1
|
Devine EA, Imami AS, Eby H, Sahay S, Hamoud AR, Golchin H, Ryan W, Shedroff EA, Arvay T, Joyce AW, Asah SM, Walss-Bass C, O'Donovan S, McCullumsmith RE. Neuronal alterations in AKT isotype expression in schizophrenia. Mol Psychiatry 2025; 30:1573-1584. [PMID: 39424930 DOI: 10.1038/s41380-024-02770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024]
Abstract
Schizophrenia is characterized by substantial alterations in brain function, and previous studies suggest insulin signaling pathways, particularly involving AKT, are implicated in the pathophysiology of the disorder. This study demonstrates elevated mRNA expression of AKT1-3 in neurons from schizophrenia subjects, contrary to unchanged or diminished total AKT protein expression reported in previous postmortem studies, suggesting a potential decoupling of transcript and protein levels. Sex-specific differential AKT activity was observed, indicating divergent roles in males and females with schizophrenia. Alongside AKT, upregulation of PDPK1, a critical component of the insulin signaling pathway, and several protein phosphatases known to regulate AKT were detected. Moreover, enhanced expression of the transcription factor FOXO1, a regulator of glucose metabolism, hints at possible compensatory mechanisms related to insulin signaling dysregulation. Findings were largely independent of antipsychotic medication use, suggesting inherent alterations in schizophrenia. These results highlight the significance of AKT and related signaling pathways in schizophrenia, proposing that these changes might represent a compensatory response to a primary defect of canonical insulin signaling pathways. This research underscores the need for a detailed understanding of these signaling pathways for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Emily A Devine
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Ali S Imami
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Hunter Eby
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Smita Sahay
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Abdul-Rizaq Hamoud
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Hasti Golchin
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - William Ryan
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Elizabeth A Shedroff
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Taylen Arvay
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Alex W Joyce
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sophie M Asah
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sinead O'Donovan
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Robert E McCullumsmith
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| |
Collapse
|
2
|
Shi L, Choi CY, Carrica LK, Liang NC, Gulley JM. The effects of moderate alcohol and THC co-use during male and female rat adolescence on AKT-GSK3ß signaling in adulthood. Behav Brain Res 2025; 476:115292. [PMID: 39406294 PMCID: PMC11897957 DOI: 10.1016/j.bbr.2024.115292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Alcohol and cannabis are often taken in combination, and extensive co-use has been linked to enduring changes in cognitive and metabolic functioning. The underlying mechanisms for these effects are unclear, but we recently demonstrated that co-administration of ethanol and delta-9-tetrahydrocannbinol (THC) to adolescent rats caused lasting adaptations in GABA and glycogen synthase kinase 3ß (GSK3ß) signaling in the medial prefrontal cortex (mPFC). As a ubiquitous protein kinase, GSK3ß is downstream to the protein kinase B (also known as AKT) pathway that is activated by insulin receptor signaling in a main control center for metabolism and energy homeostasis, the mediobasal hypothalamus (MBH). Our goal here was to investigate if volitional co-use of low to moderate levels of ethanol and THC would impact the total and phosphorylated levels (p) of AKT and GSK3ß in the mPFC and MBH. Peri-adolescent Long Evans rats [postnatal day (P) 30-47] consumed 10 % ethanol, cookies laced with THC (3-10 mg/kg/day), both drugs, or vehicle controls. On P114, we modeled re-exposure to a behaviorally relevant dose of THC by challenging rats (i.p.) with 5 mg/kg THC (or vehicle) and sacrificed them 30 min later. Western blot analysis revealed that THC challenge increased pAKT and pGSK3ß compared to control similarly across all treatment groups, sexes, and brain regions; no effects on total levels of AKT or GSK3ß were found. Previously reported behavioral results from these rats showed no differences in working memory assessed in adulthood. Although future studies will be necessary to determine the role of exposure dose on drug-induced adaptations in AKT and GSK3ß signaling, the current findings suggest that moderate volitional co-use of alcohol and THC may not produce long-term deficits that persist into adulthood.
Collapse
Affiliation(s)
- Linyuan Shi
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Chan Young Choi
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Lauren K Carrica
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Nu-Chu Liang
- Department of Psychology, University of Illinois at Urbana-Champaign, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, USA
| | - Joshua M Gulley
- Department of Psychology, University of Illinois at Urbana-Champaign, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
3
|
Rahaman MA, Garg Y, Iraji A, Fu Z, Kochunov P, Hong LE, Van Erp TGM, Preda A, Chen J, Calhoun V. Imaging-genomic spatial-modality attentive fusion for studying neuropsychiatric disorders. Hum Brain Mapp 2024; 45:e26799. [PMID: 39562310 PMCID: PMC11576332 DOI: 10.1002/hbm.26799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/26/2024] [Accepted: 07/12/2024] [Indexed: 11/21/2024] Open
Abstract
Multimodal learning has emerged as a powerful technique that leverages diverse data sources to enhance learning and decision-making processes. Adapting this approach to analyzing data collected from different biological domains is intuitive, especially for studying neuropsychiatric disorders. A complex neuropsychiatric disorder like schizophrenia (SZ) can affect multiple aspects of the brain and biologies. These biological sources each present distinct yet correlated expressions of subjects' underlying physiological processes. Joint learning from these data sources can improve our understanding of the disorder. However, combining these biological sources is challenging for several reasons: (i) observations are domain specific, leading to data being represented in dissimilar subspaces, and (ii) fused data are often noisy and high-dimensional, making it challenging to identify relevant information. To address these challenges, we propose a multimodal artificial intelligence model with a novel fusion module inspired by a bottleneck attention module. We use deep neural networks to learn latent space representations of the input streams. Next, we introduce a two-dimensional (spatio-modality) attention module to regulate the intermediate fusion for SZ classification. We implement spatial attention via a dilated convolutional neural network that creates large receptive fields for extracting significant contextual patterns. The resulting joint learning framework maximizes complementarity allowing us to explore the correspondence among the modalities. We test our model on a multimodal imaging-genetic dataset and achieve an SZ prediction accuracy of 94.10% (p < .0001), outperforming state-of-the-art unimodal and multimodal models for the task. Moreover, the model provides inherent interpretability that helps identify concepts significant for the neural network's decision and explains the underlying physiopathology of the disorder. Results also show that functional connectivity among subcortical, sensorimotor, and cognitive control domains plays an important role in characterizing SZ. Analysis of the spatio-modality attention scores suggests that structural components like the supplementary motor area, caudate, and insula play a significant role in SZ. Biclustering the attention scores discover a multimodal cluster that includes genes CSMD1, ATK3, MOB4, and HSPE1, all of which have been identified as relevant to SZ. In summary, feature attribution appears to be especially useful for probing the transient and confined but decisive patterns of complex disorders, and it shows promise for extensive applicability in future studies.
Collapse
Affiliation(s)
- Md Abdur Rahaman
- Georgia Institute of TechnologyAtlantaGeorgiaUSA
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)AtlantaGeorgiaUSA
| | - Yash Garg
- Nokia Bell LabsMurray HillNew JerseyUSA
| | - Armin Iraji
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)AtlantaGeorgiaUSA
- Department of Computer ScienceGeorgia State UniversityAtlantaGeorgiaUSA
| | - Zening Fu
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)AtlantaGeorgiaUSA
| | - Peter Kochunov
- University of Maryland Center for Brain Imaging ResearchCollege ParkMarylandUSA
| | - L. Elliot Hong
- University of Maryland Center for Brain Imaging ResearchCollege ParkMarylandUSA
| | - Theo G. M. Van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
- Center for the Neurobiology of Learning and MemoryUniversity of California IrvineIrvineCaliforniaUSA
| | - Adrian Preda
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Jiayu Chen
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)AtlantaGeorgiaUSA
| | - Vince Calhoun
- Georgia Institute of TechnologyAtlantaGeorgiaUSA
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)AtlantaGeorgiaUSA
| |
Collapse
|
4
|
Brennan RJ, Jenkinson S, Brown A, Delaunois A, Dumotier B, Pannirselvam M, Rao M, Ribeiro LR, Schmidt F, Sibony A, Timsit Y, Sales VT, Armstrong D, Lagrutta A, Mittlestadt SW, Naven R, Peri R, Roberts S, Vergis JM, Valentin JP. The state of the art in secondary pharmacology and its impact on the safety of new medicines. Nat Rev Drug Discov 2024; 23:525-545. [PMID: 38773351 DOI: 10.1038/s41573-024-00942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 05/23/2024]
Abstract
Secondary pharmacology screening of investigational small-molecule drugs for potentially adverse off-target activities has become standard practice in pharmaceutical research and development, and regulatory agencies are increasingly requesting data on activity against targets with recognized adverse effect relationships. However, the screening strategies and target panels used by pharmaceutical companies may vary substantially. To help identify commonalities and differences, as well as to highlight opportunities for further optimization of secondary pharmacology assessment, we conducted a broad-ranging survey across 18 companies under the auspices of the DruSafe leadership group of the International Consortium for Innovation and Quality in Pharmaceutical Development. Based on our analysis of this survey and discussions and additional research within the group, we present here an overview of the current state of the art in secondary pharmacology screening. We discuss best practices, including additional safety-associated targets not covered by most current screening panels, and present approaches for interpreting and reporting off-target activities. We also provide an assessment of the safety impact of secondary pharmacology screening, and a perspective on opportunities and challenges in this rapidly developing field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mohan Rao
- Janssen Research & Development, San Diego, CA, USA
- Neurocrine Biosciences, San Diego, CA, USA
| | - Lyn Rosenbrier Ribeiro
- UCB Biopharma, Braine-l'Alleud, Belgium
- AstraZeneca, Cambridge, UK
- Grunenthal, Berkshire, UK
| | | | | | - Yoav Timsit
- Novartis Biomedical Research, Cambridge, MA, USA
- Blueprint Medicines, Cambridge, MA, USA
| | | | - Duncan Armstrong
- Novartis Biomedical Research, Cambridge, MA, USA
- Armstrong Pharmacology, Macclesfield, UK
| | | | | | - Russell Naven
- Takeda Pharmaceuticals, Cambridge, MA, USA
- Novartis Biomedical Research, Cambridge, MA, USA
| | - Ravikumar Peri
- Takeda Pharmaceuticals, Cambridge, MA, USA
- Alexion Pharmaceuticals, Wilmington, DE, USA
| | - Sonia Roberts
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - James M Vergis
- Faegre Drinker Biddle and Reath, LLP, Washington, DC, USA
| | | |
Collapse
|
5
|
Jaykumar AB, Binns D, Taylor CA, Anselmo A, Birnbaum SG, Huber KM, Cobb MH. WNKs regulate mouse behavior and alter central nervous system glucose uptake and insulin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598125. [PMID: 38915673 PMCID: PMC11195145 DOI: 10.1101/2024.06.09.598125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Certain areas of the brain involved in episodic memory and behavior, such as the hippocampus, express high levels of insulin receptors and glucose transporter-4 (GLUT4) and are responsive to insulin. Insulin and neuronal glucose metabolism improve cognitive functions and regulate mood in humans. Insulin-dependent GLUT4 trafficking has been extensively studied in muscle and adipose tissue, but little work has demonstrated either how it is controlled in insulin-responsive brain regions or its mechanistic connection to cognitive functions. In this study, we demonstrate that inhibition of WNK (With-No-lysine (K)) kinases improves learning and memory in mice. Neuronal inhibition of WNK enhances in vivo hippocampal glucose uptake. Inhibition of WNK enhances insulin signaling output and insulin-dependent GLUT4 trafficking to the plasma membrane in mice primary neuronal cultures and hippocampal slices. Therefore, we propose that the extent of neuronal WNK kinase activity has an important influence on learning, memory and anxiety-related behaviors, in part, by modulation of neuronal insulin signaling.
