1
|
Vallieri N, Datsi A. Immune Cell Interplay in the Fight Against GBM. Cancers (Basel) 2025; 17:817. [PMID: 40075663 PMCID: PMC11899300 DOI: 10.3390/cancers17050817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Despite multimodal therapies, the treatment of glioblastoma remains challenging. In addition to the very complex mechanisms of cancer cells, including specialized phenotypes that enable them to proliferate, invade tissues, and evade immunosurveillance, they exhibit a pronounced resistance to chemo- and radiotherapy. More advanced tumors create a hypoxic environment that supports their proliferation and survival, while robust angiogenesis ensures a constant supply of nutrients. In GBM, these structures are very pronounced and contribute to the creation and maintenance of a highly immunosuppressive microenvironment that promotes tumor growth and immune escape. In addition, the high accumulation of immunosuppressive tumor-infiltrating leukocytes and other cells, the pronounced expression of immune checkpoint molecules, and the low mutational burden, i.e., the low number of neoantigens, are hallmarks of GBM and contribute to the challenge of therapeutic approaches. Here, we review a number of mechanisms that GBM exploits to support tumor growth and potential treatments. These include new chemotherapeutics, tumor treating fields, and small molecules, including compounds targeting angiogenesis or blockers of tyrosine kinases that inhibit tumor cell proliferation and survival. In addition, we focus on immunotherapies such as immune checkpoint blockade or cell therapies, in particular vaccination with dendritic cells and CAR-T cells, which can either kill GBM cells directly or bypass immunosuppression by modulating the tumor microenvironment or boosting the patient's own immune response.
Collapse
Affiliation(s)
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, 40225 Duesseldorf, Germany;
| |
Collapse
|
2
|
Evbuomwan IO, Adeyemi OS, Oluba OM. Aqueous extract of Enantia chlorantha Oliv. demonstrates antimalarial activity and improves redox imbalance and biochemical alterations in mice. BMC Complement Med Ther 2025; 25:73. [PMID: 39994639 PMCID: PMC11849376 DOI: 10.1186/s12906-025-04745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 01/03/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Malaria is an infectious disease, which has continued to cause inconceivable loss of lives every year, almost unabatedly. Currently, it has become more difficult to treat the disease due to the emergence and spread of resistance to recommended antimalarial drugs. This situation necessitates an urgent search for antimalarial compounds with unique modes of action. Here, we investigate the antimalarial activity, antioxidant and anti-inflammatory capacity of Enantia chlorantha aqueous stem bark extract (EcASBE) in vivo. METHODS The extract was screened for selected phytoconstituents including alkaloids and flavonoids. We evaluated the antimalarial activity of EcASBE against Plasmodium berghei NK65 infection in mice, using curative, prophylactic, and suppressive antimalarial test models, respectively. In addition, the antioxidant and anti-inflammatory activities of the extract were assessed. RESULTS The EcASBE significantly (p < 0.05) inhibited parasitaemia dose-dependently, with the highest inhibition (80.4%) and prolonged survival (MST = 20) observed in the curative test. Our findings reveal significant (p < 0.05) improvement of serum ALT, AST, ALP, GGT, and levels of TNF-α, creatinine and urea following extract administration. Furthermore, the extract led to a significant (p < 0.05) rise in the levels of CAT, SOD, GPx, and GSH, with a concomitant reduction in NO and MDA levels. CONCLUSION The antimalarial, antioxidative, antiperoxidative, and inflammatory-inhibiting properties of the plant in infected mice demonstrate its great value for therapeutic intervention, and substantiate its use in traditional medicine for malaria treatment. Hence, further investigation to identify the repertoire of the active antimalarial components is warranted.
Collapse
Affiliation(s)
- Ikponmwosa Owen Evbuomwan
- SDG #03 Group - Good Health and Well-being Research Cluster, Landmark University, Ipetu Road, PMB 1001, Omu-Aran- 251101, Nigeria.
- Department of Biochemistry, Landmark University, Ipetu Road, PMB 1001, Omu-Aran-251101, Nigeria.
- Department of Food Science and Microbiology, Landmark University, Ipetu Road, PMB 1001, Omu-Aran-251101, Nigeria.
- Host-Pathogen Interactions and Disease Modeling Laboratory, Special Center for Molecular Medicine, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, Delhi-110067, India.
| | - Oluyomi Stephen Adeyemi
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Bowen University, Iwo, 232101, Nigeria.
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan.
| | - Olarewaju Michael Oluba
- International Centre for Infectious Diseases, Biosafety and Biosecurity Research, Department of Medical Biochemistry, David Umahi Federal University of Health Sciences, Uburu, Nigeria.
| |
Collapse
|
3
|
Barmentlo NWG, Meirmans PG, Stiver WH, Yarkovich JG, McCann BE, Piaggio AJ, Wright D, Smyser TJ, Bosse M. Natural selection on feralization genes contributed to the invasive spread of wild pigs throughout the United States. Mol Ecol 2024; 33:e17383. [PMID: 38747342 DOI: 10.1111/mec.17383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024]
Abstract
Despite a long presence in the contiguous United States (US), the distribution of invasive wild pigs (Sus scrofa × domesticus) has expanded rapidly since the 1980s, suggesting a more recent evolutionary shift towards greater invasiveness. Contemporary populations of wild pigs represent exoferal hybrid descendants of domestic pigs and European wild boar, with such hybridization expected to enrich genetic diversity and increase the adaptive potential of populations. Our objective was to characterize how genetic enrichment through hybridization increases the invasiveness of populations by identifying signals of selection and the ancestral origins of selected loci. Our study focused on invasive wild pigs within Great Smoky Mountains National Park, which represents a hybrid population descendent from the admixture of established populations of feral pigs and an introduction of European wild boar to North America. Accordingly, we genotyped 881 wild pigs with multiple high-density single-nucleotide polymorphism (SNP) arrays. We found 233 markers under putative selection spread over 79 regions across 16 out of 18 autosomes, which contained genes involved in traits affecting feralization. Among these, genes were found to be related to skull formation and neurogenesis, with two genes, TYRP1 and TYR, also encoding for crucial melanogenesis enzymes. The most common haplotypes associated with regions under selection for the Great Smoky Mountains population were also common among other populations throughout the region, indicating a key role of putatively selective variants in the fitness of invasive populations. Interestingly, many of these haplotypes were absent among European wild boar reference genotypes, indicating feralization through genetic adaptation.
