1
|
Kopij G, Kiezun M, Dobrzyn K, Zaobidna E, Zarzecka B, Rak A, Kaminski T, Kaminska B, Smolinska N. Visfatin Affects the Transcriptome of Porcine Luteal Cells during Early Pregnancy. Int J Mol Sci 2024; 25:2339. [PMID: 38397019 PMCID: PMC10889815 DOI: 10.3390/ijms25042339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Visfatin/NAMPT (VIS), the hormone exerting a pleiotropic effect, is also perceived as an important factor in the regulation of reproductive processes and pregnancy maintenance. Previous studies confirmed its involvement in the control of porcine pituitary and ovary function. In this study, we hypothesized that VIS may affect the global transcriptome of luteal cells and thus regulate the functioning of the ovaries. Illumina's NovaSeq 6000 RNA sequencing was performed to investigate the differentially expressed genes (DEGs) and long non-coding RNAs (DELs) as well as the occurrence of differential alternative splicing events (DASs) in the porcine luteal cells exposed to VIS (100 ng/mL) during the implantation period. The obtained results revealed 170 DEGs (99 up- and 71 downregulated) assigned to 45 functional annotations. Moreover, we revealed 40 DELs, of which 3 were known and 37 were described for the first time. We identified 169 DASs events. The obtained results confirmed a significant effect of VIS on the transcriptome and spliceosome of luteal cells, including the genes involved in the processes crucial for successful implantation and pregnancy maintenance as angiogenesis, steroidogenesis, inflammation, cell development, migration, and proliferation.
Collapse
Affiliation(s)
- Grzegorz Kopij
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Marta Kiezun
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Kamil Dobrzyn
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Ewa Zaobidna
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Barbara Zarzecka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Agnieszka Rak
- Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland;
| | - Tadeusz Kaminski
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Barbara Kaminska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Nina Smolinska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| |
Collapse
|
2
|
Sambe N, Yoshihara M, Nishino T, Sugiura R, Nakayama T, Louis C, Takahashi S. Analysis of Notch1 signaling in mammalian sperm development. BMC Res Notes 2023; 16:108. [PMID: 37337280 DOI: 10.1186/s13104-023-06378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVE A mammalian Delta-Notch signaling component, Notch1, has been suggested for its expression during the normal sperm development although its conditional deletion caused no apparent abnormalities. Since we established our original transgenic mouse system that enabled labeling of past and ongoing Notch1 signaling at a cellular level, we tried to validate that observation in vivo. Our transgenic mouse system used Cre/loxP system to induce tandem dsRed expression upon Notch1 signaling. RESULTS To our surprise, we were unable to observe tandem dsRed expression in the seminiferous tubules where the sperms developed. In addition, tandem dsRed expression was lacking in the somatic cells of the next generation in our transgenic mouse system, suggesting that sperms received no Notch1 signaling during their development. To validate this result, we conducted re-analysis of four single-cell RNA-seq datasets from mouse and human testes and showed that Notch1 expression was little in the sperm cell lineage. Collectively, our results posed a question into the involvement of Notch1 in the normal sperm development although this observation may help the interpretation of the previous result that Notch1 conditional deletion caused no apparent abnormalities in murine spermatogenesis.