Collapse
Affiliation(s)
- Ankita B. Jaykumar
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Derk Binns
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Clinton A. Taylor
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Anthony Anselmo
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Shari G. Birnbaum
- Departments of Peter O’Donnell Jr. Brain Institute and Psychiatry, UT Southwestern Medical Center, Dallas, USA
| | | | - Melanie H. Cobb
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| |
Collapse
|
6
|
Kraft J, Braun A, Awasthi S, Panagiotaropoulou G, Schipper M, Bell N, Posthuma D, Pardiñas AF, Ripke S, Heilbron K. Identifying drug targets for schizophrenia through gene prioritization. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307423. [PMID: 38798390 PMCID: PMC11118622 DOI: 10.1101/2024.05.15.24307423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Schizophrenia genome-wide association studies (GWASes) have identified >250 significant loci and prioritized >100 disease-related genes. However, gene prioritization efforts have mostly been restricted to locus-based methods that ignore information from the rest of the genome. Methods To more accurately characterize genes involved in schizophrenia etiology, we applied a combination of highly-predictive tools to a published GWAS of 67,390 schizophrenia cases and 94,015 controls. We combined both locus-based methods (fine-mapped coding variants, distance to GWAS signals) and genome-wide methods (PoPS, MAGMA, ultra-rare coding variant burden tests). To validate our findings, we compared them with previous prioritization efforts, known neurodevelopmental genes, and results from the PsyOPS tool. Results We prioritized 62 schizophrenia genes, 41 of which were also highlighted by our validation methods. In addition to DRD2, the principal target of antipsychotics, we prioritized 9 genes that are targeted by approved or investigational drugs. These included drugs targeting glutamatergic receptors (GRIN2A and GRM3), calcium channels (CACNA1C and CACNB2), and GABAB receptor (GABBR2). These also included genes in loci that are shared with an addiction GWAS (e.g. PDE4B and VRK2). Conclusions We curated a high-quality list of 62 genes that likely play a role in the development of schizophrenia. Developing or repurposing drugs that target these genes may lead to a new generation of schizophrenia therapies. Rodent models of addiction more closely resemble the human disorder than rodent models of schizophrenia. As such, genes prioritized for both disorders could be explored in rodent addiction models, potentially facilitating drug development.
Collapse
Affiliation(s)
- Julia Kraft
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Alice Braun
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Georgia Panagiotaropoulou
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | | | - Nathaniel Bell
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Antonio F. Pardiñas
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Karl Heilbron
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| |
Collapse
|
7
|
Devine EA, Imami AS, Eby H, Hamoud AR, Golchin H, Ryan W, Sahay S, Shedroff EA, Arvay T, Joyce AW, Asah SM, Walss-Bass C, O'Donovan S, McCullumsmith RE. Neuronal alterations in AKT isotype expression in schizophrenia. RESEARCH SQUARE 2024:rs.3.rs-3940448. [PMID: 38559131 PMCID: PMC10980160 DOI: 10.21203/rs.3.rs-3940448/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Schizophrenia is characterized by substantial alterations in brain function, and previous studies suggest insulin signaling pathways, particularly involving AKT, are implicated in the pathophysiology of the disorder. This study demonstrates elevated mRNA expression of AKT1-3 in neurons from schizophrenia subjects, contrary to unchanged or diminished total AKT protein expression reported in previous postmortem studies, suggesting a potential decoupling of transcript and protein levels. Sex-specific differential AKT activity was observed, indicating divergent roles in males and females with schizophrenia. Alongside AKT, upregulation of PDPK1, a critical component of the insulin signaling pathway, and several protein phosphatases known to regulate AKT were detected. Moreover, enhanced expression of the transcription factor FOXO1, a regulator of glucose metabolism, hints at possible compensatory mechanisms related to insulin signaling dysregulation. Findings were largely independent of antipsychotic medication use, suggesting inherent alterations in schizophrenia. These results highlight the significance of AKT and related signaling pathways in schizophrenia, proposing that these changes might represent a compensatory response to a primary defect of conical insulin signaling pathways. This research underscores the need for a detailed understanding of these signaling pathways for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Emily A Devine
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ali S Imami
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Hunter Eby
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Abdul-Rizaq Hamoud
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Hasti Golchin
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - William Ryan
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Smita Sahay
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Elizabeth A Shedroff
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Taylen Arvay
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Alex W Joyce
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sophie M Asah
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sinead O'Donovan
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Robert E McCullumsmith
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
8
|
Lee HW, Choi JH, Seo D, Gavaachimed L, Choi J, Park S, Min NY, Lee DH, Bang HW, Ham SW, Kim JW, Lee SC, Rhee S, Seo SB, Lee KH. EGCG-induced selective death of cancer cells through autophagy-dependent regulation of the p62-mediated antioxidant survival pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119659. [PMID: 38216089 DOI: 10.1016/j.bbamcr.2024.119659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/22/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
The effects of EGCG on the selective death of cancer cells by modulating antioxidant pathways through autophagy were explored in various normal and cancer cells. EGCG positively regulated the p62-KEAP1-NRF2-HO-1 pathway in normal cells, while negatively regulating it in cancer cells, leading to selective apoptotic death of cancer cells. In EGCG-treated MRC5 cells (EGCG-MRC5), autophagic flux was blocked, which was accompanied by the formation of p62-positive aggregates. However, EGCG-treated HeLa cells (EGCG-HeLa) showed incomplete autophagic flux and no aggregate formation. The levels of P-ULK1 S556 and S758 increased in EGCG-MRC5 through AMPK-mTOR cooperative interaction. In contrast, EGCG treatment in HeLa cells led to AMPK-induced mTOR inactivation, resulting in abrogation of P-ULK1 S556 and S758 levels. AMPK knockout in EGCG-HeLa restored positive regulation of the p62-mediated pathway, which was accompanied by increased P-mTOR S2448 and P-ULK1 S758 levels. Knockdown of 67LR in EGCG-HeLa abolished AMPK activity but did not restore the p62-mediated pathway. Surprisingly, both AMPK knockout and 67LR knockdown in EGCG-HeLa markedly increased cell viability, despite differential regulation of the antioxidant enzyme HO-1. In conclusion, EGCG induces the selective death of cancer cells through the modulation of at least two autophagy-dependent and independent regulatory pathways: negative regulation involves the mTOR-ULK1 (S556 and S758)-p62-KEAP1-NRF2-HO-1 axis via AMPK activation, whereas positive regulation occurs through the 67LR-AMPK axis.
Collapse
Affiliation(s)
- Ho Woon Lee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Jee-Hye Choi
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Dongbeom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Lkhagvasuren Gavaachimed
- Department of Science of Cultural Properties, Graduate School, Chung-Ang University, Seoul, Republic of Korea
| | - Jaesung Choi
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Sehwan Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Na Young Min
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Dong Ho Lee
- Da Vinci College of General Education, Chung-Ang University, Seoul, Republic of Korea
| | - Hyo-Weon Bang
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Seung Wook Ham
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Kwang-Ho Lee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea; Department of Science of Cultural Properties, Graduate School, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Chen Y, Guan W, Wang ML, Lin XY. PI3K-AKT/mTOR Signaling in Psychiatric Disorders: A Valuable Target to Stimulate or Suppress? Int J Neuropsychopharmacol 2024; 27:pyae010. [PMID: 38365306 PMCID: PMC10888523 DOI: 10.1093/ijnp/pyae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Economic development and increased stress have considerably increased the prevalence of psychiatric disorders in recent years, which rank as some of the most prevalent diseases globally. Several factors, including chronic social stress, genetic inheritance, and autogenous diseases, lead to the development and progression of psychiatric disorders. Clinical treatments for psychiatric disorders include psychotherapy, chemotherapy, and electric shock therapy. Although various achievements have been made researching psychiatric disorders, the pathogenesis of these diseases has not been fully understood yet, and serious adverse effects and resistance to antipsychotics are major obstacles to treating patients with psychiatric disorders. Recent studies have shown that the mammalian target of rapamycin (mTOR) is a central signaling hub that functions in nerve growth, synapse formation, and plasticity. The PI3K-AKT/mTOR pathway is a critical target for mediating the rapid antidepressant effects of these pharmacological agents in clinical and preclinical research. Abnormal PI3K-AKT/mTOR signaling is closely associated with the pathogenesis of several neurodevelopmental disorders. In this review, we focused on the role of mTOR signaling and the related aberrant neurogenesis in psychiatric disorders. Elucidating the neurobiology of the PI3K-AKT/mTOR signaling pathway in psychiatric disorders and its actions in response to antidepressants will help us better understand brain development and quickly identify new therapeutic targets for the treatment of these mental illnesses.
Collapse
Affiliation(s)
- Yan Chen
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China
| | - Mei-Lan Wang
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Xiao-Yun Lin
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
10
|
Bhattacharya A, Vo DD, Jops C, Kim M, Wen C, Hervoso JL, Pasaniuc B, Gandal MJ. Isoform-level transcriptome-wide association uncovers genetic risk mechanisms for neuropsychiatric disorders in the human brain. Nat Genet 2023; 55:2117-2128. [PMID: 38036788 PMCID: PMC10703692 DOI: 10.1038/s41588-023-01560-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
Methods integrating genetics with transcriptomic reference panels prioritize risk genes and mechanisms at only a fraction of trait-associated genetic loci, due in part to an overreliance on total gene expression as a molecular outcome measure. This challenge is particularly relevant for the brain, in which extensive splicing generates multiple distinct transcript-isoforms per gene. Due to complex correlation structures, isoform-level modeling from cis-window variants requires methodological innovation. Here we introduce isoTWAS, a multivariate, stepwise framework integrating genetics, isoform-level expression and phenotypic associations. Compared to gene-level methods, isoTWAS improves both isoform and gene expression prediction, yielding more testable genes, and increased power for discovery of trait associations within genome-wide association study loci across 15 neuropsychiatric traits. We illustrate multiple isoTWAS associations undetectable at the gene-level, prioritizing isoforms of AKT3, CUL3 and HSPD1 in schizophrenia and PCLO with multiple disorders. Results highlight the importance of incorporating isoform-level resolution within integrative approaches to increase discovery of trait associations, especially for brain-relevant traits.
