1
|
Repetto MF, Torchin ME, Ruiz GM, Schlöder C, Freestone AL. Biogeographic and seasonal differences in consumer pressure underlie strong predation in the tropics. Proc Biol Sci 2024; 291:20240868. [PMID: 38955327 PMCID: PMC11334995 DOI: 10.1098/rspb.2024.0868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Biotic interactions play a critical role in shaping patterns of global biodiversity. While several macroecological studies provide evidence for stronger predation in tropical regions compared with higher latitudes, results are variable even within the tropics, and the drivers of this variability are not well understood. We conducted two complementary standardized experiments on communities of sessile marine invertebrate prey and their associated predators to test for spatial and seasonal differences in predation across the tropical Atlantic and Pacific coastlines of Panama. We further tested the prediction that higher predator diversity contributes to stronger impacts of predation, using both direct observations of predators and data from extensive reef surveys. Our results revealed substantially higher predation rates and stronger effects of predators on prey in the Pacific than in the Atlantic, demonstrating striking variation within tropical regions. While regional predator diversity was high in the Atlantic, functional diversity at local scales was markedly low. Peak predation strength in the Pacific occurred during the wet, non-upwelling season when ocean temperatures were warmer and predator communities were more functionally diverse. Our results highlight the importance of regional biotic and abiotic drivers that shape interaction strength and the maintenance of tropical communities, which are experiencing rapid environmental change.
Collapse
Affiliation(s)
- Michele F. Repetto
- Department of Biology, Temple University, Philadelphia, PA19122, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
- Smithsonian Environmental Research Center, Edgewater, MD21037-0028, USA
| | - Mark E. Torchin
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
| | - Gregory M. Ruiz
- Smithsonian Environmental Research Center, Edgewater, MD21037-0028, USA
| | - Carmen Schlöder
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
| | - Amy L. Freestone
- Department of Biology, Temple University, Philadelphia, PA19122, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
- Smithsonian Environmental Research Center, Edgewater, MD21037-0028, USA
| |
Collapse
|
2
|
Peacor SD, Dorn NJ, Smith JA, Peckham NE, Cherry MJ, Sheriff MJ, Kimbro DL. A skewed literature: Few studies evaluate the contribution of predation-risk effects to natural field patterns. Ecol Lett 2022; 25:2048-2061. [PMID: 35925978 PMCID: PMC9545701 DOI: 10.1111/ele.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
A narrative in ecology is that prey modify traits to reduce predation risk, and the trait modification has costs large enough to cause ensuing demographic, trophic and ecosystem consequences, with implications for conservation, management and agriculture. But ecology has a long history of emphasising that quantifying the importance of an ecological process ultimately requires evidence linking a process to unmanipulated field patterns. We suspected that such process-linked-to-pattern (PLP) studies were poorly represented in the predation risk literature, which conflicts with the confidence often given to the importance of risk effects. We reviewed 29 years of the ecological literature which revealed that there are well over 4000 articles on risk effects. Of those, 349 studies examined risk effects on prey fitness measures or abundance (i.e., non-consumptive effects) of which only 26 were PLP studies, while 275 studies examined effects on other interacting species (i.e., trait-mediated indirect effects) of which only 35 were PLP studies. PLP studies were narrowly focused taxonomically and included only three that examined unmanipulated patterns of prey abundance. Before concluding a widespread and influential role of predation-risk effects, more attention must be given to linking the process of risk effects to unmanipulated patterns observed across diverse ecosystems.
