1
|
Matarèse BFE, Desai R, Oughton DH, Mothersill C. EGO to ECO: Tracing the History of Radioecology from the 1950's to the Present Day. Radiat Res 2024; 202:273-288. [PMID: 39021078 DOI: 10.1667/rade-24-00035.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/09/2024] [Indexed: 07/20/2024]
Abstract
This paper starts with a brief history of the birth of the field of radioecology during the Cold War with a focus on US activity. We review the establishment of the international system for radiation protection and the science underlying the guidelines. We then discuss the famous ICRP 60 statement that if "Man" is protected, so is everything else and show how this led to a focus in radioecology on pathways to "Man" rather than concern about impacts on environments or ecosystems. We then review the contributions of Radiation Research Society members and papers published in Radiation Research which contributed to the knowledge base about effects on non-human species. These fed into international databases and computer-based tools such as ERICA and ResRad Biota to guide regulators. We then examine the origins of the concern that ICRP 60 is not sufficient to protect ecosystems and discuss the establishment of ICRP Committee 5 and its recommendations to establish reference animals and plants. The review finishes with current concerns that reference animals and plants (RAPs) are not sufficient to protect ecosystems, given the complexity of interacting factors such as the climate emergency and discusses the efforts of ICRP, the International Union of Radioecologists and other bodies to capture the concepts of ecosystem services and ecosystem complexity modelling in radioecology.
Collapse
Affiliation(s)
- Bruno F E Matarèse
- Department of Haematology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
- Department of Physics, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Rhea Desai
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | | | - Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
2
|
Lyng FM, Azzam EI. Abscopal Effects, Clastogenic Effects and Bystander Effects: 70 Years of Non-Targeted Effects of Radiation. Radiat Res 2024; 202:355-367. [PMID: 38986531 DOI: 10.1667/rade-24-00040.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/29/2024] [Indexed: 07/12/2024]
Abstract
In vitro and in vivo observations accumulated over several decades have firmly shown that the biological effects of ionizing radiation can spread from irradiated cells/tissues to non-targeted cells/tissues. Redox-modulated intercellular communication mechanisms that include a role for secreted factors and gap junctions, can mediate these non-targeted effects. Clearly, the expression of such effects and their transmission to progeny cells has implications for issues related to radiation protection. Their elucidation is also relevant towards enhancing the efficacy of cancer radiotherapy and reducing its impact on the development of normal tissue toxicities. In addition, the study of non-targeted effects is pertinent to our basic understanding of intercellular communications under conditions of oxidative stress. This review will trace the history of non-targeted effects of radiation starting with early reports of abscopal effects which described radiation induced effects in tissues distant from the site of radiation exposure. A related effect involved the production of clastogenic factors in plasma following irradiation which can induce chromosome damage in unirradiated cells. Despite these early reports suggesting non-targeted effects of radiation, the classical paradigm that a direct deposition of energy in the nucleus was required still dominated. This paradigm was challenged by papers describing radiation induced bystander effects. This review will cover mechanisms of radiation-induced bystander effects and the potential impacts on radiation protection and radiation therapy.
Collapse
Affiliation(s)
- Fiona M Lyng
- Radiation and Environmental Science Centre, FOCAS Research Institute
- School of Physics, Clinical and Optometric Sciences, Technological University Dublin, Dublin, Ireland
| | - Edouard I Azzam
- Department of Radiology, Rutgers New Jersey Medical School Cancer Center, Newark, New Jersey
| |
Collapse
|
3
|
Jassi C, kuo WW, Kuo CH, Chang CM, Chen MC, Shih TC, Li CC, Huang CY. Mediation of radiation-induced bystander effect and epigenetic modification: The role of exosomes in cancer radioresistance. Heliyon 2024; 10:e34460. [PMID: 39114003 PMCID: PMC11304029 DOI: 10.1016/j.heliyon.2024.e34460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/20/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Exosomes are nano-sized extracellular vesicles produced by almost all mammalian cells. They play an important role in cell-to-cell communication by transferring biologically active molecules from the cell of origin to the recipient cells. Ionizing radiation influences exosome production and molecular cargo loading. In cancer management, ionizing radiation is a form of treatment that exerts its cancer cytotoxicity by induction of DNA damage and other alterations to the targeted tissue cells. However, normal bystander non-targeted cells may exhibit the effects of ionizing radiation, a phenomenon called radiation-induced bystander effect (RIBE). The mutual communication between the two groups of cells (targeted and non-targeted) via radiation-influenced exosomes enables the exchange of radiosensitive molecules. This facilitates indirect radiation exposure, leading, among other effects, to epigenetic remodeling and subsequent adaptation to radiation. This review discusses the role exosomes play in epigenetically induced radiotherapy resistance through the mediation of RIBE.
Collapse
Affiliation(s)
- Chikondi Jassi
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Wei-Wen kuo
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
| | - Chun-Ming Chang
- Department of General Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-Ching Shih
- Department of Biomedical Imaging & Radiological Science College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Chi-Cheng Li
- School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
- Graduate Institute of Biomedicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
4
|
Mothersill C, Seymour C, Cocchetto A, Williams D. Factors Influencing Effects of Low-dose Radiation Exposure. HEALTH PHYSICS 2024; 126:296-308. [PMID: 38526248 DOI: 10.1097/hp.0000000000001816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
ABSTRACT It is now well accepted that the mechanisms induced by low-dose exposures to ionizing radiation (LDR) are different from those occurring after high-dose exposures. However, the downstream effects of these mechanisms are unclear as are the quantitative relationships between exposure, effect, harm, and risk. In this paper, we will discuss the mechanisms known to be important with an overall emphasis on how so-called "non-targeted effects" (NTE) communicate and coordinate responses to LDR. Targeted deposition of ionizing radiation energy in cells causing DNA damage is still regarded as the dominant trigger leading to all downstream events whether targeted or non-targeted. We regard this as an over-simplification dating back to formal target theory. It ignores that last 100 y of biological research into stress responses and signaling mechanisms in organisms exposed to toxic substances, including ionizing radiation. We will provide evidence for situations where energy deposition in cellular targets alone cannot be plausible as a mechanism for LDR effects. An example is where the energy deposition takes place in an organism not receiving the radiation dose. We will also discuss how effects after LDR depend more on dose rate and radiation quality rather than actual dose, which appears rather irrelevant. Finally, we will use recent evidence from studies of cataract and melanoma induction to suggest that after LDR, post-translational effects, such as protein misfolding or defects in energy metabolism or mitochondrial function, may dominate the etiology and progression of the disease. A focus on such novel pathways may open the way to successful prophylaxis and development of new biomarkers for better risk assessment after low dose exposures.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, 1280 Main St., Hamilton, ON, Canada L8S 4L8
| | - Colin Seymour
- Department of Biology, McMaster University, 1280 Main St., Hamilton, ON, Canada L8S 4L8
| | - Alan Cocchetto
- The National CFIDS Foundation, 285 Beach Ave., Hull, MA 02045
| | - David Williams
- Cambridge University, The Old Schools, Trinity Lane, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
5
|
Lee D, Lee PCW, Hong JH. UBA6 Inhibition Accelerates Lysosomal TRPML1 Depletion and Exosomal Secretion in Lung Cancer Cells. Int J Mol Sci 2024; 25:2843. [PMID: 38474091 PMCID: PMC10932338 DOI: 10.3390/ijms25052843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Ubiquitin-like modifier-activating enzyme 6 (UBA6) is a member of the E1 enzyme family, which initiates the ubiquitin-proteasome system (UPS). The UPS plays critical roles not only in protein degradation but also in various cellular functions, including neuronal signaling, myocardial remodeling, immune cell differentiation, and cancer development. However, the specific role of UBA6 in cellular functions is not fully elucidated in comparison with the roles of the UPS. It has been known that the E1 enzyme is associated with the motility of cancer cells. In this study, we verified the physiological roles of UBA6 in lung cancer cells through gene-silencing siRNA targeting UBA6 (siUBA6). The siUBA6 treatment attenuated the migration of H1975 cells, along with a decrease in lysosomal Ca2+ release. While autophagosomal proteins remained unchanged, lysosomal proteins, including TRPML1 and TPC2, were decreased in siUBA6-transfected cells. Moreover, siUBA6 induced the production of multivesicular bodies (MVBs), accompanied by an increase in MVB markers in siUBA6-transfected H1975 cells. Additionally, the expression of the exosomal marker CD63 and extracellular vesicles was increased by siUBA6 treatment. Our findings suggest that knock-down of UBA6 induces lysosomal TRPML1 depletion and inhibits endosomal trafficking to lysosome, and subsequently, leads to the accumulation of MVBs and enhanced exosomal secretion in lung cancer cells.
Collapse
Affiliation(s)
- Dongun Lee
- Department of Health Sciences and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea;
| | - Jeong Hee Hong
- Department of Health Sciences and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
6
|
Saffari N, Rahgozar S, Faraji E, Sahin F. Plasma-derived exosomal miR-326, a prognostic biomarker and novel candidate for treatment of drug resistant pediatric acute lymphoblastic leukemia. Sci Rep 2024; 14:691. [PMID: 38184700 DOI: 10.1038/s41598-023-50628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a cancer with high incidence rate in pediatrics and drug resistance is a major clinical concern for ALL treatment. The current study was designed to evaluate the role of exosomal miR-326 in diagnosis and treatment of children with B-ALL. Exosomes were isolated from plasma samples of 30 patients and B-ALL cell lines followed by characterization, using nanoparticle tracking analysis, immunoblotting assay and electron microscopy. qPCR showed significantly increased levels of miR-326 in patients exosomes compared with non-cancer controls (P < 0.05, AUC = 0.7500). Moreover, a comparison between the sensitive and drug resistant patients revealed a prognostic value for the exosomal miR326 (P < 0.05, AUC = 0.7755). Co-culture studies on drug resistant patient primary cells and B-ALL cell lines suggested that exosomes with high miR-326 level act as vehicles for reducing cells viability. B-ALL cell line transfection with naked miR-326 mimic confirmed the results, and fluorescence microscopy validated uptake and internalization of exosomes by target cells. The novel introduced features of the exosomal miR-326 address a non-invasive way of diagnosing primary drug resistance in pediatric ALL and advocates a novel therapeutic strategy for this cancer.
