1
|
Alves CC, Lewis J, Antunes DA, Donadi EA. The Role of Vimentin Peptide Citrullination in the Structure and Dynamics of HLA-DRB1 Rheumatoid Arthritis Risk-Associated Alleles. Int J Mol Sci 2024; 26:34. [PMID: 39795892 PMCID: PMC11719467 DOI: 10.3390/ijms26010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Citrullination, a post-translational modification (PTM), plays a critical role in rheumatoid arthritis (RA) by triggering immune responses to citrullinated self-antigens. Some HLA-DRB1 genes encode molecules with the shared epitope (QKRAA/QRRAA) sequence in the peptide-binding groove which preferentially presents citrulline-modified peptides, like vimentin, that intensifies the immune response in RA. In this study, we used computational approaches to evaluate intermolecular interactions between vimentin peptide-ligands (with/without PTM) and HLA-DRB1 alleles associated with a significantly increased risk for RA development. Crystal structures for HLA-DRB1*04:01, *04:04, and *04:05 bound to citrullinated peptides (PDB ID: 4MCY, 4MD5, 6BIR) were retrieved from the Protein Data Bank and non-citrullinated 3D structures were generated by mutating citrulline to arginine. The pHLA complexes were submitted to four rounds (50 ns each) of molecular dynamic simulations (MD) with Gromacs v.2022. Our results show that citrulline strengthens the interaction between vimentin and the HLA-DRB1 molecules, therefore impacting both the peptide affinity to the HLAs and pHLA stability; it also induces more intermolecular hydrogen bond formation during MD in the pHLA. Citrulline prevents repulsion between amino acid 71β and the P4-residue of native vimentin. Thus, vimentin citrullination seems to affect pHLA binding and dynamics, which may influence RA-related immune responses.
Collapse
Affiliation(s)
- Cinthia C. Alves
- Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.C.A.)
| | - Jaila Lewis
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Dinler A. Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Eduardo A. Donadi
- Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.C.A.)
| |
Collapse
|
2
|
Juanes-Velasco P, Arias-Hidalgo C, García-Vaquero ML, Sotolongo-Ravelo J, Paíno T, Lécrevisse Q, Landeira-Viñuela A, Góngora R, Hernández ÁP, Fuentes M. Crucial Parameters for Immunopeptidome Characterization: A Systematic Evaluation. Int J Mol Sci 2024; 25:9564. [PMID: 39273511 PMCID: PMC11395153 DOI: 10.3390/ijms25179564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Immunopeptidomics is the area of knowledge focused on the study of peptides assembled in the major histocompatibility complex (MHC), or human leukocyte antigen (HLA) in humans, which could activate the immune response via specific and selective T cell recognition. Advances in high-sensitivity mass spectrometry have enabled the detailed identification and quantification of the immunopeptidome, significantly impacting fields like oncology, infections, and autoimmune diseases. Current immunopeptidomics approaches primarily focus on workflows to identify immunopeptides from HLA molecules, requiring the isolation of the HLA from relevant cells or tissues. Common critical steps in these workflows, such as cell lysis, HLA immunoenrichment, and peptide isolation, significantly influence outcomes. A systematic evaluation of these steps led to the creation of an 'Immunopeptidome Score' to enhance the reproducibility and robustness of these workflows. This score, derived from LC-MS/MS datasets (ProteomeXchange identifier PXD038165), in combination with available information from public databases, aids in optimizing the immunopeptidome characterization process. The 'Immunopeptidome Score' has been applied in a systematic analysis of protein extraction, HLA immunoprecipitation, and peptide recovery yields across several tumor cell lines enabling the selection of peptides with optimal features and, therefore, the identification of potential biomarker and therapeutic targets.
Collapse
Affiliation(s)
- Pablo Juanes-Velasco
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlota Arias-Hidalgo
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marina L García-Vaquero
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Janet Sotolongo-Ravelo
- Oncohematology Group, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| | - Teresa Paíno
- Oncohematology Group, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
| | - Quentin Lécrevisse
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alicia Landeira-Viñuela
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Góngora
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ángela-Patricia Hernández
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Pharmaceutical Sciences, Organic Chemistry, Faculty of Pharmacy, University of Salamanca, CIETUS, IBSAL, 37007 Salamanca, Spain
| | - Manuel Fuentes
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Proteomics Unit-IBSAL, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, (IBSAL/USAL), 37007 Salamanca, Spain
| |
Collapse
|
3
|
Lundtoft C, Knight A, Meadows JRS, Karlsson Å, Rantapää-Dahlqvist S, Berglin E, Palm Ø, Haukeland H, Gunnarsson I, Bruchfeld A, Segelmark M, Ohlsson S, Mohammad AJ, Eriksson P, Söderkvist P, Ronnblom L, Omdal R, Jonsson R, Lindblad-Toh K, Dahlqvist J. The HLA region in ANCA-associated vasculitis: characterisation of genetic associations in a Scandinavian patient population. RMD Open 2024; 10:e004039. [PMID: 38580345 PMCID: PMC11002376 DOI: 10.1136/rmdopen-2023-004039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/16/2024] [Indexed: 04/07/2024] Open
Abstract
OBJECTIVE The antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV) are inflammatory disorders with ANCA autoantibodies recognising either proteinase 3 (PR3-AAV) or myeloperoxidase (MPO-AAV). PR3-AAV and MPO-AAV have been associated with distinct loci in the human leucocyte antigen (HLA) region. While the association between MPO-AAV and HLA has been well characterised in East Asian populations where MPO-AAV is more common, studies in populations of European descent are limited. The aim of this study was to thoroughly characterise associations to the HLA region in Scandinavian patients with PR3-AAV as well as MPO-AAV. METHODS Genotypes of single-nucleotide polymorphisms (SNPs) located in the HLA region were extracted from a targeted exome-sequencing dataset comprising Scandinavian AAV cases and controls. Classical HLA alleles were called using xHLA. After quality control, association analyses were performed of a joint SNP/classical HLA allele dataset for cases with PR3-AAV (n=411) and MPO-AAV (n=162) versus controls (n=1595). Disease-associated genetic variants were analysed for association with organ involvement, age at diagnosis and relapse, respectively. RESULTS PR3-AAV was significantly associated with both HLA-DPB1*04:01 and rs1042335 at the HLA-DPB1 locus, also after stepwise conditional analysis. MPO-AAV was significantly associated with HLA-DRB1*04:04. Neither carriage of HLA-DPB1*04:01 alleles in PR3-AAV nor of HLA-DRB1*04:04 alleles in MPO-AAV were associated with organ involvement, age at diagnosis or relapse. CONCLUSIONS The association to the HLA region was distinct in Scandinavian cases with MPO-AAV compared with cases of East Asian descent. In PR3-AAV, the two separate signals of association to the HLD-DPB1 region mediate potentially different functional effects.
Collapse
Affiliation(s)
| | - Ann Knight
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Uppsala University Hospital, Uppsala, Sweden
| | - Jennifer R S Meadows
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Åsa Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Ewa Berglin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Øyvind Palm
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway
| | - Hilde Haukeland
- Department of Rheumatology, Martina Hansens Hospital, Sandvika, Norway
| | - Iva Gunnarsson
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Annette Bruchfeld
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Renal Medicine, Karolinska University Hospital and CLINTEC Karolinska Institutet, Stockholm, Sweden
| | - Mårten Segelmark
- Department of Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Sophie Ohlsson
- Department of Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Aladdin J Mohammad
- Department of Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Per Eriksson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Peter Söderkvist
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lars Ronnblom
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Roald Omdal
- Research Department, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- The Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Johanna Dahlqvist
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
4
|
Batsalova T, Dzhambazov B. Significance of Type II Collagen Posttranslational Modifications: From Autoantigenesis to Improved Diagnosis and Treatment of Rheumatoid Arthritis. Int J Mol Sci 2023; 24:9884. [PMID: 37373030 PMCID: PMC10298457 DOI: 10.3390/ijms24129884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Collagen type II (COL2), the main structural protein of hyaline cartilage, is considerably affected by autoimmune responses associated with the pathogenesis of rheumatoid arthritis (RA). Posttranslational modifications (PTMs) play a significant role in the formation of the COL2 molecule and supramolecular fibril organization, and thus, support COL2 function, which is crucial for normal cartilage structure and physiology. Conversely, the specific PTMs of the protein (carbamylation, glycosylation, citrullination, oxidative modifications and others) have been implicated in RA autoimmunity. The discovery of the anti-citrullinated protein response in RA, which includes anti-citrullinated COL2 reactivity, has led to the development of improved diagnostic assays and classification criteria for the disease. The induction of immunological tolerance using modified COL2 peptides has been highlighted as a potentially effective strategy for RA therapy. Therefore, the aim of this review is to summarize the recent knowledge on COL2 posttranslational modifications with relevance to RA pathophysiology, diagnosis and treatment. The significance of COL2 PTMs as a source of neo-antigens that activate immunity leading to or sustaining RA autoimmunity is discussed.