Collapse
Affiliation(s)
- Arjun Bhattacharya
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Institute for Data Science in Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Daniel D Vo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute at Penn Med and the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Connor Jops
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute at Penn Med and the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Minsoo Kim
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Cindy Wen
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Jonatan L Hervoso
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Bogdan Pasaniuc
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michael J Gandal
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Lifespan Brain Institute at Penn Med and the Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Green JR, Mahalingaiah PKS, Gopalakrishnan SM, Liguori MJ, Mittelstadt SW, Blomme EAG, Van Vleet TR. Off-target pharmacological activity at various kinases: Potential functional and pathological side effects. J Pharmacol Toxicol Methods 2023; 123:107468. [PMID: 37553032 DOI: 10.1016/j.vascn.2023.107468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
In drug discovery, during the lead optimization and candidate characterization stages, novel small molecules are frequently evaluated in a battery of in vitro pharmacology assays to identify potential unintended, off-target interactions with various receptors, transporters, ion channels, and enzymes, including kinases. Furthermore, these screening panels may also provide utility at later stages of development to provide a mechanistic understanding of unexpected safety findings. Here, we present a compendium of the most likely functional and pathological outcomes associated with interaction(s) to a panel of 95 kinases based on an extensive curation of the scientific literature. This panel of kinases was designed by AbbVie based on safety-related data extracted from the literature, as well as from over 20 years of institutional knowledge generated from discovery efforts. For each kinase, the scientific literature was reviewed using online databases and the most often reported functional and pathological effects were summarized. This work should serve as a practical guide for small molecule drug discovery scientists and clinical investigators to predict and/or interpret adverse effects related to pharmacological interactions with these kinases.
Collapse
Affiliation(s)
- Jonathon R Green
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States.
| | | | - Sujatha M Gopalakrishnan
- Drug Discovery Science and Technology, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Michael J Liguori
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Scott W Mittelstadt
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Eric A G Blomme
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Terry R Van Vleet
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| |
Collapse
|
12
|
Li S, Lu C, Kang L, Li Q, Chen H, Zhang H, Tang Z, Lin Y, Bai M, Xiong P. Study on correlations of BDNF, PI3K, AKT and CREB levels with depressive emotion and impulsive behaviors in drug-naïve patients with first-episode schizophrenia. BMC Psychiatry 2023; 23:225. [PMID: 37013544 PMCID: PMC10071748 DOI: 10.1186/s12888-023-04718-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/25/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The pathogenesis of schizophrenia is still unknown. Nearly a half of schizophrenic patients have depressive symptoms and even some impulsive behaviors. The definite diagnosis of schizophrenia is an immense challenge. Molecular biology plays an essential role in the research on the pathogenesis of schizophrenia. OBJECTIVE This study aims to analyze the correlations of serum protein factor levels with depressive emotion and impulsive behaviors in drug-naïve patients with first-episode schizophrenia. METHODS Seventy drug-naïve patients with first-episode schizophrenia and sixty-nine healthy volunteers from the health check center in the same period participated in this study. In both the patient group and control group, brain-derived neurotrophic factor (BDNF), phosphatidylin-ositol-3-kinase (PI3K), protein kinase B (AKT), and cAMP-response element binding protein (CREB) levels in the peripheral blood were tested by enzyme-linked immunosorbent assay (ELISA). The depressive emotion and impulsive behaviors were evaluated with Chinese versions of the Calgary Depression Scale for Schizophrenia (CDSS) and Short UPPS-P Impulsive Behavior Scale (S-UPPS-P), respectively. RESULTS The serum levels of BDNF, PI3K, and CREB in the patient group were lower than those in the control group, while AKT level, total CDSS score and total S-UPPS-P score were all higher. In the patient group, total CDSS score, and total S-UPPS-P score were both correlated negatively with BDNF, PI3K, and CREB levels but positively with AKT level, and the lack-of-premeditation (PR) sub-scale score was not significantly correlated with BDNF, PI3K, AKT, and CREB levels. CONCLUSION Our study results showed that the peripheral blood levels of BDNF, PI3K, AKT, and CREB in drug-naïve patients with first-episode schizophrenia were significantly different from those in the control group. The levels of these serum protein factors are promising biomarkers to predict schizophrenic depression and impulsive behaviors.
Collapse
Affiliation(s)
- Shan Li
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cailian Lu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lin Kang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qianqian Li
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongxu Chen
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Han Zhang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ziling Tang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanwen Lin
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Meiyan Bai
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Peng Xiong
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China.
- Yunnan Clinical Research Center for Mental Disorders, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
13
|
Novaes de Oliveira Roldan AC, Fernandes Júnior LCC, de Oliveira CEC, Nunes SOV. Impact of ZNF804A rs1344706 or CACNA1C rs1006737 polymorphisms on cognition in patients with severe mental disorders: A systematic review and meta-analysis. World J Biol Psychiatry 2023; 24:195-208. [PMID: 35786202 DOI: 10.1080/15622975.2022.2097308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES This systematic review and meta-analysis focussed on insights into the relationship between CACNA1C-rs1006737 and ZNF804A-rs1344706 polymorphisms and cognitive performance in schizophrenia (SCZ) spectrum and bipolar disorder (BD) and provide some contributions for clinical practice. METHODS We searched the websites databases (PubMED, PsycINFO, Web of Science, EMBASE and Cochrane Library) using eligibility and exclusion criteria to capture all potential studies, based on PICO model and according to the PRISMA. RESULTS Eight articles were included in this systematic review (five referring to CACNA1C-rs1006737 and three related to ZNF804A-rs1344706 polymorphisms), with a total of 5759 participants (1751 SCZ patients, 348 BD patients, 3626 controls and 34 first-degree relatives). The results demonstrated that the pooled effect of CACNA1C-rs1006737 (risk difference RD = 0.08; 95% CI 0.02-0.15) was associated with altered cognitive function in patients with severe mental disorders, but not ZNF804A-rs1344706 polymorphism (RD = 0.19; 95% CI 0.09-0.48. CONCLUSION The present meta-analysis provides evidence regarding slight association between CACNA1C-rs1006737 polymorphisms and cognitive performance in severe mental disorders, indicating that cognitive impairment in severe mental disorders associated with the CACNA1C rs1006737 risk variants could only be expressed when interacting with environmental exposures. This study is registered with PROSPERO, number CRD42021246726.
Collapse
|
14
|
Rizavi HS, Chase KA, Liu C, Gavin H, Rosen C, Xia C, Guidotti A, Sharma RP. Differential H3K9me2 heterochromatin levels and concordant mRNA expression in postmortem brain tissue of individuals with schizophrenia, bipolar, and controls. Front Psychiatry 2022; 13:1006109. [PMID: 36386965 PMCID: PMC9644155 DOI: 10.3389/fpsyt.2022.1006109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
The existence of repressive and durable chromatin assemblies along gene promoters or networks, especially in the brain, is of theoretical and therapeutic relevance in a subset of individuals diagnosed with schizophrenia who experience a chronic, persistent, and treatment-resistant trajectory. We used chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) to generate an epigenomic map that includes differential sites occupied by di-methylated lysine 9 of histone 3 (H3K9me2), a repressive modification that is yet unexplored in human postmortem brain tissue. We have discovered over 150 significantly differential promoter sites in the postmortem prefrontal cortex tissue of individuals diagnosed with schizophrenia (n = 15) when compared to controls (n = 15). Potentially dysregulated gene categories include postsynaptic proteins, processing enzymes (for proproteins, lipids, and oxidative stress), cadherin family genes, the complement system, and peptide hormones. Ten genes with significantly increased or decreased H3K9me2 promoter occupation were selected through statistical analysis, function, or previous GWAS association, and Quantitative RT-PCR (qRT-PCR) was performed on an extended sample of postmortem brain tissue, adding an additional 17 controls, 7 individuals with schizophrenia, and 19 individuals with bipolar samples (n = 32 control, 22 schizophrenia, 19 bipolar). This approach revealed that mRNA expression levels correlated with chromatin modification levels in eight of 10 selected genes, and mRNA expression in the total sample could be predicted by the occupancy of H3K9me2. Utilization of this method and replication in a larger sample open a pathway to durable and restrictive epigenomic assemblies whose accumulation across the lifespan of individuals diagnosed with schizophrenia may explain treatment resistance, and advance therapeutic options.
Collapse
Affiliation(s)
- Hooriyah S. Rizavi
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Kayla A. Chase
- Department of Biochemistry and Molecular Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Chunyu Liu
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Hannah Gavin
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Cherise Rosen
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Cuihua Xia
- School of Life Sciences, Central South University, Changsha, China
| | - Alessandro Guidotti
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Rajiv P. Sharma
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
15
|
Su K, Hao W, Lv Z, Wu M, Li J, Hu Y, Zhang Z, Gao J, Feng X. Electroacupuncture of Baihui and Shenting ameliorates cognitive deficits via Pten/Akt pathway in a rat cerebral ischemia injury model. Front Neurol 2022; 13:855362. [PMID: 36062010 PMCID: PMC9437581 DOI: 10.3389/fneur.2022.855362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Cerebral ischemic stroke is a huge threat to the health and life of many people. Electroacupuncture (EA) at Baihui (GV20) and Shenting (GV24) acupoints can notably alleviate cerebral ischemia/reperfusion injury (CIRI). However, the molecular basis underlying the effectiveness of EA at the GV20 and GV24 acupoints for CIRI remains largely unknown. Our present study demonstrated that EA treatment at the GV20 and GV24 acupoints markedly alleviated middle cerebral artery occlusion/reperfusion (MCAO/R)-induced cognitive deficits and cerebral infarction in rats. Proteomics analysis revealed that 195 and 218 proteins were dysregulated in rat hippocampal tissues in the MCAO/R vs. sham group and thhhe EA vs. MCAO/R group, respectively. Moreover, 62 proteins with converse alteration trends in MCAO/R vs. sham and EA vs. MCAO/R groups were identified. These proteins might be implicated in the EA-mediated protective effect against MCAO/R-induced cerebral injury. GO enrichment analysis showed that 39 dysregulated proteins in the MCAO/R vs. sham group and 40 dysregulated proteins in the EA vs. MCAO/R group were related to brain and nerve development. Protein–protein interaction analysis of the abovementioned dysregulated proteins associated with brain and nerve development suggested that Pten/Akt pathway-related proteins might play major roles in regulating EA-mediated protective effects against MCAO/R-induced brain and nerve injury. Western blot assays demonstrated that Pak4, Akt3, and Efnb2 were expressed at low levels in the MCAO/R group vs. the sham group but at high levels in the EA group vs. the MCAO/R group. In conclusion, multiple proteins related to the protective effect of EA at the GV20 and GV24 acupoints against CIRI were identified in our study.
