common individual cause of pediatric visual impairment and blindness in developed countries. While there is mounting evidence demonstrating extensive neuroplastic reorganization in early onset, profound ocular blindness, how the brain reorganizes in the setting of congenital damage to cerebral (i.e. retro-geniculate) visual pathways remains comparatively poorly understood. Individuals with CVI exhibit a wide range of visual deficits and, in particular, present with impairments of higher order visual spatial processing (referred to as "dorsal stream dysfunction") as well as object recognition (associated with processing along the ventral stream). In this review, we discuss the need for ongoing work to develop novel, neuroscience-inspired approaches to investigate functional visual deficits in this population. We also outline the role played by advanced structural and functional neuroimaging in helping to elucidate the underlying neurophysiology of CVI, and highlight key differences with regard to patterns of neural reorganization previously described in ocular blindness.
Collapse
Affiliation(s)
- Christopher R Bennett
- Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States
| | - Corinna M Bauer
- Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States
| | - Emma S Bailin
- Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States
| | - Lotfi B Merabet
- Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States.
| |
Collapse
|
28
|
Wentura D, Bermeitinger C, Eder A, Giesen CG, Michalkiewicz M, Hartwigsen G, Röder B, Lischke A, Kübler A, Pauli P, Renner KH, Ziegler M, Spengler M, Christiansen H, Richter T, Souvignier E, Heyder A, Kunina-Habenicht O, Hertel S, Sparfeldt J, Bischof N, Glück J, Haun D, Liebal K, Amici F, Bender A, Bohn M, Bräuer J, Buttelmann D, Burkart J, Cacchione T, DeTroy S, Faßbender I, Fichtel C, Fischer J, Gampe A, Gray R, Horn L, Oña L, Kärtner J, Kaminski J, Kanngießer P, Keller H, Köster M, Kopp KS, Kornadt HJ, Rakoczy H, Schuppli C, Stengelin R, Trommsdorff G, Leeuwen EV, Schaik CV, Jüttemann G, Loh W, Paulus M. Kommentare zu Daum, M. M., Greve, W., Pauen, S., Schuhrke, B. und Schwarzer, G. (2020). Positionspapier der Fachgruppe Entwicklungspsychologie: Ein Versuch einer Standortbestimmung. PSYCHOLOGISCHE RUNDSCHAU 2020. [DOI: 10.1026/0033-3042/a000466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Dirk Wentura
- Fachrichtung Psychologie, Universität des Saarlandes
| | | | | | | | | | - Gesa Hartwigsen
- Max-Planck-Institut für Kognitions- und Neurowissenschaften, Leipzig
| | | | | | | | - Paul Pauli
- Lehrstuhl für Psychologie I, Universität Würzburg
| | | | | | | | | | | | | | | | | | | | | | | | - Judith Glück
- Institut für Psychologie der Universität Klagenfurt
| | - Daniel Haun
- Max-Planck-Institut für evolutionäre Anthropologie
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Russel Gray
- Max-Planck-Institut für Menschheitsgeschichte
| | | | - Linda Oña
- Max-Planck-Institut für Bildungsforschung
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bathelt J, Dale NJ, de Haan M, Clark CA. Brain structure in children with congenital visual disorders and visual impairment. Dev Med Child Neurol 2020; 62:125-131. [PMID: 31393613 PMCID: PMC6916268 DOI: 10.1111/dmcn.14322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2019] [Indexed: 12/29/2022]
Abstract
AIM To examine if congenital visual impairment is associated with differences in brain anatomy in children. METHOD Ten children (8-12y) with congenital disorders of the peripheral visual system with severe visual impairment (SVI; >0.8 logMAR) or mild-to-moderate visual impairment (MVI; 0.6-0.8 logMAR) were compared to 21 typically sighted comparison (TSC) children. Thalamus volume, grey matter density, white matter microstructure, and integrity of visual tracts were investigated in SVI, MVI, and TSC groups with anatomical and diffusion-weighted magnetic resonance imaging. RESULTS Compared to the TSC group, the SVI group had lower white matter integrity in tracts of the visual system (optic radiations: SVI 0.35±0.015, TSC 0.39±0.007 [p=0.022]; posterior corpus callosum: SVI 0.37±0.019; TSC 0.42±0.009 [p=0.033]) and lower left thalamus volume (SVI 4.37±0.087; TSC 4.99±0.339 [p=0.015]). Neuroanatomical differences were greater in the SVI group, while no consistent differences between the MVI and TSC group were observed. INTERPRETATION Posterior tracts of the visual system are compromised in children with congenital visual impairment versus those who are typically sighted. The severity of visual input appears to have affected neuroanatomical development as significant reductions were only found in the SVI group. WHAT THIS PAPER ADDS Severe visual impairment in mid-childhood is associated with reduced integrity of visual pathways and reduced thalamus volume.