Collapse
Affiliation(s)
- Niek W G Barmentlo
- Section Ecology & Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick G Meirmans
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Blake E McCann
- Theodore Roosevelt National Park, Medora, North Dakota, USA
| | | | - Dominic Wright
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Timothy J Smyser
- USDA APHIS WS National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Mirte Bosse
- Section Ecology & Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Wageningen University & Research - Animal Breeding and Genomics, Wageningen, The Netherlands
| |
Collapse
|
4
|
Srinivas S, Senthil Kumar A. Electrical Wiring of Malarial Parasite Intermediate Hematin on a Tailored N-Doped Carbon Nanomaterial Surface and Its Bioelectrocatalytic Hydrogen Peroxide Reduction and Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10634-10647. [PMID: 38723623 DOI: 10.1021/acs.langmuir.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Hematin, an iron-containing porphyrin compound, plays a crucial role in various biological processes, including oxygen transport, storage, and functionality of the malarial parasite. Specifically, hematin-Fe interacts with the nitrogen atom of antimalarial drugs, forming an intermediate step crucial for their function. The electron transfer functionality of hematin in biological systems has been scarcely investigated. In this study, we developed a biomimicking electrical wiring of hematin-Fe with a model N-drug system, represented as {hematin-Fe---N-drug}. We achieved this by immobilizing hematin on a multiwalled carbon nanotube (MWCNT)/N-graphene quantum dot (N-GQD) modified electrode (MWCNT/N-GQD@Hemat). N-GQD serves as a model molecular drug system containing nitrogen atoms to mimic the {hematin-Fe---N-drug} interaction. The prepared bioelectrode exhibited a distinct redox peak at a measured potential (E1/2) of -0.410 V vs Ag/AgCl, accompanied by a surface excess value of 3.54 × 10-9 mol cm-2. This observation contrasts significantly with the weak or electroinactive electrochemical responses documented in literature-based hematin systems. We performed a comprehensive set of physicochemical and electrochemical characterizations on the MWCNT/N-GQD@Hemat system, employing techniques including FESEM, TEM, Raman spectroscopy, IR spectroscopy, and AFM. To evaluate the biomimetic electrode's electroactivity, we investigated the selective-mediated reduction of H2O2 as a model system. As an important aspect of our research, we demonstrated the use of scanning electrochemical microscopy to visualize the in situ electron transfer reaction of the biomimicking electrode. In an independent study, we showed enzyme-less electrocatalytic reduction and selective electrocatalytic sensing of H2O2 with a detection limit of 319 nM. We achieved this using a batch injection analysis-coupled disposable screen-printed electrode system in physiological solution.
Collapse
Affiliation(s)
- Sakthivel Srinivas
- Nano and Bioelectrochemistry Research Laboratory, Carbon Dioxide Research and Green Technology Centre, Vellore 632014, India
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - Annamalai Senthil Kumar
- Nano and Bioelectrochemistry Research Laboratory, Carbon Dioxide Research and Green Technology Centre, Vellore 632014, India
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| |
Collapse
|
5
|
Springer E, Heimsch KC, Rahlfs S, Becker K, Przyborski JM. Real-time measurements of ATP dynamics via ATeams in Plasmodium falciparum reveal drug-class-specific response patterns. Antimicrob Agents Chemother 2024; 68:e0169023. [PMID: 38501806 PMCID: PMC11064498 DOI: 10.1128/aac.01690-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Malaria tropica, caused by the parasite Plasmodium falciparum (P. falciparum), remains one of the greatest public health burdens for humankind. Due to its pivotal role in parasite survival, the energy metabolism of P. falciparum is an interesting target for drug design. To this end, analysis of the central metabolite adenosine triphosphate (ATP) is of great interest. So far, only cell-disruptive or intensiometric ATP assays have been available in this system, with various drawbacks for mechanistic interpretation and partly inconsistent results. To address this, we have established fluorescent probes, based on Förster resonance energy transfer (FRET) and known as ATeam, for use in blood-stage parasites. ATeams are capable of measuring MgATP2- levels in a ratiometric manner, thereby facilitating in cellulo measurements of ATP dynamics in real-time using fluorescence microscopy and plate reader detection and overcoming many of the obstacles of established ATP analysis methods. Additionally, we established a superfolder variant of the ratiometric pH sensor pHluorin (sfpHluorin) in P. falciparum to monitor pH homeostasis and control for pH fluctuations, which may affect ATeam measurements. We characterized recombinant ATeam and sfpHluorin protein in vitro and stably integrated the sensors into the genome of the P. falciparum NF54attB cell line. Using these new tools, we found distinct sensor response patterns caused by several different drug classes. Arylamino alcohols increased and redox cyclers decreased ATP; doxycycline caused first-cycle cytosol alkalization; and 4-aminoquinolines caused aberrant proteolysis. Our results open up a completely new perspective on drugs' mode of action, with possible implications for target identification and drug development.
Collapse
Affiliation(s)
- Eric Springer
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Kim C. Heimsch
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Jude M. Przyborski
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| |
Collapse
|
6
|
Thiele PJ, Mela-Lopez R, Blandin SA, Klug D. Let it glow: genetically encoded fluorescent reporters in Plasmodium. Malar J 2024; 23:114. [PMID: 38643106 PMCID: PMC11032601 DOI: 10.1186/s12936-024-04936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/06/2024] [Indexed: 04/22/2024] Open
Abstract
The use of fluorescent proteins (FPs) in Plasmodium parasites has been key to understand the biology of this obligate intracellular protozoon. FPs like the green fluorescent protein (GFP) enabled to explore protein localization, promoter activity as well as dynamic processes like protein export and endocytosis. Furthermore, FP biosensors have provided detailed information on physiological parameters at the subcellular level, and fluorescent reporter lines greatly extended the malariology toolbox. Still, in order to achieve optimal results, it is crucial to know exactly the properties of the FP of choice and the genetic scenario in which it will be used. This review highlights advantages and disadvantages of available landing sites and promoters that have been successfully applied for the ectopic expression of FPs in Plasmodium berghei and Plasmodium falciparum. Furthermore, the properties of newly developed FPs beyond DsRed and EGFP, in the visualization of cells and cellular structures as well as in the sensing of small molecules are discussed.
Collapse
Affiliation(s)
- Pia J Thiele
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Raquel Mela-Lopez
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Stéphanie A Blandin
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Dennis Klug
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France.