Collapse
Affiliation(s)
| | - Balik Dzhambazov
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
5
|
Roudier J, Auger I. How does citrullination contribute to RA autoantibody development? Nat Rev Rheumatol 2023; 19:329-330. [PMID: 37016165 DOI: 10.1038/s41584-023-00959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Affiliation(s)
- Jean Roudier
- Inserm UMRs1097, Arthrites Autoimmunes, Aix-Marseille Université, Rheumatology, Aix Marseille University/APHM, Marseille, France.
| | - Isabelle Auger
- Inserm UMRs1097, Arthrites Autoimmunes, Aix-Marseille Université, Rheumatology, Aix Marseille University/APHM, Marseille, France
| |
Collapse
|
6
|
Curran AM, Girgis AA, Jang Y, Crawford JD, Thomas MA, Kawalerski R, Coller J, Bingham CO, Na CH, Darrah E. Citrullination modulates antigen processing and presentation by revealing cryptic epitopes in rheumatoid arthritis. Nat Commun 2023; 14:1061. [PMID: 36828807 PMCID: PMC9958131 DOI: 10.1038/s41467-023-36620-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023] Open
Abstract
Cryptic peptides, hidden from the immune system under physiologic conditions, are revealed by changes to MHC class II processing and hypothesized to drive the loss of immune tolerance to self-antigens in autoimmunity. Rheumatoid arthritis (RA) is an autoimmune disease characterized by immune responses to citrullinated self-antigens, in which arginine residues are converted to citrullines. Here, we investigate the hypothesis that citrullination exposes cryptic peptides by modifying protein structure and proteolytic cleavage. We show that citrullination alters processing and presentation of autoantigens, resulting in the generation of a unique citrullination-dependent repertoire composed primarily of native sequences. This repertoire stimulates T cells from RA patients with anti-citrullinated protein antibodies more robustly than controls. The generation of this unique repertoire is achieved through altered protease cleavage and protein destabilization, rather than direct presentation of citrulline-containing epitopes, suggesting a novel paradigm for the role of protein citrullination in the breach of immune tolerance in RA.
Collapse
Affiliation(s)
- Ashley M Curran
- Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander A Girgis
- Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yura Jang
- Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Jonathan D Crawford
- Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mekha A Thomas
- Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan Kawalerski
- Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff Coller
- Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Clifton O Bingham
- Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chan Hyun Na
- Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erika Darrah
- Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Maggi J, Carrascal M, Soto L, Neira O, Cuéllar MC, Aravena O, James EA, Abian J, Jaraquemada D, Catalan D, Aguillón JC. Isolation of HLA-DR-naturally presented peptides identifies T-cell epitopes for rheumatoid arthritis. Ann Rheum Dis 2022; 81:1096-1105. [PMID: 35459695 DOI: 10.1136/annrheumdis-2021-220371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/08/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) immunopathogenesis revolves around the presentation of poorly characterised self-peptides by human leucocyte antigen (HLA)-class II molecules on the surface of antigen-presenting cells to autoreactive CD4 +T cells. Here, we analysed the HLA-DR-associated peptidome of synovial tissue (ST) and of dendritic cells (DCs) pulsed with synovial fluid (SF) or ST, to identify potential T-cell epitopes for RA. METHODS HLA-DR/peptide complexes were isolated from RA ST samples (n=3) and monocyte-derived DCs, generated from healthy donors carrying RA-associated shared epitope positive HLA-DR molecules and pulsed with RA SF (n=7) or ST (n=2). Peptide sequencing was performed by high-resolution mass spectrometry. The immunostimulatory capacity of selected peptides was evaluated on peripheral blood mononuclear cells from patients with RA (n=29) and healthy subjects (n=12) by flow cytometry. RESULTS We identified between 103 and 888 HLA-DR-naturally presented peptides per sample. We selected 37 native and six citrullinated (cit)-peptides for stimulation assays. Six of these peptides increased the expression of CD40L on CD4 +T cells patients with RA, and specifically triggered IFN-γ expression on RA CD4 +T cells compared with healthy subjects. Finally, the frequency of IFN-γ-producing CD4 +T cells specific for a myeloperoxidase-derived peptide showed a positive correlation with disease activity. CONCLUSIONS We significantly expanded the peptide repertoire presented by HLA-DR molecules in a physiologically relevant context, identifying six new epitopes recognised by CD4 +T cells from patients with RA. This information is important for a better understanding of the disease immunopathology, as well as for designing tolerising antigen-specific immunotherapies.
Collapse
Affiliation(s)
- Jaxaira Maggi
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile Facultad de Medicina, Santiago, Chile
| | - Montserrat Carrascal
- Biological and Environmental Proteomics Group, IIBB-CSIC, IDIBAPS, Barcelona, Spain
| | - Lilian Soto
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile Facultad de Medicina, Santiago, Chile
- Departamento de Medicina, Unidad del Dolor, Hospital Clinico de la Universidad de Chile Jose Joaquin Aguirre, Santiago, Chile
| | - Oscar Neira
- Servicio de Reumatología, Hospital del Salvador, Universidad de Chile, Santiago, Chile
| | - María C Cuéllar
- Servicio de Reumatología, Hospital del Salvador, Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile Facultad de Medicina, Santiago, Chile
| | - Eddie A James
- Translational Research Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Joaquin Abian
- Biological and Environmental Proteomics Group, IIBB-CSIC, IDIBAPS, Barcelona, Spain
| | - Dolores Jaraquemada
- Immunology Unit, Cell Biology, Physiology and Immunology Department, Institut de Biotecnologia i Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Diego Catalan
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile Facultad de Medicina, Santiago, Chile
| | - Juan C Aguillón
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile Facultad de Medicina, Santiago, Chile
| |
Collapse
|
8
|
Hemon MF, Lambert NC, Roudier J, Auger I. PAD2 immunization induces ACPA in wild-type and HLA-DR4 humanized mice. Eur J Immunol 2022; 52:1464-1473. [PMID: 35712879 PMCID: PMC9545684 DOI: 10.1002/eji.202249889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Rheumatoid arthritis (RA) is associated with HLA‐DRB1 alleles expressing the "shared epitope." RA is usually preceded by the emergence of anti‐citrullinated protein autoantibodies (ACPAs). ACPAs recognize citrulline residues on numerous proteins. Conversion of arginine into citrulline is performed by enzymes called peptidyl arginine deiminases (PADs). We have previously demonstrated that C3H mice immunized with PADs can produce ACPAs by a hapten‐carrier mechanism. Here, we address the influence of HLA‐DR alleles in this model in mice expressing RA‐associated HLA‐DRB1*04:01 (KO/KI*04:01), HLA‐DRB1*04:04 (KO/KI*04:04), or non‐RA‐associated HLA‐DRB1*04:02 (KO/KI*04:02) after murine PAD2 immunization. Immunization with mPAD2 triggers production of ACPAs in wild‐type (WT) and HLA‐DR4 C57BL/6 mice. Both I‐Ab and HLA‐DR are involved in the activation of mPAD2‐specific T lymphocytes. Among HLA‐DR4 mice, mice expressing RA‐associated HLA‐DRB1*04:01 are the best responders to mPAD2 and the best anti‐citrullinated peptide antibody producers.
Collapse
Affiliation(s)
- Marie F Hemon
- INSERM UMRs 1097, Aix Marseille University, Marseille, France.,Arthritis R&D, Neuilly-sur-Seine, France
| | | | - Jean Roudier
- INSERM UMRs 1097, Aix Marseille University, Marseille, France.,APHM, Rhumatologie, Marseille, France
| | - Isabelle Auger
- INSERM UMRs 1097, Aix Marseille University, Marseille, France
| |
Collapse
|
9
|
Roudier J, Balandraud N, Auger I. How RA Associated HLA-DR Molecules Contribute to the Development of Antibodies to Citrullinated Proteins: The Hapten Carrier Model. Front Immunol 2022; 13:930112. [PMID: 35774784 PMCID: PMC9238433 DOI: 10.3389/fimmu.2022.930112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
The risk to develop ACPA positive rheumatoid arthritis (RA), the most destructive type of autoimmune arthritis, is carried by HLA-DRB1 alleles containing a 5 amino acid motif: the shared epitope (SE). RA is preceded by the emergence of disease specific anti citrullinated protein antibodies (ACPA). SE positive HLA-DRB1 alleles are associated with ACPA and ACPA positive RA, not with ACPA negative RA, suggesting that ACPA contribute to the pathogenesis of RA. Understanding how HLA-DRB1 genotypes influence ACPA could lead to a curative or preventive treatment of RA. The “Shared epitope binds citrullinated peptides “ hypothesis suggests that RA associated HLA-DR alleles present citrullinated peptides to T cells that help ACPA producing B cells. The “Hapten carrier model” suggests that PAD4 is the target of the T cells which help ACPA specific B cells through a hapten carrier mechanism in which PAD4 is the carrier and citrullinated peptides are the haptens. Direct binding assay of citrullinated peptides to purified HLA-DR molecules does not support the “shared epitope binds citrullinated peptides” hypothesis. The Odds Ratios to develop ACPA positive RA associated with each of 12 common HLA-DRB1 genotypes match the probability that the two HLA-DR molecules they encode can bind at least one peptide from PAD4, not from citrullinated fibrinogen. Thus, PAD4 tolerization might stop the carrier effect and switch off production of ACPA.