Collapse
Affiliation(s)
- Neda Saffari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar jarib Street, Isfahan, 81746-73441, Iran
| | - Soheila Rahgozar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar jarib Street, Isfahan, 81746-73441, Iran.
| | - Elaheh Faraji
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar jarib Street, Isfahan, 81746-73441, Iran
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Yeditepe University, Atasehir, 34755, Istanbul, Turkey
| |
Collapse
|
7
|
Juvkam IS, Zlygosteva O, Sitarz M, Thiede B, Sørensen BS, Malinen E, Edin NJ, Søland TM, Galtung HK. Proton Compared to X-Irradiation Induces Different Protein Profiles in Oral Cancer Cells and Their Derived Extracellular Vesicles. Int J Mol Sci 2023; 24:16983. [PMID: 38069306 PMCID: PMC10707519 DOI: 10.3390/ijms242316983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released from cells, and their cargo can alter the function of recipient cells. EVs from X-irradiated cells have been shown to play a likely role in non-targeted effects. However, EVs derived from proton irradiated cells have not yet been studied. We aimed to investigate the proteome of EVs and their cell of origin after proton or X-irradiation. The EVs were derived from a human oral squamous cell carcinoma (OSCC) cell line exposed to 0, 4, or 8 Gy from either protons or X-rays. The EVs and irradiated OSCC cells underwent liquid chromatography-mass spectrometry for protein identification. Interestingly, we found different protein profiles both in the EVs and in the OSCC cells after proton irradiation compared to X-irradiation. In the EVs, we found that protons cause a downregulation of proteins involved in cell growth and DNA damage response compared to X-rays. In the OSCC cells, proton and X-irradiation induced dissimilar cell death pathways and distinct DNA damage repair systems. These results are of potential importance for understanding how non-targeted effects in normal tissue can be limited and for future implementation of proton therapy in the clinic.
Collapse
Affiliation(s)
- Inga Solgård Juvkam
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway; (I.S.J.); (T.M.S.)
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway;
| | - Olga Zlygosteva
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway; (O.Z.); (N.J.E.)
| | - Mateusz Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.S.); (B.S.S.)
| | - Bernd Thiede
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway;
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.S.); (B.S.S.)
- Department of Experimental Clinical Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Eirik Malinen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway;
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway; (O.Z.); (N.J.E.)
| | - Nina Jeppesen Edin
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway; (O.Z.); (N.J.E.)
| | - Tine Merete Søland
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway; (I.S.J.); (T.M.S.)
- Department of Pathology, Oslo University Hospital, 0372 Oslo, Norway
| | - Hilde Kanli Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway; (I.S.J.); (T.M.S.)
| |
Collapse
|
8
|
Monti P, Solazzo G, Bollati V. Effect of environmental exposures on cancer risk: Emerging role of non-coding RNA shuttled by extracellular vesicles. ENVIRONMENT INTERNATIONAL 2023; 181:108255. [PMID: 37839267 DOI: 10.1016/j.envint.2023.108255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Environmental and lifestyle exposures have a huge impact on cancer risk; nevertheless, the biological mechanisms underlying this association remain poorly understood. Extracellular vesicles (EVs) are membrane-enclosed particles actively released by all living cells, which play a key role in intercellular communication. EVs transport a variegate cargo of biomolecules, including non-coding RNA (ncRNA), which are well-known regulators of gene expression. Once delivered to recipient cells, EV-borne ncRNAs modulate a plethora of cancer-related biological processes, including cell proliferation, differentiation, and motility. In addition, the ncRNA content of EVs can be altered in response to outer stimuli. Such changes can occur either as an active attempt to adapt to the changing environment or as an uncontrolled consequence of cell homeostasis loss. In either case, such environmentally-driven alterations in EV ncRNA might affect the complex crosstalk between malignant cells and the tumor microenvironment, thus modulating the risk of cancer initiation and progression. In this review, we summarize the current knowledge about EV ncRNAs at the interface between environmental and lifestyle determinants and cancer. In particular, we focus on the effect of smoking, air and water pollution, diet, exercise, and electromagnetic radiation. In addition, we have conducted a bioinformatic analysis to investigate the biological functions of the genes targeted by environmentally-regulated EV microRNAs. Overall, we draw a comprehensive picture of the role of EV ncRNA at the interface between external factors and cancer, which could be of great interest to the development of novel strategies for cancer prevention, diagnosis, and therapy.
Collapse
Affiliation(s)
- Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Solazzo
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; CRC, Center for Environmental Health, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
9
|
Jorfi S, Ansa-Addo EA, Mariniello K, Warde P, Bin Senian AA, Stratton D, Bax BE, Levene M, Lange S, Inal JM. A Coxsackievirus B1-mediated nonlytic Extracellular Vesicle-to-cell mechanism of virus transmission and its possible control through modulation of EV release. J Gen Virol 2023; 104. [PMID: 37665326 DOI: 10.1099/jgv.0.001884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Like most non-enveloped viruses, CVB1 mainly uses cell lysis to spread. Details of a nonlytic virus transmission remain unclear. Extracellular Vesicles (EVs) transfer biomolecules between cells. We show that CVB1 entry into HeLa cells results in apoptosis and release of CVB1-induced 'medium-sized' EVs (CVB1i-mEVs). These mEVs (100-300 nm) harbour CVB1 as shown by immunoblotting with anti-CVB1-antibody; viral capsids were detected by transmission electron microscopy and RT-PCR revealed CVB1 RNA. The percentage of mEVs released from CVB1-infected HeLa cells harbouring virus was estimated from TEM at 34 %. Inhibition of CVB1i-mEV production, with calpeptin or siRNA knockdown of CAPNS1 in HeLa cells limited spread of CVB1 suggesting these vesicles disseminate CVB1 virions to new host cells by a nonlytic EV-to-cell mechanism. This was confirmed by detecting CVB1 virions inside HeLa cells after co-culture with CVB1i-mEVs; EV release may also prevent apoptosis of infected cells whilst spreading apoptosis to secondary sites of infection.
Collapse
Affiliation(s)
- Samireh Jorfi
- Cell Communication in Disease Pathology, School of Human Sciences, London Metropolitan University, London N7 8DB, UK
| | - Ephraim Abrokwa Ansa-Addo
- Cell Communication in Disease Pathology, School of Human Sciences, London Metropolitan University, London N7 8DB, UK
- Present address: Pelotonia Institute for Immuno-Oncology, The James, Ohio State University, Columbus, OH 43210, USA
| | - Katia Mariniello
- Cell Communication in Disease Pathology, School of Human Sciences, London Metropolitan University, London N7 8DB, UK
- Present address: William Harvey Research Institute, Queen Mary, University of London, London, UK
| | - Purva Warde
- Biosciences Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9EU, UK
| | - Ahmad Asyraf Bin Senian
- Biosciences Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9EU, UK
- Present address: Clinical Research Centre, Sarawak General Hospital, Kuching, Malaysia
| | - Dan Stratton
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes MK7 6AE, UK
| | - Bridget E Bax
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, UK
| | - Michelle Levene
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, UK
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, 116, New Cavendish St., London, UK
- University College London School of Pharmacy, Brunswick Sq., London, UK
| | - Jameel Malhador Inal
- Cell Communication in Disease Pathology, School of Human Sciences, London Metropolitan University, London N7 8DB, UK
- Biosciences Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9EU, UK
| |
Collapse
|
10
|
Gopinathan L, Gopinathan C. Ionizing radiation-induced cancer: perplexities of the bystander effect. Ecancermedicalscience 2023; 17:1579. [PMID: 37533937 PMCID: PMC10393308 DOI: 10.3332/ecancer.2023.1579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 08/04/2023] Open
Abstract
Ionizing radiation (IR) is a carcinogen. This has been established beyond doubt from many years of studies such as those conducted among the survivors of the atomic bomb attacks on Hiroshima and Nagasaki and later from the Chernobyl accident. Despite immense progress in the field of carcinogenesis, complete understanding of the underlying mechanisms behind IR-induced cancer remains elusive. In particular, the long gestation period between exposure to IR and the onset of cancer, frequently unpredictable, and sometimes lasting for many years, remains poorly understood. The centrality of DNA damage and misrepair in carcinogenesis research has not entirely benefited IR-induced cancer research and the past decade has seen a shift in understanding radiation-driven cellular mechanisms beyond simplistic models of targeted DNA damage. This paper presents a viewpoint on the gaps in our knowledge of IR-induced cancer with a focus on the non-targeted bystander effect, the mechanisms underlying which may be key to radiotherapeutic advances.
Collapse
Affiliation(s)
| | - C Gopinathan
- Independent consultant, Navi Mumbai 400703, India
- Ex-Head, Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
11
|
Averbeck D. Low-Dose Non-Targeted Effects and Mitochondrial Control. Int J Mol Sci 2023; 24:11460. [PMID: 37511215 PMCID: PMC10380638 DOI: 10.3390/ijms241411460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Non-targeted effects (NTE) have been generally regarded as a low-dose ionizing radiation (IR) phenomenon. Recently, regarding long distant abscopal effects have also been observed at high doses of IR) relevant to antitumor radiation therapy. IR is inducing NTE involving intracellular and extracellular signaling, which may lead to short-ranging bystander effects and distant long-ranging extracellular signaling abscopal effects. Internal and "spontaneous" cellular stress is mostly due to metabolic oxidative stress involving mitochondrial energy production (ATP) through oxidative phosphorylation and/or anaerobic pathways accompanied by the leakage of O2- and other radicals from mitochondria during normal or increased cellular energy requirements or to mitochondrial dysfunction. Among external stressors, ionizing radiation (IR) has been shown to very rapidly perturb mitochondrial functions, leading to increased energy supply demands and to ROS/NOS production. Depending on the dose, this affects all types of cell constituents, including DNA, RNA, amino acids, proteins, and membranes, perturbing normal inner cell organization and function, and forcing cells to reorganize the intracellular metabolism and the network of organelles. The reorganization implies intracellular cytoplasmic-nuclear shuttling of important proteins, activation of autophagy, and mitophagy, as well as induction of cell cycle arrest, DNA repair, apoptosis, and senescence. It also includes reprogramming of mitochondrial metabolism as well as genetic and epigenetic control of the expression of genes and proteins in order to ensure cell and tissue survival. At low doses of IR, directly irradiated cells may already exert non-targeted effects (NTE) involving the release of molecular mediators, such as radicals, cytokines, DNA fragments, small RNAs, and proteins (sometimes in the form of extracellular vehicles or exosomes), which can induce damage of unirradiated neighboring bystander or distant (abscopal) cells as well as immune responses. Such non-targeted effects (NTE) are contributing to low-dose phenomena, such as hormesis, adaptive responses, low-dose hypersensitivity, and genomic instability, and they are also promoting suppression and/or activation of immune cells. All of these are parts of the main defense systems of cells and tissues, including IR-induced innate and adaptive immune responses. The present review is focused on the prominent role of mitochondria in these processes, which are determinants of cell survival and anti-tumor RT.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France
| |
Collapse
|
12
|
Erwin N, Serafim MF, He M. Enhancing the Cellular Production of Extracellular Vesicles for Developing Therapeutic Applications. Pharm Res 2023; 40:833-853. [PMID: 36319886 DOI: 10.1007/s11095-022-03420-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/15/2022] [Indexed: 04/26/2023]
Abstract
Extracellular vesicles (EVs) have various advantageous properties, including a small size, high biocompatibility, efficient cargo loading, and precise cell targeting ability, making them promising tools for therapeutic development. EVs have been increasingly explored for applications like drug delivery. However, due to limited cellular secretion rates of EVs, wide-scale clinical applications are not achievable. Therefore, substantial strategies and research efforts have been devoted to increasing cellular secretion rates of EVs. This review describes various studies exploring different methods to increase the cellular production of EVs, including the application of electrical stimulus, pharmacologic agents, electromagnetic waves, sound waves, shear stress, cell starvation, alcohol, pH, heat, and genetic manipulation. These methods have shown success in increasing EV production, but careful consideration must be given as many of these strategies may alter EV properties and functionalities, and the exact mechanisms causing the increase in cellular production of EVs is generally unknown. Additionally, the methods' effectiveness in increasing EV secretion may diverge with different cell lines and conditions. Further advancements to enhance EV biogenesis secretion for therapeutic development is still a significant need in the field.