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, 35037, Marburg, Germany.
| |
Collapse
|
7
|
Li C, Yu J, Wang Y, Li X, Li Y, An M, Ni W, Liu K, Hu S. Efficacy of H 2O 2 inactivated bovine virus diarrhoea virus (BVDV) type 1 vaccine in mice. BMC Vet Res 2024; 20:43. [PMID: 38308297 PMCID: PMC10837870 DOI: 10.1186/s12917-024-03897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 01/23/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Bovine viral diarrhea (BVD) is an acute febrile infectious disease caused by the bovine viral diarrhea virus (BVDV), which has brought huge economic losses to the world's cattle industry. At present, commercial inactivated BVDV vaccines may cause some adverse reactions during use. This study aims to develop a safer and more efficient inactivated BVDV vaccine. METHODS Here, we described the generation and preclinical efficacy of a hydrogen peroxide (H2O2) inactivated BVDV type 1 vaccine in mice, and administered it separately with commercial vaccine (formaldehyde inactivated) in mice to study its efficacy. RESULTS The BVDV type 1 IgG, IFN- γ, IL-4 and neutralizing antibody in the serum of the H2O2 inactivated vaccine group can be maintained in mice for 70 days. The IgG level reached its maximum value of 0.67 on the 42nd day, significantly higher than the commercial formaldehyde inactivated BVDV type 1 vaccine. IFN- γ and IL-4 reached their maximum values on the 28th day after immunization, at 123.16 pg/ml and 143.80 pg/ml, respectively, slightly higher than commercial vaccines, but the effect was not significant. At the same time the BVDV-1 neutralizing antibody titer reached a maximum of 12 Nu on the 42nd day post vaccination. CONCLUSIONS The H2O2 inactivated BVDV vaccine has good safety and immunogenicity, which provides a potential solution for the further development of an efficient and safe BVDV vaccine.
Collapse
Affiliation(s)
- Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Jinming Yu
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Yue Wang
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Yaxin Li
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Mingxuan An
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China.
| | - Kaiping Liu
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
8
|
Markus MB. Putative Contribution of 8-Aminoquinolines to Preventing Recrudescence of Malaria. Trop Med Infect Dis 2023; 8:278. [PMID: 37235326 PMCID: PMC10223033 DOI: 10.3390/tropicalmed8050278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Enhanced therapeutic efficacy achieved in treating Plasmodium vivax malaria with an 8-aminoquinoline (8-AQ) drug such as primaquine (PQ) together with a partner drug such as chloroquine (CQ) is usually explained as CQ inhibiting asexual parasites in the bloodstream and PQ acting against liver stages. However, PQ's contribution, if any, to inactivating non-circulating, extra-hepatic asexual forms, which make up the bulk of the parasite biomass in chronic P. vivax infections, remains unclear. In this opinion article, I suggest that, considering its newly described mode of action, PQ might be doing something of which we are currently unaware.
Collapse
Affiliation(s)
- Miles B. Markus
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa;
- School of Animal, Plant and Environmental Sciences, Faculty of Science, University of Witwatersrand, Johannesburg 2001, South Africa
| |
Collapse
|
9
|
Akinsulie OC, Adesola RO, Bakre A, Adebowale OO, Adeleke R, Ogunleye SC, Oladapo IP. Usutu virus: An emerging flavivirus with potential threat to public health in Africa: Nigeria as a case study. Front Vet Sci 2023; 10:1115501. [PMID: 36875996 PMCID: PMC9980716 DOI: 10.3389/fvets.2023.1115501] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Usutu virus (USUV) is an arthropod-borne virus (arbovirus) of the flaviviridae family (genus Flavivirus) which belong to the Japanese encephalitis virus complex. Culex mosquitoes have been implicated in the transmission of this pathogen. The major susceptible hosts of USUV are migratory birds, thereby potentiating its ability to spread from one region to another globally. Nigeria has the largest economy in Africa with a significant percentage of the gross domestic product relying on the agricultural and animal production industry. This review explores the zoonotic potentials of the virus in Africa, especially Nigeria, with special focus on the devastating sequelae this might lead to in the future if necessary precautionary policies are not enacted and adopted to bolster the surveillance system for mosquito-borne viruses.
Collapse
Affiliation(s)
| | | | - Adetolase Bakre
- Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Richard Adeleke
- College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Seto Charles Ogunleye
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | | |
Collapse
|
10
|
Faggiani M, Risitano S, Aprato A, Conforti L, Massè A. Management of Femur Fractures during COVID-19 Pandemic Period: The Influence of Vaccination and Nosocomial COVID-19 Infection. J Clin Med 2022; 11:jcm11226605. [PMID: 36431081 PMCID: PMC9699064 DOI: 10.3390/jcm11226605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The COVID-19 pandemic management has led to a significant change in orthopedic surgical activity. During the pandemic, femur fractures in patients over 65 years of age have maintained a constant incidence. Our study will focus on this fragile population, analyzing the incidence of SARS-CoV-2 infection during hospital stays and the clinical and radiographic orthopedic outcomes. We also evaluated the va\riation of COVID-19 infection after health professionals' vaccinations, and the influence of inter-hospital transfers caused by logistical and organizational aspects of the pandemic. Material and Methods: This is a descriptive and prospective study from 13 October 2020 to 15 March 2021. Participants were patients over 65 years of age with diagnoses of proximal femoral fractures with r surgical treatments indicated. We compared the SARS-CoV-2 infected patients during the stay with non-infected cases. A second evaluation was carried out dividing the patients into those who underwent inter-hospital transfers and a group without transfers. We subdivided the study period into two, according to the percentage of healthcare workers vaccinated against SARS-CoV-2. The reported clinical variables included the Parker and Palmer Score, the Nottingham Hip Fracture Score, the Harris Hip Score, mortality, the Rush Score, and evaluation of reduction in radio-lucent lines in prosthetic implants. Results: Ninety-three patients were studied. The whole positive COVID cohort (11.83%) was hospitalized during the period when less than 80% of health workers were vaccinated (p = 0.02). The COVID cohort and the patients transferred before surgery had longer stays in the Emergency Room (p = 0.019; p = 0.00007) and longer lengths of stay compared to the other patients (p = 0.00001; p = 0.001). Mortality was higher both in the infected group and in the patients who underwent a transfer before the surgical procedure (18.18% vs. 1.22 %; p = 0.003. 25% vs. 6.85%; p = 0.02). In terms of orthopedic outcomes measured through the third month of follow-up, we found worse score results in functional and radiographic outcomes in the COVID positive cohort and in the transferred patients' cohort. Conclusions: The impact of the COVID-19 pandemic on patients treated for proximal femur fracture was statistically significant. Patients with Coronavirus during hospitalization obtained poor short-term radiographic and functional results and increased peri-operative mortality. The incidence of intra-hospital infection was high during the period in which health professionals were not yet covered by the anti-COVID vaccination cycle. Patients who were transferred between two hospitals due to pandemic-related management issues also achieved reduced outcomes compared to non-transferred cases, with increased mortality.