Collapse
Affiliation(s)
- Joe Bathelt
- Department of PsychologyUniversity of AmsterdamAmsterdamthe Netherlands
| | - Naomi J Dale
- UCL Great Ormond Street Hospital Institute of Child HealthUniversity College LondonLondonUK,Great Ormond Street Hospital for ChildrenNHS Foundation TrustLondonUK
| | - Michelle de Haan
- UCL Great Ormond Street Hospital Institute of Child HealthUniversity College LondonLondonUK
| | - Chris A Clark
- UCL Great Ormond Street Hospital Institute of Child HealthUniversity College LondonLondonUK
| |
Collapse
|
30
|
Alterations of the Brain Microstructure and Corresponding Functional Connectivity in Early-Blind Adolescents. Neural Plast 2019; 2019:2747460. [PMID: 30996726 PMCID: PMC6408999 DOI: 10.1155/2019/2747460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/17/2018] [Accepted: 12/27/2018] [Indexed: 11/17/2022] Open
Abstract
Although evidence from studies on blind adults indicates that visual deprivation early in life leads to structural and functional disruption and reorganization of the brain, whether young blind people show similar patterns remains unknown. Therefore, this study is aimed at exploring the structural and functional alterations of the brain of early-blind adolescents (EBAs) compared to normal-sighted controls (NSCs) and investigating the effects of residual light perception on brain microstructure and function in EBAs. We obtained magnetic resonance imaging (MRI) data from 23 EBAs (8 with residual light perception (LPs), 15 without light perception (NLPs)) and 21 NSCs (age range 11-19 years old). Whole-brain voxel-based analyses of diffusion tensor imaging metrics and region-of-interest analyses of resting-state functional connectivity (RSFC) were performed to compare patterns of brain microstructure and the corresponding RSFC between the groups. The results showed that structural disruptions of LPs and NLPs were mainly located in the occipital visual pathway. Compared with NLPs, LPs showed increased fractional anisotropy (FA) in the superior frontal gyrus and reduced diffusivity in the caudate nucleus. Moreover, the correlations between FA of the occipital cortices or mean diffusivity of the lingual gyrus and age were consistent with the development trajectory of the brain in NSCs, but inconsistent or even opposite in EBAs. Additionally, we found functional, but not structural, reorganization in NLPs compared with NSCs, suggesting that functional neuroplasticity occurs earlier than structural neuroplasticity in EBAs. Altogether, these findings provided new insights into the mechanisms underlying the neural reorganization of the brain in adolescents with early visual deprivation.
Collapse
|
31
|
Rogge AK, Hötting K, Nagel V, Zech A, Hölig C, Röder B. Improved balance performance accompanied by structural plasticity in blind adults after training. Neuropsychologia 2019; 129:318-330. [PMID: 31004689 DOI: 10.1016/j.neuropsychologia.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/18/2019] [Accepted: 04/13/2019] [Indexed: 12/25/2022]
Abstract
Postural control requires the sensory integration of visual, vestibular, and proprioceptive signals. In the absence of vision, either by blindfolding or in blind individuals, balance performance is typically poorer than with sight. Previous research has suggested that despite showing compensatory vestibular and proprioceptive processing during upright standing, balance performance in blind individuals is overall lower than in sighted controls with eyes open. The present study tested whether balance training, which places demands on vestibular and proprioceptive self-motion perception, improves balance performance in blind adults, and whether we find similar structural correlates in cortical and subcortical brain areas as have been reported in sighted individuals. Fourteen congenitally or late blind adults were randomly assigned to either a balance or a relaxation group and exercised twice a week for 12 weeks. Assessments prior to and after training included balance tests and the acquisition of T1-weighted MRI images. The blind balance group significantly improved in dynamic, static, and functional balance performance compared to the blind relaxation group. The balance performance improvement did not differ from that of age- and gender matched sighted adults after balance training. Cortical thickness increased in the left parahippocampus and decreased in the inferior insula bilaterally in the blind balance group compared to the blind relaxation group. Thickness decreases in the insula were related to improved static and functional balance. Gray matter volume was reduced in the left hippocampus proper and increased in the right subiculum in the blind balance group. The present data suggest that impaired balance performance in blind adults can be significantly improved by a training inducing plasticity in brain regions associated with vestibular and proprioceptive self-motion processing.