Collapse
Affiliation(s)
- Nina Erwin
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA
| | - Maria Fernanda Serafim
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA.
- UF Cancer and Genetics Research Complex, 2033 Mowry Rd, Lab: 0475G, Gainesville, FL, 32608, USA.
| |
Collapse
|
13
|
Cocchetto A, Seymour C, Mothersill C. A Proposed New Model to Explain the Role of Low Dose Non-DNA Targeted Radiation Exposure in Chronic Fatigue and Immune Dysfunction Syndrome. Int J Mol Sci 2023; 24:ijms24076022. [PMID: 37046994 PMCID: PMC10094351 DOI: 10.3390/ijms24076022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic Fatigue and Immune Dysfunction Syndrome (CFIDS) is considered to be a multidimensional illness whose etiology is unknown. However, reports from Chernobyl, as well as those from the United States, have revealed an association between radiation exposure and the development of CFIDS. As such, we present an expanded model using a systems biology approach to explain the etiology of CFIDS as it relates to this cohort of patients. This paper proposes an integrated model with ionizing radiation as a suggested trigger for CFIDS mediated through UVA induction and biophoton generation inside the body resulting from radiation-induced bystander effects (RIBE). Evidence in support of this approach has been organized into a systems view linking CFIDS illness markers with the initiating events, in this case, low-dose radiation exposure. This results in the formation of reactive oxygen species (ROS) as well as important immunologic and other downstream effects. Furthermore, the model implicates melanoma and subsequent hematopoietic dysregulation in this underlying process. Through the identification of this association with melanoma, clinical medicine, including dermatology, hematology, and oncology, can now begin to apply its expansive knowledge base to provide new treatment options for an illness that has had few effective treatments.
Collapse
Affiliation(s)
- Alan Cocchetto
- National CFIDS Foundation Inc., Hull, MA 02045-1602, USA
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
14
|
Matarèse BFE, Rahmoune H, Vo NTK, Seymour CB, Schofield PN, Mothersill C. X-ray-induced bio-acoustic emissions from cultured cells. Int J Radiat Biol 2023:1-6. [PMID: 36512368 DOI: 10.1080/09553002.2023.2158248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE We characterize for the first time the emission of acoustic waves from cultured cells irradiated with X-ray photon radiation. METHODS AND MATERIALS Human cancer cell lines (MCF-7, HL-60) and control cell-free media were exposed to 1 Gy X-ray photons while recording the sound generated before, during and after irradiation using custom large-bandwidth ultrasound transducer. The effects of dose rate and cell viability were investigated. RESULTS We report the first recorded acoustic signals captured from a collective pressure wave response to ionizing irradiation in cell culture. The acoustic signal was co-terminous with the radiation pulse, its magnitude was dependent on radiation dose rate, and live and dead cells showed qualitatively and quantitatively different acoustic signal characteristics. The signature of the collective acoustic peaks was temporally wider and with higher acoustic power for irradiated HL-60 than for irradiated MCF-7. CONCLUSIONS We show that X-ray irradiation induces two cultured cancer cell types to emit a characteristic acoustic signal for the duration of the radiation pulse. The rapid decay of the signal excludes acoustic emissions themselves from contributing to the inter-organism bystander signal previously reported in intact animals, but they remain a potential component of the bystander process in tissues and cell cultures. This preliminary study suggests that further work on the potential role of radiation-induced acoustic emission (RIAE) in the inter-cellular bystander effect is merited.
Collapse
Affiliation(s)
- Bruno F E Matarèse
- Department of Hematology, University of Cambridge, Cambridge, UK.,Department of Physics, University of Cambridge, Cambridge, UK
| | - Hassan Rahmoune
- Department of Chemical Engineering and Biotechnology, Cambridge, UK
| | - Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, Canada
| | - Colin B Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| | - Paul N Schofield
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
15
|
Yang Z, Zhong W, Yang L, Wen P, Luo Y, Wu C. The emerging role of exosomes in radiotherapy. Cell Commun Signal 2022; 20:171. [PMCID: PMC9620591 DOI: 10.1186/s12964-022-00986-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/01/2022] [Indexed: 11/10/2022] Open
Abstract
Presently, more than half of cancer patients receive radiotherapy to cure localized cancer, palliate symptoms, or control the progression of cancer. However, radioresistance and radiation-induced bystander effects (RIBEs) are still challenging problems in cancer treatment. Exosomes, as a kind of extracellular vesicle, have a significant function in mediating and regulating intercellular signaling pathways. An increasing number of studies have shown that radiotherapy can increase exosome secretion and alter exosome cargo. Furthermore, radiation-induced exosomes are involved in the mechanism of radioresistance and RIBEs. Therefore, exosomes hold great promise for clinical application in radiotherapy. In this review, we not only focus on the influence of radiation on exosome biogenesis, secretion and cargoes but also on the mechanism of radiation-induced exosomes in radioresistance and RIBEs, which may expand our insight into the cooperative function of exosomes in radiotherapy.
Video abstract
Collapse
Affiliation(s)
- Zhenyi Yang
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Wen Zhong
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Liang Yang
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Ping Wen
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Yixuan Luo
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Chunli Wu
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| |
Collapse
|
16
|
Hansda S, Ghosh G, Ghosh R. The Role of Bystander Effect in Ultraviolet A Induced Photoaging. Cell Biochem Biophys 2022; 80:657-664. [PMID: 36190618 DOI: 10.1007/s12013-022-01099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/17/2022] [Indexed: 11/03/2022]
Abstract
Exposure to sunlight, mainly UVA, leads to typical changes in the features of the skin known as photoaging. UVA irradiation induces the expression of proteases that are responsible for the degradation of the extracellular matrix proteins to results in photoaging; it also downregulates the expression of proteins that are needed for the skin structure. Since, it is known that cells in the neighborhood of irradiated cells, but not directly exposed to it, often manifest responses like their irradiated counterparts, it is important to evaluate if these bystander cells too, can contribute to photoaging. UVA induced cell cycle arrest has been associated with photoaging, from flow cytometry analysis we found that there was an induction of cell cycle arrest at the G1/S phase in the UVA-bystander cells. The expression of some key photoaging marker genes likes, matrix metalloproteinases (MMP-1, MMP-3, MMP-9), cyclooxygenase-2 (COX-2), collagen1 and elastin were assessed from qRT-PCR. Up-regulation of MMP-1 and COX-2, downregulation of collagen1 and elastin, along with suppression below normal expression for MMP-3 and MMP-9 was observed in the UVA-bystander A375 cells. Our findings suggest that UVA-bystander cells may contribute to the process of photoaging.
Collapse
Affiliation(s)
- Surajit Hansda
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Gargi Ghosh
- Department of Molecular Biology & Biotechnology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Rita Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
17
|
Desai R, Seymour C, Mothersill C. Isolated Clones of a Human Colorectal Carcinoma Cell Line Display Variation in Radiosensitivity Following Gamma Irradiation. Dose Response 2022; 20:15593258221113797. [PMID: 36106056 PMCID: PMC9465601 DOI: 10.1177/15593258221113797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/28/2022] [Indexed: 11/15/2022] Open
Abstract
Objective To determine whether the width of the shoulder and the size of the bystander effect are correlated using clonal lineages derived from a cultured cell line. Methods HCT 116 (p53 wildtype) cells were grown at cloning density and individual viable colonies were picked off and grown to establish a series of cell lines from both unirradiated and irradiated progenitors. These cell lines were then irradiated to generate full survival curves. Highly variant clones were then tested to determine the level of the bystander effect using a medium transfer protocol. Results The multi-target model gave the best fit in these experiments and size of the shoulder n is assessed in terms of radiosensitivity. The parent cell line has an n value of 1.1 while the most variant clones have n values of 0.88 (Clone G) and 5.5 (Clone A). Clonal lines subject to irradiation prior to isolation differed in bystander signal strength in comparison to clonal lines which were not initially irradiated (P = .055). Conclusions Based on these experiments we suggest there may be a link between shoulder size of a mammalian cell line and the strength of a bystander effect produced in vitro. This may have implications for radiotherapy related to out-of-field effects.
