1
|
Zhao Y, Song M, Yu Z, Pang L, Zhang L, Karakassis I, Dimitriou PD, Yuan X. Transcriptomic Responses of a Lightly Calcified Echinoderm to Experimental Seawater Acidification and Warming during Early Development. BIOLOGY 2023; 12:1520. [PMID: 38132346 PMCID: PMC10740944 DOI: 10.3390/biology12121520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Ocean acidification (OA) and ocean warming (OW) are potential obstacles to the survival and growth of marine organisms, particularly those that rely on calcification. This study investigated the single and joint effects of OA and OW on sea cucumber Apostichopus japonicus larvae raised under combinations of two temperatures (19 °C or 22 °C) and two pCO2 levels (400 or 1000 μatm) that reflect the current and end-of-21st-century projected ocean scenarios. The investigation focused on assessing larval development and identifying differences in gene expression patterns at four crucial embryo-larval stages (blastula, gastrula, auricularia, and doliolaria) of sea cucumbers, using RNA-seq. Results showed the detrimental effect of OA on the early development and body growth of A. japonicus larvae and a reduction in the expression of genes associated with biomineralization, skeletogenesis, and ion homeostasis. This effect was particularly pronounced during the doliolaria stage, indicating the presence of bottlenecks in larval development at this transition phase between the larval and megalopa stages in response to OA. OW accelerated the larval development across four stages of A. japonicus, especially at the blastula and doliolaria stages, but resulted in a widespread upregulation of genes related to heat shock proteins, antioxidant defense, and immune response. Significantly, the negative effects of elevated pCO2 on the developmental process of larvae appeared to be mitigated when accompanied by increased temperatures at the expense of reduced immune resilience and increased system fragility. These findings suggest that alterations in gene expression within the larvae of A. japonicus provide a mechanism to adapt to stressors arising from a rapidly changing oceanic environment.
Collapse
Affiliation(s)
- Ye Zhao
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Ocean School, Yantai University, Yantai 264005, China
| | - Mingshan Song
- Ministry of Ecology and Environment, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Zhenglin Yu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lei Pang
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ioannis Karakassis
- Marine Ecology Laboratory, Department of Biology, University of Crete, GR 70013 Heraklion, Greece
| | - Panagiotis D. Dimitriou
- Marine Ecology Laboratory, Department of Biology, University of Crete, GR 70013 Heraklion, Greece
| | - Xiutang Yuan
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Ministry of Ecology and Environment, National Marine Environmental Monitoring Center, Dalian 116023, China
| |
Collapse
|
2
|
Friesen CR, Wapstra E, Olsson M. Of telomeres and temperature: Measuring thermal effects on telomeres in ectothermic animals. Mol Ecol 2022; 31:6069-6086. [PMID: 34448287 DOI: 10.1111/mec.16154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
Ectotherms are classic models for understanding life-history tradeoffs, including the reproduction-somatic maintenance tradeoffs that may be reflected in telomere length and their dynamics. Importantly, life-history traits of ectotherms are tightly linked to their thermal environment, with diverse or synergistic mechanistic explanations underpinning the variation. Telomere dynamics potentially provide a mechanistic link that can be used to monitor thermal effects on individuals in response to climatic perturbations. Growth rate, age and developmental stage are all affected by temperature, which interacts with telomere dynamics in complex and intriguing ways. The physiological processes underpinning telomere dynamics can be visualized and understood using thermal performance curves (TPCs). TPCs reflect the evolutionary history and the thermal environment during an individual's ontogeny. Telomere maintenance should be enhanced at or near the thermal performance optimum of a species, population and individual. The thermal sensitivity of telomere dynamics should reflect the interacting TPCs of the processes underlying them. The key processes directly underpinning telomere dynamics are mitochondrial function (reactive oxygen production), antioxidant activity, telomerase activity and telomere endcap protein status. We argue that identifying TPCs for these processes will significantly help design robust, repeatable experiments and field studies of telomere dynamics in ectotherms. Conceptually, TPCs are a valuable framework to predict and interpret taxon- and population-specific telomere dynamics across thermal regimes. The literature of thermal effects on telomeres in ectotherms is sparse and mostly limited to vertebrates, but our conclusions and recommendations are relevant across ectothermic animals.