Collapse
Affiliation(s)
- Naoto Sambe
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masaharu Yoshihara
- PhD Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, 1- 1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
- Department of Primary Care and Medical Education, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Teppei Nishino
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Department of Medical Education and Training, Tsukuba Medical Center Hospital, 1-3-1 Amakubo, Tsukuba, Ibaraki, 305-8558, Japan
| | - Ryosuke Sugiura
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takahiro Nakayama
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Chandra Louis
- PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
3
|
Li C, Feng Y, Fu Z, Deng J, Gu Y, Wang H, Wu X, Huang Z, Zhu Y, Liu Z, Huang M, Wang T, Hu S, Yao B, Zeng Y, Zhou CJ, Brown SDM, Liu Y, Vidal-Puig A, Dong Y, Xu Y. Human-specific gene CT47 blocks PRMT5 degradation to lead to meiosis arrest. Cell Death Discov 2022; 8:345. [PMID: 35918318 PMCID: PMC9345867 DOI: 10.1038/s41420-022-01139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Exploring the functions of human-specific genes (HSGs) is challenging due to the lack of a tractable genetic model system. Testosterone is essential for maintaining human spermatogenesis and fertility, but the underlying mechanism is unclear. Here, we identified Cancer/Testis Antigen gene family 47 (CT47) as an essential regulator of human-specific spermatogenesis by stabilizing arginine methyltransferase 5 (PRMT5). A humanized mouse model revealed that CT47 functions to arrest spermatogenesis by interacting with and regulating CT47/PRMT5 accumulation in the nucleus during the leptotene/zygotene-to-pachytene transition of meiosis. We demonstrate that testosterone induces nuclear depletion of CT47/PRMT5 and rescues leptotene-arrested spermatocyte progression in humanized testes. Loss of CT47 in human embryonic stem cells (hESCs) by CRISPR/Cas9 led to an increase in haploid cells but blocked the testosterone-induced increase in haploid cells when hESCs were differentiated into haploid spermatogenic cells. Moreover, CT47 levels were decreased in nonobstructive azoospermia. Together, these results established CT47 as a crucial regulator of human spermatogenesis by preventing meiosis initiation before the testosterone surge.
Collapse
Affiliation(s)
- Chao Li
- Cambridge-Su Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yuming Feng
- Department of Reproductive Medical Center, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Zhenxin Fu
- Cambridge-Su Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Junjie Deng
- Cambridge-Su Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yue Gu
- Cambridge-Su Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hanben Wang
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhengyun Huang
- Cambridge-Su Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yichen Zhu
- Cambridge-Su Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiwei Liu
- Cambridge-Su Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Moli Huang
- Cambridge-Su Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Tao Wang
- Cambridge-Su Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, China
| | - Bing Yao
- Department of Reproductive Medical Center, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Yizhun Zeng
- Cambridge-Su Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA, USA
| | - Steve D M Brown
- Medical Research Council (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, UK
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRC, Cambridge, UK
| | - Yingying Dong
- Cambridge-Su Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Ying Xu
- Cambridge-Su Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
4
|
Chen KQ, Wei BH, Hao SL, Yang WX. The PI3K/AKT signaling pathway: How does it regulate development of Sertoli cells and spermatogenic cells? Histol Histopathol 2022; 37:621-636. [PMID: 35388905 DOI: 10.14670/hh-18-457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The PI3K/AKT signaling pathway is one of the most crucial regulatory mechanisms in animal cells, which can mainly regulate proliferation, survival and anti-apoptosis in cell lines. In the seminiferous epithelium, most studies were concentrated on the role of PI3K/AKT signaling in immature Sertoli cells (SCs) and spermatogonia stem cells (SSCs). PI3K/AKT signaling can facilitate the proliferation and anti-apoptosis of immature Sertoli cells and spermatogenic cells. Besides, in mature Sertoli cells, this pathway can disintegrate the structure of the blood-testis barrier (BTB) via regulatory protein synthesis and the cytoskeleton of Sertoli cells. All of these effects can directly and indirectly maintain and promote spermatogenesis in male testis.
Collapse
Affiliation(s)
- Kuang-Qi Chen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Vigodner M, Lucas B, Kemeny S, Schwartz T, Levy R. Identification of sumoylated targets in proliferating mouse spermatogonia and human testicular seminomas. Asian J Androl 2020; 22:569-577. [PMID: 32217837 PMCID: PMC7705977 DOI: 10.4103/aja.aja_11_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/17/2020] [Indexed: 11/19/2022] Open
Abstract
Spermatogenesis is regulated by a complex network of posttranslation modifications. Sumoylation (a modification by small ubiquitin-like modifiers, or SUMO proteins) was identified as an important cellular event in different cell types. SUMO proteins are highly expressed in the testis, and their role during spermatogenesis has begun to be elucidated. Given the important role of sumoylation in the regulation of mitosis and cancer progression in other tissues, the aim of the current study was to identify the targets of SUMO in proliferating mouse spermatogonia and human seminoma tissues and to initially examine the level of sumoylation in relation to the proliferative activity of the tissues. Using freshly purified spermatogonia and C18-4 spermatogonia cell line, mass spectrometry analysis identified several SUMO targets implicated into the proliferation of spermatogonia (such as heat shock protein 60 [HSP60] and prohibitin). Tissue array and western blot approaches showed that SUMO expression is a prominent feature of human seminomas and that the proliferative activity of the tumor tissues was positively correlated with the level of SUMO expression. Downregulation of sumoylation with si-RNA was not sufficient to significantly affect the proliferation of C18-4 spermatogonia; however, SUMO overexpression increased the proliferation rate of the cells. These data suggest that cells are more sensitive to an elevated level of SUMO, and that this situation may lead to an upregulated cellular proliferation and, possibly, cancer. Mass spectrometry analysis identified around a hundred SUMO targets in seminoma samples. Notably, many of the identified proteins (such as proliferating cell nuclear antigen [PCNA], DNA topoisomerase 2-alpha [Top2A], prohibitin, 14-3-3 protein, and others) were implicated in oncogenic transformation and cancer progression.