Collapse
Affiliation(s)
- Rhea Desai
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
18
|
Hariharan H, Kesavan Y, Raja NS. Impact of native and external factors on exosome release: understanding reactive exosome secretion and its biogenesis. Mol Biol Rep 2021; 48:7559-7573. [PMID: 34626311 DOI: 10.1007/s11033-021-06733-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/29/2021] [Indexed: 02/04/2023]
Abstract
Exosomes are minuscule vesicles secreted in the endolytic region of most mammalian cells. The release of exosomes from the cell engenders cell-to-cell signaling between cellular-compartments. The trading of exosomes between tumor and yonder cells plays a hypercritical role in tumor growth and progression. The exosome released from each tumor cell sequestrates a unique biogenetic pathway reflecting its cellular origin depending on the tumor type. However, treatment of tumor cells with certain physiological factors like drugs, chemotherapy, radiation, etc., enhance the release of exosomes and alters its biogenetic pathway compared with untreated tumor cells. In this review, we will discuss how the non-native physiological factors influence the release of exosomes and how these reactive exosomes orchestrate a unique patterning of a cargo sorting mechanism. We will also discuss the role of reactively secreted exosomes in mediating tumor metastasis, angiogenesis, and tumor progression.
Collapse
Affiliation(s)
- Harini Hariharan
- MPI Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu, India
| | - Yasodha Kesavan
- MPI Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu, India
| | - Natesan Sella Raja
- MPI Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu, India.
| |
Collapse
|
19
|
Dawood A, Mothersill C, Seymour C. Low dose ionizing radiation and the immune response: what is the role of non-targeted effects? Int J Radiat Biol 2021; 97:1368-1382. [PMID: 34330196 DOI: 10.1080/09553002.2021.1962572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This review aims to trace the historical narrative surrounding the low dose effects of radiation on the immune system and how our understanding has changed from the beginning of the 20th century to now. The particular focus is on the non-targeted effects (NTEs) of low dose ionizing radiation (LDIR) which are effects that occur when irradiated cells emit signals that cause effects in the nearby or distant non-irradiated cells known as radiation induced bystander effect (RIBE). Moreover, radiation induced genomic instability (RIGI) and abscopal effect (AE) also regarded as NTE. This was prompted by our recent discovery that ultraviolet A (UVA) photons are emitted by the irradiated cells and that these photons can trigger NTE such as the RIBE in unirradiated recipients of these photons. Given the well-known association between UV radiation and the immune response, where these biophotons may pose as bystander signals potentiating processes in deep tissues as a consequence of LDIR, it is timely to review the field with a fresh lens. Various pathways and immune components that contribute to the beneficial and adverse types of modulation induced by LDR will also be revisited. CONCLUSION There is limited evidence for LDIR induced immune effects by way of a non-targeted mechanism in biological tissue. The literature examining low to medium dose effects of ionizing radiation on the immune system and its components is complex and controversial. Early work was compromised by lack of good dosimetry while later work mainly looks at the involvement of immune response in radiotherapy. There is a lack of research in the LDIR/NTE field focusing on immune response although bone marrow stem cells and lineages were critical in the identification and characterization of NTE where effects like RIGI and RIBE were heavily researched. This may be in part, a result of the difficulty of isolating NTE in whole organisms which are essential for good immune response studies. Models involving inter organism transmission of NTE are a promising route to overcome these issues.
Collapse
Affiliation(s)
- Annum Dawood
- Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | | | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| |
Collapse
|
20
|
Apilan AG, Mothersill C. Targeted and Non-Targeted Mechanisms for Killing Hypoxic Tumour Cells-Are There New Avenues for Treatment? Int J Mol Sci 2021; 22:8651. [PMID: 34445354 PMCID: PMC8395506 DOI: 10.3390/ijms22168651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE A major issue in radiotherapy is the relative resistance of hypoxic cells to radiation. Historic approaches to this problem include the use of oxygen mimetic compounds to sensitize tumour cells, which were unsuccessful. This review looks at modern approaches aimed at increasing the efficacy of targeting and radiosensitizing hypoxic tumour microenvironments relative to normal tissues and asks the question of whether non-targeted effects in radiobiology may provide a new "target". Novel techniques involve the integration of recent technological advancements such as nanotechnology, cell manipulation, and medical imaging. Particularly, the major areas of research discussed in this review include tumour hypoxia imaging through PET imaging to guide carbogen breathing, gold nanoparticles, macrophage-mediated drug delivery systems used for hypoxia-activate prodrugs, and autophagy inhibitors. Furthermore, this review outlines several features of these methods, including the mechanisms of action to induce radiosensitization, the increased accuracy in targeting hypoxic tumour microenvironments relative to normal tissue, preclinical/clinical trials, and future considerations. CONCLUSIONS This review suggests that the four novel tumour hypoxia therapeutics demonstrate compelling evidence that these techniques can serve as powerful tools to increase targeting efficacy and radiosensitizing hypoxic tumour microenvironments relative to normal tissue. Each technique uses a different way to manipulate the therapeutic ratio, which we have labelled "oxygenate, target, use, and digest". In addition, by focusing on emerging non-targeted and out-of-field effects, new umbrella targets are identified, which instead of sensitizing hypoxic cells, seek to reduce the radiosensitivity of normal tissues.
Collapse
|
21
|
Rusin A, Li M, Cocchetto A, Seymour C, Mothersill C. Radiation exposure and mitochondrial insufficiency in chronic fatigue and immune dysfunction syndrome. Med Hypotheses 2021; 154:110647. [PMID: 34358921 DOI: 10.1016/j.mehy.2021.110647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/19/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022]
Abstract
Chronic fatigue and Immune Dysfunction Syndrome (CFIDS) is a heterogeneous disease that may be promoted by various environmental stressors, including viral infection, toxin uptake, and ionizing radiation exposure. Previous studies have identified mitochondrial dysfunction in CFIDS patients, including modulation of mitochondrial respiratory chain activity, deletions in the mitochondrial genome, and upregulation of reactive oxygen species (ROS). This paper focuses on radiation effects and hypothesizes that CFIDS is primarily caused by stressor-induced mitochondrial metabolic insufficiency, which results in decreased energy production and anabolic metabolites required for normal cellular metabolism. Furthermore, tissues neighbouring or distant from directly perturbed tissues compensate for this dysfunction, which causes symptoms associated with CFIDS. This hypothesis is justified by reviewing the links between radiation exposure and CFIDS, cancer, immune dysfunction, and induction of oxidative stress. Moreover, the relevance of mitochondria in cellular responses to radiation and metabolism are discussed and putative mitochondrial biomarkers for CFIDS are introduced. Implications for diagnosis are then described, including a potential urine assay and PCR test for mitochondrial genome mutations. Finally, future research needs are offered with an emphasis on where rapid progress may be made to assist the afflicted.
Collapse
Affiliation(s)
- Andrej Rusin
- Department of Biology, McMaster University, Hamilton, ON Canada.
| | - Megan Li
- Department of Physics and Astronomy, McMaster University, Department of Physics and Astronomy, McMaster University, Hamilton, ON Canada
| | - Alan Cocchetto
- National CFIDS Foundation Inc., 103 Aletha Road, Needham, MA USA
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON Canada
| | | |
Collapse
|
22
|
Caner V, Cetin GO, Hacioglu S, Baris IC, Tepeli E, Turk NS, Bagci G, Yararbas K, Cagliyan G. The miRNA content of circulating exosomes in DLBCL patients and in vitro influence of DLBCL-derived exosomes on miRNA expression of healthy B cells from peripheral blood. Cancer Biomark 2021; 32:519-529. [PMID: 34275894 DOI: 10.3233/cbm-210110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Due to the heterogeneous nature of Diffuse Large B-cell Lymphoma (DLBCL), the mechanisms underlying tumor development and progression have not yet been fully elucidated. OBJECTIVE This study aimed to compare the characteristics of plasma exosomes of DLBCL patients and healthy individuals and to evaluate the exosomal interactions between DLBCL cell lines and normal B-cells. METHODS Exosome isolation was performed using an ultracentrifugation-based protocol from plasma of 20 patients with DLBCL and 20 controls. The expression of miRNAs from exosome samples was analyzed using a miRNA expression microarray. The presence of exosome-mediated communication between the lymphoma cells and normal B-cells was determined by the co-culture model. RESULTS A significant increase in plasma exosome concentrations of DLBCL patients was observed. There was also a significant decrease in the expression of 33 miRNAs in plasma exosomes of DLBCL patients. It was determined that normal B-cells internalize DLBCL-derived exosomes and then miRNA expression differences observed in normal B-cells are specific to lymphoma-subtypes. CONCLUSIONS MiR-3960, miR-6089 and miR-939-5p can be used as the miRNA signature in DLBCL diagnosis. We suppose that the exosomes changed the molecular signature of the target cells depending on the genomic characterization of the lymphoma cells they have originated.
Collapse
Affiliation(s)
- Vildan Caner
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Gokhan Ozan Cetin
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Sibel Hacioglu
- Department of Hematology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Ikbal Cansu Baris
- Department of Medical Biology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Emre Tepeli
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Nilay Sen Turk
- Department of Medical Pathology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Gulseren Bagci
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Kanay Yararbas
- Department of Medical Genetics, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Gulsum Cagliyan
- Department of Hematology, School of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
23
|
Yin T, Xin H, Yu J, Teng F. The role of exosomes in tumour immunity under radiotherapy: eliciting abscopal effects? Biomark Res 2021; 9:22. [PMID: 33789758 PMCID: PMC8011088 DOI: 10.1186/s40364-021-00277-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
As a curative treatment of localized tumours or as palliative control, radiotherapy (RT) has long been known to kill tumour cells and trigger the release of proinflammatory factors and immune cells to elicit an immunological response to cancer. As a crucial part of the tumour microenvironment (TME), exosomes, which are double-layered nanometre-sized vesicles, can convey molecules, present antigens, and mediate cell signalling to regulate tumour immunity via their contents. Different contents result in different effects of exosomes. The abscopal effect is a systemic antitumour effect that occurs outside of the irradiated field and is associated with tumour regression. This effect is mediated through the immune system, mainly via cell-mediated immunity, and results from a combination of inflammatory cytokine cascades and immune effector cell activation. Although the abscopal effect has been observed in various malignancies for many years, it is still a rarely identified clinical event. Researchers have indicated that exosomes can potentiate abscopal effects to enhance the effects of radiation, but the specific mechanisms are still unclear. In addition, radiation can affect exosome release and composition, and irradiated cells release exosomes with specific contents that change the cellular immune status. Hence, fully understanding how radiation affects tumour immunity and the interaction between specific exosomal contents and radiation may be a potential strategy to maximize the efficacy of cancer therapy. The optimal application of exosomes as novel immune stimulators is under active investigation and is described in this review.