Collapse
Affiliation(s)
- Kaiqi Su
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenxue Hao
- Department of Rehabilitation, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuan Lv
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingli Wu
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jieying Li
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanchao Hu
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenhua Zhang
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Jing Gao
| | - Xiaodong Feng
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Xiaodong Feng
| |
Collapse
|
16
|
Integrative Analyses of Transcriptomes to Explore Common Molecular Effects of Antipsychotic Drugs. Int J Mol Sci 2022; 23:ijms23147508. [PMID: 35886854 PMCID: PMC9325239 DOI: 10.3390/ijms23147508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 01/27/2023] Open
Abstract
There is little understanding of the underlying molecular mechanism(s) involved in the clinical efficacy of antipsychotics for schizophrenia. This study integrated schizophrenia-associated transcriptional perturbations with antipsychotic-induced gene expression profiles to detect potentially relevant therapeutic targets shared by multiple antipsychotics. Human neuronal-like cells (NT2-N) were treated for 24 h with one of the following antipsychotic drugs: amisulpride, aripiprazole, clozapine, risperidone, or vehicle controls. Drug-induced gene expression patterns were compared to schizophrenia-associated transcriptional data in post-mortem brain tissues. Genes regulated by each of four antipsychotic drugs in the reverse direction to schizophrenia were identified as potential therapeutic-relevant genes. A total of 886 genes were reversely expressed between at least one drug treatment (versus vehicle) and schizophrenia (versus healthy control), in which 218 genes were commonly regulated by all four antipsychotic drugs. The most enriched biological pathways include Wnt signaling and action potential regulation. The protein-protein interaction (PPI) networks found two main clusters having schizophrenia expression quantitative trait loci (eQTL) genes such as PDCD10, ANK2, and AKT3, suggesting further investigation on these genes as potential novel treatment targets.
Collapse
|
17
|
Tsimberidou AM, Skliris A, Valentine A, Shaw J, Hering U, Vo HH, Chan TO, Armen RS, Cottrell JR, Pan JQ, Tsichlis PN. AKT inhibition in the central nervous system induces signaling defects resulting in psychiatric symptomatology. Cell Biosci 2022; 12:56. [PMID: 35525984 PMCID: PMC9080159 DOI: 10.1186/s13578-022-00793-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/18/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Changes in the expression and activity of the AKT oncogene play an important role in psychiatric disease. We present translational data assessing the role of AKT in psychiatric symptoms. METHODS (1) We assessed the protein activity of an AKT3 mutant harboring a PH domain mutation (Q60H) detected in a patient with schizophrenia, the corresponding AKT1 mutant (Q61H), and wild-type AKT1 and AKT3 transduced in AKT-null mouse fibroblasts and modeled the Q61H mutation onto the crystal structure of the Akt1 PH domain. (2) We analyzed the results of earlier genome-wide association studies to determine the distribution of schizophrenia-associated single-nucleotide polymorphisms (SNPs) in the AKT3 gene. (3) We analyzed the psychiatric adverse events (AEs) of patients treated with M2698 (p70S6K/AKT1/AKT3 inhibitor) and with other PI3K/AKT/mTOR pathway inhibitors. RESULTS (1) Proteins encoded by AKT3 (AKT3Q60H) and AKT1 (AKT1Q61H) mutants had lower kinase activity than those encoded by wild-type AKT3 and AKT1, respectively. Molecular modeling of the AKT1-Q61H mutant suggested conformational changes that may reduce the binding of D3-phosphorylated phosphoinositides to the PH domain. (2) We identified multiple SNPs in the AKT3 gene that were strongly associated with schizophrenia (p < 0.5 × 10-8). (3) Psychiatric AEs, mostly insomnia, anxiety, and depression, were noted in 29% of patients treated with M2698. In randomized studies, their incidence was higher in PI3K/AKT/mTOR inhibitor arms compared with placebo arms. All psychiatric AEs were reversible. CONCLUSIONS Our data elucidate the incidence and mechanisms of psychiatric AEs in patients treated with PI3K/AKT/mTOR inhibitors and emphasize the need for careful monitoring.
Collapse
Affiliation(s)
- Apostolia-Maria Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Antonis Skliris
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Alan Valentine
- Department of Psychiatry, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jamie Shaw
- EMD Serono Billerica (a Business of Merck KGaA), 01821, Darmstadt, MA, Germany
| | | | - Henry Hiep Vo
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Tung On Chan
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Roger S Armen
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jeffrey R Cottrell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Philip N Tsichlis
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.
- Department of Cancer Biology and Genetics, College of Medicine, and the Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
18
|
Jiao R, Chen X, Boerwinkle E, Xiong M. Genome-Wide Causation Studies of Complex Diseases. J Comput Biol 2022; 29:908-931. [PMID: 35451855 DOI: 10.1089/cmb.2021.0676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite significant progress in dissecting the genetic architecture of complex diseases by genome-wide association studies (GWAS), the signals identified by association analysis may not have specific pathological relevance to diseases so that a large fraction of disease-causing genetic variants is still hidden. Association is used to measure dependence between two variables or two sets of variables. GWAS test association between a disease and single-nucleotide polymorphisms (SNPs) (or other genetic variants) across the genome. Association analysis may detect superficial patterns between disease and genetic variants. Association signals provide limited information on the causal mechanism of diseases. The use of association analysis as a major analytical platform for genetic studies of complex diseases is a key issue that may hamper discovery of disease mechanisms, calling into the questions the ability of GWAS to identify loci-underlying diseases. It is time to move beyond association analysis toward techniques, which enables the discovery of the underlying causal genetic structures of complex diseases. To achieve this, we propose the concept of genome-wide causation studies (GWCS) as an alternative to GWAS and develop additive noise models (ANMs) for genetic causation analysis. Type 1 error rates and power of the ANMs in testing causation are presented. We conducted GWCS of schizophrenia. Both simulation and real data analysis show that the proportion of the overlapped association and causation signals is small. Thus, we anticipate that our analysis will stimulate serious discussion of the applicability of GWAS and GWCS.
Collapse
Affiliation(s)
- Rong Jiao
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xiangning Chen
- Department of Psychology, Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Nevada, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Momiao Xiong
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
19
|
Bioinformatics and Network-based Approaches for Determining Pathways, Signature Molecules, and Drug Substances connected to Genetic Basis of Schizophrenia etiology. Brain Res 2022; 1785:147889. [PMID: 35339428 DOI: 10.1016/j.brainres.2022.147889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Knowledge of heterogeneous etiology and pathophysiology of schizophrenia (SZP) is reasonably inadequate and non-deterministic due to its inherent complexity and underlying vast dynamics related to genetic mechanisms. The evolution of large-scale transcriptome-wide datasets and subsequent development of relevant, robust technologies for their analyses show promises toward elucidating the genetic basis of disease pathogenesis, its early risk prediction, and predicting drug molecule targets for therapeutic intervention. In this research, we have scrutinized the genetic basis of SZP through functional annotation and network-based system biology approaches. We have determined 96 overlapping differentially expressed genes (DEGs) from 2 microarray datasets and subsequently identified their interconnecting networks to reveal transcriptome signatures like hub proteins (FYN, RAD51, SOCS3, XIAP, AKAP13, PIK3C2A, CBX5, GATA3, EIF3K, and CDKN2B), transcription factors and miRNAs. In addition, we have employed gene set enrichment to highlight significant gene ontology (e.g., positive regulation of microglial cell activation) and relevant pathways (such as axon guidance and focal adhesion) interconnected to the genes associated with SZP. Finally, we have suggested candidate drug substances like Luteolin HL60 UP as a possible therapeutic target based on these key molecular signatures.
Collapse
|
20
|
Fei E, Chen P, Zhang Q, Zhong Y, Zhou T. Protein kinase B/Akt1 phosphorylates dysbindin-1A at serine 10 to regulate neuronal development. Neuroscience 2022; 490:66-78. [DOI: 10.1016/j.neuroscience.2022.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 01/05/2023]
|
21
|
Izumi R, Hino M, Nagaoka A, Shishido R, Kakita A, Hoshino M, Kunii Y, Yabe H. Dysregulation of DPYSL2 expression by mTOR signaling in schizophrenia: Multi-level study of postmortem brain. Neurosci Res 2021; 175:73-81. [PMID: 34543692 DOI: 10.1016/j.neures.2021.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/26/2023]
Abstract
The mechanistic target of rapamycin (mTOR)-signaling and dihydropyrimidinase-like 2 (DPYSL2), which are increasingly gaining attention as potential therapeutic targets for schizophrenia, are connected via Cap-dependent translation of the 5'TOP motif. We quantified the expression of molecules constituting the mTOR-signaling and DPYSL2 in the prefrontal cortex (PFC) and superior temporal gyrus (STG) of postmortem brain tissue samples from 24 patients with schizophrenia and 32 control individuals and conducted association analysis to examine abnormal regulation of DPYSL2 expression by the mTOR-signaling in schizophrenia. The average ribosomal protein S6 (S6) levels in the PFC and STG were lower in patients with schizophrenia (p < 0.01). DPYSL2 expression showed a significant positive correlation with phospho-S6 expression levels, which were effectors of mTOR translational regulation, and the correlation slope between phospho-S6 and DPYSL2 expressions differed between cases and controls. Association analyses of these mTOR-signaling and DPYSL2 alterations with genetic polymorphisms and the clinical profile suggested that certain genetic variants of DPYSL2 require high mTOR-signaling activity. Thus, the findings confirmed decreased S6 expression levels in schizophrenia and supported the relationship between the mTOR-signaling and DPYSL2 via 5'TOP Cap-dependent translation, thus providing insights connecting the two major schizophrenia treatment strategies associated with the mTOR-signaling and DPYSL2.
Collapse
Affiliation(s)
- Ryuta Izumi
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan; Department of Psychology, Takeda General Hospital, Aizuwakamatu, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan; Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Risa Shishido
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yasuto Kunii
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan; Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
22
|
Takayanagi Y, Ishizuka K, Laursen TM, Yukitake H, Yang K, Cascella NG, Ueda S, Sumitomo A, Narita Z, Horiuchi Y, Niwa M, Taguchi A, White MF, Eaton WW, Mortensen PB, Sakurai T, Sawa A. From population to neuron: exploring common mediators for metabolic problems and mental illnesses. Mol Psychiatry 2021; 26:3931-3942. [PMID: 33173197 PMCID: PMC8514126 DOI: 10.1038/s41380-020-00939-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 11/24/2022]
Abstract
Major mental illnesses such as schizophrenia (SZ) and bipolar disorder (BP) frequently accompany metabolic conditions, but their relationship is still unclear, in particular at the mechanistic level. We implemented an approach of "from population to neuron", combining population-based epidemiological analysis with neurobiological experiments using cell and animal models based on a hypothesis built from the epidemiological study. We characterized high-quality population data, olfactory neuronal cells biopsied from patients with SZ or BP, and healthy subjects, as well as mice genetically modified for insulin signaling. We accessed the Danish Registry and observed (1) a higher incidence of diabetes in people with SZ or BP and (2) higher incidence of major mental illnesses in people with diabetes in the same large cohort. These epidemiological data suggest the existence of common pathophysiological mediators in both diabetes and major mental illnesses. We hypothesized that molecules associated with insulin resistance might be such common mediators, and then validated the hypothesis by using two independent sets of olfactory neuronal cells biopsied from patients and healthy controls. In the first set, we confirmed an enrichment of insulin signaling-associated molecules among the genes that were significantly different between SZ patients and controls in unbiased expression profiling data. In the second set, olfactory neuronal cells from SZ and BP patients who were not pre-diabetic or diabetic showed reduced IRS2 tyrosine phosphorylation upon insulin stimulation, indicative of insulin resistance. These cells also displayed an upregulation of IRS1 protein phosphorylation at serine-312 at baseline (without insulin stimulation), further supporting the concept of insulin resistance in olfactory neuronal cells from SZ patients. Finally, Irs2 knockout mice showed an aberrant response to amphetamine, which is also observed in some patients with major mental illnesses. The bi-directional relationships between major mental illnesses and diabetes suggest that there may be common pathophysiological mediators associated with insulin resistance underlying these mental and physical conditions.