Collapse
Affiliation(s)
- Marianna Faggiani
- ASL TORINO 5, Department of Orthopaedic Surgery and Traumatology, 10024 Turin, Italy
- Correspondence:
| | - Salvatore Risitano
- Città della Salute e della Scienza di Torino, Department of Orthopaedic Surgery and Traumatology, 10126 Turin, Italy
| | - Alessandro Aprato
- Città della Salute e della Scienza di Torino, Department of Orthopaedic Surgery and Traumatology, 10126 Turin, Italy
| | - Luigi Conforti
- ASL TORINO 5, Department of Orthopaedic Surgery and Traumatology, 10024 Turin, Italy
| | - Alessandro Massè
- Città della Salute e della Scienza di Torino, Department of Orthopaedic Surgery and Traumatology, 10126 Turin, Italy
| |
Collapse
|
11
|
Haag M, Kehrer J, Sanchez CP, Deponte M, Lanzer M. Physiological jump in erythrocyte redox potential during Plasmodium falciparum development occurs independent of the sickle cell trait. Redox Biol 2022; 58:102536. [DOI: 10.1016/j.redox.2022.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
|
12
|
A nuclear redox sensor modulates gene activation and var switching in Plasmodium falciparum. Proc Natl Acad Sci U S A 2022; 119:e2201247119. [PMID: 35939693 PMCID: PMC9388093 DOI: 10.1073/pnas.2201247119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The virulence of Plasmodium falciparum, which causes the deadliest form of human malaria, is attributed to its ability to evade the human immune response. These parasites "choose" to express a single variant from a repertoire of surface antigens called PfEMP1, which are placed on the surface of the infected red cell. Immune evasion is achieved by switches in expression between var genes, each encoding a different PfEMP1 variant. While the mechanisms that regulate mutually exclusive expression of var genes are still elusive, antisense long-noncoding RNAs (lncRNAs) transcribed from the intron of the active var gene were implicated in the "choice" of the single active var gene. Here, we show that this lncRNA colocalizes with the site of var mRNA transcription and is anchored to the var locus via DNA:RNA interactions. We define the var lncRNA interactome and identify a redox sensor, P. falciparum thioredoxin peroxidase I (PfTPx-1), as one of the proteins associated with the var antisense lncRNA. We show that PfTPx-1 localizes to a nuclear subcompartment associated with active transcription on the nuclear periphery, in ring-stage parasite, when var transcription occurs. In addition, PfTPx-1 colocalizes with S-adenosylmethionine synthetase (PfSAMS) in the nucleus, and its overexpression leads to activation of var2csa, similar to overexpression of PfSAMS. Furthermore, we show that PfTPx-1 knockdown alters the var switch rate as well as activation of additional gene subsets. Taken together, our data indicate that nuclear PfTPx-1 plays a role in gene activation possibly by providing a redox-controlled nuclear microenvironment ideal for active transcription.
Collapse
|
13
|
Ali V, Behera S, Nawaz A, Equbal A, Pandey K. Unique thiol metabolism in trypanosomatids: Redox homeostasis and drug resistance. ADVANCES IN PARASITOLOGY 2022; 117:75-155. [PMID: 35878950 DOI: 10.1016/bs.apar.2022.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Trypanosomatids are mainly responsible for heterogeneous parasitic diseases: Leishmaniasis, Sleeping sickness, and Chagas disease and control of these diseases implicates serious challenges due to the emergence of drug resistance. Redox-active biomolecules are the endogenous substances in organisms, which play important role in the regulation of redox homeostasis. The redox-active substances like glutathione, trypanothione, cysteine, cysteine persulfides, etc., and other inorganic intermediates (hydrogen peroxide, nitric oxide) are very useful as defence mechanism. In the present review, the suitability of trypanothione and other essential thiol molecules of trypanosomatids as drug targets are described in Leishmania and Trypanosoma. We have explored the role of tryparedoxin, tryparedoxin peroxidase, ascorbate peroxidase, superoxide dismutase, and glutaredoxins in the anti-oxidant mechanism and drug resistance. Up-regulation of some proteins in trypanothione metabolism helps the parasites in survival against drug pressure (sodium stibogluconate, Amphotericin B, etc.) and oxidative stress. These molecules accept electrons from the reduced trypanothione and donate their electrons to other proteins, and these proteins reduce toxic molecules, neutralize reactive oxygen, or nitrogen species; and help parasites to cope with oxidative stress. Thus, a better understanding of the role of these molecules in drug resistance and redox homeostasis will help to target metabolic pathway proteins to combat Leishmaniasis and trypanosomiases.
Collapse
Affiliation(s)
- Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India.
| | - Sachidananda Behera
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| | - Afreen Nawaz
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| | - Asif Equbal
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India; Department of Botany, Araria College, Purnea University, Purnia, Bihar, India
| | - Krishna Pandey
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| |
Collapse
|
14
|
Moustafa A, Perbandt M, Liebau E, Betzel C, Falke S. Crystal structure of an extracellular superoxide dismutase from Onchocerca volvulus and implications for parasite-specific drug development. Acta Crystallogr F Struct Biol Commun 2022; 78:232-240. [PMID: 35647680 PMCID: PMC9158661 DOI: 10.1107/s2053230x22005350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Superoxide dismutases (SODs) are metalloproteins that are responsible for the dismutation of superoxide anion radicals. SODs are consequently protective against oxidative damage to cellular components. Among other protective mechanisms, the filarial parasite Onchocerca volvulus has a well developed defense system to scavenge toxic free radicals using SODs during migration and sojourning of the microfilariae and adult worms in the human body. O. volvulus is responsible for the neglected disease onchocerciasis or `river blindness'. In the present study, an extracellular Cu/Zn-SOD from O. volvulus (OvEC-SOD) was cloned, purified and crystallized to obtain structural insight into an attractive drug target with the potential to combat onchocerciasis. The recombinant OvEC-SOD forms a dimer and the protein structure was solved and refined to 1.55 Å resolution by X-ray crystallography. Interestingly, a sulfate ion supports the coordination of the conserved copper ion. The overall protein shape was verified by small-angle X-ray scattering. The enzyme shows a different surface charge distribution and different termini when compared with the homologous human SOD. A distinct hydrophobic cleft to which both protomers of the dimer contribute was utilized for a docking approach with compounds that have previously been identified as SOD inhibitors to highlight the potential for individual structure-based drug development.