Collapse
Affiliation(s)
- Jean Roudier
- Faculté de Médecine, Aix Marseille Université, Marseille, France
- Assistance Publique Hôpitaux de Marseille, Marseille, France
- INSERM U1097 Immunogénétique de la Polyarthrite Rhumatoïde, Marseille, France
- *Correspondence: Jean Roudier,
| | - Nathalie Balandraud
- Assistance Publique Hôpitaux de Marseille, Marseille, France
- INSERM U1097 Immunogénétique de la Polyarthrite Rhumatoïde, Marseille, France
| | - Isabelle Auger
- INSERM U1097 Immunogénétique de la Polyarthrite Rhumatoïde, Marseille, France
- Faculté des Sciences, Aix Marseille Université, Marseille, France
| |
Collapse
|
10
|
Hemon MF, Lambert NC, Arnoux F, Roudier J, Auger I. PAD4 Immunization Triggers Anti-Citrullinated Peptide Antibodies in Normal Mice: Analysis With Peptide Arrays. Front Immunol 2022; 13:840035. [PMID: 35432329 PMCID: PMC9008206 DOI: 10.3389/fimmu.2022.840035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
The critical immunological event in rheumatoid arthritis (RA) is the production of antibodies to citrullinated proteins (ACPAs), ie proteins on which arginines have been transformed into citrullines by peptidyl arginine deiminases (PAD). In C3H mice, immunization with PAD4 triggers the production of ACPAs. Here, we developed a peptide array to analyze the fine specificity of anti-citrullinated peptide antibodies and used it to characterize the ACPA response after hPAD4 immunization in mice expressing different H-2 haplotypes. Sera from C3H, DBA/2, BALB/c and C57BL/6 mice immunized with human PAD4 (hPAD4) or control-matched mice immunized with phosphate buffered saline (PBS) were used to screen peptide arrays containing 169 peptides from collagen, filaggrin, EBNA, proteoglycan, enolase, alpha and beta fibrinogen, histon and vimentin. Human PAD4 immunization induced antibodies directed against numerous citrullinated peptides from fibrinogen, histon 4 and vimentin. Most peptides were recognized under their arginine and citrullinated forms. DBA/2 and BALB/c mice (H-2d) had the lowest anti-citrullinated peptide IgG responses. C3H (H-2k) and BL6 mice (H-2b) had the highest anti-citrullinated peptide IgG responses. The newly developed peptide array allows us to characterize the ACPA production after hPAD4 immunization in mice on the H-2d, H-2k or H-2b backgrounds. This sensitive tool will be useful for further studies on mice for prevention of ACPA production by PAD tolerization.
Collapse
Affiliation(s)
- Marie F. Hemon
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097, Aix Marseille University, Marseille, France
- Arthritis R&D, Neuilly-sur-Seine, France
| | - Nathalie C. Lambert
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097, Aix Marseille University, Marseille, France
| | - Fanny Arnoux
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097, Aix Marseille University, Marseille, France
| | - Jean Roudier
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097, Aix Marseille University, Marseille, France
- Assistance Publique Hôpitaux de Marseille (APHM), Rhumatologie, Marseille, France
| | - Isabelle Auger
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097, Aix Marseille University, Marseille, France
- *Correspondence: Isabelle Auger,
| |
Collapse
|
11
|
Ge C, Weisse S, Xu B, Dobritzsch D, Viljanen J, Kihlberg J, Do NN, Schneider N, Lanig H, Holmdahl R, Burkhardt H. Key interactions in the trimolecular complex consisting of the rheumatoid arthritis-associated DRB1*04:01 molecule, the major glycosylated collagen II peptide and the T-cell receptor. Ann Rheum Dis 2022; 81:480-489. [PMID: 35027402 PMCID: PMC8921575 DOI: 10.1136/annrheumdis-2021-220500] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022]
Abstract
Objectives Rheumatoid arthritis (RA) is an autoimmune disease strongly associated with the major histocompatibility complex (MHC) class II allele DRB1*04:01, which encodes a protein that binds self-peptides for presentation to T cells. This study characterises the autoantigen-presenting function of DRB1*04:01 (HLA-DRA*01:01/HLA-DRB1*04:01) at a molecular level for prototypic T-cell determinants, focusing on a post-translationally modified collagen type II (Col2)-derived peptide. Methods The crystal structures of DRB1*04:01 molecules in complex with the peptides HSP70289-306, citrullinated CILP982-996 and galactosylated Col2259-273 were determined on cocrystallisation. T cells specific for Col2259-273 were investigated in peripheral blood mononuclear cells from patients with DRB1*04:01-positive RA by cytofluorometric detection of the activation marker CD154 on peptide stimulation and binding of fluorescent DRB1*0401/Col2259-273 tetramer complexes. The cDNAs encoding the T-cell receptor (TCR) α-chains and β-chains were cloned from single-cell sorted tetramer-positive T cells and transferred via a lentiviral vector into TCR-deficient Jurkat 76 cells. Results The crystal structures identified peptide binding to DRB1*04:01 and potential side chain exposure to T cells. The main TCR recognition sites in Col2259-273 were lysine residues that can be galactosylated. RA T-cell responses to DRB1*04:01-presented Col2259-273 were dependent on peptide galactosylation at lysine 264. Dynamic molecular modelling of a functionally characterised Col2259-273-specific TCR complexed with DRB1*04:01/Col2259-273 provided evidence for differential allosteric T-cell recognition of glycosylated lysine 264. Conclusions The MHC-peptide-TCR interactions elucidated in our study provide new molecular insights into recognition of a post-translationally modified RA T-cell determinant with a known dominant role in arthritogenic and tolerogenic responses in murine Col2-induced arthritis.
Collapse
Affiliation(s)
- Changrong Ge
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Sylvia Weisse
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Bingze Xu
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Doreen Dobritzsch
- Section of Biochemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Johan Viljanen
- Section of Organic Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Jan Kihlberg
- Section of Organic Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Nhu-Nguyen Do
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Nadine Schneider
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Harald Lanig
- Central Institute for Scientific Computing (ZISC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Erlangen National High Performance Computing Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (current affiliation)
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Harald Burkhardt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany .,Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Frankfurt am Main, Germany.,Division of Rheumatology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
12
|
Symonds P, Marcu A, Cook KW, Metheringham RL, Durrant LG, Brentville VA. Citrullinated Epitopes Identified on Tumour MHC Class II by Peptide Elution Stimulate Both Regulatory and Th1 Responses and Require Careful Selection for Optimal Anti-Tumour Responses. Front Immunol 2021; 12:764462. [PMID: 34858415 PMCID: PMC8630742 DOI: 10.3389/fimmu.2021.764462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background Somatic mutations or post-translational modifications of proteins result in changes that enable immune recognition. One such post-translational modification is citrullination, the conversion of arginine residues to citrulline. Citrullinated peptides are presented on MHC class II (MHCII) via autophagy which is upregulated by cellular stresses such as tumourigenesis. Methods Peptides were eluted from B16 melanoma expressing HLA-DP4 and analysed by mass spectrometry to profile the presented citrullinated repertoire. Initially, seven of the identified citrullinated peptides were used in combination to vaccinate HLA-DP4 transgenic mice. Immune responses were characterised from the combination and individual vaccines by ex vivo cytokine ELISpot assay and assessed for tumour therapy. Results The combination vaccine induced only weak anti-tumour therapy in the B16cDP4 melanoma model. Immune phenotyping revealed a dominant IFNγ response to citrullinated matrix metalloproteinase-21 peptide (citMMP21) and an IL-10 response to cytochrome p450 peptide (citCp450). Exclusion of the IL-10 inducing citCp450 peptide from the combined vaccine failed to recover a strong anti-tumour response. Single peptide immunisation confirmed the IFNγ response from citMMP21 and the IL-10 response from citCp450 but also showed that citrullinated Glutamate receptor ionotropic (citGRI) peptide stimulated a low avidity IFNγ response. Interestingly, both citMMP21 and citGRI peptides individually, stimulated strong anti-tumour responses that were significantly better than the combined vaccine. In line with the citGRI T cell avidity, it required high dose immunisation to induce an anti-tumour response. This suggests that as the peptides within the combined vaccine had similar binding affinities to MHC-II the combination vaccine may have resulted in lower presentation of each epitope and weak anti-tumour immunity. Conclusion We demonstrate that tumours present citrullinated peptides that can stimulate Th1 and regulatory responses and that competition likely exists between similar affinity peptides. Characterisation of responses from epitopes identified by peptide elution are necessary to optimise selection for tumour therapy.
Collapse
Affiliation(s)
- Peter Symonds
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Ana Marcu
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumour Therapies", University of Tübingen, Tübingen, Germany
| | - Katherine W Cook
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Rachael L Metheringham
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Lindy G Durrant
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.,Biodiscovery Institute, Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom
| | - Victoria A Brentville
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
13
|
Mueller AL, Payandeh Z, Mohammadkhani N, Mubarak SMH, Zakeri A, Alagheband Bahrami A, Brockmueller A, Shakibaei M. Recent Advances in Understanding the Pathogenesis of Rheumatoid Arthritis: New Treatment Strategies. Cells 2021; 10:cells10113017. [PMID: 34831240 PMCID: PMC8616543 DOI: 10.3390/cells10113017] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is considered a chronic systemic, multi-factorial, inflammatory, and progressive autoimmune disease affecting many people worldwide. While patients show very individual courses of disease, with RA focusing on the musculoskeletal system, joints are often severely affected, leading to local inflammation, cartilage destruction, and bone erosion. To prevent joint damage and physical disability as one of many symptoms of RA, early diagnosis is critical. Auto-antibodies play a pivotal clinical role in patients with systemic RA. As biomarkers, they could help to make a more efficient diagnosis, prognosis, and treatment decision. Besides auto-antibodies, several other factors are involved in the progression of RA, such as epigenetic alterations, post-translational modifications, glycosylation, autophagy, and T-cells. Understanding the interplay between these factors would contribute to a deeper insight into the causes, mechanisms, progression, and treatment of the disease. In this review, the latest RA research findings are discussed to better understand the pathogenesis, and finally, treatment strategies for RA therapy are presented, including both conventional approaches and new methods that have been developed in recent years or are currently under investigation.