Collapse
Affiliation(s)
- Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, Wollongong, New South Wales, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Mats Olsson
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, Wollongong, New South Wales, Australia.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Cruz-González S, Quesada-Díaz E, Miranda-Negrón Y, García-Rosario R, Ortiz-Zuazaga H, García-Arrarás JE. The Stress Response of the Holothurian Central Nervous System: A Transcriptomic Analysis. Int J Mol Sci 2022; 23:ijms232113393. [PMID: 36362181 PMCID: PMC9657328 DOI: 10.3390/ijms232113393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Injury to the central nervous system (CNS) results in permanent damage and lack of function in most vertebrate animals, due to their limited regenerative capacities. In contrast, echinoderms can fully regenerate their radial nerve cord (RNC) following transection, with little to no scarring. Investigators have associated the regenerative capacity of some organisms to the stress response and inflammation produced by the injury. Here, we explore the gene activation profile of the stressed holothurian CNS. To do this, we performed RNA sequencing on isolated RNC explants submitted to the stress of transection and enzyme dissection and compared them with explants kept in culture for 3 days following dissection. We describe stress-associated genes, including members of heat-shock families, ubiquitin-related pathways, transposons, and apoptosis that were differentially expressed. Surprisingly, the stress response does not induce apoptosis in this system. Other genes associated with stress in other animal models, such as hero proteins and those associated with the integrated stress response, were not found to be differentially expressed either. Our results provide a new viewpoint on the stress response in the nervous system of an organism with amazing regenerative capacities. This is the first step in deciphering the molecular processes that allow echinoderms to undergo fully functional CNS regeneration, and also provides a comparative view of the stress response in other organisms.
Collapse
Affiliation(s)
- Sebastián Cruz-González
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Eduardo Quesada-Díaz
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Yamil Miranda-Negrón
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Raúl García-Rosario
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Humberto Ortiz-Zuazaga
- Department of Computer Science, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - José E. García-Arrarás
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
- Correspondence:
| |
Collapse
|
4
|
Stress Resistance and Adaptation of the Aquatic Invasive Species Tubastraea Coccinea (Lesson, 1829) to Climate Change and Ocean Acidification. WATER 2021. [DOI: 10.3390/w13243645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A great number of studies published on long-term ocean warming and increased acidification have forecasted changes in regional biodiversity preempted by aquatic invasive species (AIS). The present paper is focused on invasive Tubastraea coccinea (TC), an azooxanthellate AIS coral thriving in regions of the Gulf of Mexico, which has shown an ability to invade altered habitats, including endemic Indo-Pacific T. coccinea (TCP) populations. To determine if invasive TC are more stress resistant than endemic Indo-Pacific T. coccinea (TCP), authors measured tissue loss and heat shock protein 70 (HSP70) expression, using a full factorial design, post exposure to changes in pH (7.5 and 8.1) and heat stress (31 °C and 34 °C). Overall, the mean time required for TCP to reach 50% tissue loss (LD50) was less than observed for TC by a factor of 0.45 (p < 0.0003). Increasing temperature was found to be a significant main effect (p = 0.004), decreasing the LD50 by a factor of 0.58. Increasing acidity to pH 7.5 from 8.1 did not change the sensitivity of TC to temperature; however, TCP displayed increased sensitivity at 31 °C. Increases in the relative density of HSP70 (TC) were seen at all treatment levels. Hence, TC appears more robust compared to TCP and may emerge as a new dominant coral displacing endemic populations as a consequence of climate change.