Collapse
Affiliation(s)
- Amr Moustafa
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22607 Hamburg, Germany
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Markus Perbandt
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22607 Hamburg, Germany
| | - Eva Liebau
- Institut für Zoophysiologie, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22607 Hamburg, Germany
| | - Sven Falke
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
15
|
Zapol’skii VA, Berneburg I, Bilitewski U, Dillenberger M, Becker K, Jungwirth S, Shekhar A, Krueger B, Kaufmann DE. Chemistry of polyhalogenated nitrobutadienes, 17: Efficient synthesis of persubstituted chloroquinolinyl-1 H-pyrazoles and evaluation of their antimalarial, anti-SARS-CoV-2, antibacterial, and cytotoxic activities. Beilstein J Org Chem 2022; 18:524-532. [PMID: 35615535 PMCID: PMC9112185 DOI: 10.3762/bjoc.18.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
A series of 26 novel 1-(7-chloroquinolin-4-yl)-4-nitro-1H-pyrazoles bearing a dichloromethyl and an amino or thio moiety at C3 and C5 has been prepared in yields up to 72% from the reaction of 1,1-bisazolyl-, 1-azolyl-1-amino-, and 1-thioperchloro-2-nitrobuta-1,3-dienes with 7-chloro-4-hydrazinylquinoline. A new way for the formation of a pyrazole cycle from 3-methyl-2-(2,3,3-trichloro-1-nitroallylidene)oxazolidine (6) is also described. In addition, the antimalarial activity of the synthesized compounds has been evaluated in vitro against the protozoan malaria parasite Plasmodium falciparum. Notably, the 7-chloro-4-(5-(dichloromethyl)-4-nitro-3-(1H-1,2,4-triazol-1-yl)-1H-pyrazol-1-yl)quinoline (3b) and 7-chloro-4-(3-((4-chlorophenyl)thio)-5-(dichloromethyl)-4-nitro-1H-pyrazol-1-yl)quinoline (9e) inhibited the growth of the chloroquine-sensitive Plasmodium falciparum strain 3D7 with EC50 values of 0.2 ± 0.1 µM (85 ng/mL, 200 nM) and 0.2 ± 0.04 µM (100 ng/mL, 200 nM), respectively. Two compounds (3b and 10d) have also been tested for anti-SARS-CoV-2, antibacterial, and cytotoxic activity.
Collapse
Affiliation(s)
- Viktor A Zapol’skii
- Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, 38678 Clausthal-Zellerfeld, Germany
| | - Isabell Berneburg
- Biochemistry and Molecular Biology Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Ursula Bilitewski
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Melissa Dillenberger
- Biochemistry and Molecular Biology Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Stefan Jungwirth
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Aditya Shekhar
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Bastian Krueger
- Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, 38678 Clausthal-Zellerfeld, Germany
| | - Dieter E Kaufmann
- Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, 38678 Clausthal-Zellerfeld, Germany
| |
Collapse
|
16
|
Berneburg I, Peddibhotla S, Heimsch KC, Haeussler K, Maloney P, Gosalia P, Preuss J, Rahbari M, Skorokhod O, Valente E, Ulliers D, Simula LF, Buchholz K, Hedrick MP, Hershberger P, Chung TDY, Jackson MR, Schwarzer E, Rahlfs S, Bode L, Becker K, Pinkerton AB. An Optimized Dihydrodibenzothiazepine Lead Compound (SBI-0797750) as a Potent and Selective Inhibitor of Plasmodium falciparum and P. vivax Glucose 6-Phosphate Dehydrogenase 6-Phosphogluconolactonase. Antimicrob Agents Chemother 2022; 66:e0210921. [PMID: 35266827 PMCID: PMC9017341 DOI: 10.1128/aac.02109-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/26/2022] [Indexed: 11/20/2022] Open
Abstract
In Plasmodium, the first two and rate-limiting enzymes of the pentose phosphate pathway, glucose 6-phosphate dehydrogenase (G6PD) and the 6-phosphogluconolactonase, are bifunctionally fused to a unique enzyme named GluPho, differing structurally and mechanistically from the respective human orthologs. Consistent with the enzyme's essentiality for malaria parasite proliferation and propagation, human G6PD deficiency has immense impact on protection against severe malaria, making PfGluPho an attractive antimalarial drug target. Herein we report on the optimized lead compound N-(((2R,4S)-1-cyclobutyl-4-hydroxypyrrolidin-2-yl)methyl)-6-fluoro-4-methyl-11-oxo-10,11-dihydrodibenzo[b,f][1,4]thiazepine-8-carboxamide (SBI-0797750), a potent and fully selective PfGluPho inhibitor with robust nanomolar activity against recombinant PfGluPho, PvG6PD, and P. falciparum blood-stage parasites. Mode-of-action studies have confirmed that SBI-0797750 disturbs the cytosolic glutathione-dependent redox potential, as well as the cytosolic and mitochondrial H2O2 homeostasis of P. falciparum blood stages, at low nanomolar concentrations. Moreover, SBI-0797750 does not harm red blood cell (RBC) integrity and phagocytosis and thus does not promote anemia. SBI-0797750 is therefore a very promising antimalarial lead compound.
Collapse
Affiliation(s)
- Isabell Berneburg
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Satyamaheshwar Peddibhotla
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Kim C. Heimsch
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Kristina Haeussler
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
- University of California, San Diego, La Jolla, California, USA
| | - Patrick Maloney
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Palak Gosalia
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Janina Preuss
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
- University of California, San Diego, La Jolla, California, USA
| | - Mahsa Rahbari
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Elena Valente
- Department of Oncology, University of Torino, Turin, Italy
| | | | | | - Kathrin Buchholz
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Michael P. Hedrick
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Paul Hershberger
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Thomas D. Y. Chung
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Michael R. Jackson
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | | | - Stefan Rahlfs
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Lars Bode
- University of California, San Diego, La Jolla, California, USA
| | - Katja Becker
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Anthony B. Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
17
|
Prenatal and adolescent alcohol exposure programs immunity across the lifespan: CNS-mediated regulation. Pharmacol Biochem Behav 2022; 216:173390. [PMID: 35447157 DOI: 10.1016/j.pbb.2022.173390] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022]
Abstract
For many individuals, first exposure to alcohol occurs either prenatally due to maternal drinking, or during adolescence, when alcohol consumption is most likely to be initiated. Prenatal Alcohol Exposure (PAE) and its associated Fetal Alcohol Spectrum Disorders (FASD) in humans is associated with earlier initiation of alcohol use and increased rates of Alcohol Use Disorders (AUD). Initiation of alcohol use and misuse in early adolescence correlates highly with later AUD diagnosis as well. Thus, PAE and adolescent binge drinking set the stage for long-term health consequences due to adverse effects of alcohol on subsequent immune function, effects that may persist across the lifespan. The overarching goal of this review, therefore, is to determine the extent to which early developmental exposure to alcohol produces long-lasting, and potentially life-long, changes in immunological function. Alcohol affects the whole body, yet most studies are narrowly focused on individual features of immune function, largely ignoring the systems-level interactions required for effective host defense. We therefore emphasize the crucial role of the Central Nervous System (CNS) in orchestrating host defense processes. We argue that alcohol-mediated disruption of host immunity can occur through both (a) direct action of ethanol on neuroimmune processes, that subsequently disrupt peripheral immune function (top down); and (b) indirect action of ethanol on peripheral immune organs/cells, which in turn elicit consequent changes in CNS neuroimmune function (bottom up). Recognizing that alcohol consumption across the entire body, we argue in favor of integrative, whole-organism approaches toward understanding alcohol effects on immune function, and highlight the need for more work specifically examining long-lasting effects of early developmental exposure to alcohol (prenatal and adolescent periods) on host immunity.