Collapse
Affiliation(s)
- Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran;
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
- Children’s Medical Center, Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Shaden M. H. Mubarak
- Department of Clinical Laboratory Science, Faculty of Pharmacy, University of Kufa, Najaf 1967365271, Iraq;
| | - Alireza Zakeri
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran;
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
- Correspondence: ; Tel.: +49-89-2180-72624
| |
Collapse
|
14
|
Wu F, Gao J, Kang J, Wang X, Niu Q, Liu J, Zhang L. B Cells in Rheumatoid Arthritis:Pathogenic Mechanisms and Treatment Prospects. Front Immunol 2021; 12:750753. [PMID: 34650569 PMCID: PMC8505880 DOI: 10.3389/fimmu.2021.750753] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common, chronic, systemic autoimmune disease, and its clinical features are the proliferation of joint synovial tissue, the formation of pannus and the destruction of cartilage. The global incidence of RA is about 1%, and it is more common in women. The basic feature of RA is the body’s immune system disorders, in which autoreactive CD4+T cells, pathogenic B cells, M1 macrophages, inflammatory cytokines, chemokines and autoantibodies abnormally increase in the body of RA patients B cell depletion therapy has well proved the important role of B cells in the pathogenesis of RA, and the treatment of RA with B cells as a target has also been paid more and more attention. Although the inflammatory indicators in RA patients receiving B-cell depletion therapy have been significantly improved, the risk of infection and cancer has also increased, which suggests that we need to deplete pathogenic B cells instead of all B cells. However, at present we cannot distinguish between pathogenic B cells and protective B cells in RA patients. In this review, we explore fresh perspectives upon the roles of B cells in the occurrence, development and treatment of RA.
Collapse
Affiliation(s)
- Fengping Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Kang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xuexue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Qing Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jiaxi Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
15
|
Rotondo C, Corrado A, Cici D, Berardi S, Cantatore FP. Anti-cyclic-citrullinated-protein-antibodies in psoriatic arthritis patients: how autoimmune dysregulation could affect clinical characteristics, retention rate of methotrexate monotherapy and first line biotechnological drug survival. A single center retrospective study. Ther Adv Chronic Dis 2021; 12:2040622320986722. [PMID: 33796242 PMCID: PMC7970688 DOI: 10.1177/2040622320986722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022] Open
Abstract
AIM Occasional findings of anti-cyclic-citrullinated-protein-antibodies (anti-CCP) were rarely observed in psoriatic arthritis (PsA). The aim of our study is to evaluate whether the presence of anti-CCP can determine different clinical subsets and influence methotrexate monotherapy survival, and biotechnological drug retention rate. METHODS We conducted a retrospective study on PsA patients. All patients were required to fulfill the CASPAR criteria for PsA, and to present juxta-articular osteo-proliferative signs at X-ray. The exclusion criteria were age less than 18 years old, satisfaction of rheumatoid arthritis classification criteria, and seropositivity for rheumatoid factor. Clinical characteristics, anti-CCP titer, drug survival and comorbidities information were recorded for each patient. Statistical significance was set at p ⩽ 0.05. RESULTS Of 407 patients with PsA screened 113 were recruited. Twelve patients were anti-CCP positive. Methotrexate monotherapy survival was shorter in patients with anti-CCP (150 ± 48.3 weeks versus 535.3 ± 65.3 weeks; p = 0.026) [discontinuation risk hazard ratio (HR) = 2.389, 95% confidence interval (CI) 1.043, 5.473; p = 0.039] than those without. Significant shorter survival of first-line biotechnological drugs (b-DMARDs) was observed in the anti-CCP positive group than in that without (102.05 ± 24.4 weeks versus 271.6 ± 41.7 weeks; p = 0.005) with higher discontinuation risk (HR = 3.230, 95% CI 1.299, 8.028; p = 0.012). A significant higher rate of multi-failure (more than second-line b-DMARDs) was found in anti-CCP positive patients than in those without (50% versus 14%, p = 0.035). CONCLUSION Anti-CCP in PsA could be suggestive of more severe disease, with worse drug survival of both methotrexate monotherapy and first-line b-DMARDs, and higher chance to be b-DMARDs multi-failure. So, they can be considered for more intensive clinical management of these patients.
Collapse
Affiliation(s)
- Cinzia Rotondo
- Department of Medical and Surgical Sciences – Rheumatology Unit, University of Foggia, Foggia viale Luigi Pinto 1, Foggia, 71122, Italy
| | - Addolorata Corrado
- Department of Medical and Surgical Sciences – Rheumatology Unit, University of Foggia, Foggia, Italy
| | - Daniela Cici
- Department of Medical and Surgical Sciences – Rheumatology Unit, University of Foggia, Foggia, Italy
| | - Stefano Berardi
- Department of Medical and Surgical Sciences – Rheumatology Unit, University of Foggia, Foggia, Italy
| | - Francesco Paolo Cantatore
- Department of Medical and Surgical Sciences – Rheumatology Unit, University of Foggia, Foggia, Italy
| |
Collapse
|
16
|
Becart S, Whittington KB, Prislovsky A, Rao NL, Rosloniec EF. The role of posttranslational modifications in generating neo-epitopes that bind to rheumatoid arthritis-associated HLA-DR alleles and promote autoimmune T cell responses. PLoS One 2021; 16:e0245541. [PMID: 33465118 PMCID: PMC7815092 DOI: 10.1371/journal.pone.0245541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
While antibodies to citrullinated proteins have become a diagnostic hallmark in rheumatoid arthritis (RA), we still do not understand how the autoimmune T cell response is influenced by these citrullinated proteins. To investigate the role of citrullinated antigens in HLA-DR1- and DR4-restricted T cell responses, we utilized mouse models that express these MHC-II alleles to determine the relationship between citrullinated peptide affinity for these DR molecules and the ability of these peptides to induce a T cell response. Using a set of peptides from proteins thought to be targeted by the autoimmune T cell responses in RA, aggrecan, vimentin, fibrinogen, and type II collagen, we found that while citrullination can enhance the binding affinity for these DR alleles, it does not always do so, even when in the critical P4 position. Moreover, if peptide citrullination does enhance HLA-DR binding affinity, it does not necessarily predict the generation of a T cell response. Conversely, citrullinated peptides can stimulate T cells without changing the peptide binding affinity for HLA-DR1 or DR4. Furthermore, citrullination of an autoantigen, type II collagen, which enhances binding affinity to HLA-DR1 did not enhance the severity of autoimmune arthritis in HLA-DR1 transgenic mice. Additional analysis of clonal T cell populations stimulated by these peptides indicated cross recognition of citrullinated and wild type peptides can occur in some instances, while in others cases the citrullination generates a novel T cell epitope. Finally, cytokine profiles of the wild type and citrullinated peptide stimulated T cells unveiled a significant disconnect between proliferation and cytokine production. Altogether, these data demonstrate the lack of support for a simplified model with universal correlation between affinity for HLA-DR alleles, immunogenicity and arthritogenicity of citrullinated peptides. Additionally they highlight the complexity of both T cell receptor recognition of citrulline as well as its potential conformational effects on the peptide:HLA-DR complex as recognized by a self-reactive cell receptor.
Collapse
Affiliation(s)
- Stephane Becart
- Immunology Discovery, Janssen Research and Development LLC, San Diego, California, United States of America
| | | | - Amanda Prislovsky
- Veterans Affairs Medical Center, Memphis, Tennessee, United States of America
| | - Navin L. Rao
- Immunology Discovery, Janssen Research and Development LLC, Spring House, Pennsylvania, United States of America
| | - Edward F. Rosloniec
- Veterans Affairs Medical Center, Memphis, Tennessee, United States of America
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
17
|
Foers AD, Dagley LF, Chatfield S, Webb AI, Cheng L, Hill AF, Wicks IP, Pang KC. Proteomic analysis of extracellular vesicles reveals an immunogenic cargo in rheumatoid arthritis synovial fluid. Clin Transl Immunology 2020; 9:e1185. [PMID: 33204424 PMCID: PMC7648259 DOI: 10.1002/cti2.1185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 08/12/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Objectives Extracellular vesicles (EVs) from rheumatoid arthritis (RA) synovial fluid (SF) have been reported to stimulate the release of pro-inflammatory mediators from recipient cells. We recently developed a size exclusion chromatography (SEC)-based method for EV isolation capable of high-quality enrichments from human SF. Here, we employed this method to accurately characterise the SF EV proteome and investigate potential contributions to inflammatory pathways in RA. Methods Using our SEC-based approach, SF EVs were purified from the joints of RA patients classified as having high-level (n = 7) or low-level inflammation (n = 5), and from osteoarthritis (OA) patients (n = 5). Protein profiles were characterised by mass spectrometry. Potential contributions of EV proteins to pathological pathways and differences in protein expression between disease groups were investigated. Results Synovial fluid EVs were present at higher concentrations in RA joints with high-level inflammation (P-value = 0.004) but were smaller in diameter (P-value = 0.03) than in low-level inflammation. In total, 1058 SF EV proteins were identified by mass spectrometry analysis. Neutrophil and fibroblast markers were overrepresented in all disease groups. Numerous proteins with potential to modulate inflammatory and immunological processes were detected, including nine citrullinated peptides. Forty-five and 135 EV-associated proteins were significantly elevated in RA joints with high-level inflammation than in RA joints with low-level inflammation and OA joints, respectively. Gene ontology analysis revealed significant enrichment for proteins associated with 'neutrophil degranulation' within SF EVs from RA joints with high-level inflammation. Conclusion Our results provide new information about SF EVs and insight into how EVs might contribute to the perpetuation of RA.