Collapse
Affiliation(s)
- Ann-Kathrin Rogge
- Universität Hamburg, Biological Psychology and Neuropsychology, Von-Melle-Park 11, 20146, Hamburg, Germany.
| | - Kirsten Hötting
- Universität Hamburg, Biological Psychology and Neuropsychology, Von-Melle-Park 11, 20146, Hamburg, Germany.
| | - Volker Nagel
- Universität Hamburg, Sports Medicine, Turmweg 2, 20146, Hamburg, Germany.
| | - Astrid Zech
- Friedrich Schiller University, Human Movement Science, Seidelstraße 20, 07749, Jena, Germany.
| | - Cordula Hölig
- Friedrich Schiller University, Human Movement Science, Seidelstraße 20, 07749, Jena, Germany.
| | - Brigitte Röder
- Universität Hamburg, Biological Psychology and Neuropsychology, Von-Melle-Park 11, 20146, Hamburg, Germany.
| |
Collapse
|
32
|
Li X, Wang A, Xu J, Sun Z, Xia J, Wang P, Wang B, Zhang M, Tian J. Reduced Dynamic Interactions Within Intrinsic Functional Brain Networks in Early Blind Patients. Front Neurosci 2019; 13:268. [PMID: 30983956 PMCID: PMC6448007 DOI: 10.3389/fnins.2019.00268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/07/2019] [Indexed: 11/16/2022] Open
Abstract
Neuroimaging studies in early blind (EB) patients have shown altered connections or brain networks. However, it remains unclear how the causal relationships are disrupted within intrinsic brain networks. In our study, we used spectral dynamic causal modeling (DCM) to estimate the causal interactions using resting-state data in a group of 20 EB patients and 20 healthy controls (HC). Coupling parameters in specific regions were estimated, including the medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), and inferior parietal lobule (IPC) in the default mode network (DMN); dorsal anterior cingulate cortex (dACC) and bilateral anterior insulae (AI) in the salience network (SN), and bilateral frontal eye fields (FEF) and superior parietal lobes (SPL) within the dorsal attention network (DAN). Statistical analyses found that all endogenous connections and the connections from the mPFC to bilateral IPCs in EB patients were significantly reduced within the DMN, and the effective connectivity from the PCC and lIPC to the mPFC, and from the mPFC to the PCC were enhanced. For the SN, all significant connections in EB patients were significantly decreased, except the intrinsic right AI connections. Within the DAN, more significant effective connections were observed to be reduced between the EB and HC groups, while only the connections from the right SPL to the left SPL and the intrinsic connection in the left SPL were significantly enhanced. Furthermore, discovery of more decreased effective connections in the EB subjects suggested that the disrupted causal interactions between specific regions are responsive to the compensatory brain plasticity in early deprivation.
Collapse
Affiliation(s)
- Xianglin Li
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Medical Imaging Research Institute, Binzhou Medical University, Yantai, China
| | - Ailing Wang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Junhai Xu
- Tianjin Key Laboratory of Cognitive Computing and Application, School of Artificial Intelligence, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Zhenbo Sun
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, China
| | - Jikai Xia
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Peiyuan Wang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Bin Wang
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Tian
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,School of Life Sciences and Technology, Xidian University, Xi'an, China
| |
Collapse
|
33
|
Sabel BA, Flammer J, Merabet LB. Residual vision activation and the brain-eye-vascular triad: Dysregulation, plasticity and restoration in low vision and blindness - a review. Restor Neurol Neurosci 2019; 36:767-791. [PMID: 30412515 PMCID: PMC6294586 DOI: 10.3233/rnn-180880] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vision loss due to ocular diseases such as glaucoma, optic neuropathy, macular degeneration, or diabetic retinopathy, are generally considered an exclusive affair of the retina and/or optic nerve. However, the brain, through multiple indirect influences, has also a major impact on functional visual impairment. Such indirect influences include intracerebral pressure, eye movements, top-down modulation (attention, cognition), and emotionally triggered stress hormone release affecting blood vessel dysregulation. Therefore, vision loss should be viewed as the result of multiple interactions within a “brain-eye-vascular triad”, and several eye diseases may also be considered as brain diseases in disguise. While the brain is part of the problem, it can also be part of the solution. Neuronal networks of the brain can “amplify” residual vision through neuroplasticity changes of local and global functional connectivity by activating, modulating and strengthening residual visual signals. The activation of residual vision can be achieved by different means such as vision restoration training, non-invasive brain stimulation, or blood flow enhancing medications. Modulating brain functional networks and improving vascular regulation may offer new opportunities to recover or restore low vision by increasing visual field size, visual acuity and overall functional vision. Hence, neuroscience offers new insights to better understand vision loss, and modulating brain and vascular function is a promising source for new opportunities to activate residual vision to achieve restoration and recovery to improve quality of live in patients suffering from low vision.