Collapse
Affiliation(s)
- Margarita Vigodner
- Department of Biology, Stern College, Yeshiva University, New York, NY 10016, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benjamin Lucas
- Department of Biology, Stern College, Yeshiva University, New York, NY 10016, USA
| | - Stav Kemeny
- Department of Biology, Stern College, Yeshiva University, New York, NY 10016, USA
| | - Tamar Schwartz
- Department of Biology, Stern College, Yeshiva University, New York, NY 10016, USA
| | - Rebecca Levy
- Department of Biology, Stern College, Yeshiva University, New York, NY 10016, USA
| |
Collapse
|
6
|
Mangiola S, Stuchbery R, McCoy P, Chow K, Kurganovs N, Kerger M, Papenfuss A, Hovens CM, Corcoran NM. Androgen deprivation therapy promotes an obesity-like microenvironment in periprostatic fat. Endocr Connect 2019; 8:547-558. [PMID: 30959474 PMCID: PMC6499921 DOI: 10.1530/ec-19-0029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022]
Abstract
Prostate cancer is a leading cause of morbidity and cancer-related death worldwide. Androgen deprivation therapy (ADT) is the cornerstone of management for advanced disease. The use of these therapies is associated with multiple side effects, including metabolic syndrome and truncal obesity. At the same time, obesity has been associated with both prostate cancer development and disease progression, linked to its effects on chronic inflammation at a tissue level. The connection between ADT, obesity, inflammation and prostate cancer progression is well established in clinical settings; however, an understanding of the changes in adipose tissue at the molecular level induced by castration therapies is missing. Here, we investigated the transcriptional changes in periprostatic fat tissue induced by profound ADT in a group of patients with high-risk tumours compared to a matching untreated cohort. We find that the deprivation of androgen is associated with a pro-inflammatory and obesity-like adipose tissue microenvironment. This study suggests that the beneficial effect of therapies based on androgen deprivation may be partially counteracted by metabolic and inflammatory side effects in the adipose tissue surrounding the prostate.
Collapse
Affiliation(s)
- Stefano Mangiola
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Ryan Stuchbery
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
| | - Patrick McCoy
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Ken Chow
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Natalie Kurganovs
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia
- Ontario Institute for Cancer Research, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Michael Kerger
- Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia
| | - Anthony Papenfuss
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher M Hovens
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Niall M Corcoran
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Urology, Frankston Hospital, Frankston, Victoria, Australia
| |
Collapse
|
7
|
Shi YQ, Fu GQ, Zhao J, Cheng SZ, Li Y, Yi LN, Li Z, Zhang L, Zhang ZB, Dai J, Zhang DY. Di(2-ethylhexyl)phthalate induces reproductive toxicity via JAZF1/TR4 pathway and oxidative stress in pubertal male rats. Toxicol Ind Health 2019; 35:228-238. [DOI: 10.1177/0748233718824911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Di(2-ethylhexyl)phthalate (DEHP) is a typical endocrine-disrupting chemical and reproductive toxicant. Although previous studies have attempted to describe the mechanism by which DEHP exposure results in reproductive dysfunction, few studies focused on puberty, a critical period of reproductive development, and the increased susceptibility to injury in adolescents. To elucidate the mechanism underpinning the testicular effects of DEHP in puberty, we sought to investigate the JAZF1/TR4 pathway in the testes of pubertal rats. Specifically, we focused on the role of the JAZF1/TR4 pathway in male reproduction, including the genes JAZF1, TR4, Sperm 1, and Cyclin A1. In the present study, rats were exposed to increasing concentrations of DEHP (0, 250, 500, and 1000 mg/kg/day) by oral gavages for 30 days. Then we assayed testicular zinc and oxidative stress levels. Our results indicated that DEHP exposure could lead to oxidative stress and decrease the contents of testicular zinc. Additionally, significant morphological changes and cell apoptosis were observed in testes exposed to DEHP, as identified by hematoxylin and eosin staining and the terminal deoxynucleotidyl transferase-mediated nick and labeling assay. By measuring the expression levels of the above relevant genes by qPCR, we found the DEHP-induced increased expression of JAZF1 and decreased expression of TR4, Sperm 1, and Cyclin A1. Therefore, we have demonstrated that in vivo exposure to DEHP might induce reproductive toxicity in pubertal male rats through the JAZF1/TR4 pathway and oxidative stress.