Collapse
Affiliation(s)
- Andrew D Foers
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - Simon Chatfield
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Department of Medical Biology University of Melbourne Parkville VIC Australia.,Department of Rheumatology Royal Melbourne Hospital Parkville VIC Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - Lesley Cheng
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science La Trobe University Bundoora VIC Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science La Trobe University Bundoora VIC Australia
| | - Ian P Wicks
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Department of Medical Biology University of Melbourne Parkville VIC Australia.,Department of Rheumatology Royal Melbourne Hospital Parkville VIC Australia
| | - Ken C Pang
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Murdoch Children's Research Institute Parkville VIC Australia.,Department of Paediatrics University of Melbourne Parkville VIC Australia.,Department of Adolescent Medicine Royal Children's Hospital. Parkville VIC Australia
| |
Collapse
|
18
|
Koşaloğlu-Yalçın Z, Sidney J, Chronister W, Peters B, Sette A. Comparison of HLA ligand elution data and binding predictions reveals varying prediction performance for the multiple motifs recognized by HLA-DQ2.5. Immunology 2020; 162:235-247. [PMID: 33064841 PMCID: PMC7808151 DOI: 10.1111/imm.13279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/02/2022] Open
Abstract
Binding prediction tools are commonly used to identify peptides presented on MHC class II molecules. Recently, a wealth of data in the form of naturally eluted ligands has become available and discrepancies between ligand elution data and binding predictions have been reported. Quantitative metrics for such comparisons are currently lacking. In this study, we assessed how efficiently MHC class II binding predictions can identify naturally eluted peptides, and investigated instances with discrepancies between the two methods in detail. We found that, in general, MHC class II eluted ligands are predicted to bind to their reported restriction element with high affinity. But, for several studies reporting an increased number of ligands that were not predicted to bind, we found that the reported MHC restriction was ambiguous. Additional analyses determined that most of the ligands predicted to not bind, are predicted to bind other co‐expressed MHC class II molecules. For selected alleles, we addressed discrepancies between elution data and binding predictions by experimental measurements and found that predicted and measured affinities correlate well. For DQA1*05:01/DQB1*02:01 (DQ2.5) however, binding predictions did miss several peptides that were determined experimentally to be binders. For these peptides and several known DQ2.5 binders, we determined key residues for conferring DQ2.5 binding capacity, which revealed that DQ2.5 utilizes two different binding motifs, of which only one is predicted effectively. These findings have important implications for the interpretation of ligand elution data and for the improvement of MHC class II binding predictions.
Collapse
Affiliation(s)
| | - John Sidney
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alessandro Sette
- La Jolla Institute for Immunology, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
19
|
Nel HJ, Malmström V, Wraith DC, Thomas R. Autoantigens in rheumatoid arthritis and the potential for antigen-specific tolerising immunotherapy. THE LANCET. RHEUMATOLOGY 2020; 2:e712-e723. [PMID: 38279365 DOI: 10.1016/s2665-9913(20)30344-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/19/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Autoimmune diseases, including rheumatoid arthritis, develop and persist due to impaired immune self-tolerance, which has evolved to regulate inflammatory responses to injury or infection. After diagnosis, patients rarely achieve drug-free remission, and although at-risk individuals can be identified with genotyping, antibody tests, and symptoms, rheumatoid arthritis cannot yet be successfully prevented. Precision medicine is increasingly offering solutions to diseases that were previously considered to be incurable, and immunotherapy has begun to achieve this aim in cancer. Comparatively, modulating autoantigen-specific immune responses with immunotherapy for the cure of autoimmune diseases is at a relatively immature stage. Current treatments using non-specific immune or inflammatory suppression increase susceptibility to infection, and are rarely curative. However, early stage clinical trials suggesting that immunotherapy might allow extended duration of remission and even prevention of progression to disease suggest modulating tolerance in rheumatoid arthritis could be a promising opportunity for therapy.
Collapse
Affiliation(s)
- Hendrik J Nel
- University of Queensland Diamantina Institute, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - David C Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ranjeny Thomas
- University of Queensland Diamantina Institute, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.
| |
Collapse
|
20
|
Balandraud N, Auger I, Roudier J. Do RA associated HLA-DR molecules bind citrullinated peptides or peptides from PAD4 to help the development of RA specific antibodies to citrullinated proteins? J Autoimmun 2020; 116:102542. [PMID: 32928608 DOI: 10.1016/j.jaut.2020.102542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/29/2020] [Accepted: 08/30/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE Rheumatoid arthritis (RA) is associated with HLA-DRB1 genes encoding a five amino acid basic motive, the shared epitope SE). Each HLA-DRB1 genotype defines a genotype specific risk of developing RA. RA is preceded by the emergence of anti citrullinated protein antibodies (ACPAs). Citrullin is a neutral version of arginin, a basic amino acid, formed after post translational modification by Peptidyl Arginyl Deiminases (PADs). HLA-DRB1 genes associated with RA are also associated with ACPAs. Two models might explain this association. Here we tested both models for prediction of HLA-DRB1 genotypic risks of developing RA. METHODS We calculated the likelihoods for the 2 HLA-DR molecules encoded by 12 common HLA-DRB1 genotypes to bind at least one randomly chosen peptide from PAD4 or fibrinogen(native or citrullinatd) and compared them with the 12 respective HLA-DRB1genotypic risks of developing RA. RESULTS HLA-DRB1 Genotypic risks of developing RA correlate with likelihoods of binding PAD4 peptides, not citrullinated Fibrinogen peptides. Thus, the molecular basis for the association of HLA-DR and ACPA positive RA is most likely the capability for RA associated HLA-DR molecules to bind peptides(s) from PAD4.
Collapse
Affiliation(s)
- Nathalie Balandraud
- Aix Marseille University, INSERM, UMRs1097, Marseille Luminy, France; APHM, Rheumatology, IML, Marseille, France
| | - Isabelle Auger
- Aix Marseille University, INSERM, UMRs1097, Marseille Luminy, France
| | - Jean Roudier
- Aix Marseille University, INSERM, UMRs1097, Marseille Luminy, France; APHM, Rheumatology, IML, Marseille, France.
| |
Collapse
|
21
|
Abstract
Immunoinformatics is a discipline that applies methods of computer science to study and model the immune system. A fundamental question addressed by immunoinformatics is how to understand the rules of antigen presentation by MHC molecules to T cells, a process that is central to adaptive immune responses to infections and cancer. In the modern era of personalized medicine, the ability to model and predict which antigens can be presented by MHC is key to manipulating the immune system and designing strategies for therapeutic intervention. Since the MHC is both polygenic and extremely polymorphic, each individual possesses a personalized set of MHC molecules with different peptide-binding specificities, and collectively they present a unique individualized peptide imprint of the ongoing protein metabolism. Mapping all MHC allotypes is an enormous undertaking that cannot be achieved without a strong bioinformatics component. Computational tools for the prediction of peptide-MHC binding have thus become essential in most pipelines for T cell epitope discovery and an inescapable component of vaccine and cancer research. Here, we describe the development of several such tools, from pioneering efforts to the current state-of-the-art methods, that have allowed for accurate predictions of peptide binding of all MHC molecules, even including those that have not yet been characterized experimentally.
Collapse
Affiliation(s)
- Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CP 1650 San Martin, Buenos Aires, Argentina
| | - Massimo Andreatta
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CP 1650 San Martin, Buenos Aires, Argentina
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Søren Buus
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
22
|
Wysocki T, Olesińska M, Paradowska-Gorycka A. Current Understanding of an Emerging Role of HLA-DRB1 Gene in Rheumatoid Arthritis-From Research to Clinical Practice. Cells 2020; 9:cells9051127. [PMID: 32370106 PMCID: PMC7291248 DOI: 10.3390/cells9051127] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with an unclear pathogenic mechanism. However, it has been proven that the key underlying risk factor is a genetic predisposition. Association studies of the HLA-DRB1 gene clearly indicate its importance in RA morbidity. This review presents the current state of knowledge on the impact of HLA-DRB1 gene, functioning both as a component of the patient’s genome and as an environmental risk factor. The impact of known HLA-DRB1 risk variants on the specific structure of the polymorphic HLA-DR molecule, and epitope binding affinity, is presented. The issues of the potential influence of HLA-DRB1 on the occurrence of non-articular disease manifestations and response to treatment are also discussed. A deeper understanding of the role of the HLA-DRB1 gene is essential to explore the complex nature of RA, which is a result of multiple contributing factors, including genetic, epigenetic and environmental factors. It also creates new opportunities to develop modern and personalized forms of therapy.