Collapse
Affiliation(s)
- Yoichiro Takayanagi
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M. Laursen
- National Centre for Register-Based Research, Department of Economics and Business Economics, Aarhus University, Denmark
| | - Hiroshi Yukitake
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicola G. Cascella
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shuhei Ueda
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Japan
| | - Akiko Sumitomo
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Japan
| | - Zui Narita
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yasue Horiuchi
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Minae Niwa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akiko Taguchi
- Department of Integrative Aging Neuroscience, National Center for Geriatrics and Gerontology, Japan
| | - Morris F. White
- Division of Endocrinology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - William W. Eaton
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Preben B. Mortensen
- National Centre for Register-Based Research, Department of Economics and Business Economics, Aarhus University, Denmark,The Lundbeck Foundation’s Initiative for Integrative Research, iPSYCH,Center for Integrated Register-based Research at Aarhus University, CIRRAU, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Akira Sawa
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA. .,Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Zhao B, Li T, Yang Y, Wang X, Luo T, Shan Y, Zhu Z, Xiong D, Hauberg ME, Bendl J, Fullard JF, Roussos P, Li Y, Stein JL, Zhu H. Common genetic variation influencing human white matter microstructure. Science 2021; 372:372/6548/eabf3736. [PMID: 34140357 DOI: 10.1126/science.abf3736] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/23/2021] [Indexed: 12/11/2022]
Abstract
Brain regions communicate with each other through tracts of myelinated axons, commonly referred to as white matter. We identified common genetic variants influencing white matter microstructure using diffusion magnetic resonance imaging of 43,802 individuals. Genome-wide association analysis identified 109 associated loci, 30 of which were detected by tract-specific functional principal components analysis. A number of loci colocalized with brain diseases, such as glioma and stroke. Genetic correlations were observed between white matter microstructure and 57 complex traits and diseases. Common variants associated with white matter microstructure altered the function of regulatory elements in glial cells, particularly oligodendrocytes. This large-scale tract-specific study advances the understanding of the genetic architecture of white matter and its genetic links to a wide spectrum of clinical outcomes.
Collapse
Affiliation(s)
- Bingxin Zhao
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yue Yang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xifeng Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tianyou Luo
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yue Shan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ziliang Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Di Xiong
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mads E Hauberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark.,Centre for Integrative Sequencing (iSEQ), Aarhus University, 8000 Aarhus, Denmark
| | - Jaroslav Bendl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John F Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panagiotis Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongtu Zhu
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
24
|
Levenga J, Wong H, Milstead R, LaPlante L, Hoeffer CA. Immunohistological Examination of AKT Isoforms in the Brain: Cell-Type Specificity That May Underlie AKT's Role in Complex Brain Disorders and Neurological Disease. Cereb Cortex Commun 2021; 2:tgab036. [PMID: 34296180 PMCID: PMC8223503 DOI: 10.1093/texcom/tgab036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
Protein kinase B (PKB/AKT) is a central kinase involved in many neurobiological processes. AKT is expressed in the brain as three isoforms, AKT1, AKT2, and AKT3. Previous studies suggest isoform-specific roles in neural function, but very few studies have examined AKT isoform expression at the cellular level. In this study, we use a combination of histology, immunostaining, and genetics to characterize cell-type-specific expression of AKT isoforms in human and mouse brains. In mice, we find that AKT1 is the most broadly expressed isoform, with expression in excitatory neurons and the sole detectable AKT isoform in gamma-aminobutyric acid ergic interneurons and microglia. By contrast, we find that AKT2 is the sole isoform expressed in astroglia and is not detected in other neural cell types. We find that AKT3 is expressed in excitatory neurons with AKT1 but shows greater expression levels in dendritic compartments than AKT1. We extend our analysis to human brain tissues and find similar results. Using genetic deletion approaches, we also find that the cellular determinants restricting AKT isoform expression to specific cell types remain intact under Akt deficiency conditions. Because AKT signaling is linked to numerous neurological disorders, a greater understanding of cell-specific isoform expression could improve treatment strategies involving AKT.
Collapse
Affiliation(s)
- Josien Levenga
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Helen Wong
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Ryan Milstead
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Lauren LaPlante
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Charles A Hoeffer
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80303, USA.,Linda Crnic Institute, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
25
|
Park D, Mabunga DFN, Adil KJ, Ryu O, Valencia S, Kim R, Kim HJ, Cheong JH, Kwon KJ, Kim HY, Han SH, Jeon SJ, Shin CY. Synergistic efficacy and diminished adverse effect profile of composite treatment of several ADHD medications. Neuropharmacology 2021; 187:108494. [PMID: 33587920 DOI: 10.1016/j.neuropharm.2021.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/05/2021] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
Although attention-deficit/hyperactivity disorder (ADHD) is widely studied, problems regarding the adverse effect risks and non-responder problems still need to be addressed. Combination pharmacotherapy using standard dose regimens of existing medication is currently being practiced mainly to augment the therapeutic efficacy of each drug. The idea of combining different pharmacotherapies with different molecular targets to alleviate the symptoms of ADHD and its comorbidities requires scientific evidence, necessitating the investigation of their therapeutic efficacy and the mechanisms underlying the professed synergistic effects. Here, we injected male ICR mice with MK-801 to induce ADHD behavioral condition. We then modeled a "combined drug" using sub-optimal doses of methylphenidate, atomoxetine, and fluoxetine and investigated the combined treatment effects in MK-801-treated mice. No sub-optimal dose monotherapy alleviated ADHD behavioral condition in MK-801-treated mice. However, treatment with the combined drug attenuated the impaired behavior of MK-801-treated animals. Growth impediment, sleep disturbances, or risk of substance abuse were not observed in mice treated subchronically with the combined drugs. Finally, we observed that the combined ADHD drug rescued alterations in p-AKT and p-ERK1/2 levels in the prefrontal cortex and hippocampus, respectively, of MK-801-treated mice. Our results provide experimental evidence of a possible new pharmacotherapy option in ameliorating the ADHD behavioral condition without the expected adverse effects. The detailed mechanism of action underlying the synergistic therapeutic efficacy and reduced adverse reaction by combinatorial drug treatment should be investigated further in future studies.
Collapse
Affiliation(s)
- Donghyun Park
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Darine Froy N Mabunga
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Keremkleroo Jym Adil
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Onjeon Ryu
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Schley Valencia
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ryeongeun Kim
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Kyung Ja Kwon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hahn Young Kim
- Department of Neurology, Konkuk University Medical Center, Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, 05029, Republic of Korea
| | - Seol-Heui Han
- Department of Neurology, Konkuk University Medical Center, Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, 05029, Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea; TriNeuro Inc., 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea; TriNeuro Inc., 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
26
|
Palumbo S, Paterson C, Yang F, Hood VL, Law AJ. PKBβ/AKT2 deficiency impacts brain mTOR signaling, prefrontal cortical physiology, hippocampal plasticity and select murine behaviors. Mol Psychiatry 2021; 26:411-428. [PMID: 33328589 PMCID: PMC7854513 DOI: 10.1038/s41380-020-00964-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
The serine/threonine protein kinase v-AKT homologs (AKTs), are implicated in typical and atypical neurodevelopment. Akt isoforms Akt1, Akt2, and Akt3 have been extensively studied outside the brain where their actions have been found to be complementary, non-overlapping and often divergent. While the neurological functions of Akt1 and Akt3 isoforms have been investigated, the role for Akt2 remains underinvestigated. Neurobehavioral, electrophysiological, morphological and biochemical assessment of Akt2 heterozygous and knockout genetic deletion in mouse, reveals a novel role for Akt2 in axonal development, dendritic patterning and cell-intrinsic and neural circuit physiology of the hippocampus and prefrontal cortex. Akt2 loss-of-function increased anxiety-like phenotypes, impaired fear conditioned learning, social behaviors and discrimination memory. Reduced sensitivity to amphetamine was observed, supporting a role for Akt2 in regulating dopaminergic tone. Biochemical analyses revealed dysregulated brain mTOR and GSK3β signaling, consistent with observed learning and memory impairments. Rescue of cognitive impairments was achieved through pharmacological enhancement of PI3K/AKT signaling and PIK3CD inhibition. Together these data highlight a novel role for Akt2 in neurodevelopment, learning and memory and show that Akt2 is a critical and non-redundant regulator of mTOR activity in brain.
Collapse
Affiliation(s)
- Sara Palumbo
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health Intramural Program, Bethesda MD 20892.,Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy (current)
| | - Clare Paterson
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health Intramural Program, Bethesda MD 20892.,Department of Psychiatry, University of Colorado, School of Medicine. Aurora, CO 80045
| | - Feng Yang
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health Intramural Program, Bethesda MD 20892.,Division of Neurodegenerative Diseases and Translational Sciences Tiantan Hospital & Advanced Innovation Center for Human Brain Protection. Capital Medical University, Beijing, China (current)
| | - Veronica L. Hood
- Department of Psychiatry, University of Colorado, School of Medicine. Aurora, CO 80045
| | - Amanda J. Law
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health Intramural Program, Bethesda MD 20892.,Department of Psychiatry, University of Colorado, School of Medicine. Aurora, CO 80045.,To whom correspondence should be addressed:
| |
Collapse
|
27
|
Wong H, Levenga J, LaPlante L, Keller B, Cooper-Sansone A, Borski C, Milstead R, Ehringer M, Hoeffer C. Isoform-specific roles for AKT in affective behavior, spatial memory, and extinction related to psychiatric disorders. eLife 2020; 9:e56630. [PMID: 33325370 PMCID: PMC7787664 DOI: 10.7554/elife.56630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
AKT is implicated in neurological disorders. AKT has three isoforms, AKT1/AKT2/AKT3, with brain cell type-specific expression that may differentially influence behavior. Therefore, we examined single Akt isoform, conditional brain-specific Akt1, and double Akt1/3 mutant mice in behaviors relevant to neuropsychiatric disorders. Because sex is a determinant of these disorders but poorly understood, sex was an experimental variable in our design. Our studies revealed AKT isoform- and sex-specific effects on anxiety, spatial and contextual memory, and fear extinction. In Akt1 mutant males, viral-mediated AKT1 restoration in the prefrontal cortex rescued extinction phenotypes. We identified a novel role for AKT2 and overlapping roles for AKT1 and AKT3 in long-term memory. Finally, we found that sex-specific behavior effects were not mediated by AKT expression or activation differences between sexes. These results highlight sex as a biological variable and isoform- or cell type-specific AKT signaling as potential targets for improving treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Helen Wong
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | - Josien Levenga
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
- Linda Crnic Institute, Anschutz Medical Center, Aurora, United States
| | - Lauren LaPlante
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | - Bailey Keller
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | | | - Curtis Borski
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | - Ryan Milstead
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| | - Marissa Ehringer
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| | - Charles Hoeffer
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
- Linda Crnic Institute, Anschutz Medical Center, Aurora, United States
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| |
Collapse
|
28
|
Cui H, Xu Z, Qu C. Tetramethylpyrazine ameliorates isoflurane-induced cognitive dysfunction by inhibiting neuroinflammation via miR-150 in rats. Exp Ther Med 2020; 20:3878-3887. [PMID: 32855738 DOI: 10.3892/etm.2020.9110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 07/10/2020] [Indexed: 12/20/2022] Open
Abstract
Tetramethylpyrazine (TMP) has neuroprotective effects in the pathogenesis of some human diseases, such as Parkinson's disease. The present study aimed to investigate the role of TMP in isoflurane-induced cognitive dysfunction in rats, and further identify the mechanisms involved in the protective effects of TMP. The Morris water maze test was used to evaluate the cognitive function of rats exposed to isoflurane or treated with TMP. ELISA was conducted to evaluate the effects of isoflurane or TMP on neuroinflammation. The expression of microRNA-150 (miR-150) was measured using reverse transcription-quantitative PCR, and the potential target genes of miR-150 were predicted and verified. The impaired cognitive function induced by isoflurane in the rats was significantly ameliorated by treatment with TMP. In addition, TMP treatment in rats attenuated neuroinflammation caused by isoflurane. The expression of miR-150 was inhibited by isoflurane exposure, but was enhanced by TMP treatment in rats. Furthermore, the overexpression of miR-150 alleviated the isoflurane-induced cognitive dysfunction and neuroinflammation, while the neuroprotective effects of TMP were significantly abrogated by the knockdown of miR-150. AKT3 was a direct target of miR-150, and its mRNA expression was significantly decreased by the overexpression of miR-150 in isoflurane- and TMP-treated rats. These results demonstrated the protective effects of TMP against isoflurane-induced cognitive dysfunction, which were achieved by attenuating neuroinflammation via the regulation of the miR-150/AKT3 pathway. In addition, miR-150 may serve as a novel therapeutic target for the alleviation of cognitive dysfunction induced by anesthetics.