Collapse
|
18
|
Siddiqui G, Giannangelo C, De Paoli A, Schuh AK, Heimsch KC, Anderson D, Brown TG, MacRaild CA, Wu J, Wang X, Dong Y, Vennerstrom JL, Becker K, Creek DJ. Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells. ACS Infect Dis 2022; 8:210-226. [PMID: 34985858 PMCID: PMC8762662 DOI: 10.1021/acsinfecdis.1c00550] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Plasmodium
falciparum causes the
most lethal form of malaria. Peroxide antimalarials based on artemisinin
underpin the frontline treatments for malaria, but artemisinin resistance
is rapidly spreading. Synthetic peroxide antimalarials, known as ozonides,
are in clinical development and offer a potential alternative. Here,
we used chemoproteomics to investigate the protein alkylation targets
of artemisinin and ozonide probes, including an analogue of the ozonide
clinical candidate, artefenomel. We greatly expanded the list of proteins
alkylated by peroxide antimalarials and identified significant enrichment
of redox-related proteins for both artemisinins and ozonides. Disrupted
redox homeostasis was confirmed by dynamic live imaging of the glutathione
redox potential using a genetically encoded redox-sensitive fluorescence-based
biosensor. Targeted liquid chromatography-mass spectrometry (LC-MS)-based
thiol metabolomics also confirmed changes in cellular thiol levels.
This work shows that peroxide antimalarials disproportionately alkylate
proteins involved in redox homeostasis and that disrupted redox processes
are involved in the mechanism of action of these important antimalarials.
Collapse
Affiliation(s)
- Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Carlo Giannangelo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Amanda De Paoli
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Anna Katharina Schuh
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Kim C. Heimsch
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Timothy G. Brown
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Christopher A. MacRaild
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jianbo Wu
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Yuxiang Dong
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Jonathan L. Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
19
|
Reactive Oxygen Species as the Brainbox in Malaria Treatment. Antioxidants (Basel) 2021; 10:antiox10121872. [PMID: 34942976 PMCID: PMC8698694 DOI: 10.3390/antiox10121872] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
Several measures are in place to combat the worldwide spread of malaria, especially in regions of high endemicity. In part, most common antimalarials, such as quinolines and artemisinin and its derivatives, deploy an ROS-mediated approach to kill malaria parasites. Although some antimalarials may share similar targets and mechanisms of action, varying levels of reactive oxygen species (ROS) generation may account for their varying pharmacological activities. Regardless of the numerous approaches employed currently and in development to treat malaria, concerningly, there has been increasing development of resistance by Plasmodium falciparum, which can be connected to the ability of the parasites to manage the oxidative stress from ROS produced under steady or treatment states. ROS generation has remained the mainstay in enforcing the antiparasitic activity of most conventional antimalarials. However, a combination of conventional drugs with ROS-generating ability and newer drugs that exploit vital metabolic pathways, such antioxidant machinery, could be the way forward in effective malaria control.
Collapse
|
20
|
Niu G, Wang X, Hao Y, Kandel S, Niu G, Raptis RG, Li J. A novel fungal metabolite inhibits Plasmodium falciparum transmission and infection. Parasit Vectors 2021; 14:177. [PMID: 33761961 PMCID: PMC7992847 DOI: 10.1186/s13071-021-04677-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/09/2021] [Indexed: 02/05/2023] Open
Abstract
Background Malaria transmission depends on infected mosquitoes and can be controlled by transmission-blocking drugs. The recently discovered FREP1-mediated malaria transmission pathway is an excellent target to screen drugs for limiting transmission. Methods To identify candidate small molecules, we used an ELISA-based approach to analyze extracts from a fungal library for inhibition of the FREP1–parasite interaction. We isolated and determined one active compound by chromatography and crystallography, respectively. We measured the effects of the bioactive compound on malaria transmission to mosquitoes through standard membrane-feeding assays (SMFA) and on parasite proliferation in blood by culturing. Results We discovered the ethyl acetate extract of the fungus Purpureocillium lilacinum that inhibited Plasmodium falciparum transmission to mosquitoes. Pre-exposure to the extract rendered Anopheles gambiae resistant to Plasmodium infection. Furthermore, we isolated one novel active compound from the extract and identified it as 3-amino-7,9-dihydroxy-1-methyl-6H-benzo[c]chromen-6-one, or “pulixin.” Pulixin prevented FREP1 from binding to P. falciparum-infected cell lysate. Pulixin blocked the transmission of the parasite to mosquitoes with an EC50 (the concentration that gave half-maximal response) of 11 µM based on SMFA. Notably, pulixin also inhibited the proliferation of asexual-stage P. falciparum with an EC50 of 47 nM. The compound did not show cytotoxic effects at a concentration of 116 µM or lower. Conclusion By targeting the FREP1–Plasmodium interaction, we discovered that Purpureocillium lilacinum extract blocked malaria transmission. We isolated and identified the bioactive agent pulixin as a new compound capable of stopping malaria transmission to mosquitoes and inhibiting parasite proliferation in blood culture.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04677-7.