Collapse
Affiliation(s)
- Yu-Qin Shi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
- School of Environment, Tsinghua University, Beijing, People’s Republic of China
| | - Guo-Qing Fu
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Jing Zhao
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Shen-Zhou Cheng
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - You Li
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling-Na Yi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhen Li
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhi-Bing Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Juan Dai
- Wuhan Centers for Disease Prevention and Control, Wuhan, People’s Republic of China
| | - Da-Yi Zhang
- School of Environment, Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Sadek KM, Lebda MA, Abouzed TK, Nasr SM, El-Sayed Y. The molecular and biochemical insight view of lycopene in ameliorating tramadol-induced liver toxicity in a rat model: implication of oxidative stress, apoptosis, and MAPK signaling pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33119-33130. [PMID: 30251044 DOI: 10.1007/s11356-018-3265-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
The influence of tramadol (TD) on hepatic tissue and the potential efficiency of lycopene to mitigate TD-induced hepatotoxic impacts were determined. Forty male albino rats were allocated into four groups: group I, untreated (placebo); group II, injected with TD (15 mg kg-1) intraperitoneally (i.p.); group III, gastrogavaged with lycopene (10 mg kg-1) per os (p.o.); and group IV received TD with lycopene with the same mentioned doses for 15 days. The results demonstrated that TD induced augmentation in tissue lipid peroxidation biomarker and disturbance in the antioxidant homeostasis and elevated the activity of serum liver injury biomarkers and decreased serum protein, globulin, and albumin. Hepatic glutathione S-transferase (GST), superoxide dismutase (SOD), thioredoxin-1 (Txn-1), and catalase (CAT) activities and gene expression were decreased and glutathione content was reduced in the TD-challenged rats, and these effects were alleviated by lycopene. Furthermore, TD induced apoptosis in liver tissues as shown by DNA fragmentation and upregulation of proapoptotic Bax and Casp-3 while lycopene upregulated the antiapoptotic Bcl-2. The results of Western blot showed that lycopene initiated low expression of mitogen activated protein kinase pathway (MAPK) protein expression in liver tissues of TD-challenged rats. In addition, lycopene reduced fatty degeneration and necrosis of the liver in TD-challenged group. Our data demonstrate that lycopene appears to be highly efficient in mitigating the hepatotoxic impacts of TD by preventing lipid peroxidation and initiating modifications in the expression and activity of antioxidant pathways. Surprisingly, lycopene fortified liver tissue by inhibiting DNA fragmentation and apoptosis signaling induced by TD. MAPK activation may be dependent from ROS generation; due to lycopene which possessed antioxidant potential did have a substantial effect on MAPK activity.