Collapse
Affiliation(s)
- Huaqing Cui
- Department of Anesthesia and Perioperative Medicine, Dongying Hospital of Traditional Chinese Medicine, Dongying, Shandong 257055, P.R. China
| | - Zhonghui Xu
- Department of Anesthesia and Perioperative Medicine, Dongying Hospital of Traditional Chinese Medicine, Dongying, Shandong 257055, P.R. China
| | - Chunshan Qu
- Department of Anesthesia and Perioperative Medicine, Dongying Hospital of Traditional Chinese Medicine, Dongying, Shandong 257055, P.R. China
| |
Collapse
|
29
|
Kobayashi Y, Takeda T, Kunitomi H, Ueki A, Misu K, Kowashi A, Takahashi T, Anko M, Watanabe K, Masuda K, Uchida T, Tominaga E, Banno K, Kosaki K, Aoki D. Cowden syndrome complicated by schizophrenia: A first clinical report. Eur J Med Genet 2020; 63:103959. [PMID: 32461083 DOI: 10.1016/j.ejmg.2020.103959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/28/2020] [Accepted: 05/17/2020] [Indexed: 11/27/2022]
Abstract
Patients with Cowden syndrome exhibit mucocutaneous lesions, hamartomatous polyposis of the gastrointestinal tract, and macrocephaly, often complicated by malignant tumors, such as breast, thyroid, and uterine cancers. Autism spectrum and epilepsy have been known as neuropsychiatric symptoms associated with Cowden syndrome; however, to the best of our knowledge, there is no report on cases complicated by schizophrenia. Here, we report a first case of Cowden syndrome complicated by schizophrenia. A 49-year-old Japanese woman started experiencing auditory hallucinations in her teens. She had left breast cancer at the age of 34 years, and right breast cancer at the age of 37 years, all of which were surgically treated. She was also being treated by oral medications for Hashimoto's disease. On consulting her previous doctor for abnormal uterine bleeding that lasted for a year, she was diagnosed with endometrial cancer. However, immediately before surgery, her auditory hallucinations and paranoid delusions became severe, and she was referred to our hospital for detailed examination and treatment. No abnormalities were found on head MRI, and she was diagnosed with schizophrenia on the basis of neuropsychiatric examination findings. After her psychiatric symptoms were controlled by 2 mg of risperidone, she underwent surgery for endometrial cancer. Although there was no apparent family history, physical findings including macrocephaly and papillomatous skin lesions together with her past medical history of multiple malignant tumors suggested Cowden syndrome. Postoperatively, genetic testing revealed a pathogenic variant c.655C > T; p. Gln219* (NM_000314.4) in PTEN, leading to the confirmation of the diagnosis of Cowden syndrome.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan; Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan.
| | - Takashi Takeda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Haruko Kunitomi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Arisa Ueki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kumiko Misu
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Ayari Kowashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Takayuki Takahashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Mayuka Anko
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Watanabe
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kenta Masuda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Takahito Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Eiichiro Tominaga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
30
|
Chadha R, Meador-Woodruff JH. Downregulated AKT-mTOR signaling pathway proteins in dorsolateral prefrontal cortex in Schizophrenia. Neuropsychopharmacology 2020; 45:1059-1067. [PMID: 31952070 PMCID: PMC7162985 DOI: 10.1038/s41386-020-0614-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 11/09/2022]
Abstract
Abnormal neurotransmission is central to schizophrenia (SZ). Alterations across multiple neurotransmitter systems in SZ suggest that this illness may be associated with dysregulation of core intracellular processes such as signaling pathways that underlie the regulation and integration of these systems. The AKT-mTOR signaling cascade has been implicated in SZ by gene association, postmortem brain and animal studies. AKT and mTOR are serine/threonine kinases which play important roles in cell growth, proliferation, survival, and differentiation. Both AKT and mTOR require phosphorylation at specific sites for their complete activation. mTOR forms two functionally distinct multiprotein complexes, mTOR Complex 1 (mTORC1) and Complex 2 (mTORC2). mTORC1 mediates ribosome biogenesis, protein translation, and autophagy, whereas mTORC2 contributes to actin dynamics. Altered protein synthesis and actin dynamics can lead to an abnormal neuronal morphology resulting in deficits in learning and memory. Currently, there is a lack of direct evidence to support the hypothesis of disrupted mTOR signaling in SZ, and we have addressed this by characterizing this signaling pathway in SZ brain. We found a reduction in AKT and mTOR protein expression and/or phosphorylation state in dorsolateral prefrontal cortex (DLPFC) from 22 pairs of SZ and matched comparison subjects. We also found reduced protein expression of GβL, a subunit protein common to both mTOR complexes. We further investigated mTOR complex-specific subunit composition and phosphorylation state, and found abnormal mTOR expression in both complexes in SZ DLPFC. These findings provide evidence that proteins associated with the AKT-mTOR signaling cascade are downregulated in SZ DLPFC.
Collapse
Affiliation(s)
- Radhika Chadha
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1719 6th Avenue South, Birmingham, AL, 35294-0021, USA.
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1719 6th Avenue South, Birmingham, AL, 35294-0021, USA
| |
Collapse
|
31
|
Urasaki Y, Beaumont C, Talbot JN, Hill DK, Le TT. Akt3 Regulates the Tissue-Specific Response to Copaiba Essential Oil. Int J Mol Sci 2020; 21:ijms21082851. [PMID: 32325885 PMCID: PMC7216139 DOI: 10.3390/ijms21082851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022] Open
Abstract
This study reports a relationship between Akt3 expression and tissue-specific regulation of the pI3K/Akt/mTOR signaling pathway by copaiba essential oil. Akt3, a protein kinase B isoform important for the regulation of neuronal development, exhibited differential expression levels in cells of various origins. In neuronal and microglial cells, where Akt3 is present, copaiba essential oil positively regulated the pI3K/Akt/mTOR signaling pathway. In contrast, in liver cells and T lymphocytes, where Akt3 is absent, copaiba essential oil negatively regulated the pI3K/Akt/mTOR signaling pathway. The expression of Akt3 via plasmid DNA in liver cells led to positive regulatory effects by copaiba essential oil on the pI3K/Akt/mTOR signaling pathway. In contrast, inhibition of Akt3 expression in neuronal cells via small interfering RNA molecules targeting Akt3 transcripts abrogated the regulatory effects of copaiba essential oil on the pI3K/Akt/mTOR signaling pathway. Interestingly, Akt3 expression did not impact the regulatory effects of copaiba essential oil on other signaling pathways. For example, copaiba essential oil consistently upregulated the MAPK and JAK/STAT signaling pathways in all evaluated cell types, independent of the Akt3 expression level. Collectively, the data indicated that Akt3 expression was required for the positive regulatory effects of copaiba essential oil, specifically on the pI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yasuyo Urasaki
- College of Pharmacy, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV 89135, USA; (Y.U.); (J.N.T.)
| | - Cody Beaumont
- dōTERRA International, LLC, 389 South 1300 West, Pleasant Grove, UT 84062, USA; (C.B.); (D.K.H.)
| | - Jeffery N. Talbot
- College of Pharmacy, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV 89135, USA; (Y.U.); (J.N.T.)
| | - David K. Hill
- dōTERRA International, LLC, 389 South 1300 West, Pleasant Grove, UT 84062, USA; (C.B.); (D.K.H.)
| | - Thuc T. Le
- College of Pharmacy, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV 89135, USA; (Y.U.); (J.N.T.)
- Correspondence: ; Tel.: +1-702-802-2820
| |
Collapse
|
32
|
Howell KR, Law AJ. Neurodevelopmental concepts of schizophrenia in the genome-wide association era: AKT/mTOR signaling as a pathological mediator of genetic and environmental programming during development. Schizophr Res 2020; 217:95-104. [PMID: 31522868 PMCID: PMC7065975 DOI: 10.1016/j.schres.2019.08.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 12/14/2022]
Abstract
Normative brain development is contingent on the complex interplay between genes and environment. Schizophrenia (SCZ) is considered a highly polygenic, neurodevelopmental disorder associated with impaired neural circuit development, neurocognitive function and variations in neurotransmitter signaling systems, including dopamine. Significant evidence, accumulated over the last 30 years indicates a role for the in utero environment in SCZ pathophysiology. Emerging data suggests that changes in placental programming and function may mediate the link between genetic risk, early life complications (ELC) and adverse neurodevelopmental outcomes, with risk highlighted in key developmental drivers that converge on AKT/mTOR signaling. In this article we overview select risk genes identified through recent genome-wide association studies of SCZ including AKT3, miR-137, DRD2, and AKT1 itself. We propose that through convergence on AKT/mTOR signaling, these genes are critical factors directing both placentation and neurodevelopment, influencing risk for SCZ through dysregulation of placental function, metabolism and early brain development. We discuss association of risk genes in the context of their known roles in neurodevelopment, placental expression and their possible mechanistic links to SCZ in the broad context of the 'developmental origins of adult disease' construct. Understanding how common genetic variation impacts early fetal programming may advance our knowledge of disease etiology and identify early critical developmental windows for prevention and intervention.