Collapse
Affiliation(s)
- Guodong Niu
- Department of Biological Sciences, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA
| | - Xiaohong Wang
- Department of Biological Sciences, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA
| | - Yue Hao
- Department of Biological Sciences, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA.,College of Public Health, University of South China, Hengyang, Hunan, China
| | - Shambhu Kandel
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA
| | - Guomin Niu
- Department of Hematology, Southern Medical University Affiliated Nanhai Hospital, Guangzhou, Guangdong, China
| | - Raphael G Raptis
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA.,Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA
| | - Jun Li
- Department of Biological Sciences, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA. .,Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA.
| |
Collapse
|
21
|
Mourenza Á, Gil JA, Mateos LM, Letek M. Novel Methods to Identify Oxidative Stress-Producing Antibiotics. Methods Mol Biol 2021; 2296:249-261. [PMID: 33977453 DOI: 10.1007/978-1-0716-1358-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Antibiotherapy is the main therapeutic strategy in the fight against bacterial pathogens. However, the misuse of antimicrobials has led to the appearance of antimicrobial-resistant strains. The rate at which we isolate multidrug-resistant bacteria is now much faster than the discovery rate of new antimicrobials. Therefore, the repurposing of approved drugs against multidrug-resistant bacteria is a very promising strategy to find new therapies against these pathogens. Some antibiotics generate oxidative stress as part of their mechanism of action. We have recently applied different methods to find new oxidative stress-producing antimicrobials with synergistic action against intracellular pathogens. Here, we detail several procedures that could be used to identify oxidative stress-producing antimicrobials with a synergistic mechanism of action.
Collapse
Affiliation(s)
- Álvaro Mourenza
- Department of Molecular Biology, Area of Microbiology, University of León, León, Spain
| | - José A Gil
- Department of Molecular Biology, Area of Microbiology, University of León, León, Spain
| | - Luís M Mateos
- Department of Molecular Biology, Area of Microbiology, University of León, León, Spain.
| | - Michal Letek
- Department of Molecular Biology, Area of Microbiology, University of León, León, Spain.
| |
Collapse
|
22
|
Kostyuk AI, Panova AS, Kokova AD, Kotova DA, Maltsev DI, Podgorny OV, Belousov VV, Bilan DS. In Vivo Imaging with Genetically Encoded Redox Biosensors. Int J Mol Sci 2020; 21:E8164. [PMID: 33142884 PMCID: PMC7662651 DOI: 10.3390/ijms21218164] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Redox reactions are of high fundamental and practical interest since they are involved in both normal physiology and the pathogenesis of various diseases. However, this area of research has always been a relatively problematic field in the context of analytical approaches, mostly because of the unstable nature of the compounds that are measured. Genetically encoded sensors allow for the registration of highly reactive molecules in real-time mode and, therefore, they began a new era in redox biology. Their strongest points manifest most brightly in in vivo experiments and pave the way for the non-invasive investigation of biochemical pathways that proceed in organisms from different systematic groups. In the first part of the review, we briefly describe the redox sensors that were used in vivo as well as summarize the model systems to which they were applied. Next, we thoroughly discuss the biological results obtained in these studies in regard to animals, plants, as well as unicellular eukaryotes and prokaryotes. We hope that this work reflects the amazing power of this technology and can serve as a useful guide for biologists and chemists who work in the field of redox processes.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasiya S. Panova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Daria A. Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dmitry I. Maltsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
23
|
Linzke M, Yan SLR, Tárnok A, Ulrich H, Groves MR, Wrenger C. Live and Let Dye: Visualizing the Cellular Compartments of the Malaria Parasite Plasmodium falciparum. Cytometry A 2019; 97:694-705. [PMID: 31738009 DOI: 10.1002/cyto.a.23927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
Malaria remains one of the deadliest diseases worldwide and it is caused by the protozoan parasite Plasmodium spp. Parasite visualization is an important tool for the correct detection of malarial cases but also to understand its biology. Advances in visualization techniques promote new insights into the complex life cycle and biology of Plasmodium parasites. Live cell imaging by fluorescence microscopy or flow cytometry are the foundation of the visualization technique for malaria research. In this review, we present an overview of possibilities in live cell imaging of the malaria parasite. We discuss some of the state-of-the-art techniques to visualize organelles and processes of the parasite and discuss limitation and advantages of each technique. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Marleen Linzke
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo, São Paulo, 05508-000, Brazil
| | - Sun Liu Rei Yan
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo, São Paulo, 05508-000, Brazil
| | - Attila Tárnok
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University Leipzig, D-04107, Härtelstraße 16-18, Leipzig, Germany
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, São Paulo, São Paulo, 05508-900, Brazil
| | - Matthew R Groves
- Structural Biology Unit, Department of Pharmacy, Faculty of Science and Engineering, University of Groningen, 9713AV, Antonius Deusinglaan 1, AV Groningen, The Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
24
|
Erdős G, Mészáros B, Reichmann D, Dosztányi Z. Large-Scale Analysis of Redox-Sensitive Conditionally Disordered Protein Regions Reveals Their Widespread Nature and Key Roles in High-Level Eukaryotic Processes. Proteomics 2019; 19:e1800070. [PMID: 30628183 DOI: 10.1002/pmic.201800070] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/13/2018] [Indexed: 12/17/2022]
Abstract
Recently developed quantitative redox proteomic studies enable the direct identification of redox-sensing cysteine residues that regulate the functional behavior of target proteins in response to changing levels of reactive oxygen species. At the molecular level, redox regulation can directly modify the active sites of enzymes, although a growing number of examples indicate the importance of an additional underlying mechanism that involves conditionally disordered proteins. These proteins alter their functional behavior by undergoing a disorder-to-order transition in response to changing redox conditions. However, the extent to which this mechanism is used in various proteomes is currently unknown. Here, a recently developed sequence-based prediction tool incorporated into the IUPred2A web server is used to estimate redox-sensitive conditionally disordered regions at a large scale. It is shown that redox-sensitive conditional disorder is fairly widespread in various proteomes and that its presence strongly correlates with the expansion of specific domains in multicellular organisms that largely rely on extra stability provided by disulfide bonds or zinc ion binding. The analyses of yeast redox proteomes and human disease data further underlie the significance of this phenomenon in the regulation of a wide range of biological processes, as well as its biomedical importance.