Collapse
Affiliation(s)
- Tomasz Wysocki
- Department of Systemic Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland; or
- Correspondence:
| | - Marzena Olesińska
- Department of Systemic Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland; or
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland; or
| |
Collapse
|
23
|
Auger I, Balandraud N, Massy E, Hemon MF, Peen E, Arnoux F, Mariot C, Martin M, Lafforgue P, Busnel JM, Roudier J. Peptidylarginine Deiminase Autoimmunity and the Development of Anti-Citrullinated Protein Antibody in Rheumatoid Arthritis: The Hapten-Carrier Model. Arthritis Rheumatol 2020; 72:903-911. [PMID: 31820586 PMCID: PMC7317357 DOI: 10.1002/art.41189] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 12/05/2019] [Indexed: 11/21/2022]
Abstract
Objective The presence of autoantibodies to citrullinated proteins (ACPAs) often precedes the development of rheumatoid arthritis (RA). Citrullines are arginine residues that have been modified by peptidylarginine deiminases (PADs). PAD4 is the target of autoantibodies in RA. ACPAs could arise because PAD4 is recognized by T cells, which facilitate the production of autoantibodies to proteins bound by PAD4. We previously found evidence for this hapten–carrier model in mice. This study was undertaken to investigate whether there is evidence for this model in humans. Methods We analyzed antibody response to PAD4 and T cell proliferation in response to PAD4 in 41 RA patients and 36 controls. We tested binding of 65 PAD4 peptides to 5 HLA–DR alleles (DRB1*04:01, *04:02, *04:04, *01:01, and *07:01) and selected 11 PAD4 peptides for proliferation studies using samples from 22 RA patients and 27 controls. Peripheral blood lymphocytes from an additional 10 RA patients and 7 healthy controls were analyzed by flow cytometry for CD3, CD4, CD154, and tumor necrosis factor expression after PAD4 stimulation. Results Only patients with RA had both antibodies and T cell responses to PAD4. T cell response to peptide 8, a PAD4 peptide, was associated with RA (P = 0.02), anti‐PAD4 antibodies (P = 0.057), and the shared epitope (P = 0.05). Conclusion ACPA immunity is associated with antibodies to PAD4 and T cell responses to PAD4 and PAD4 peptides. These findings are consistent with a hapten–carrier model in which PAD4 is the carrier and citrullinated proteins are the haptens.
Collapse
Affiliation(s)
- Isabelle Auger
- INSERM UMRs 1097 and Aix-Marseille University, Marseille, France
| | - Nathalie Balandraud
- INSERM UMRs 1097, Aix-Marseille University, and Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Emmanuel Massy
- INSERM UMRs 1097, Aix-Marseille University, and Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Marie F Hemon
- INSERM UMRs 1097 and Aix-Marseille University, Marseille, France
| | - Elisa Peen
- INSERM UMRs 1097 and Aix-Marseille University, Marseille, France
| | - Fanny Arnoux
- INSERM UMRs 1097 and Aix-Marseille University, Marseille, France
| | - Charlotte Mariot
- INSERM UMRs 1097 and Aix-Marseille University, Marseille, France
| | - Marielle Martin
- INSERM UMRs 1097 and Aix-Marseille University, Marseille, France
| | | | | | - Jean Roudier
- INSERM UMRs 1097, Aix-Marseille University, and Assistance Publique-Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
24
|
Magnadóttir B, Uysal-Onganer P, Kraev I, Svansson V, Skírnisson K, Lange S. Deiminated proteins and extracellular vesicles as novel biomarkers in pinnipeds: Grey seal (Halichoerus gryptus) and harbour seal (Phoca vitulina). Biochimie 2020; 171-172:79-90. [PMID: 32105816 DOI: 10.1016/j.biochi.2020.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
Peptidylarginine deiminases (PADs) are phylogenetically conserved calcium-dependent enzymes which post-translationally convert arginine into citrulline in target proteins in an irreversible manner, leading to functional and structural changes in target proteins. Protein deimination can cause the generation of neo-epitopes, affect gene regulation and also allow for protein moonlighting and therefore facilitate multifaceted functions of the same protein. PADs are furthermore a key regulator of cellular release of extracellular vesicle (EVs), which are found in most body fluids and participate in cellular communication via transfer of cargo proteins and genetic material. In this study, post-translationally deiminated proteins and EVs were assessed in sera of two seal species, grey seal and harbour seal. We report a poly-dispersed population of serum-EVs, which were positive for phylogenetically conserved EV-specific markers and characterised by transmission electron microscopy. A number of deiminated proteins critical for immune and metabolic functions were identified in the seal sera and varied somewhat between the two species under study, while some targets were in common. EV profiles of the seal sera further revealed that key microRNAs for inflammation, immunity and hypoxia also vary between the two species. Protein deimination and EVs profiles may be useful biomarkers for assessing health status of sea mammals, which face environmental challenges, including opportunistic infection, pollution and shifting habitat due to global warming.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur V. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Vilhjálmur Svansson
- Institute for Experimental Pathology, University of Iceland, Keldur V. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Karl Skírnisson
- Institute for Experimental Pathology, University of Iceland, Keldur V. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
25
|
Busch R, Kollnberger S, Mellins ED. HLA associations in inflammatory arthritis: emerging mechanisms and clinical implications. Nat Rev Rheumatol 2020; 15:364-381. [PMID: 31092910 DOI: 10.1038/s41584-019-0219-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our understanding of the mechanisms underlying HLA associations with inflammatory arthritis continues to evolve. Disease associations have been refined, and interactions of HLA genotype with other genes and environmental risk factors in determining disease risk have been identified. This Review provides basic information on the genetics and molecular function of HLA molecules, as well as general features of HLA associations with disease. Evidence is discussed regarding the various peptide-dependent and peptide-independent mechanisms by which HLA alleles might contribute to the pathogenesis of three types of inflammatory arthritis: rheumatoid arthritis, spondyloarthritis and systemic juvenile idiopathic arthritis. Also discussed are HLA allelic associations that shed light on the genetic heterogeneity of inflammatory arthritides and on the relationships between adult and paediatric forms of arthritis. Clinical implications range from improved diagnosis and outcome prediction to the possibility of using HLA associations in developing personalized strategies for the treatment and prevention of these diseases.
Collapse
Affiliation(s)
- Robert Busch
- Department of Life Sciences, University of Roehampton, Whitelands College, London, UK.
| | - Simon Kollnberger
- School of Medicine, Cardiff University, UHW Main Building, Heath Park, Cardiff, UK
| | - Elizabeth D Mellins
- Department of Pediatrics, Program in Immunology, Stanford University Medical Center, Stanford, CA, USA.
| |
Collapse
|
26
|
Vizcaíno JA, Kubiniok P, Kovalchik KA, Ma Q, Duquette JD, Mongrain I, Deutsch EW, Peters B, Sette A, Sirois I, Caron E. The Human Immunopeptidome Project: A Roadmap to Predict and Treat Immune Diseases. Mol Cell Proteomics 2020; 19:31-49. [PMID: 31744855 PMCID: PMC6944237 DOI: 10.1074/mcp.r119.001743] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
The science that investigates the ensembles of all peptides associated to human leukocyte antigen (HLA) molecules is termed "immunopeptidomics" and is typically driven by mass spectrometry (MS) technologies. Recent advances in MS technologies, neoantigen discovery and cancer immunotherapy have catalyzed the launch of the Human Immunopeptidome Project (HIPP) with the goal of providing a complete map of the human immunopeptidome and making the technology so robust that it will be available in every clinic. Here, we provide a long-term perspective of the field and we use this framework to explore how we think the completion of the HIPP will truly impact the society in the future. In this context, we introduce the concept of immunopeptidome-wide association studies (IWAS). We highlight the importance of large cohort studies for the future and how applying quantitative immunopeptidomics at population scale may provide a new look at individual predisposition to common immune diseases as well as responsiveness to vaccines and immunotherapies. Through this vision, we aim to provide a fresh view of the field to stimulate new discussions within the community, and present what we see as the key challenges for the future for unlocking the full potential of immunopeptidomics in this era of precision medicine.
Collapse
Affiliation(s)
- Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Peter Kubiniok
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | - Qing Ma
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Ian Mongrain
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington, 98109
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037
| | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
27
|
Alvarez B, Reynisson B, Barra C, Buus S, Ternette N, Connelley T, Andreatta M, Nielsen M. NNAlign_MA; MHC Peptidome Deconvolution for Accurate MHC Binding Motif Characterization and Improved T-cell Epitope Predictions. Mol Cell Proteomics 2019; 18:2459-2477. [PMID: 31578220 PMCID: PMC6885703 DOI: 10.1074/mcp.tir119.001658] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/25/2019] [Indexed: 01/03/2023] Open
Abstract
The set of peptides presented on a cell's surface by MHC molecules is known as the immunopeptidome. Current mass spectrometry technologies allow for identification of large peptidomes, and studies have proven these data to be a rich source of information for learning the rules of MHC-mediated antigen presentation. Immunopeptidomes are usually poly-specific, containing multiple sequence motifs matching the MHC molecules expressed in the system under investigation. Motif deconvolution -the process of associating each ligand to its presenting MHC molecule(s)- is therefore a critical and challenging step in the analysis of MS-eluted MHC ligand data. Here, we describe NNAlign_MA, a computational method designed to address this challenge and fully benefit from large, poly-specific data sets of MS-eluted ligands. NNAlign_MA simultaneously performs the tasks of (1) clustering peptides into individual specificities; (2) automatic annotation of each cluster to an MHC molecule; and (3) training of a prediction model covering all MHCs present in the training set. NNAlign_MA was benchmarked on large and diverse data sets, covering class I and class II data. In all cases, the method was demonstrated to outperform state-of-the-art methods, effectively expanding the coverage of alleles for which accurate predictions can be made, resulting in improved identification of both eluted ligands and T-cell epitopes. Given its high flexibility and ease of use, we expect NNAlign_MA to serve as an effective tool to increase our understanding of the rules of MHC antigen presentation and guide the development of novel T-cell-based therapeutics.