Collapse
Affiliation(s)
- Tianwen Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Huixian Xin
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Feifei Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
24
|
Elewaily MI, Elsergany AR. Emerging role of exosomes and exosomal microRNA in cancer: pathophysiology and clinical potential. J Cancer Res Clin Oncol 2021; 147:637-648. [PMID: 33511427 DOI: 10.1007/s00432-021-03534-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Exosomes are extracellular nanometric vesicles used by cells to communicate with each other. They are responsible for many pathological conditions, including tumors by transferring regulatory biomolecules that impact target cell activity. Because of their high concentration in exosomes compared with parental cells and the rest of exosomal content, specificity to the cell of origin, and their well-organized sorting mechanism, microRNAs (miRNAs) are thought to be the most potent exosomes cargo and used by scientists to track exosomes and to detect cell activity changes and prognosis in cancer early. PURPOSE In this review, the results of studies examining the role of exosomes in cancer pathophysiology and their clinical potential are discussed in detail. Tumor-derived exosomes (TDEs) mediate the dynamic changes of cancer growth and invasion, including local microenvironment remodeling, distance metastasis, angiogenesis, and tumor-associated immunosuppression. They also contribute to hypoxia-induced tumor progression and cancer cell drug resistance. As a result of exosomes being present in all body fluids, it is possible to have early accessible and less-invasive diagnostic and prognostic measures by forming a table for each cancer type and its matched specific miRNAs. Under testing, available therapeutic uses of exosomes include interference of exosomes biogenesis, secretion, or uptake, and recruitment of exosomes as target-specific drug delivery vehicles, and immunostimulatory agents for both cancer patients and healthy population to avoid cancer development from the start. CONCLUSION These data suggest that exosomes and exosomal microRNA are directly related to cancer progression mechanisms, and could be used in cancer early diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
| | - Alyaa R Elsergany
- Internal Medicine Department, Oncology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
25
|
He C, Li L, Wang L, Meng W, Hao Y, Zhu G. Exosome-mediated cellular crosstalk within the tumor microenvironment upon irradiation. Cancer Biol Med 2021; 18:21-33. [PMID: 33628582 PMCID: PMC7877182 DOI: 10.20892/j.issn.2095-3941.2020.0150] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy is one of the most effective treatment methods for various solid tumors. Bidirectional signal transduction between cancer cells and stromal cells within the irradiated microenvironment is important in cancer development and treatment responsiveness. Exosomes, initially considered as “garbage bins” for unwanted from cells, are now understood to perform a variety of functions in interactions within the tumor microenvironment. Exosome-mediated regulation processes are rebuilt under the irradiation stimuli, because the exosome production, uptake, and contents are markedly modified by irradiation. In turn, irradiation-modified exosomes may modulate the cell response to irradiation through feedback regulation. Here, we review current knowledge and discuss the roles of exosome-mediated interactions between cells under radiotherapy conditions.
Collapse
Affiliation(s)
- Chuanshi He
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Ling Li
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Linlin Wang
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Wanrong Meng
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Yaying Hao
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Guiquan Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
Petushkova VV, Pelevina II, Kogarko IN, Neifakh EA, Kogarko BS, Ktitorova OV. Some Aspects Related to Transmission of Radiation-Induced Alterations due to the Bystander Effect. BIOL BULL+ 2021. [DOI: 10.1134/s1062359020120079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Vo NTK. Environmental radiobiology of amphibians - knowledge gaps to be filled using cell lines. Int J Radiat Biol 2021; 98:1034-1046. [PMID: 33428858 DOI: 10.1080/09553002.2021.1872815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Amphibians are facing an unprecedented level of population declines worldwide. The causes run the gamut from habitat loss and succumbing to opportunistic pathogen infections to vulnerability to toxic pollutants and ultraviolet (UV)-B radiation exposure. Anthropogenic activities including Chernobyl and Fukushima nuclear disasters and radioactive waste leakage into the environment raise the background radiation levels. Their immediate and chronic effects on amphibian populations are still being studied. However, the literature on environmental radiation effects on amphibian health still requires a lot more work. Laboratory and field works need to be conducted hand in hand in order to make informative and conclusive analyses to distinguish bad from good and harm from risk or to argue for or against the linear no-threshold model in radioprotection programs. Amphibian cell lines can help seek answers to important questions pertaining environmental radiobiology and amphibian health wherever they can suitably and effectively. The purpose of this work is to show that amphibian cell lines can 'rescue' important knowledge gaps in the literature, especially in the low-dose radiation mechanisms. Presently, there are 142 amphibian cell lines developed from six urodelans and 17 anurans. Amphibian cell lines can help expand and enrich the limited literature on environmental radiation effects on amphibians. They can be used to study mechanisms of radiation actions and discover reliable biomarkers for low-dose exposure. They can be used in environmental radiation monitoring and radioprotection programs. They can be used to determine the effects of co-exposure of IR and other stressors in the environment on amphibian health. They represent an ethical choice for amphibian conservation efforts in the current global amphibian declines. Lessons learned from cellular data can be useful guides to gain a better picture of effects occurring at the amphibian population and ecosystem levels.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, Canada.,School of Interdisciplinary Science, McMaster University, Hamilton, Canada
| |
Collapse
|
28
|
Radiation, a two-edged sword: From untoward effects to fractionated radiotherapy. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.108994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Ni N, Ma W, Tao Y, Liu J, Hua H, Cheng J, Wang J, Zhou B, Luo D. Exosomal MiR-769-5p Exacerbates Ultraviolet-Induced Bystander Effect by Targeting TGFBR1. Front Physiol 2020; 11:603081. [PMID: 33329055 PMCID: PMC7719707 DOI: 10.3389/fphys.2020.603081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022] Open
Abstract
Exosomal microRNAs have been investigated in bystander effect, but it is unclear whether microRNA works in ultraviolet radiation-induced bystander effects (UV-RIBEs) and what the underlying mechanism could be. Exosomes from ultraviolet (UV)-irradiated human skin fibroblasts (HSFs) were isolated and transferred to normal HSFs, followed by the detection of proliferation rate, oxidative damage level, and apoptosis rate. Exosomal miRNAs were evaluated and screened with miRNA sequencing and quantitative reverse transcriptase-polymerase chain reaction method. MiRNA shuttle and bystander photodamage reactions were observed after transfection of miR-769-5p. MiR-769-5p targeting gene transforming growth factor-β1 (TGFBR1), and TGFBR1 mRNA 3'-untranslated region (UTR) was assessed and identified by Western blotting and dual-luciferase reporter assay. Bystander effects were induced after being treated with isolated exosomes from UV-irradiated HSFs. Exosomal miR-769-5p expression was significantly upregulated. Human skin fibroblasts showed lower proliferation, increasing oxidative damage, and faster occurrence of apoptosis after transfection. Exosome-mediated transfer of miR-769-5p was observed. Upregulation of miR-769-5p induced bystander effects, whereas downregulation of miR-769-5p can suppress UV-RIBEs. In addition, miR-769-5p was found to downregulate TGFBR1 gene expression by directly targeting its 3'-UTR. Our results demonstrate that exosome-mediated miR-769-5p transfer could function as an intercellular messenger and exacerbate UV-RIBEs. MiR-769-5p inhibits the expression of TGFBR1 by targeting TGFBR1 mRNA 3'-UTR.
Collapse
Affiliation(s)
- Na Ni
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Ma
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanling Tao
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Liu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Hua
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiawei Cheng
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bingrong Zhou
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dan Luo
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Pavlakis E, Neumann M, Stiewe T. Extracellular Vesicles: Messengers of p53 in Tumor-Stroma Communication and Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21249648. [PMID: 33348923 PMCID: PMC7766631 DOI: 10.3390/ijms21249648] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor progression to a metastatic and ultimately lethal stage relies on a tumor-supporting microenvironment that is generated by reciprocal communication between tumor and stromal host cells. The tumor–stroma crosstalk is instructed by the genetic alterations of the tumor cells—the most frequent being mutations in the gene Tumor protein p53 (TP53) that are clinically correlated with metastasis, drug resistance and poor patient survival. The crucial mediators of tumor–stroma communication are tumor-derived extracellular vesicles (EVs), in particular exosomes, which operate both locally within the primary tumor and in distant organs, at pre-metastatic niches as the future sites of metastasis. Here, we review how wild-type and mutant p53 proteins control the secretion, size, and especially the RNA and protein cargo of tumor-derived EVs. We highlight how EVs extend the cell-autonomous tumor suppressive activity of wild-type p53 into the tumor microenvironment (TME), and how mutant p53 proteins switch EVs into oncogenic messengers that reprogram tumor–host communication within the entire organism so as to promote metastatic tumor cell dissemination.
Collapse
Affiliation(s)
- Evangelos Pavlakis
- Institute of Molecular Oncology, Philipps University, 35034 Marburg, Germany; (E.P.); (M.N.)
| | - Michelle Neumann
- Institute of Molecular Oncology, Philipps University, 35034 Marburg, Germany; (E.P.); (M.N.)
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps University, 35034 Marburg, Germany; (E.P.); (M.N.)
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center of Lung Research (DZL), Philipps University, 35034 Marburg, Germany
- Correspondence:
| |
Collapse
|
31
|
Du Y, Du S, Liu L, Gan F, Jiang X, Wangrao K, Lyu P, Gong P, Yao Y. Radiation-Induced Bystander Effect can be Transmitted Through Exosomes Using miRNAs as Effector Molecules. Radiat Res 2020; 194:89-100. [PMID: 32343639 DOI: 10.1667/rade-20-00019.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/27/2020] [Indexed: 02/05/2023]
Abstract
The radiation-induced bystander effect (RIBE) is a destructive reaction in nonirradiated cells and is one primary factor in determining the efficacy and success of radiation therapy in the field of cancer treatment. Previously reported studies have shown that the RIBE can be mediated by exosomes that carry miRNA components within. Exosomes, which are one type of cell-derived vesicle, exist in different biological conditions and serve as an important additional pathway for signal exchange between cells. In addition, exosome-derived miRNAs are confirmed to play an important role in RIBE, activating the bystander effect and genomic instability after radiotherapy. After investigating the field of RIBE, it is important to understand the mechanisms and consequences of biological effects as well as the role of exosomes and exosomal miRNAs therein, from different sources and under different circumstances, respectively. More discoveries could help to establish early interventions against RIBE while improving the efficacy of radiotherapy. Meanwhile, measures that would alleviate or even inhibit RIBE to some extent may exist in the near future.