Collapse
Affiliation(s)
- Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Josef Flammer
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Lotfi B Merabet
- Department of Ophthalmology, The Laboratory for Visual Neuroplasticity, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, USA
| |
Collapse
|
34
|
Sensory evaluation of poultry meat: A comparative survey of results from normal sighted and blind people. PLoS One 2019; 14:e0210722. [PMID: 30699202 PMCID: PMC6353138 DOI: 10.1371/journal.pone.0210722] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/31/2018] [Indexed: 11/23/2022] Open
Abstract
Visual assessment is one of the key criteria in the sensory evaluation of foods. The appearance of food products may affect their perception by other senses, sometimes giving a false picture of their quality. A true assessment of such sensory attributes as aroma, taste, tenderness, and juiciness, which are components of the overall liking of food, without the use of instrumental methods is feasible only by blind people. We have advanced a hypothesis that blindness may modify the impressions perceived through other senses used in food evaluation. To confirm this hypothesis, a sensory testing of cooked breast and leg meat from various poultry species was conducted by normal sighted and blind panelists aged from 18 to 26 years. It has been demonstrated that the lack of sight is compensated by other senses, the intensified perception of which enables a more precise sensory evaluation of food in terms of such parameters as the aroma, tenderness and juiciness. Thus, blind people can be recommended as panelists evaluating the sensory profile of food products. Scores given by the sensory panel allowed the conclusion that the most desirable poultry meat was BM of broiler chicken and capon, followed by Guinea fowl. Lower scores were given by the panelists to meat of water fowl (goose, duck), whereas the lowest ones were assigned to cooked ostrich meat.
Collapse
|
35
|
Benetti S, Novello L, Maffei C, Rabini G, Jovicich J, Collignon O. White matter connectivity between occipital and temporal regions involved in face and voice processing in hearing and early deaf individuals. Neuroimage 2018; 179:263-274. [PMID: 29908936 DOI: 10.1016/j.neuroimage.2018.06.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/24/2018] [Accepted: 06/12/2018] [Indexed: 01/24/2023] Open
Abstract
Neuroplasticity following sensory deprivation has long inspired neuroscience research in the quest of understanding how sensory experience and genetics interact in developing the brain functional and structural architecture. Many studies have shown that sensory deprivation can lead to cross-modal functional recruitment of sensory deprived cortices. Little is known however about how structural reorganization may support these functional changes. In this study, we examined early deaf, hearing signer and hearing non-signer individuals using diffusion MRI to evaluate the potential structural connectivity linked to the functional recruitment of the temporal voice area by face stimuli in deaf individuals. More specifically, we characterized the structural connectivity between occipital, fusiform and temporal regions typically supporting voice- and face-selective processing. Despite the extensive functional reorganization for face processing in the temporal cortex of the deaf, macroscopic properties of these connections did not differ across groups. However, both occipito- and fusiform-temporal connections showed significant microstructural changes between groups (fractional anisotropy reduction, radial diffusivity increase). We propose that the reorganization of temporal regions after early auditory deprivation builds on intrinsic and mainly preserved anatomical connectivity between functionally specific temporal and occipital regions.