Collapse
Affiliation(s)
- Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.
| | - Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Tarek K Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt
| | - Sherif M Nasr
- Department of Molecular Biology and Genetics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Yasser El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
9
|
Ran MX, Li Y, Zhang Y, Liang K, Ren YN, Zhang M, Zhou GB, Zhou YM, Wu K, Wang CD, Huang Y, Luo B, Qazi IH, Zhang HM, Zeng CJ. Transcriptome Sequencing Reveals the Differentially Expressed lncRNAs and mRNAs Involved in Cryoinjuries in Frozen-Thawed Giant Panda ( Ailuropoda melanoleuca) Sperm. Int J Mol Sci 2018; 19:ijms19103066. [PMID: 30297640 PMCID: PMC6212861 DOI: 10.3390/ijms19103066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Sperm cryopreservation and artificial insemination are important methods for giant panda breeding and preservation of extant genetic diversity. Lower conception rates limit the use of artificial insemination with frozen-thawed giant panda sperm, due to the lack of understanding of the cryodamaging or cryoinjuring mechanisms in cryopreservation. Long non-coding RNAs (lncRNAs) are involved in regulating spermatogenesis. However, their roles during cryopreservation remain largely unexplored. Therefore, this study aimed to identify differentially expressed lncRNAs and mRNAs associated with cryodamage or freeze tolerance in frozen-thawed sperm through high throughput sequencing. A total of 61.05 Gb clean reads and 22,774 lncRNA transcripts were obtained. From the sequencing results, 1477 significantly up-regulated and 1,396 significantly down-regulated lncRNA transcripts from fresh and frozen-thawed sperm of giant panda were identified. GO and KEGG showed that the significantly dysregulated lncRNAs and mRNAs were mainly involved in regulating responses to cold stress and apoptosis, such as the integral component of membrane, calcium transport, and various signaling pathways including PI3K-Akt, p53 and cAMP. Our work is the first systematic profiling of lncRNA and mRNA in fresh and frozen-thawed giant panda sperm, and provides valuableinsights into the potential mechanism of cryodamage in sperm.
Collapse
Affiliation(s)
- Ming-Xia Ran
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yuan Li
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yan Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Kai Liang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ying-Nan Ren
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ming Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Guang-Bin Zhou
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ying-Min Zhou
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Kai Wu
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Cheng-Dong Wang
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Bo Luo
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Izhar Hyder Qazi
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Department of Veterinary Anatomy & Histology, Faculty of Bio-Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan.
| | - He-Min Zhang
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Chang-Jun Zeng
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
10
|
Bernabò N, Valbonetti L, Greco L, Capacchietti G, Ramal Sanchez M, Palestini P, Botto L, Mattioli M, Barboni B. Aminopurvalanol A, a Potent, Selective, and Cell Permeable Inhibitor of Cyclins/Cdk Complexes, Causes the Reduction of in Vitro Fertilizing Ability of Boar Spermatozoa, by Negatively Affecting the Capacitation-Dependent Actin Polymerization. Front Physiol 2017; 8:1097. [PMID: 29312003 PMCID: PMC5744433 DOI: 10.3389/fphys.2017.01097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/13/2017] [Indexed: 12/19/2022] Open
Abstract
The adoption of high-througput technologies demonstrated that in mature spermatozoa are present proteins that are thought to be not present or active in sperm cells, such as those involved in control of cell cycle. Here, by using an in silico approach based on the application of networks theory, we found that Cyclins/Cdk complexes could play a central role in signal transduction active during capacitation. Then, we tested this hypothesis in the vitro model. With this approach, spermatozoa were incubated under capacitating conditions in control conditions (CTRL) or in the presence of Aminopurvalanol A a potent, selective and cell permeable inhibitor of Cyclins/Cdk complexes at different concentrations (2, 10, and 20 μM). We found that this treatment caused dose-dependent inhibition of sperm fertilizing ability. We attribute this event to the loss of acrosome integrity due to the inhibition of physiological capacitation-dependent actin polymerization, rather than to a detrimental effect on membrane lipid remodeling or on other signaling pathways such as tubulin reorganization or MAPKs activation. In our opinion, these data could revamp the knowledge on biochemistry of sperm capacitation and could suggest new perspectives in studying male infertility.
Collapse
Affiliation(s)
- Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Luana Greco
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Marina Ramal Sanchez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Laura Botto
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Mauro Mattioli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
11
|
Sadek KM, Lebda MA, Nasr SM, Shoukry M. Spirulina platensis prevents hyperglycemia in rats by modulating gluconeogenesis and apoptosis via modification of oxidative stress and MAPK-pathways. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.06.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|