Collapse
Affiliation(s)
- Yu Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shufang Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feihong Gan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoge Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kaijuan Wangrao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Lyu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Barıs IC, Hacıoglu S, Turk NS, Cetın GO, Zencır S, Bagcı G, Caner V. Expression and DNA methylation profiles of EZH2-target genes in plasma exosomes and matched primary tumor tissues of the patients with diffuse large B-cell lymphoma. Clin Transl Oncol 2020; 23:1152-1166. [PMID: 33226554 DOI: 10.1007/s12094-020-02504-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/19/2020] [Indexed: 12/26/2022]
Abstract
AIMS Diffuse large B-cell lymphoma (DLBCL) is the most common type of aggressive lymphoma. This study was designed to compare epigenetic alterations observed in Enhancer of Zeste Homolog 2 (EZH2)-target genes between plasma-derived exosomes and primary tumors in DLBCL patients. MAIN METHODS Exosomes were isolated from plasma of 21 DLBCL patients and 21 controls. We analyzed the methylation status of the target genes using methylation-specific PCR. We also examined whether the exosomes and the tumor samples contained transcripts of the target genes. KEY FINDINGS We found that CDKN2A and CDKN2B were methylated in both plasma exosomes and primary tumor tissue samples. None of the transcripts were found in the exosomes except CDKN1B which was expressed in 8 (38%) of the exosome samples. SIGNIFICANCE This study showed that plasma exosomes might preferably package certain target molecules from primary tumors and the exosomes containing dual methylated DNAs of CDKN2A and CDKN2B, or CDKN1B transcript may contribute to DLBCL pathogenesis.
Collapse
Affiliation(s)
- I C Barıs
- Department of Medical Biology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - S Hacıoglu
- Department of Hematology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - N S Turk
- Department of Medical Pathology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - G O Cetın
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey
| | - S Zencır
- Department of Medical Biology, School of Medicine, Pamukkale University, Denizli, Turkey.,Department of Molecular Biology, University of Geneva, 1211, Geneva 4, Switzerland
| | - G Bagcı
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey
| | - V Caner
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey.
| |
Collapse
|
33
|
Phenotypic and Functional Characteristics of Exosomes Derived from Irradiated Mouse Organs and Their Role in the Mechanisms Driving Non-Targeted Effects. Int J Mol Sci 2020; 21:ijms21218389. [PMID: 33182277 PMCID: PMC7664902 DOI: 10.3390/ijms21218389] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/29/2022] Open
Abstract
Molecular communication between irradiated and unirradiated neighbouring cells initiates radiation-induced bystander effects (RIBE) and out-of-field (abscopal) effects which are both an example of the non-targeted effects (NTE) of ionising radiation (IR). Exosomes are small membrane vesicles of endosomal origin and newly identified mediators of NTE. Although exosome-mediated changes are well documented in radiation therapy and oncology, there is a lack of knowledge regarding the role of exosomes derived from inside and outside the radiation field in the early and delayed induction of NTE following IR. Therefore, here we investigated the changes in exosome profile and the role of exosomes as possible molecular signalling mediators of radiation damage. Exosomes derived from organs of whole body irradiated (WBI) or partial body irradiated (PBI) mice after 24 h and 15 days post-irradiation were transferred to recipient mouse embryonic fibroblast (MEF) cells and changes in cellular viability, DNA damage and calcium, reactive oxygen species and nitric oxide signalling were evaluated compared to that of MEF cells treated with exosomes derived from unirradiated mice. Taken together, our results show that whole and partial-body irradiation increases the number of exosomes, instigating changes in exosome-treated MEF cells, depending on the source organ and time after exposure.
Collapse
|
34
|
Matarèse BFE, Lad J, Seymour C, Schofield PN, Mothersill C. Bio-acoustic signaling; exploring the potential of sound as a mediator of low-dose radiation and stress responses in the environment. Int J Radiat Biol 2020; 98:1083-1097. [DOI: 10.1080/09553002.2020.1834162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bruno F. E. Matarèse
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Physics, University of Cambridge, Cambridge, UK
| | - Jigar Lad
- Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| | - Paul N. Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
35
|
Vo NTK. The sine qua non of the fish invitrome today and tomorrow in environmental radiobiology. Int J Radiat Biol 2020; 98:1025-1033. [PMID: 32816609 DOI: 10.1080/09553002.2020.1812761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Fish cell lines, collectively referred to as the fish invitrome, are useful diagnostic tools to study radiation impacts on aquatic health and elucidate radiation mechanisms in fish. This paper will highlight the advantages, discuss the challenges, and propose possible future directions for uses of the fish invitrome in the field of environmental radiobiology. The fish invitrome contains at least 714 fish cell lines. However, only a few of these cell lines have been used to study radiation biology in fish and they represent only 10 fish species. The fish invitrome is clearly not yet explored for its full potential in radiation biology. Evidence suggests that they are useful and, in some cases, irreplaceable in making underlying theories and fundamental concepts in radiation responses in fish. The debate of whether environmental radiation is harmful, presents risks, has no effect on health, or is beneficial is on-going and is one that fish cell lines can help address in a time-effective fashion. Any information obtained with fish cell lines is useful in the framework of environment radiation risk assessments. Radiation threats to aquatic health will continue due to the very likely rise of nuclear energy and medicine in the future. The fish invitrome, in theory, lives forever and can meet new challenges at any given time to provide diagnostic risk analyses pertaining to aquatic health and environmental radiation protection.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
36
|
Sheybani ND, Batts AJ, Mathew AS, Thim EA, Price RJ. Focused Ultrasound Hyperthermia Augments Release of Glioma-derived Extracellular Vesicles with Differential Immunomodulatory Capacity. Theranostics 2020; 10:7436-7447. [PMID: 32642004 PMCID: PMC7330848 DOI: 10.7150/thno.46534] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Increasing evidence points to the critical role of extracellular vesicles (EVs) as molecular parcels that carry a diverse array of bioactive payloads for coordination of complex intracellular signaling. Focused ultrasound (FUS) hyperthermia is a technique for non-invasive, non-ionizing sublethal heating of cells in a near-instantaneous manner; while it has been shown to improve drug delivery and immunological recognition of tumors, its impact on EVs has not been explored to date. The goal of this study was to determine whether FUS impacts the release, proteomic profile, and immune-activating properties of tumor-derived EVs. Methods: Monolayered murine glioma cells were seeded within acoustically transparent cell culture chambers, and FUS hyperthermia was applied to achieve complete coverage of the chamber. Glioma-derived EVs (GEVs) were isolated for characterization by Nanoparticle Tracking Analysis, cryo-electron microscopy and mass spectrometry. An in vitro experimental setup was designed to further dissect the impact of GEVs on innate inflammation; immortalized murine dendritic cells (DCs) were pulsed with GEVs (either naïve or FUS hyperthermia-exposed) and assayed for production of IL-12p70, an important regulator of DC maturation and T helper cell polarization toward the interferon-γ-producing type 1 phenotype. Results: We confirmed that FUS hyperthermia significantly augments GEV release (by ~46%) as well as shifts the proteomic profile of these GEVs. Such shifts included enrichment of common EV-associated markers, downregulation of markers associated with cancer progression and resistance and modulation of inflammation-associated markers. When DCs were pulsed with GEVs, we noted that naïve GEVs suppressed IL-12p70 production by DCs in a GEV dose-dependent manner. In contrast, GEVs from cells exposed to FUS hyperthermia promoted a significant upregulation in IL-12p70 production by DCs, consistent with a pro-inflammatory stimulus. Conclusion: FUS hyperthermia triggers release of proteomically distinct GEVs that are capable of facilitating an important component of innate immune activation, lending both to a potential mechanism by which FUS interfaces with the tumor-immune landscape and to a role for GEV-associated biomarkers in monitoring response to FUS.
Collapse
Affiliation(s)
- Natasha D. Sheybani
- Department of Biomedical Engineering; University of Virginia, Charlottesville, VA 22908
| | - Alec J. Batts
- Department of Biomedical Engineering; University of Virginia, Charlottesville, VA 22908
| | - Alexander S. Mathew
- Department of Biomedical Engineering; University of Virginia, Charlottesville, VA 22908
| | - E. Andrew Thim
- Department of Biomedical Engineering; University of Virginia, Charlottesville, VA 22908
| | - Richard J. Price
- Department of Biomedical Engineering; University of Virginia, Charlottesville, VA 22908
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
37
|
Laskowski L, Williams D, Seymour C, Mothersill C. Environmental and industrial developments in radiation cataractogenesis. Int J Radiat Biol 2020; 98:1074-1082. [PMID: 32396040 DOI: 10.1080/09553002.2020.1767820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: This review discusses recent developments in our understanding of biological and physiological mechanisms underlying radiation cataractogenesis. The areas discussed include effects of low-dose exposures to the lens including potential relevance of non-targeted effects, the development of new personal-protective equipment (PPE) and standards in clinical and nuclear settings motivated by the updated ICRP recommendations to mitigate exposures to the lens of the eye. The review also looks at evidence from the field linking cataracts in birds and mammals to low dose exposures.Conclusions: The review suggests that there is evidence that cataractogenesis is not a tissue reaction (deterministic effect) but rather is a low dose effect which shows a saturable dose response relationship similar to that seen for non-targeted effects in general. The review concludes that new research is needed to determine the dose response relationship in environmental studies where field data are contradictory and lab studies confined to rodent models for human exposure studies.
Collapse
Affiliation(s)
- Lukasz Laskowski
- Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - David Williams
- Department of Veterinary Medicine, University of Cambridge, Cambrige, UK
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| | | |
Collapse
|
38
|
Cohen J, Vo NTK, Chettle DR, McNeill FE, Seymour CB, Mothersill CE. Quantifying Biophoton Emissions From Human Cells Directly Exposed to Low-Dose Gamma Radiation. Dose Response 2020; 18:1559325820926763. [PMID: 32489340 PMCID: PMC7238447 DOI: 10.1177/1559325820926763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 11/15/2022] Open
Abstract
Biophoton emission leading to bystander effects (BEs) was shown in beta-irradiated cells; however, technical challenges precluded the analysis of the biophoton role in gamma-induced BEs. The present work was to design an experimental approach to determine if, what type, and how many biophotons could be produced in gamma-irradiated cells. Photon emission was measured in HCT116 p53+/+ cells irradiated with a total dose of 22 mGy from a cesium-137 source at a dose rate of 45 mGy/min. A single-photon detection unit was used and shielded with lead to reduce counts from stray gammas reaching the detector. Higher quantities of photon emissions were observed when the cells in a tissue culture vessel were present and being irradiated compared to a cell-free vessel. Photon emissions were captured at either 340 nm (in the ultraviolet A [UVA] range) or 610 nm. At the same cell density, radiation exposure time, and radiation dose, HCT116 p53+/+ cells emitted 2.5 times more UVA biophotons than 610-nm biophotons. For the first time, gamma radiation was shown to induce biophoton emissions from biological cells. As cellular emissions of UVA biophotons following beta radiation lead to BEs, the involvement of cellular emissions of the same type of UVA biophotons in gamma radiation-induced BEs is highly likely.