Collapse
Affiliation(s)
- Scott D Peacor
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
| | - Nathan J Dorn
- Department of Biological Sciences and Institute of Environment, Florida International University, Miami, Florida, USA
| | - Justine A Smith
- Department of Wildlife, Fish, and Conservation Biology, University of California - Davis, Davis, California, USA
| | - Nicole E Peckham
- Department of Marine and Environmental Science, Northeastern University, Boston, Massachusetts, USA
| | - Michael J Cherry
- Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, Texas, USA
| | - Michael J Sheriff
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA
| | - David L Kimbro
- Department of Marine and Environmental Science, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
The effects of intraguild interactions (or lack of) on prey diversity in experimental ponds food webs. FOOD WEBS 2021. [DOI: 10.1016/j.fooweb.2021.e00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Smith JG, Tomoleoni J, Staedler M, Lyon S, Fujii J, Tinker MT. Behavioral responses across a mosaic of ecosystem states restructure a sea otter-urchin trophic cascade. Proc Natl Acad Sci U S A 2021; 118:e2012493118. [PMID: 33836567 PMCID: PMC7980363 DOI: 10.1073/pnas.2012493118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Consumer and predator foraging behavior can impart profound trait-mediated constraints on community regulation that scale up to influence the structure and stability of ecosystems. Here, we demonstrate how the behavioral response of an apex predator to changes in prey behavior and condition can dramatically alter the role and relative contribution of top-down forcing, depending on the spatial organization of ecosystem states. In 2014, a rapid and dramatic decline in the abundance of a mesopredator (Pycnopodia helianthoides) and primary producer (Macrocystis pyrifera) coincided with a fundamental change in purple sea urchin (Strongylocentrotus purpuratus) foraging behavior and condition, resulting in a spatial mosaic of kelp forests interspersed with patches of sea urchin barrens. We show that this mosaic of adjacent alternative ecosystem states led to an increase in the number of sea otters (Enhydra lutris nereis) specializing on urchin prey, a population-level increase in urchin consumption, and an increase in sea otter survivorship. We further show that the spatial distribution of sea otter foraging efforts for urchin prey was not directly linked to high prey density but rather was predicted by the distribution of energetically profitable prey. Therefore, we infer that spatially explicit sea otter foraging enhances the resistance of remnant forests to overgrazing but does not directly contribute to the resilience (recovery) of forests. These results highlight the role of consumer and predator trait-mediated responses to resource mosaics that are common throughout natural ecosystems and enhance understanding of reciprocal feedbacks between top-down and bottom-up forcing on the regional stability of ecosystems.
Collapse
Affiliation(s)
- Joshua G Smith
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060;
| | - Joseph Tomoleoni
- Santa Cruz Field Station, Western Ecological Research Center, US Geological Survey, Santa Cruz, CA 95060
| | - Michelle Staedler
- Department of Conservation Research, Monterey Bay Aquarium, Monterey, CA 93940
| | - Sophia Lyon
- Santa Cruz Field Station, Western Ecological Research Center, US Geological Survey, Santa Cruz, CA 95060
| | - Jessica Fujii
- Department of Conservation Research, Monterey Bay Aquarium, Monterey, CA 93940
| | - M Tim Tinker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060
- Santa Cruz Field Station, Western Ecological Research Center, US Geological Survey, Santa Cruz, CA 95060
| |
Collapse
|
5
|
Lamb RW, Smith F, Witman JD. Consumer mobility predicts impacts of herbivory across an environmental stress gradient. Ecology 2019; 101:e02910. [PMID: 31605535 DOI: 10.1002/ecy.2910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/14/2019] [Accepted: 09/03/2019] [Indexed: 11/07/2022]
Abstract
Environmental stress impedes predation and herbivory by limiting the ability of animals to search for and consume prey. We tested the contingency of this relationship on consumer traits and specifically hypothesized that herbivore mobility relative to the return time of limiting environmental stress would predict consumer effects. We examined how wave-induced water motion affects marine communities via herbivory by highly mobile (fish) vs. slow-moving (pencil urchin) consumers at two wave-sheltered and two wave-exposed rocky subtidal locations in the Galapagos Islands. The exposed locations experienced 99th percentile flow speeds that were 2-5 times greater than sheltered locations, with mean flow speeds >33 cm/s vs. <16 cm/s, 2-7 times higher standing macroalgal cover and 2-3 times lower cover of crustose coralline algae than the sheltered locations. As predicted by the environmental stress hypothesis (ESH), there was a negative relationship between mean flow speed and urchin abundance and herbivory rates on Ulva spp. algal feeding assays. In contrast, the biomass of surgeonfishes (Acanthuridae) and parrotfishes (Labridae: Scarinae) was positively correlated with mean flow speed. Ulva assays were consumed at equal rates by fish at exposed and sheltered locations, indicating continued herbivory even when flow speeds surpassed maximum reported swimming speeds at a rate of 1-2 times per minute. Modeled variation in fish species richness revealed minimal effects of diversity on herbivory rates at flow speeds <40 cm/s, when all species were capable of foraging, and above 120 cm/s, when no species could forage, while increasing diversity maximized herbivory rates at flow speeds of 40-120 cm/s. Two-month herbivore exclusion experiments during warm and cool seasons revealed that macroalgal biomass was positively correlated with flow speed. Fish limited macroalgal development by 65-91% at one exposed location but not the second and by 70% at the two sheltered locations. In contrast, pencil urchins did not affect algal communities at either exposed location, but reduced macroalgae by 87% relative to controls at both sheltered locations. We propose an extension of the ESH that is contingent upon mobility to explain species-specific changes in feeding rates and consumer effects on benthic communities across environmental gradients.