Collapse
Affiliation(s)
- Bruno Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Argentina
| | - Birkir Reynisson
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - Carolina Barra
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Argentina
| | - Søren Buus
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Nicola Ternette
- The Jenner Institute, Nuffield Department of Medicine, Oxford, United Kingdom
| | - Tim Connelley
- Roslin Institute, Edinburgh, Midlothian, United Kingdom
| | - Massimo Andreatta
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Argentina
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Argentina; Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark. mailto:
| |
Collapse
|
28
|
Lindestam Arlehamn CS, Pham J, Alcalay RN, Frazier A, Shorr E, Carpenter C, Sidney J, Dhanwani R, Agin-Liebes J, Garretti F, Amara AW, Standaert DG, Phillips EJ, Mallal SA, Peters B, Sulzer D, Sette A. Widespread Tau-Specific CD4 T Cell Reactivity in the General Population. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:84-92. [PMID: 31085590 PMCID: PMC6581570 DOI: 10.4049/jimmunol.1801506] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/20/2019] [Indexed: 12/11/2022]
Abstract
Tau protein is found to be aggregated and hyperphosphorylated (p-tau) in many neurologic disorders, including Parkinson disease (PD) and related parkinsonisms, Alzheimer disease, traumatic brain injury, and even in normal aging. Although not known to produce autoimmune responses, we hypothesized that the appearance of aggregated tau and p-tau with disease could activate the immune system. We thus compared T cell responses to tau and p-tau-derived peptides between PD patients, age-matched healthy controls, and young healthy controls (<35 y old; who are less likely to have high levels of tau aggregates). All groups exhibited CD4+ T cell responses to tau-derived peptides, which were associated with secretion of IFN-γ, IL-5, and/or IL-4. The PD and control participants exhibited a similar magnitude and breadth of responses. Some tau-derived epitopes, consisting of both unmodified and p-tau residues, were more highly represented in PD participants. These results were verified in an independent set of PD and control donors (either age-matched or young controls). Thus, T cells recognizing tau epitopes escape central and peripheral tolerance in relatively high numbers, and the magnitude and nature of these responses are not modulated by age or PD disease.
Collapse
Affiliation(s)
| | - John Pham
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
| | - April Frazier
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Evan Shorr
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
- Department of Pharmacology, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
| | - Chelsea Carpenter
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Rekha Dhanwani
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Julian Agin-Liebes
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
- Department of Pharmacology, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
| | - Francesca Garretti
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
- Department of Pharmacology, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
| | - Amy W Amara
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Elizabeth J Phillips
- Vanderbilt University School of Medicine, Nashville, TN 37235
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia; and
| | - Simon A Mallal
- Vanderbilt University School of Medicine, Nashville, TN 37235
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia; and
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - David Sulzer
- Department of Neurology, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
- Department of Pharmacology, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037;
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
29
|
"NETtling" the host: Breaking of tolerance in chronic inflammation and chronic infection. J Autoimmun 2019; 88:1-10. [PMID: 29100671 DOI: 10.1016/j.jaut.2017.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/31/2022]
Abstract
How and why we break tolerance to self-proteins still remains a largely unanswered question. Neutrophils have been identified as a rich source of autoantigens in a wide array of autoimmune diseases that arise as a consequence of different environmental and genetic factors, e.g. rheumatoid arthritis (RA), lupus, vasculitis, cystic fibrosis (CF) etc. Specifically, neutrophil extracellular trap (NET) formation has been identified as a link between innate and adaptive immune responses in autoimmunity. Autoantigens including neutrophil granular proteins (targeted by anti-neutrophil cytoplasmic antibodies, ANCA) as well as post-translationally modified proteins, i.e. citrullinated and carbamylated proteins targeted by anti-citrullinated protein antibodies (ACPA) and anti-carbamylated protein antibodies (ACarPA), respectively, localize to the NETs. Moreover, NETs provide stimuli to dendritic cells that potentiate adaptive autoimmune responses. However, while NETs promote inflammation and appear to induce humoral autoreactivity across autoimmune diseases, the antigen specificity of autoantibodies found in these disorders is striking. These unique autoantigen signatures suggest that not all NETs are created equal and that the environment in which NETs arise shapes their disease-specific character. In this review article, we discuss the effects of different stimuli on the mechanism of NET formation as well as how they contribute to antigen specificity in the breaking of immune tolerance. Specifically, we compare and contrast the autoreactive nature of NETs in two settings of chronic airway inflammation: one triggered by smoking, a recognized environmental NET stimulus in RA patients, and one mediated by Pseudomonas aeruginosa, the most prevalent lung pathogen in CF patients. Finally, we draw attention to novel findings that, together with the specific environmental/chemical stimuli, should be taken into account when investigating how and why antigen specificity arises in the context of NET formation.
Collapse
|
30
|
A specific amino acid motif of HLA-DRB1 mediates risk and interacts with smoking history in Parkinson's disease. Proc Natl Acad Sci U S A 2019; 116:7419-7424. [PMID: 30910980 PMCID: PMC6462083 DOI: 10.1073/pnas.1821778116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disease with both familial and sporadic forms and a clear genetic component. In addition, underlying immunoregulatory dysfunction and inflammatory processes have been implicated in PD pathogenesis. In this study, deep sequencing of HLA genes, which encode highly variable cell surface immune receptors, reveals specific variants conferring either risk or protection in PD. Because a history of cigarette smoking is known to be protective in PD, we analyzed the interaction of these genetic variants with smoking history in PD patients and healthy controls and found that the genetic effects are modified by history of cigarette smoking. These results provide a molecular model that explains the unique epidemiology of smoking in PD. Parkinson’s disease (PD) is a neurodegenerative disease in which genetic risk has been mapped to HLA, but precise allelic associations have been difficult to infer due to limitations in genotyping methodology. Mapping PD risk at highest possible resolution, we performed sequencing of 11 HLA genes in 1,597 PD cases and 1,606 controls. We found that susceptibility to PD can be explained by a specific combination of amino acids at positions 70–74 on the HLA-DRB1 molecule. Previously identified as the primary risk factor in rheumatoid arthritis and referred to as the “shared epitope” (SE), the residues Q/R-K/R-R-A-A at positions 70–74 in combination with valine at position 11 (11-V) is highly protective in PD, while risk is attributable to the identical epitope in the absence of 11-V. Notably, these effects are modified by history of cigarette smoking, with a strong protective effect mediated by a positive history of smoking in combination with the SE and 11-V (P = 10−4; odds ratio, 0.51; 95% confidence interval, 0.36–0.72) and risk attributable to never smoking in combination with the SE without 11-V (P = 0.01; odds ratio, 1.51; 95% confidence interval, 1.08–2.12). The association of specific combinations of amino acids that participate in critical peptide-binding pockets of the HLA class II molecule implicates antigen presentation in PD pathogenesis and provides further support for genetic control of neuroinflammation in disease. The interaction of HLA-DRB1 with smoking history in disease predisposition, along with predicted patterns of peptide binding to HLA, provide a molecular model that explains the unique epidemiology of smoking in PD.
Collapse
|
31
|
Brentville VA, Symonds P, Cook KW, Daniels I, Pitt T, Gijon M, Vaghela P, Xue W, Shah S, Metheringham RL, Durrant LG. T cell repertoire to citrullinated self-peptides in healthy humans is not confined to the HLA-DR SE alleles; Targeting of citrullinated self-peptides presented by HLA-DP4 for tumour therapy. Oncoimmunology 2019; 8:e1576490. [PMID: 31069134 PMCID: PMC6492960 DOI: 10.1080/2162402x.2019.1576490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 11/26/2022] Open
Abstract
Post-translational modifications are induced in stressed cells which cause them to be recognised by the system. One such modification is citrullination where the positive charged arginine is modified to a neutral citrulline. We demonstrate most healthy donors show an oligoclonal CD4 response in vitro to at least one citrullinated vimentin or enolase peptide. Unlike rheumatoid arthritis patients, these T cell responses were not restricted by HLA-DRB1 shared epitope (SE) alleles, suggesting they could be presented by other MHC class II alleles. As HLA-DP is less polymorphic than HLA-DR, we investigated whether the common allele, HLA-DP4 could present citrullinated epitopes. The modification of arginine to citrulline enhanced binding of the peptides to HLA-DP4 and induced high-frequency CD4 responses in HLA-DP4 transgenic mouse models. Our previous studies have shown that tumours present citrullinated peptides restricted through HLA-DR4 which are good targets for anti-tumour immunity. In this study, we show that citrullinated vimentin and enolase peptides also induced strong anti-tumour immunity (100% survival, p < 0.0001) against established B16 tumours and against the LLC/2 lung cancer model (p = 0.034) both expressing HLA-DP4. Since most tumours do not constitutively express MHC class II molecules, models were engineered that expressed MHC class II under the control of an IFNγ inducible promoter. Immunisation with citrullinated peptides resulted in 90% survival (p < 0.001) against established B16 HHD tumour expressing IFNγ inducible DP4. These studies show that citrullinated peptides can be presented by a range of MHC class II molecules, including for the first time HLA-DP4, and are strong targets for anti-tumour immunity.