Collapse
Affiliation(s)
- Stefania Benetti
- Center for Mind/Brain Studies, University of Trento, 38123, Trento, Italy.
| | - Lisa Novello
- Center for Mind/Brain Studies, University of Trento, 38123, Trento, Italy
| | - Chiara Maffei
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, 01129, USA
| | - Giuseppe Rabini
- Center for Mind/Brain Studies, University of Trento, 38123, Trento, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Studies, University of Trento, 38123, Trento, Italy
| | - Olivier Collignon
- Center for Mind/Brain Studies, University of Trento, 38123, Trento, Italy; Institute of Research in Psychology (IPSY) and in Neuroscience (IoNS), University of Louvain, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
36
|
Singh AK, Phillips F, Merabet LB, Sinha P. Why Does the Cortex Reorganize after Sensory Loss? Trends Cogn Sci 2018; 22:569-582. [PMID: 29907530 DOI: 10.1016/j.tics.2018.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/01/2018] [Accepted: 04/17/2018] [Indexed: 01/05/2023]
Abstract
A growing body of evidence demonstrates that the brain can reorganize dramatically following sensory loss. Although the existence of such neuroplastic crossmodal changes is not in doubt, the functional significance of these changes remains unclear. The dominant belief is that reorganization is compensatory. However, results thus far do not unequivocally indicate that sensory deprivation results in markedly enhanced abilities in other senses. Here, we consider alternative reasons besides sensory compensation that might drive the brain to reorganize after sensory loss. One such possibility is that the cortex reorganizes not to confer functional benefits, but to avoid undesirable physiological consequences of sensory deafferentation. Empirical assessment of the validity of this and other possibilities defines a rich program for future research.
Collapse
Affiliation(s)
- Amy Kalia Singh
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Flip Phillips
- Department of Psychology and Neuroscience, Skidmore College, Saratoga Springs, NY, USA
| | - Lotfi B Merabet
- Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Pawan Sinha
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
37
|
Voss P. Brain (re)organization following visual loss. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2018; 10:e1468. [PMID: 29878533 DOI: 10.1002/wcs.1468] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 11/10/2022]
Abstract
The study of the neural consequences of sensory loss provides a unique window into the brain's functional and organizational principles. Although the blind visual cortex has been implicated in the cross-modal processing of nonvisual inputs for quite some time, recent research has shown that certain cortical organizational principles are preserved even in the case of complete sensory loss. Furthermore, a growing body of work has shown that markers of neuroplasticity extend to neuroanatomical metrics that include cortical thickness and myelinization. Although our understanding of the mechanisms that underlie sensory deprivation-driven cross-modal plasticity is improving, several critical questions remain unanswered. The specific pathways that underlie the rerouting of nonvisual information, for instance, have not been fully elucidated. The fact that important cross-modal recruitment occurs following transient deprivation in sighted individuals suggests that significant rewiring following blindness may not be required. Furthermore, there are marked individual differences regarding the magnitude and functional relevance of the cross-modal reorganization. It is also not clear to what extent precise environmental factors may play a role in establishing the degree of reorganization across individuals, as opposed to factors that might specifically relate to the cause or the nature of the visual loss. In sum, although many unresolved questions remain, sensory deprivation continues to be an excellent model for studying the plastic nature of the brain. This article is categorized under: Psychology > Brain Function and Dysfunction Psychology > Perception and Psychophysics Neuroscience > Plasticity.
Collapse
Affiliation(s)
- Patrice Voss
- Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
38
|
Bauer CM, Cattaneo Z, Merabet LB. Early blindness is associated with increased volume of the uncinate fasciculus. Eur J Neurosci 2018; 47:427-432. [PMID: 29380459 DOI: 10.1111/ejn.13848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/13/2022]
Abstract
Growing evidence demonstrates dramatic structural and functional neuroplastic changes in individuals born with early-onset blindness. For example, cross-modal sensory processing at the level of the occipital cortex appears to be associated with adaptive behaviors in the blind. However, detailed studies examining the structural properties of key white matter pathways in other regions of the brain remain limited. Given that blind individuals rely heavily on their sense of hearing, we examined the structural properties of two important pathways involved with auditory processing, namely the uncinate and arcuate fasciculi. High angular resolution diffusion imaging (HARDI) tractography was used to examine structural parameters (i.e., tract volume and quantitative anisotropy, or QA) of these two fasciculi in a sample of 13 early blind individuals and 14 normally sighted controls. Compared to controls, early blind individuals showed a significant increase in the volume of the left uncinate fasciculus. A small area of increased QA was also observed halfway along the right arcuate fasciculus in the blind group. These findings contribute to our knowledge regarding the broad neuroplastic changes associated with profound early blindness.
Collapse
Affiliation(s)
- Corinna M Bauer
- Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Zaira Cattaneo
- Department of Psychology, University of Milano-Biococca, Milan, Italy.,Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Lotfi B Merabet
- Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| |
Collapse
|