Collapse
Affiliation(s)
- Robert W Lamb
- Ecology and Evolutionary Biology Department, Brown University, 80 Waterman Street, Box G-W, Providence, Rhode Island, 02912, USA.,Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, MS 50, Woods Hole, Massachusetts, 02543, USA
| | - Franz Smith
- Ecology and Evolutionary Biology Department, Brown University, 80 Waterman Street, Box G-W, Providence, Rhode Island, 02912, USA
| | - Jon D Witman
- Ecology and Evolutionary Biology Department, Brown University, 80 Waterman Street, Box G-W, Providence, Rhode Island, 02912, USA
| |
Collapse
|
6
|
Cordone G, Marina TI, Salinas V, Doyle SR, Saravia LA, Momo FR. Effects of macroalgae loss in an Antarctic marine food web: applying extinction thresholds to food web studies. PeerJ 2018; 6:e5531. [PMID: 30225167 PMCID: PMC6139014 DOI: 10.7717/peerj.5531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/07/2018] [Indexed: 11/20/2022] Open
Abstract
Antarctica is seriously affected by climate change, particularly at the Western Antarctic Peninsula (WAP) where a rapid regional warming is observed. Potter Cove is a WAP fjord at Shetland Islands that constitutes a biodiversity hotspot where over the last years, Potter Cove annual air temperatures averages increased by 0.66 °C, coastal glaciers declined, and suspended particulate matter increased due to ice melting. Macroalgae are the main energy source for all consumers and detritivores of Potter Cove. Some effects of climate change favor pioneer macroalgae species that exploit new ice-free areas and can also decline rates of photosynthesis and intensify competition between species due to the increase of suspended particulate matter. In this study, we evaluated possible consequences of climate change at Potter Cove food web by simulating the extinction of macroalgae and detritus using a topological approach with thresholds of extinction. Thresholds represent the minimum number of incoming links necessary for species' survival. When we simulated the extinctions of macroalgae species at random, a threshold of extinction beyond 50% was necessary to obtain a significant number of secondary extinctions, while with a 75% threshold a real collapse of the food web occurred. Our results indicate that Potter Cove food web is relative robust to macroalgae extinction. This is dramatically different from what has been found in other food webs, where the reduction of 10% in prey intake caused a disproportionate increase of secondary extinctions. Robustness of the Potter Cove food web was mediated by omnivory and redundancy, which had an important relevance in this food web. When we eliminated larger-biomass species more secondary extinctions occurred, a similar response was observed when more connected species were deleted, yet there was no correlation between species of larger-biomass and high-degree. This similarity could be explained because both criteria involved key species that produced an emerging effect on the food web. In this way, large-biomass and high-degree species could be acting as source for species with few trophic interactions or low redundancy. Based on this work, we expect the Potter Cove food web to be robust to changes in macroalgae species caused by climate change until a high threshold of stress is reached, and then negative effects are expected to spread through the entire food web leading to its collapse.
Collapse
Affiliation(s)
- Georgina Cordone
- Centro Nacional Patagónico (CCT CONICET-CENPAT), Centro Para el Estudio de Sistemas Marinos (CESIMAR), Puerto Madryn, Chubut, Argentina
| | - Tomás I. Marina
- Universidad Nacional de General Sarmiento, Instituto de Ciencias (ICI), Los Polvorines, Buenos Aires, Argentina
- Universidad Nacional de Luján, Instituto de Ecología y Desarrollo Sustentable (INEDES), Luján, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Austral de Investigaciones Científicas (CADIC), Ushuaia, Tierra del Fuego, Argentina
| | - Vanesa Salinas
- Universidad Nacional de General Sarmiento, Instituto de Ciencias (ICI), Los Polvorines, Buenos Aires, Argentina
| | - Santiago R. Doyle
- Universidad Nacional de General Sarmiento, Instituto de Ciencias (ICI), Los Polvorines, Buenos Aires, Argentina
- Universidad Nacional de Luján, Instituto de Ecología y Desarrollo Sustentable (INEDES), Luján, Buenos Aires, Argentina
| | - Leonardo A. Saravia
- Universidad Nacional de General Sarmiento, Instituto de Ciencias (ICI), Los Polvorines, Buenos Aires, Argentina
- Universidad Nacional de Luján, Instituto de Ecología y Desarrollo Sustentable (INEDES), Luján, Buenos Aires, Argentina
| | - Fernando R. Momo
- Universidad Nacional de General Sarmiento, Instituto de Ciencias (ICI), Los Polvorines, Buenos Aires, Argentina
- Universidad Nacional de Luján, Instituto de Ecología y Desarrollo Sustentable (INEDES), Luján, Buenos Aires, Argentina
| |
Collapse
|