Collapse
Affiliation(s)
- Victoria A Brentville
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Peter Symonds
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Katherine W Cook
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Ian Daniels
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Tracy Pitt
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Mohamed Gijon
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Poonam Vaghela
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Wei Xue
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Sabaria Shah
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Rachael L Metheringham
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Lindy G Durrant
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottingham, UK.,Academic Department of Clinical Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, City Hospital Campus, Nottingham, UK
| |
Collapse
|
32
|
Roudier J, Balandraud N, Auger I. HLA-DRB1 polymorphism, anti-citrullinated protein antibodies, and rheumatoid arthritis. J Biol Chem 2019; 293:7038. [PMID: 29728532 DOI: 10.1074/jbc.l118.002761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jean Roudier
- From INSERM UMRs1097, Marseille-Luminy 13009, France, .,Aix Marseille Université, Marseille 13007, France, and.,Department of Rheumatology, Institut du Mouvement et de l'appareil Locomoteur, Assistance Publique Hôpitaux de Marseille, Marseille 13005, France
| | - Nathalie Balandraud
- From INSERM UMRs1097, Marseille-Luminy 13009, France.,Aix Marseille Université, Marseille 13007, France, and.,Department of Rheumatology, Institut du Mouvement et de l'appareil Locomoteur, Assistance Publique Hôpitaux de Marseille, Marseille 13005, France
| | - Isabelle Auger
- From INSERM UMRs1097, Marseille-Luminy 13009, France.,Aix Marseille Université, Marseille 13007, France, and
| |
Collapse
|
33
|
Ramarathinam SH, Croft NP, Illing PT, Faridi P, Purcell AW. Employing proteomics in the study of antigen presentation: an update. Expert Rev Proteomics 2018; 15:637-645. [PMID: 30080115 DOI: 10.1080/14789450.2018.1509000] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Our immune system discriminates self from non-self by examining the peptide cargo of human leukocyte antigen (HLA) molecules displayed on the cell surface. Successful recognition of HLA-bound non-self peptides can induce T cell responses leading to, for example, the destruction of infected cells. Today, largely due to advances in technology, we have an unprecedented capability to identify the nature of these presented peptides and unravel the true complexity of antigen presentation. Areas covered: In addition to conventional linear peptides, HLA molecules also present post-translationally modified sequences comprising a wealth of chemical and structural modifications, including a novel class of noncontiguous spliced peptides. This review focuses on these emerging themes in antigen presentation and how mass spectrometry in particular has contributed to a new view of the antigenic landscape that is presented to the immune system. Expert Commentary: Advances in the sensitivity of mass spectrometers and use of hybrid fragmentation technologies will provide more information-rich spectra of HLA bound peptides leading to more definitive identification of T cell epitopes. Coupled with improvements in sample preparation and new informatics workflows, studies will access novel classes of peptide antigen and allow interrogation of rare and clinically relevant samples.
Collapse
Affiliation(s)
- Sri H Ramarathinam
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Nathan P Croft
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Patricia T Illing
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Pouya Faridi
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Anthony W Purcell
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| |
Collapse
|
34
|
Schultz HS, Østergaard S, Sidney J, Lamberth K, Sette A. The effect of acylation with fatty acids and other modifications on HLA class II:peptide binding and T cell stimulation for three model peptides. PLoS One 2018; 13:e0197407. [PMID: 29758051 PMCID: PMC5951580 DOI: 10.1371/journal.pone.0197407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/01/2018] [Indexed: 12/28/2022] Open
Abstract
Immunogenicity is a major concern in drug development as anti-drug antibodies in many cases affect both patient safety and drug efficacy. Another concern is often the limited half-life of drugs, which can be altered by different chemical modifications, like acylation with fatty acids. However, acylation with fatty acids has been shown in some cases to modulate T cell activation. Therefore, to understand the role of acylation with fatty acids on immunogenicity we tested three immunogenic non-acylated peptides and 14 of their acylated analogues for binding to 26 common HLA class II alleles, and their ability to activate T cells in an ex vivo T cell assay. Changes in binding affinity associated with acylation with fatty acids were typically modest, though a significant decrease was observed for influenza HA acylated with a stearic acid, and affinities for DQ alleles were consistently increased. Importantly, we showed that for all three immunogenic peptides acylation with fatty acids decreased their capacity to activate T cells, a trend particularly evident with longer fatty acids typically positioned within the peptide HLA class II binding core region, or when closer to the C-terminus. With these results we have demonstrated that acylation with fatty acids of immunogenic peptides can lower their stimulatory capacity, which could be important knowledge for drug design and immunogenicity mitigation.
Collapse
Affiliation(s)
- Heidi S. Schultz
- Global research, Novo Nordisk A/S, Måløv, Denmark
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- * E-mail:
| | | | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | | | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| |
Collapse
|
35
|
|
36
|
Ting YT, Petersen J, Ramarathinam SH, Scally SW, Loh KL, Thomas R, Suri A, Baker DG, Purcell AW, Reid HH, Rossjohn J. The interplay between citrullination and HLA-DRB1 polymorphism in shaping peptide binding hierarchies in rheumatoid arthritis. J Biol Chem 2018; 293:3236-3251. [PMID: 29317506 DOI: 10.1074/jbc.ra117.001013] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
The HLA-DRB1 locus is strongly associated with rheumatoid arthritis (RA) susceptibility, whereupon citrullinated self-peptides bind to HLA-DR molecules bearing the shared epitope (SE) amino acid motif. However, the differing propensity for citrullinated/non-citrullinated self-peptides to bind given HLA-DR allomorphs remains unclear. Here, we used a fluorescence polarization assay to determine a hierarchy of binding affinities of 34 self-peptides implicated in RA against three HLA-DRB1 allomorphs (HLA-DRB1*04:01/*04:04/*04:05) each possessing the SE motif. For all three HLA-DRB1 allomorphs, we observed a strong correlation between binding affinity and citrullination at P4 of the bound peptide ligand. A differing hierarchy of peptide-binding affinities across the three HLA-DRB1 allomorphs was attributable to the β-chain polymorphisms that resided outside the SE motif and were consistent with sequences of naturally presented peptide ligands. Structural determination of eight HLA-DR4-self-epitope complexes revealed strict conformational convergence of the P4-Cit and surrounding HLA β-chain residues. Polymorphic residues that form part of the P1 and P9 pockets of the HLA-DR molecules provided a structural basis for the preferential binding of the citrullinated self-peptides to the HLA-DR4 allomorphs. Collectively, we provide a molecular basis for the interplay between citrullination of self-antigens and HLA polymorphisms that shape peptide-HLA-DR4 binding affinities in RA.
Collapse
Affiliation(s)
- Yi Tian Ting
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, and
| | - Jan Petersen
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, and.,the Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Sri H Ramarathinam
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, and
| | - Stephen W Scally
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, and
| | - Khai L Loh
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, and
| | - Ranjeny Thomas
- the University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Brisbane 4102, Australia
| | - Anish Suri
- the Janssen Research and Development, Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, B-2340-Beerse, Belgium
| | - Daniel G Baker
- the Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, and
| | - Anthony W Purcell
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, and
| | - Hugh H Reid
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, and .,the Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, and .,the Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,the Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| |
Collapse
|
37
|
Peptidyl arginine deiminase immunization induces anticitrullinated protein antibodies in mice with particular MHC types. Proc Natl Acad Sci U S A 2017; 114:E10169-E10177. [PMID: 29109281 PMCID: PMC5703315 DOI: 10.1073/pnas.1713112114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autoantibodies to citrullinated proteins (ACPAs) are present in two-thirds of patients with rheumatoid arthritis (RA). ACPAs are produced in the absence of identified T cell responses for each citrullinated protein. Peptidyl arginine deiminase 4 (PAD4), which binds proteins and citrullinates them, is the target of autoantibodies in early RA. This suggests a model for the emergence of ACPAs in the absence of detectable T cells specific for citrullinated antigens: ACPAs could arise because PADs are recognized by T cells, which help the production of autoantibodies to proteins bound by PADs, according to a "hapten/carrier" model. Here, we tested this model in normal mice. C3H are healthy mice whose IEβk chain is highly homologous to the β1 chain HLA-DRB1*04:01, the allele most strongly associated with RA in humans. C3H mice immunized with PADs developed antibodies and T cells to PAD and IgG antibodies to citrullinated fibrinogen peptides, in the absence of a T cell response to fibrinogen. To analyze the MHC background effect on hapten/carrier immunization, we immunized DBA/2 mice (whose IEβd chain is similar to that of HLA-DRB1*04:02, an HLA-DR4 subtype not associated with RA). DBA/2 mice failed to develop antibodies to citrullinated fibrinogen peptides. Thus, T cell immunization to PAD proteins may trigger ACPAs through a hapten/carrier mechanism. This may constitute the basis for a new mouse model of ACPA-positive RA.
Collapse
|