Collapse
|
5
|
González-Durán E, Hernández-Flores Á, Headley MD, Canul JD. On the effects of temperature and pH on tropical and temperate holothurians. CONSERVATION PHYSIOLOGY 2021; 9:coab092. [PMID: 34925846 PMCID: PMC8677458 DOI: 10.1093/conphys/coab092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/13/2018] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Ocean acidification and increased ocean heat content has direct and indirect effects on marine organisms such as holothurians (sea cucumbers) that are vulnerable to changes in pH and temperature. These environmental factors have the potential to influence organismal performance and fitness at different life stages. Tropical and temperate holothurians are more vulnerable to temperature and pH than those from colder water environments. The high level of environmental variation observed in the oceans could influence organismal responses and even produce a wide spectrum of compensatory physiological mechanisms. It is possible that in these areas, larval survival will decline by up to 50% in response to a reduction of 0.5 pH units. Such reduction in pH may trigger low intrinsic growth rates and affect the sustainability of the resource. Here we describe the individual and combined effects that temperature and pH could produce in these organisms. We also describe how these effects can scale from individuals to the population level by using age-structured spatial models in which depensation can be integrated. The approach shows how physiology can improve the conservation of the resource based on the restriction of growth model parameters and by including a density threshold, below which the fitness of the population, specifically intrinsic growth rate, decreases.
Collapse
Affiliation(s)
- Enrique González-Durán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Campeche, Avenida Ing. Humberto Lanz Cárdenas y Fraccionamiento Ecológico Ambiental Siglo XXIII, Colonia, Ex Hacienda Kalá, C.P. 24085, San Francisco de Campeche, Campeche, Mexico
| | - Álvaro Hernández-Flores
- Universidad Marista de Mérida, Periférico Norte Tablaje Catastral 13941, Carretera Mérida-Progreso, C.P. 97300, Mérida Yucatán, México
| | - Maren D Headley
- Caribbean Regional Fisheries Mechanism Secretariat, Princess Margaret Drive, Belize City, P.O Box 642, Belize
| | - José Duarte Canul
- Universidad Marista de Mérida, Periférico Norte Tablaje Catastral 13941, Carretera Mérida-Progreso, C.P. 97300, Mérida Yucatán, México
| |
Collapse
|
6
|
Martín-Hernández R, Rodríguez-Canul R, Kantún-Moreno N, Olvera-Novoa MA, Medina-Contreras O, Garikoitz-Legarda C, Triviño JC, Zamora-Briseño JA, May-Solis V, Poot-Salazar A, Pérez-Vega JA, Gil-Zamorano J, Grant G, Dávalos A, Olivera-Castillo L. Comparative Transcriptomes of the Body Wall of Wild and Farmed Sea Cucumber Isostichopus badionotus. Int J Mol Sci 2021; 22:ijms22083882. [PMID: 33918680 PMCID: PMC8070510 DOI: 10.3390/ijms22083882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Overfishing of sea cucumber Isostichopus badionotus from Yucatan has led to a major population decline. They are being captured as an alternative to traditional species despite a paucity of information about their health-promoting properties. The transcriptome of the body wall of wild and farmed I. badionotus has now been studied for the first time by an RNA-Seq approach. The functional profile of wild I. badionotus was comparable with data in the literature for other regularly captured species. In contrast, the metabolism of first generation farmed I. badionotus was impaired. This had multiple possible causes including a sub-optimal growth environment and impaired nutrient utilization. Several key metabolic pathways that are important in effective handling and accretion of nutrients and energy, or clearance of harmful cellular metabolites, were disrupted or dysregulated. For instance, collagen mRNAs were greatly reduced and deposition of collagen proteins impaired. Wild I. badionotus is, therefore, a suitable alternative to other widely used species but, at present, the potential of farmed I. badionotus is unclear. The environmental or nutritional factors responsible for their impaired function in culture remain unknown, but the present data gives useful pointers to the underlying problems associated with their aquaculture.
Collapse
Affiliation(s)
- Roberto Martín-Hernández
- Bioinformatics and Biostatistics Unit, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco 8, 28049 Madrid, Spain;
| | - Rossanna Rodríguez-Canul
- Laboratorio de Inmunología y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (R.R.-C.); (N.K.-M.); (J.A.Z.-B.); (J.A.P.-V.)
| | - Nuvia Kantún-Moreno
- Laboratorio de Inmunología y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (R.R.-C.); (N.K.-M.); (J.A.Z.-B.); (J.A.P.-V.)
| | - Miguel A. Olvera-Novoa
- Laboratorio de Nutrición Acuícola, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (M.A.O.-N.); (V.M.-S.)