Collapse
Affiliation(s)
| | - Amanda J. Law
- Corresponding Author: Amanda J. Law, PhD, Professor of Psychiatry, Medicine and Cell and Developmental Biology, Nancy L. Gary Endowed Chair in Children’s Mental Disorders Research, University of Colorado, School of Medicine, , Phone: 303-724-4418, Fax: 303-724-4425, 12700 E. 19th Ave., MS 8619, Aurora, CO 80045
| |
Collapse
|
33
|
Ma Y, Li J, Xu Y, Wang Y, Yao Y, Liu Q, Wang M, Zhao X, Fan R, Chen J, Zhang B, Cai Z, Han H, Yang Z, Yuan W, Zhong Y, Chen X, Ma JZ, Payne TJ, Xu Y, Ning Y, Cui W, Li MD. Identification of 34 genes conferring genetic and pharmacological risk for the comorbidity of schizophrenia and smoking behaviors. Aging (Albany NY) 2020; 12:2169-2225. [PMID: 32012119 PMCID: PMC7041787 DOI: 10.18632/aging.102735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022]
Abstract
The prevalence of smoking is significantly higher in persons with schizophrenia (SCZ) than in the general population. However, the biological mechanisms of the comorbidity of smoking and SCZ are largely unknown. This study aimed to reveal shared biological pathways for the two diseases by analyzing data from two genome-wide association studies with a total sample size of 153,898. With pathway-based analysis, we first discovered 18 significantly enriched pathways shared by SCZ and smoking, which were classified into five groups: postsynaptic density, cadherin binding, dendritic spine, long-term depression, and axon guidance. Then, by using an integrative analysis of genetic, epigenetic, and expression data, we found not only 34 critical genes (e.g., PRKCZ, ARHGEF3, and CDKN1A) but also various risk-associated SNPs in these genes, which convey susceptibility to the comorbidity of the two disorders. Finally, using both in vivo and in vitro data, we demonstrated that the expression profiles of the 34 genes were significantly altered by multiple psychotropic drugs. Together, this multi-omics study not only reveals target genes for new drugs to treat SCZ but also reveals new insights into the shared genetic vulnerabilities of SCZ and smoking behaviors.
Collapse
Affiliation(s)
- Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinghao Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Maiqiu Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongli Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yigang Zhong
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangning Chen
- Institute of Personalized Medicine, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA
| | - Jennie Z Ma
- , Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22904, USA
| | - Thomas J Payne
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenyan Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Price AJ, Collado-Torres L, Ivanov NA, Xia W, Burke EE, Shin JH, Tao R, Ma L, Jia Y, Hyde TM, Kleinman JE, Weinberger DR, Jaffe AE. Divergent neuronal DNA methylation patterns across human cortical development reveal critical periods and a unique role of CpH methylation. Genome Biol 2019; 20:196. [PMID: 31554518 PMCID: PMC6761727 DOI: 10.1186/s13059-019-1805-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/28/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND DNA methylation (DNAm) is a critical regulator of both development and cellular identity and shows unique patterns in neurons. To better characterize maturational changes in DNAm patterns in these cells, we profile the DNAm landscape at single-base resolution across the first two decades of human neocortical development in NeuN+ neurons using whole-genome bisulfite sequencing and compare them to non-neurons (primarily glia) and prenatal homogenate cortex. RESULTS We show that DNAm changes more dramatically during the first 5 years of postnatal life than during the entire remaining period. We further refine global patterns of increasingly divergent neuronal CpG and CpH methylation (mCpG and mCpH) into six developmental trajectories and find that in contrast to genome-wide patterns, neighboring mCpG and mCpH levels within these regions are highly correlated. We integrate paired RNA-seq data and identify putative regulation of hundreds of transcripts and their splicing events exclusively by mCpH levels, independently from mCpG levels, across this period. We finally explore the relationship between DNAm patterns and development of brain-related phenotypes and find enriched heritability for many phenotypes within identified DNAm features. CONCLUSIONS By profiling DNAm changes in NeuN-sorted neurons over the span of human cortical development, we identify novel, dynamic regions of DNAm that would be masked in homogenate DNAm data; expand on the relationship between CpG methylation, CpH methylation, and gene expression; and find enrichment particularly for neuropsychiatric diseases in genomic regions with cell type-specific, developmentally dynamic DNAm patterns.
Collapse
Affiliation(s)
- Amanda J Price
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 N Wolfe St, Ste 300, Baltimore, MD, 21205, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine (JHSOM), Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 N Wolfe St, Ste 300, Baltimore, MD, 21205, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Nikolay A Ivanov
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 N Wolfe St, Ste 300, Baltimore, MD, 21205, USA
| | - Wei Xia
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 N Wolfe St, Ste 300, Baltimore, MD, 21205, USA
| | - Emily E Burke
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 N Wolfe St, Ste 300, Baltimore, MD, 21205, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 N Wolfe St, Ste 300, Baltimore, MD, 21205, USA
| | - Ran Tao
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 N Wolfe St, Ste 300, Baltimore, MD, 21205, USA
| | - Liang Ma
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 N Wolfe St, Ste 300, Baltimore, MD, 21205, USA
| | - Yankai Jia
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 N Wolfe St, Ste 300, Baltimore, MD, 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 N Wolfe St, Ste 300, Baltimore, MD, 21205, USA
- Department of Neurology, JHSOM, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, JHSOM, Baltimore, MD, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 N Wolfe St, Ste 300, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, JHSOM, Baltimore, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 N Wolfe St, Ste 300, Baltimore, MD, 21205, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine (JHSOM), Baltimore, MD, 21205, USA
- Department of Neurology, JHSOM, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, JHSOM, Baltimore, MD, USA
- Department of Neuroscience, JHSOM, Baltimore, MD, USA
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 N Wolfe St, Ste 300, Baltimore, MD, 21205, USA.
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine (JHSOM), Baltimore, MD, 21205, USA.
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, JHSOM, Baltimore, MD, USA.
- Department of Neuroscience, JHSOM, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health (JHBSPH), 615 N Wolfe St, Baltimore, MD, 21205, USA.
- Department of Biostatistics, JHBSPH, 615 N Wolfe St, Baltimore, MD, 21205, USA.
| |
Collapse
|
35
|
Raghu P, Joseph A, Krishnan H, Singh P, Saha S. Phosphoinositides: Regulators of Nervous System Function in Health and Disease. Front Mol Neurosci 2019; 12:208. [PMID: 31507376 PMCID: PMC6716428 DOI: 10.3389/fnmol.2019.00208] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphoinositides, the seven phosphorylated derivatives of phosphatidylinositol have emerged as regulators of key sub-cellular processes such as membrane transport, cytoskeletal function and plasma membrane signaling in eukaryotic cells. All of these processes are also present in the cells that constitute the nervous system of animals and in this setting too, these are likely to tune key aspects of cell biology in relation to the unique structure and function of neurons. Phosphoinositides metabolism and function are mediated by enzymes and proteins that are conserved in evolution, and analysis of knockouts of these in animal models implicate this signaling system in neural function. Most recently, with the advent of human genome analysis, mutations in genes encoding components of the phosphoinositide signaling pathway have been implicated in human diseases although the cell biological basis of disease phenotypes in many cases remains unclear. In this review we evaluate existing evidence for the involvement of phosphoinositide signaling in human nervous system diseases and discuss ways of enhancing our understanding of the role of this pathway in the human nervous system's function in health and disease.
Collapse
Affiliation(s)
- Padinjat Raghu
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | | | | | | | | |
Collapse
|
36
|
Matsuda S, Ikeda Y, Murakami M, Nakagawa Y, Tsuji A, Kitagishi Y. Roles of PI3K/AKT/GSK3 Pathway Involved in Psychiatric Illnesses. Diseases 2019; 7:diseases7010022. [PMID: 30781836 PMCID: PMC6473240 DOI: 10.3390/diseases7010022] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Psychiatric illnesses may be qualified to the cellular impairments of the function for survival or death in neurons, which may consequently appear as abnormalities in the neuroplasticity. The molecular mechanism has not been well understood, however, it seems that PI3K, AKT, GSK3, and their downstream molecules have crucial roles in the pathogenesis. Through transducing cell surviving signal, the PI3K/AKT/GSK3 pathway may organize an intracellular central network for the action of the synaptic neuroplasticity. In addition, the pathways may also regulate cell proliferation, cell migration, and apoptosis. Several lines of evidence have supported a role for this signaling network underlying the development and treatment for psychiatric illnesses. Indeed, the discovery of molecular biochemical phenotypes would represent a breakthrough in the research for effective treatment. In this review, we summarize advances on the involvement of the PI3K/AKT/GSK3 pathways in cell signaling of neuronal cells. This study may provide novel insights on the mechanism of mental disorder involved in psychiatric illnesses and would open future opportunity for contributions suggesting new targets for diagnostic and/or therapeutic procedures.
Collapse
Affiliation(s)
- Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Mutsumi Murakami
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Yukie Nakagawa
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| |
Collapse
|
37
|
Chow TJ, Tee SF, Loh SY, Yong HS, Abu Bakar AK, Song SL, Tang PY. Identification of AKT1 3'UTR variants in two Indian schizophrenia patients with poor executive functioning. Asian J Psychiatr 2018; 36:17-18. [PMID: 29864676 DOI: 10.1016/j.ajp.2018.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/21/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Tze Jen Chow
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras 43000 Kajang, Malaysia
| | - Shiau Foon Tee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras 43000 Kajang, Malaysia
| | - Siew Yim Loh
- Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hoi Sen Yong
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Sze Looi Song
- Institute of Ocean and Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pek Yee Tang
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras 43000 Kajang, Malaysia.
| |
Collapse
|
38
|
Park S, Burke RE, Kareva T, Kholodilov N, Aimé P, Franke TF, Levy O, Greene LA. Context-dependent expression of a conditionally-inducible form of active Akt. PLoS One 2018; 13:e0197899. [PMID: 29920520 PMCID: PMC6007834 DOI: 10.1371/journal.pone.0197899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/10/2018] [Indexed: 12/20/2022] Open
Abstract
Akt kinases are key signaling components in proliferation-competent and post-mitotic cells. Here, we sought to create a conditionally-inducible form of active Akt for both in vitro and in vivo applications. We fused a ligand-responsive Destabilizing Domain (DD) derived from E. coli dihydrofolate reductase to a constitutively active mutant form of Akt1, Akt(E40K). Prior work indicated that such fusion proteins may be stabilized and induced by a ligand, the antibiotic Trimethoprim (TMP). We observed dose-dependent, reversible induction of both total and phosphorylated/active DD-Akt(E40K) by TMP across several cellular backgrounds in culture, including neurons. Phosphorylation of FoxO4, an Akt substrate, was significantly elevated after DD-Akt(E40K) induction, indicating the induced protein was functionally active. The induced Akt(E40K) protected cells from apoptosis evoked by serum deprivation and was neuroprotective in two cellular models of Parkinson's disease (6-OHDA and MPP+ exposure). There was no significant protection without induction. We also evaluated Akt(E40K) induction by TMP in mouse substantia nigra and striatum after neuronal delivery via an AAV1 adeno-associated viral vector. While there was significant induction in striatum, there was no apparent induction in substantia nigra. To explore the possible basis for this difference, we examined DD-Akt(E40K) induction in cultured ventral midbrain neurons. Both dopaminergic and non-dopaminergic neurons in the cultures showed DD-Akt(E40K) induction after TMP treatment. However, basal DD-Akt(E40K) expression was 3-fold higher for dopaminergic neurons, resulting in a significantly lower induction by TMP in this population. Such findings suggest that dopaminergic neurons may be relatively inefficient in protein degradation, a property that could relate to their lack of apparent DD-Akt(E40K) induction in vivo and to their selective vulnerability in Parkinson's disease. In summary, we generated an inducible, biologically active form of Akt. The degree of inducibility appears to reflect cellular context that will inform the most appropriate applications for this and related reagents.