Collapse
Affiliation(s)
- Gábor Erdős
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Bálint Mészáros
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, H-1117, Hungary.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Zsuzsanna Dosztányi
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| |
Collapse
|
25
|
Haeussler K, Berneburg I, Jortzik E, Hahn J, Rahbari M, Schulz N, Preuss J, Zapol'skii VA, Bode L, Pinkerton AB, Kaufmann DE, Rahlfs S, Becker K. Glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase: characterization of the Plasmodium vivax enzyme and inhibitor studies. Malar J 2019; 18:22. [PMID: 30683097 PMCID: PMC6346587 DOI: 10.1186/s12936-019-2651-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Since malaria parasites highly depend on ribose 5-phosphate for DNA and RNA synthesis and on NADPH as a source of reducing equivalents, the pentose phosphate pathway (PPP) is considered an excellent anti-malarial drug target. In Plasmodium, a bifunctional enzyme named glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase (GluPho) catalyzes the first two steps of the PPP. PfGluPho has been shown to be essential for the growth of blood stage Plasmodium falciparum parasites. METHODS Plasmodium vivax glucose 6-phosphate dehydrogenase (PvG6PD) was cloned, recombinantly produced in Escherichia coli, purified, and characterized via enzyme kinetics and inhibitor studies. The effects of post-translational cysteine modifications were assessed via western blotting and enzyme activity assays. Genetically encoded probes were employed to study the effects of G6PD inhibitors on the cytosolic redox potential of Plasmodium. RESULTS Here the recombinant production and characterization of PvG6PD, the C-terminal and NADPH-producing part of PvGluPho, is described. A comparison with PfG6PD (the NADPH-producing part of PfGluPho) indicates that the P. vivax enzyme has higher KM values for the substrate and cofactor. Like the P. falciparum enzyme, PvG6PD is hardly affected by S-glutathionylation and moderately by S-nitrosation. Since there are several naturally occurring variants of PfGluPho, the impact of these mutations on the kinetic properties of the enzyme was analysed. Notably, in contrast to many human G6PD variants, the mutations resulted in only minor changes in enzyme activity. Moreover, nanomolar IC50 values of several compounds were determined on P. vivax G6PD (including ellagic acid, flavellagic acid, and coruleoellagic acid), inhibitors that had been previously characterized on PfGluPho. ML304, a recently developed PfGluPho inhibitor, was verified to also be active on PvG6PD. Using genetically encoded probes, ML304 was confirmed to disturb the cytosolic glutathione-dependent redox potential of P. falciparum blood stage parasites. Finally, a new series of novel small molecules with the potential to inhibit the falciparum and vivax enzymes were synthesized, resulting in two compounds with nanomolar activity. CONCLUSION The characterization of PvG6PD makes this enzyme accessible to further drug discovery activities. In contrast to naturally occurring G6PD variants in the human host that can alter the kinetic properties of the enzyme and thus the redox homeostasis of the cells, the naturally occurring PfGluPho variants studied here are unlikely to have a major impact on the parasites' redox homeostasis. Several classes of inhibitors have been successfully tested and are presently being followed up.
Collapse
Affiliation(s)
- Kristina Haeussler
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Isabell Berneburg
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Esther Jortzik
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Julia Hahn
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Mahsa Rahbari
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Norma Schulz
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Janina Preuss
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.,Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.,Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Viktor A Zapol'skii
- Institute of Organic Chemistry, Clausthal University of Technology, 38678, Clausthal-Zellerfeld, Germany
| | - Lars Bode
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Dieter E Kaufmann
- Institute of Organic Chemistry, Clausthal University of Technology, 38678, Clausthal-Zellerfeld, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
26
|
Asada M, Hakimi H, Kawazu SI. The application of the HyPer fluorescent sensor in the real-time detection of H 2O 2 in Babesia bovis merozoites in vitro. Vet Parasitol 2018; 255:78-82. [PMID: 29773141 DOI: 10.1016/j.vetpar.2018.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/14/2018] [Accepted: 03/18/2018] [Indexed: 01/24/2023]
Abstract
In recent years, genetically encoded fluorescent probes have allowed a dramatic advancement in time-lapse imaging, enabling this imaging modality to be used to investigate intracellular events in several apicomplexan parasite species. In this study, we constructed a plasmid vector to stably express a genetically encoded H2O2 sensor probe called HyPer in Babesia bovis. The HyPer-transfected parasite population was successfully developed and subjected to a time-lapse imaging analysis under in vitro culture conditions. HyPer was capable of sensing an increasing H2O2 concentration in the parasite cells which was induced by the administration of paraquat as a superoxide donor. HyPer fluorescence co-staining with MitoTracker Red indicated the mitochondria as the major source of reactive oxygen species (ROS) in parasite cells. The fluctuating ROS dynamics in the parasite gliding toward, attaching to, and invading the target red blood cell was visualized and monitored in real time with the HyPer expressing parasite population. This is the first report to describe the application of the HyPer probe in an imaging analysis involving Babesia parasites. Hyper-expressing parasites can be widely utilized in studies to investigate the mechanisms of emergence and the reduction of oxidative stress, as well as the signal transduction in the parasite cells during host invasion and intercellular development.
Collapse
Affiliation(s)
- Masahito Asada
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan; National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan.
| | - Hassan Hakimi
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan; National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan.
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
27
|
Hydrogen peroxide dynamics in subcellular compartments of malaria parasites using genetically encoded redox probes. Sci Rep 2017; 7:10449. [PMID: 28874682 PMCID: PMC5585161 DOI: 10.1038/s41598-017-10093-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/03/2017] [Indexed: 11/23/2022] Open
Abstract
Redox balance is essential for the survival, growth and multiplication of malaria parasites and oxidative stress is involved in the mechanism of action of many antimalarial drugs. Hydrogen peroxide (H2O2) plays an important role in redox signalling and pathogen-host cell interactions. For monitoring intra- and subcellular redox events, highly sensitive and specific probes are required. Here, we stably expressed the ratiometric H2O2 redox sensor roGFP2-Orp1 in the cytosol and the mitochondria of Plasmodium falciparum (P. falciparum) NF54-attB blood-stage parasites and evaluated its sensitivity towards oxidative stress, selected antimalarial drugs, and novel lead compounds. In both compartments, the sensor showed reproducible sensitivity towards H2O2 in the low micromolar range and towards antimalarial compounds at pharmacologically relevant concentrations. Upon short-term exposure (4 h), artemisinin derivatives, quinine and mefloquine impacted H2O2 levels in mitochondria, whereas chloroquine and a glucose-6-phosphate dehydrogenase (G6PD) inhibitor affected the cytosol; 24 h exposure to arylmethylamino steroids and G6PD inhibitors revealed oxidation of mitochondria and cytosol, respectively. Genomic integration of an H2O2 sensor expressed in subcellular compartments of P. falciparum provides the basis for studying complex parasite-host cell interactions or drug effects with spatio-temporal resolution while preserving cell integrity, and sets the stage for high-throughput approaches to identify antimalarial agents perturbing redox equilibrium.
Collapse
|