Collapse
Affiliation(s)
- Jason Cohen
- Radiation Sciences Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - David R Chettle
- Radiation Sciences Graduate Program, McMaster University, Hamilton, Ontario, Canada.,Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Fiona E McNeill
- Radiation Sciences Graduate Program, McMaster University, Hamilton, Ontario, Canada.,Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Colin B Seymour
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
39
|
Miranda S, Correia M, Dias AG, Pestana A, Soares P, Nunes J, Lima J, Máximo V, Boaventura P. Evaluation of the role of mitochondria in the non-targeted effects of ionizing radiation using cybrid cellular models. Sci Rep 2020; 10:6131. [PMID: 32273537 PMCID: PMC7145863 DOI: 10.1038/s41598-020-63011-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/18/2020] [Indexed: 01/21/2023] Open
Abstract
Radiobiology is moving towards a better understanding of the intercellular signaling that occurs upon radiation and how its effects relate to the dose applied. The mitochondrial role in orchestrating this biological response needs to be further explored. Cybrids (cytoplasmic hybrids) are useful cell models for studying the involvement of mitochondria in cellular processes. In the present study we used cybrid cell lines to investigate the role of mitochondria in the response to radiation exposure. Cybrid cell lines, derived from the osteosarcoma human cell line 143B, harboring, either wild-type mitochondrial DNA (Cy143Bwt), cells with mitochondria with mutated DNA that causes mitochondrial dysfunction (Cy143Bmut), as well as cells without mitochondrial DNA (mtDNA) (143B-Rho0), were irradiated with 0.2 Gy and 2.0 Gy. Evaluation of the non-targeted (or bystander) effects in non-irradiated cells were assessed by using conditioned media from the irradiated cells. DNA double stranded breaks were assessed with the γH2AX assay. Both directly irradiated cells and cells treated with the conditioned media, showed increased DNA damage. The effect of the irradiated cells media was different according to the cell line it derived from: from Cy143Bwt cells irradiated with 0.2 Gy (low dose) and from Cy143Bmut irradiated with 2.0 Gy (high dose) induced highest DNA damage. Notably, media obtained from cells without mtDNA, the143B-Rho0 cell line, produced no effect in DNA damage. These results point to a possible role of mitochondria in the radiation-induced non-targeted effects. Furthermore, it indicates that cybrid models are valuable tools for radiobiological studies.
Collapse
Affiliation(s)
- Silvana Miranda
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal.,Radiotherapy Department, Portuguese Institute of Oncology of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Marcelo Correia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal
| | - Anabela G Dias
- Medical Physics Department, Portuguese Institute of Oncology of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Medical Physics, Radiobiology and Radiation Protection Group. Research Center, Portuguese Institute of Oncology of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Ana Pestana
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal.,Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal
| | - Paula Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal.,Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal
| | - Joana Nunes
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jorge Lima
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal.,Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal
| | - Valdemar Máximo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal.,Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal
| | - Paula Boaventura
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal. .,Department of Pathology, Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal.
| |
Collapse
|
40
|
Current Knowledge and Future Perspectives on Mesenchymal Stem Cell-Derived Exosomes as a New Therapeutic Agent. Int J Mol Sci 2020; 21:ijms21030727. [PMID: 31979113 PMCID: PMC7036914 DOI: 10.3390/ijms21030727] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are on the cusp of regenerative medicine due to their differentiation capacity, favorable culture conditions, ability to be manipulated in vitro, and strong immunomodulatory activity. Recent studies indicate that the pleiotropic effects of MSCs, especially their immunomodulatory potential, can be largely attributed to paracrine factors. Exosomes, vesicles that are 30-150 nanometers in diameter that function in cell-cell communication, are one of the key paracrine effectors. MSC-derived exosomes are enriched with therapeutic miRNAs, mRNAs, cytokines, lipids, and growth factors. Emerging evidences support the compelling possibility of using MSC-derived exosomes as a new form of therapy for treating several different kinds of disease such as heart, kidney, immune diseases, neural injuries, and neurodegenerative disease. This review provides a summary of current knowledge and discusses engineering of MSC-derived exosomes for their use in translational medicine.
Collapse
|
41
|
Curtis JJ, Vo NTK, Seymour CB, Mothersill CE. 5-HT 2A and 5-HT 3 receptors contribute to the exacerbation of targeted and non-targeted effects of ionizing radiation-induced cell death in human colon carcinoma cells. Int J Radiat Biol 2020; 96:482-490. [PMID: 31846381 DOI: 10.1080/09553002.2020.1704911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose: Serotonin (5-HT) is implicated in the underlying mechanisms which mediate cell death following ionizing radiation exposure, however, effects appear to be cell type-dependent. We sought to further characterize the role of 5-HT and 5-HT receptors (5-HTRs) in the exacerbation of cell death following ionizing radiation exposure in human colon carcinoma cells.Materials and methods: We examined the clonogenic survival of colon carcinoma HCT116 cells treated with 5-HT and the selective 5-HTR antagonists ketanserin (5-HT2A) and ondansetron (5-HT3), following exposure to direct ionizing radiation and irradiated cell-conditioned medium (ICCM). The relative expression of these target receptors was measured using western blotting.Results: Western blotting results revealed that relative protein levels of the 5-HT2A and 5-HT3 receptors were similar. 5-HT concentration-dependent increases in cell death that occurred following direct ionizing radiation exposure were abolished by both 5-HTR antagonists. Death of nonirradiated cells recipient of ICCM was increased in a concentration-dependent manner by 5-HT when present during donor cell irradiation. Both 5-HTR antagonists completely abolished the increases in bystander-induced cell death generated by 5-HT. Finally, we show that exposure of cells to 5-HT prior to receipt of ICCM can also dictate the degree of bystander-induced cell death.Conclusions: Our findings demonstrate a definitive role for 5-HT in the exacerbation of cell death following ionizing radiation exposure in colon carcinoma cells and highlight 5-HTRs as potential markers for predicting cellular radiosensitivity.
Collapse
Affiliation(s)
- Jacob J Curtis
- Department of Biology, McMaster University, Hamilton, Canada
| | - Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, Canada
| | - Colin B Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| | | |
Collapse
|
42
|
Jabbari N, Nawaz M, Rezaie J. Bystander effects of ionizing radiation: conditioned media from X-ray irradiated MCF-7 cells increases the angiogenic ability of endothelial cells. Cell Commun Signal 2019; 17:165. [PMID: 31842899 PMCID: PMC6912994 DOI: 10.1186/s12964-019-0474-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Non-targeting effects of radiotherapy have become as clinical concern due to secondary tumorigenesis in the patients receiving radiotherapy. Radiotherapy also affects non-tumoral cells present in the tumor microenvironment and surrounding tissues. As such, the irradiated cells are thought to communicate the signals that promote secondary tumorigenesis by affecting the function and fate of non-irradiated cells in the vicinity including endothelial cells. This may include up-regulation of genes in irradiated cells, secretion of paracrine factors and induction of gene expression in surrounding non-irradiated cells, which favor cell survival and secondary tumorigenesis. In the current study, we aimed to investigate whether the conditioned media from X-ray irradiated MCF-7 cells contribute to induction of gene expression in human umbilical vein endothelial cells (HUVECs) in vitro and modulate their angiogenic capability and migration. METHODS Following the co-culturing of X-ray irradiated MCF-7 media with HUVECs, the migration and wound healing rate of HUVECs was monitored using Transwell plate and scratch wound healing assay, respectively. The levels of angiogenic protein i.e. vascular endothelial growth factor (VEGF-A) in the conditioned media of MCF-7 cells was measured using ELISA. Additionally, we quantified mRNA levels of VEGFR-2, HSP-70, Ang-2, and Ang-1 genes in HUVECs by real time-PCR. Tubulogenesis capacity of endothelial cells was measured by growth factor reduced Matrigel matrix, whereas expression of CD34 (a marker of angiogenic tip cells) was detected by flow cytometry. RESULTS Data showed that VEGF-A protein content of conditioned media of irradiated MCF-7 cells was increased (P < 0.05) with increase in dose. Data showed that irradiated conditioned media from MCF-7 cells, when incubated with HUVECs, significantly enhanced the cell migration and wound healing rate of HUVECs in a dose-dependent manner (P < 0.05). The mRNA levels of VEGFR-2, HSP-70, Ang-2, and Ang-1 were dose-dependently enhanced in HUVECs incubated with irradiated conditioned media (P < 0.05). Importantly, HUVECs treated with irradiated conditioned media showed a marked increase in the tube formation capability as well as in expression of CD34 marker (P < 0.05). CONCLUSIONS Our findings indicate that conditioned media from irradiated MCF-7 cells induce angiogenic responses in endothelial cells in vitro, which could be due to transfer of overexpressed VEGF-A and possibly other factors secreted from irradiated MCF-7 cells to endothelial cells, and induction of intrinsic genes (VEGFR-2, HSP-70, Ang-2, and Ang-1) in endothelial cells. Video abstract.