Collapse
Affiliation(s)
- Soyeon Park
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Robert E Burke
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America.,Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
| | - Tatyana Kareva
- Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
| | - Nikolai Kholodilov
- Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
| | - Pascaline Aimé
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Thomas F Franke
- Department of Neuroscience, Icahn School of Medicine at Mt Sinai, New York, New York, United States of America
| | - Oren Levy
- Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
39
|
Igolkina AA, Armoskus C, Newman JRB, Evgrafov OV, McIntyre LM, Nuzhdin SV, Samsonova MG. Analysis of Gene Expression Variance in Schizophrenia Using Structural Equation Modeling. Front Mol Neurosci 2018; 11:192. [PMID: 29942251 PMCID: PMC6004421 DOI: 10.3389/fnmol.2018.00192] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/15/2018] [Indexed: 01/02/2023] Open
Abstract
Schizophrenia (SCZ) is a psychiatric disorder of unknown etiology. There is evidence suggesting that aberrations in neurodevelopment are a significant attribute of schizophrenia pathogenesis and progression. To identify biologically relevant molecular abnormalities affecting neurodevelopment in SCZ we used cultured neural progenitor cells derived from olfactory neuroepithelium (CNON cells). Here, we tested the hypothesis that variance in gene expression differs between individuals from SCZ and control groups. In CNON cells, variance in gene expression was significantly higher in SCZ samples in comparison with control samples. Variance in gene expression was enriched in five molecular pathways: serine biosynthesis, PI3K-Akt, MAPK, neurotrophin and focal adhesion. More than 14% of variance in disease status was explained within the logistic regression model (C-value = 0.70) by predictors accounting for gene expression in 69 genes from these five pathways. Structural equation modeling (SEM) was applied to explore how the structure of these five pathways was altered between SCZ patients and controls. Four out of five pathways showed differences in the estimated relationships among genes: between KRAS and NF1, and KRAS and SOS1 in the MAPK pathway; between PSPH and SHMT2 in serine biosynthesis; between AKT3 and TSC2 in the PI3K-Akt signaling pathway; and between CRK and RAPGEF1 in the focal adhesion pathway. Our analysis provides evidence that variance in gene expression is an important characteristic of SCZ, and SEM is a promising method for uncovering altered relationships between specific genes thus suggesting affected gene regulation associated with the disease. We identified altered gene-gene interactions in pathways enriched for genes with increased variance in expression in SCZ. These pathways and loci were previously implicated in SCZ, providing further support for the hypothesis that gene expression variance plays important role in the etiology of SCZ.
Collapse
Affiliation(s)
- Anna A Igolkina
- Institute of Applied Mathematics and Mechanics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Chris Armoskus
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jeremy R B Newman
- Department of Molecular Genetics & Microbiology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Oleg V Evgrafov
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | - Lauren M McIntyre
- Department of Molecular Genetics & Microbiology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Sergey V Nuzhdin
- Institute of Applied Mathematics and Mechanics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.,Molecular and Computation Biology, University of Southern California, Los Angeles, CA, United States
| | - Maria G Samsonova
- Institute of Applied Mathematics and Mechanics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
40
|
A Genome-Wide Association Study and Complex Network Identify Four Core Hub Genes in Bipolar Disorder. Int J Mol Sci 2017; 18:ijms18122763. [PMID: 29257106 PMCID: PMC5751362 DOI: 10.3390/ijms18122763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/29/2017] [Accepted: 12/14/2017] [Indexed: 11/25/2022] Open
Abstract
Bipolar disorder is a common and severe mental illness with unsolved pathophysiology. A genome-wide association study (GWAS) has been used to find a number of risk genes, but it is difficult for a GWAS to find genes indirectly associated with a disease. To find core hub genes, we introduce a network analysis after the GWAS was conducted. Six thousand four hundred fifty eight single nucleotide polymorphisms (SNPs) with p < 0.01 were sifted out from Wellcome Trust Case Control Consortium (WTCCC) dataset and mapped to 2045 genes, which are then compared with the protein–protein network. One hundred twelve genes with a degree >17 were chosen as hub genes from which five significant modules and four core hub genes (FBXL13, WDFY2, bFGF, and MTHFD1L) were found. These core hub genes have not been reported to be directly associated with BD but may function by interacting with genes directly related to BD. Our method engenders new thoughts on finding genes indirectly associated with, but important for, complex diseases.
Collapse
|
41
|
Chen BJ, Yang B, Janitz M. Region-specific expression of circular RNAs in the mouse brain. Neurosci Lett 2017; 666:44-47. [PMID: 29253603 DOI: 10.1016/j.neulet.2017.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/04/2017] [Accepted: 12/10/2017] [Indexed: 10/24/2022]
Abstract
Circular RNAs (circRNAs) are abundant in mammalian brain and their expression is regulated in a tissue- and developmental stage-specific manner. Mammalian brain is the most transcriptionally complex organ. While many studies have extensively studied linear transcriptome and its biological functions in the brain, the circular transcriptome remains largely unexplored. This study focused on investigation of circRNA expression patterns in the mammalian brain regions critical for cognitive and memory functions and performed comparative analysis with the linear transcriptome. Altogether our study showed that circular and linear RNAs have independent expression patterns despite being derived from the same genomic locus, and that circular transcriptomes from different brain region have distinct characteristics in terms of transcript abundance and composition.
Collapse
Affiliation(s)
- Bei Jun Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Belinda Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
42
|
Ding L, Zhang L, Biswas S, Schugar RC, Brown JM, Byzova T, Podrez E. Akt3 inhibits adipogenesis and protects from diet-induced obesity via WNK1/SGK1 signaling. JCI Insight 2017; 2:95687. [PMID: 29202451 DOI: 10.1172/jci.insight.95687] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/17/2017] [Indexed: 01/22/2023] Open
Abstract
Three Akt isoforms, encoded by 3 separate genes, are expressed in mammals. While the roles of Akt1 and Akt2 in metabolism are well established, it is not yet known whether Akt3 plays a role in metabolic diseases. We now report that Akt3 protects mice from high-fat diet-induced obesity by suppressing an alternative pathway of adipogenesis via with no lysine protein kinase-1 (WNK1) and serum/glucocorticoid-inducible kinase 1 (SGK1). We demonstrate that Akt3 specifically phosphorylates WNK1 at T58 and promotes its degradation via the ubiquitin-proteasome pathway. A lack of Akt3 in adipocytes increases the WNK1 protein level, leading to activation of SGK1. SGK1, in turn, promotes adipogenesis by phosphorylating and inhibiting transcription factor FOXO1 and, subsequently, activating the transcription of PPARγ in adipocytes. Akt3-deficient mice have an increased number of adipocytes and, when fed a high-fat diet, display increased weight gain, white adipose tissue expansion, and impaired glucose homeostasis. Pharmacological blockade of SGK1 in high-fat diet-fed Akt3-deficient mice suppressed adipogenesis, prevented excessive weight gain and adiposity, and ameliorated metabolic parameters. Thus, Akt3/WNK1/SGK1 represents a potentially novel signaling pathway controlling the development of obesity.
Collapse
Affiliation(s)
| | | | | | - Rebecca C Schugar
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
43
|
Liu L, Luo Y, Zhang G, Jin C, Zhou Z, Cheng Z, Yuan G. Correlation of DRD2 mRNA expression levels with deficit syndrome severity in chronic schizophrenia patients receiving clozapine treatment. Oncotarget 2017; 8:86515-86526. [PMID: 29156812 PMCID: PMC5689702 DOI: 10.18632/oncotarget.21230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/26/2017] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia is a complex, severe, chronic psychiatric disorder, and the associated deficit syndrome is widely regarded as an important clinical aspect of schizophrenia. This study analyzed the relationship of deficit syndrome severity with the mRNA levels of members of signaling pathways that associate with the pathophysiology of schizophrenia, including the dopamine D2 receptor (DRD2), protein kinase B (AKT1), and phosphoinositide-3 kinase (PI3KCB), in peripheral blood leukocytes (PBLs) of 20 healthy controls and 19 chronic schizophrenia patients with long-term clozapine treatment. The DRD2 expression levels in chronic schizophrenia group were statistically higher than those in controls (t=2.168, p=0.037). Moreover, in chronic schizophrenia group, correlations were observed between the expression levels of DRD2 and PI3KCB (r=0.771, p<0.001), DRD2 and AKT1 (r=0.592, p=0.008), and PI3KCB and AKT1 (r=0.562, p=0.012) and between the DRD2 mRNA levels and the Proxy for the Deficit Syndrome score (r=0.511, p=0.025). In control group, the correlation between PI3KCB expression levels and DRD2 expression levels was only observed (r=0.782, p<0.001). In conclusion, a correlation was observed between increased deficit syndrome severity and elevated expression levels of DRD2 in PBLs of chronic schizophrenia patients receiving long-term clozapine treatment.
Collapse
Affiliation(s)
- Liang Liu
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Yin Luo
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Guofu Zhang
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Chunhui Jin
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Zhenhe Zhou
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Zaohuo Cheng
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
- Wuxi Tongren International Rehabilitation Hospital, Nanjing Medical University, Wuxi, China
| | - Guozhen Yuan
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
- Wuxi Tongren International Rehabilitation Hospital, Nanjing Medical University, Wuxi, China
| |
Collapse
|
44
|
Guo JN, Tian LY, Liu WY, Mu J, Zhou D. Activation of the Akt/mTOR signaling pathway: A potential response to long-term neuronal loss in the hippocampus after sepsis. Neural Regen Res 2017; 12:1832-1842. [PMID: 29239329 PMCID: PMC5745837 DOI: 10.4103/1673-5374.219044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Survivors of sepsis may suffer chronic cognitive impairment as a long-term sequela. However, the precise mechanisms of cognitive dysfunction after sepsis are not well understood. We employed the cecal ligation-and-puncture-induced septic mouse model. We observed elevated phosphorylation of Akt, mammalian target of rapamycin (mTOR) and p70S6K on days 14 and 60, progressive neuronal loss in the cornu ammonis 1 region, and abnormal neuronal morphology in the hippocampus in the sepsis mouse model. These findings indicate that changes in neuronal morphology and number in the hippocampus after sepsis were associated with strong activation of the Akt/mTOR signaling pathway, and may reflect a "self-rescuing" feedback response to neuronal loss after sepsis.
Collapse
Affiliation(s)
- Jia-Nan Guo
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lin-Yu Tian
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wen-Yu Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jie Mu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|