| | - Oscar Medina-Contreras
- Unidad de Investigación Epidemiológica en Endocrinología y Nutrición, Hospital Infantil de México “Federico Gómez”, Mexico City 06720, Mexico;
| | - Cristobal Garikoitz-Legarda
- Bioinformatics Department, Sistemas Genómicos S.L., Ronda de Guglielmo Marconi 6, 46980 Paterna, Spain; (C.G.-L.); (J.C.T.)
| | - Juan Carlos Triviño
- Bioinformatics Department, Sistemas Genómicos S.L., Ronda de Guglielmo Marconi 6, 46980 Paterna, Spain; (C.G.-L.); (J.C.T.)
| | - Jesús Alejandro Zamora-Briseño
- Laboratorio de Inmunología y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (R.R.-C.); (N.K.-M.); (J.A.Z.-B.); (J.A.P.-V.)
| | - Víctor May-Solis
- Laboratorio de Nutrición Acuícola, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (M.A.O.-N.); (V.M.-S.)
| | - Alicia Poot-Salazar
- Centro Regional de Investigaciones Acuícola y Pesqueras en Yucalpetén, Instituto Nacional de Pesca y Acuacultura, Boulevard del Pescador S/N, Puerto de Abrigo, Progreso 97320, Yucatán, Mexico;
| | - Juan Antonio Pérez-Vega
- Laboratorio de Inmunología y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (R.R.-C.); (N.K.-M.); (J.A.Z.-B.); (J.A.P.-V.)
| | - Judit Gil-Zamorano
- Laboratory of Epigenetics of Lipid Metabolism, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco 8, 28049 Madrid, Spain;
| | - George Grant
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Correspondence: (G.G.); (A.D.); (L.O.-C.)
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco 8, 28049 Madrid, Spain;
- Correspondence: (G.G.); (A.D.); (L.O.-C.)
| | - Leticia Olivera-Castillo
- Laboratorio de Nutrición Acuícola, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (M.A.O.-N.); (V.M.-S.)
- Correspondence: (G.G.); (A.D.); (L.O.-C.)
| |
Collapse
|
7
|
Sánchez-Solís MJ, Gullian-Klanian M, Toledo-López V, Lora-Vilchis MC. Proximate composition and fatty acid profile of the sea cucumber isostichopus badionotus and holothuria floridana. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Dong S, Nie H, Ye J, Li D, Huo Z, Yan X. Physiological and gene expression analysis of the Manila clam Ruditapes philippinarum in response to cold acclimation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140427. [PMID: 32721715 DOI: 10.1016/j.scitotenv.2020.140427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/30/2020] [Accepted: 06/20/2020] [Indexed: 05/15/2023]
Abstract
Overwinter mortality of the Manila clam (Ruditapes philippinarum) is a major impediment to the aquaculture industry in China. Cold tolerance ability has a tremendous impact on the survivability of R. philippinarum during the overwintering season. In this study, we evaluated the effects of acute and chronic cold stress on the expression of Cold Shock Domain-containing E1 (CSDE1) and Antifreeze protein type II (AFPII) genes and the activities of lysozyme (LZM), catalase (CAT), and superoxide dismutase (SOD) in three cultivated strains (zebra, white, and white zebra) and two wild populations (northern and southern) of R. philippinarum. Under acute and chronic cold stress, the expression levels of CSDE1 and AFPII mRNA in the gills and hepatopancreas were significantly increased in all populations, but the increase varied among different strains and populations. Under acute cold stress, SOD activity significantly decreased in the two wild populations and the white zebra strain. LZM activity significantly decreased but CAT activity significantly increased in selected strains and populations after acute low temperature stress (P < 0.05). Under chronic cold stress, SOD activity significantly increased in the northern population and white zebra strain, while CAT activity significantly increased in the southern population and the white and zebra strains. These results provide useful information about the Manila clam response to cold stress that may be applied to improve the low temperature resistance of Manila clams in aquaculture environments.