Collapse
Affiliation(s)
- Nasrollah Jabbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Muhammad Nawaz
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
43
|
Vozilova AV, Akhmadullina YR. Study of the Individual Radiosensitivity in Humans Based on the Assessment of the Frequency of Chromosome Aberrations and Micronuclei in Peripheral Blood T Lymphocytes. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419100156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Ni J, Bucci J, Malouf D, Knox M, Graham P, Li Y. Exosomes in Cancer Radioresistance. Front Oncol 2019; 9:869. [PMID: 31555599 PMCID: PMC6742697 DOI: 10.3389/fonc.2019.00869] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023] Open
Abstract
Radiation is a mainstay of cancer therapy. Radioresistance is a significant challenge in the treatment of locally advanced, recurrent and metastatic cancers. The mechanisms of radioresistance are complicated and still not completely understood. Exosomes are 40–150 nm vesicles released by cancer cells that contain pathogenic components, such as proteins, mRNAs, DNA fragments, non-coding RNAs, and lipids. Exosomes play a critical role in cancer progression, including cell-cell communication, tumor-stromal interactions, activation of signaling pathways, and immunomodulation. Emerging data indicate that radiation-derived exosomes increase tumor burden, decrease survival, cause radiation-induced bystander effects and promote radioresistance. In addition, radiation can change the contents of exosomes, which allows exosomes to be used as a prognostic and predictive biomarker to monitor radiation response. Therefore, understanding the roles and mechanisms of exosomes in radiation response may shed light on how exosomes play a role in radioresistance and open a new way in radiotherapy and translational medicine. In this review, we discuss recent advances in radiation-induced exosome changes in components, focus on the roles of exosome in radiation-induced bystander effect in cancer and emphasize the importance of exosomes in cancer progression and radioresistance for developing novel therapy.
Collapse
Affiliation(s)
- Jie Ni
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.,St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Joseph Bucci
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.,St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - David Malouf
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.,Department of Urology, St. George Hospital, Sydney, NSW, Australia
| | - Matthew Knox
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.,St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Peter Graham
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.,St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Yong Li
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.,St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
45
|
Abstract
When people discuss the risks associated with low doses of ionizing radiation, central to the discussion is the definition of a low dose and the nature of harm. Standard answers such as "doses below 0.1 Gy are low" or "cancer is the most sensitive measure of harm" obscure the complexity within these seemingly simple questions. This paper will discuss some of the complex issues involved in determining risks to human and nonhuman species from low-dose exposures. Central to this discussion will be the role of communicable responses to all stressors (often referred to as bystander responses), which include recently discovered epigenetic and nontargeted mechanisms. There is a growing consensus that low-dose exposure to radiation is but one of many stressors to impact populations. Many of these stressors trigger responses that are generic and not unique to radiation. The lack of a unique radiation signature makes absolute definition of radiation risk difficult. This paper examines a possible new way of defining low dose based on the systemic response to the radiation. Many factors will influence this systemic response and, because it is inherently variable, it is difficult to predict and so makes low-dose responses very uncertain. Rather than seeking to reduce uncertainty, it might be valuable to accept the variability in outcomes, which arise from the complexity and multifactorial nature of responses to stressors.
Collapse
Affiliation(s)
| | - Andrej Rusin
- Department of Biology, McMaster University, Hamilton, Canada
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Canada
| |
Collapse
|
46
|
Relevance of Non-Targeted Effects for Radiotherapy and Diagnostic Radiology; A Historical and Conceptual Analysis of Key Players. Cancers (Basel) 2019; 11:cancers11091236. [PMID: 31450803 PMCID: PMC6770832 DOI: 10.3390/cancers11091236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 11/17/2022] Open
Abstract
Non-targeted effects (NTE) such as bystander effects or genomic instability have been known for many years but their significance for radiotherapy or medical diagnostic radiology are far from clear. Central to the issue are reported differences in the response of normal and tumour tissues to signals from directly irradiated cells. This review will discuss possible mechanisms and implications of these different responses and will then discuss possible new therapeutic avenues suggested by the analysis. Finally, the importance of NTE for diagnostic radiology and nuclear medicine which stems from the dominance of NTE in the low-dose region of the dose–response curve will be presented. Areas such as second cancer induction and microenvironment plasticity will be discussed.
Collapse
|
47
|
Lad J, Rusin A, Seymour C, Mothersill C. An investigation into neutron-induced bystander effects: How low can you go? ENVIRONMENTAL RESEARCH 2019; 175:84-99. [PMID: 31108356 DOI: 10.1016/j.envres.2019.04.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Neutron radiation is very harmful to both individual organisms and the environment. A n understanding of all aspects of both direct and indirect effects of radiation is necessary to accurately assess the risk of neutron radiation exposure. This review seeks to review current evidence in the literature for radiation-induced bystander effects and related effects attributable to neutron radiation. It also attempts to determine if the suggested evidence in the literature is sufficient to justify claims that neutron-based radiation can cause radiation-induced bystander effects. Lastly, the present paper suggests potential directions for future research concerning neutron radiation-induced bystander effects. Data was collected from studies investigating radiation-induced bystander effects and was used to mathematically generate pooled datasets and putative trends; this was done to potentially elucidate both the appearance of a conventional trend for radiation-induced bystander effects in studies using different types of radiation. Furthermore, literature review was used to compare studies utilizing similar tissue models to determine if neutron effects follow similar trends as those produced by electromagnetic radiation. We conclude that the current understanding of neutron-attributable radiation-induced bystander effects is incomplete. Various factors such as high gamma contamination during the irradiations, unestablished thresholds for gamma effects, different cell lines, energies, and different dose rates affected our ability to confirm a relationship between neutron irradiation and RIBE, particularly in low-dose regions below 100 mGy. It was determined through meta-analysis of the data that effects attributable to neutrons do seem to exist at higher doses, while gamma effects seem likely predominant at lower dose regions. Therefore, whether neutrons can induce bystander effects at lower doses remains unclear. Further research is required to confirm these findings and various recommendations are made to assist in this effort. With these recommendations, we hope that research conducted in the future will be better equipped to explore the indirect effects of neutron radiation as they pertain to biological and ecological phenomena.
Collapse
Affiliation(s)
- Jigar Lad
- Department of Physics and Astronomy, McMaster University, Hamilton, Canada.
| | - Andrej Rusin
- Department of Biology, McMaster University, Hamilton, Canada
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| | | |
Collapse
|
48
|
The low dose effects of human mammary epithelial cells induced by internal exposure to low radioactive tritiated water. Toxicol In Vitro 2019; 61:104608. [PMID: 31348984 DOI: 10.1016/j.tiv.2019.104608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/16/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
Tritium is an important radioactive waste which needs to be monitored for radiation protection. Due to long biological half-life of organically bound tritium (OBT), the adverse consequence caused by chronic exposure of tritiated water (HTO) attracts concern. In this study, fibroblast cells were exposed to 2 × 106 Bq/ml HTO to investigate the cellular behaviors. The dose relationship of survival fraction and γH2AX foci was a "U-shaped" curve. And the results of γH2AX intensity produced by ICCM, which was obtained from different doses, demonstrated bystander signal accounted for the protective effects induced by intermediate dose of 100 mGy. The comparison of temporal kinetics and spatial dynamics of DNA repair between tritium β-rays and γ-rays showed longer time was need for the dephosphorylation of H2AX protein after HTO exposure. It indicated complex cluster DSBs induced by tritium β-rays at the low dose impaired efficient recovery of DNA damage, which bear responsibility for the persistence of residual foci after low dose expsoure. It suggests after exposed to low dose radiation cells prefer to eliminate damage population to avoid DNA damage increasing the mutation potential.
Collapse
|
49
|
Plasma-derived extracellular vesicles yield predictive markers of cranial irradiation exposure in mice. Sci Rep 2019; 9:9460. [PMID: 31263197 PMCID: PMC6603161 DOI: 10.1038/s41598-019-45970-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Ionizing radiation exposure to the brain is common for patients with a variety of CNS related malignancies. This exposure is known to induce structural and functional alterations to the brain, impacting dendritic complexity, spine density and inflammation. Over time, these changes are associated with cognitive decline. However, many of these impacts are only observable long after irradiation. Extracellular vesicles (EVs) are shed from cells in nearly all known tissues, with roles in many disease pathologies. EVs are becoming an important target for identifying circulating biomarkers. The aim of this study is to identify minimally invasive biomarkers of ionizing radiation damage to the CNS that are predictors of late responses that manifest as persistent cognitive impairments. Using a clinically relevant 9 Gy irradiation paradigm, we exposed mice to cranial (head only) irradiation. Using metabolomic and lipidomic profiling, we analyzed their plasma and plasma-derived EVs two days and two weeks post-exposure to detect systemic signs of damage. We identified significant changes associated with inflammation in EVs. Whole-plasma profiling provided further evidence of systemic injury. These studies are the first to demonstrate that profiling of plasma-derived EVs may be used to study clinically relevant markers of ionizing radiation toxicities to the brain.
Collapse
|
50
|
Ariyoshi K, Miura T, Kasai K, Fujishima Y, Nakata A, Yoshida M. Radiation-Induced Bystander Effect is Mediated by Mitochondrial DNA in Exosome-Like Vesicles. Sci Rep 2019; 9:9103. [PMID: 31235776 PMCID: PMC6591216 DOI: 10.1038/s41598-019-45669-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
Exosome-like vesicles (ELV) are involved in mediating radiation-induced bystander effect (RIBE). Here, we used ELV from control cell conditioned medium (CCCM) and from 4 Gy of X-ray irradiated cell conditioned medium (ICCM), which has been used to culture normal human fibroblast cells to examine the possibility of ELV mediating RIBE signals. We investigated whether ELV from 4 Gy irradiated mouse serum mediate RIBE signals. Induction of DNA damage was observed in cells that were treated with ICCM ELV and ELV from 4 Gy irradiated mouse serum. In addition, we treated CCCM ELV and ICCM ELV with RNases, DNases, and proteinases to determine which component of ELV is responsible for RIBE. Induction of DNA damage by ICCM ELV was not observed after treatment with DNases. After treatment, DNA damages were not induced in CCCM ELV or ICCM ELV from mitochondria depleted (ρ0) normal human fibroblast cells. Further, we found significant increase in mitochondrial DNA (mtDNA) in ICCM ELV and ELV from 4 Gy irradiated mouse serum. ELV carrying amplified mtDNA (ND1, ND5) induced DNA damage in treated cells. These data suggest that the secretion of mtDNA through exosomes is involved in mediating RIBE signals.
Collapse
Affiliation(s)
- Kentaro Ariyoshi
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, 036-8564, Japan.
| | - Tomisato Miura
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Kosuke Kasai
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Yohei Fujishima
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Akifumi Nakata
- Department of Basic Pharmacy, Hokkaido Pharmaceutical University School of Pharmacy, Maeda 7-jo 15-4-1, Teine-ku, Otaru, Sapporo, 006-8590, Japan
| | - Mitsuaki Yoshida
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, 036-8564, Japan.
| |
Collapse
|