Collapse
Affiliation(s)
- Shasha Dong
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| | - Jiahao Ye
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Dongdong Li
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| |
Collapse
|
9
|
Chiaramonte M, Inguglia L, Vazzana M, Deidun A, Arizza V. Stress and immune response to bacterial LPS in the sea urchin Paracentrotus lividus (Lamarck, 1816). FISH & SHELLFISH IMMUNOLOGY 2019; 92:384-394. [PMID: 31220574 DOI: 10.1016/j.fsi.2019.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
The immune system of the sea urchin species Paracentrotus lividus is highly complex and, as yet, poorly understood. P. lividus coelomocytes mediate immune response through phagocytosis and encapsulation of non-self particles, in addition to the production of antimicrobial molecules. Despite this understanding, details of exactly how these processes occur and the mechanisms which drive them are still in need of clarification. In this study, we show how the bacterial lipopolysaccharides (LPS) is able to induce a stress response which increases the levels of the heat shock proteins HSP70 and HSP90 only a few hours after treatment. This study also shows that LPS treatment increases the expression of the β-thymosin-derivated protein paracentrin, the precursor of antimicrobial peptides.
Collapse
Affiliation(s)
- Marco Chiaramonte
- Dept. STEBICEF, Università Degli Studi di Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Luigi Inguglia
- Dept. STEBICEF, Università Degli Studi di Palermo, Via Archirafi, 18, 90123, Palermo, Italy.
| | - Mirella Vazzana
- Dept. STEBICEF, Università Degli Studi di Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Alan Deidun
- Dept. of Geosciences, University of Malta, Msida, MSD, 2080, Malta
| | - Vincenzo Arizza
- Dept. STEBICEF, Università Degli Studi di Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| |
Collapse
|
10
|
Mukherjee A, Bhowmick AR, Mukherjee J, Moniruzzaman M. Physiological response of fish under variable acidic conditions: a molecular approach through the assessment of an eco-physiological marker in the brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23442-23452. [PMID: 31197674 DOI: 10.1007/s11356-019-05602-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
The current study demonstrates oxidative damage and associated neurotoxicity following pH stress in two freshwater carp Labeo rohita and Cirrhinus cirrhosus. Carp (n = 6, 3 replicates) were exposed to four different pH (5.5, 6, 7.5, and 8) against control (pH 6.8 ± 0.05) for 7 days. After completion of treatment, levels of enzymatic (superoxide dismutase [SOD], catalase [CAT], glutathione reductase [GRd]) and non-enzymatic antioxidants (malondialdehyde [MDA], glutathione [GSH]), brain neurological parameters (Na+-K+ATPase, acetylcholinesterase [AcHE], monoamine oxidase [MAO], and nitric oxide [NO]), xanthine oxidase (XO), heat shock proteins (HSP70 and HSP90), and transcription factor NFkB were measured in carp brain. Variation in the pH caused a significant alteration in the glutathione system (glutathione and glutathione reductase), SOD-CAT system, and stress marker malondialdehyde (MDA). Xanthine oxidase was also induced significantly after pH exposure. Brain neurological parameters (MAO, NO, AChE, and Na+-K+ATPase) were significantly reduced at each pH-treated carp group though inhibition was highest at lower acidic pH (5.5). Cirrhinus cirrhosus was more affected than that of Labeo rohita. Molecular chaperon HSP70 expression was induced in all pH-treated groups though such induction was more in acid-stressed fish. HSP90 was found to increase only in acid-stressed carp brain. Expression of NFkB was elevated significantly at each treatment group except for pH 7.5. Finally, both acidic and alkaline pH in the aquatic system was found to disturb oxidative balance in carp brain which ultimately affects the neurological activity in carp. However, acidic environment in the aquatic system was more detrimental than the alkaline system regarding oxidative damage and subsequent neurotoxicity in carp brain.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Department of Zoology, Hiralal Mazumdar Memorial College for Women, Dakshineswar, Kolkata, 700035, India
| | | | - Joyita Mukherjee
- Department of Zoology, Krishna Chandra College, University of Burdwan, Birbhum, West Bengal, 731124, India
| | - Mahammed Moniruzzaman
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
11
|
Dong X, Qi H, He B, Jiang D, Zhu B. RNA Sequencing Analysis to Capture the Transcriptome Landscape during Tenderization in Sea Cucumber Apostichopus japonicus. Molecules 2019; 24:E998. [PMID: 30871127 PMCID: PMC6429463 DOI: 10.3390/molecules24050998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/27/2022] Open
Abstract
Sea cucumber (Apostichopus japonicus) is an economically significant species in China having great commercial value. It is challenging to maintain the textural properties during thermal processing due to the distinctive physiochemical structure of the A. japonicus body wall (AJBW). In this study, the gene expression profiles associated with tenderization in AJBW were determined at 0 h (CON), 1 h (T_1h), and 3 h (T_3h) after treatment at 37 °C using Illumina HiSeq™ 4000 platform. Seven-hundred-and-twenty-one and 806 differentially expressed genes (DEGs) were identified in comparisons of T_1h vs. CON and T_3h vs. CON, respectively. Among these DEGs, we found that two endogenous proteases-72 kDa type IV collagenase and matrix metalloproteinase 16 precursor-were significantly upregulated that could directly affect the tenderness of AJBW. In addition, 92 genes controlled four types of physiological and biochemical processes such as oxidative stress response (3), immune system process (55), apoptosis (4), and reorganization of the cytoskeleton and extracellular matrix (30). Further, the RT-qPCR results confirmed the accuracy of RNA-sequencing analysis. Our results showed the dynamic changes in global gene expression during tenderization and provided a series of candidate genes that contributed to tenderization in AJBW. This can help further studies on the genetics/molecular mechanisms associated with tenderization.
Collapse
Affiliation(s)
- Xiufang Dong
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| | - Baoyu He
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| | - Di Jiang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| |
Collapse
|
12
|
González Durán E, Cuaya MP, Gutiérrez MV, León JA. Effects of Temperature and pH on the Oxidative Stress of Benthic Marine Invertebrates. BIOL BULL+ 2019. [DOI: 10.1134/s1062359018660019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Li Y, Chen D, Li J, Zhang XX, Wang CF, Wang JM. Changes in superoxide dismutase activity postpartum from Laoshan goat milk and factors influencing its stability during processing. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1448306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yu Li
- College of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Di Chen
- College of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Jing Li
- College of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Xue-Xi Zhang
- College of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Cun-Fang Wang
- College of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Jian-Min Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| |
Collapse
|
14
|
Maas AE, Lawson GL, Bergan AJ, Tarrant AM. Exposure to CO 2 influences metabolism, calcification and gene expression of the thecosome pteropod Limacina retroversa. ACTA ACUST UNITED AC 2018; 221:jeb.164400. [PMID: 29191863 DOI: 10.1242/jeb.164400] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/24/2017] [Indexed: 12/28/2022]
Abstract
Thecosomatous pteropods, a group of aragonite shell-bearing zooplankton, are becoming an important sentinel organism for understanding the influence of ocean acidification on pelagic organisms. These animals show vulnerability to changing carbonate chemistry conditions, are geographically widespread, and are both biogeochemically and trophically important. The objective of this study was to determine how increasing duration and severity of CO2 treatment influence the physiology of the thecosome Limacina retroversa, integrating both gene expression and organism-level (respiration and calcification) metrics. We exposed pteropods to over-saturated, near-saturated or under-saturated conditions and sampled individuals at 1, 3, 7, 14 and 21 days of exposure to test for the effect of duration. We found that calcification was affected by borderline and under-saturated conditions by week two, while respiration appeared to be more strongly influenced by an interaction between severity and duration of exposure, showing complex changes by one week of exposure. The organismal metrics were corroborated by specific gene expression responses, with increased expression of biomineralization-associated genes in the medium and high treatments throughout and complex changes in metabolic genes corresponding to both captivity and CO2 treatment. Genes associated with other physiological processes such as lipid metabolism, neural function and ion pumping had complex responses, influenced by both duration and severity. Beyond these responses, our findings detail the captivity effects for these pelagic organisms, providing information to contextualize the conclusions of previous studies, and emphasizing a need for better culturing protocols.
Collapse
Affiliation(s)
- Amy E Maas
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St George's GE01, Bermuda .,Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
| | - Gareth L Lawson
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
| | - Alexander J Bergan
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
| | - Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
| |
Collapse
|