1
|
Hu Y, Cui F, Wang S, Liu C, Zhang S, Wang R, Song J, Zhang Y. MicroRNA expression profile of human umbilical vein endothelial cells in response to coxsackievirus A10 infection reveals a potential role of miR-143-3p in maintaining the integrity of the blood-brain barrier. Front Cell Infect Microbiol 2023; 13:1217984. [PMID: 37577373 PMCID: PMC10419304 DOI: 10.3389/fcimb.2023.1217984] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Coxsackievirus A10 (CV-A10) has been one of the main etiologies of hand, foot, and mouth disease (HFMD) epidemics in recent years and can cause mild to severe illness and even death. Most of these severe and fatal cases were closely associated with neurological impairments, but the potential mechanism of neuropathological injury triggered by CV-A10 infection has not been elucidated. MicroRNAs (miRNAs), implicated in the regulation of gene expression in a post-transcriptional manner, play a vital role in the pathogenesis of various central nervous system (CNS) diseases; therefore, they serve as diagnostic biomarkers and are emerging as novel therapeutic targets for CNS injuries. To gain insights into the CV-A10-induced regulation of host miRNA-processing machinery, we employed high-throughput sequencing to identify differentially expressed miRNAs in CV-A10-infected human umbilical vein endothelial cells (HUVECs) and further analyzed the potential functions of these miRNAs during CV-A10 infection. The results showed that CV-A10 infection could induce 189 and 302 significantly differentially expressed miRNAs in HUVECs at 24 and 72 hpi, respectively, compared with the uninfected control. Moreover, the expression of four selected miRNAs and their relevant mRNAs was determined to verify the sequencing data by quantitative reverse transcription-polymerase chain reaction (RT-qPCR) methods. After that, gene target prediction and functional annotation revealed that the targets of these dysregulated miRNAs were mostly enriched in cell proliferation, signal transduction, cAMP signalling pathway, cellular response to interleukin-6, ventral spinal cord interneuron differentiation, negative regulation of glial cell differentiation, neuron migration, positive regulation of neuron projection development, etc., which were primarily involved in the processes of basic physiology, host immunity, and neurological impairments and further reflected vital regulatory roles of miRNA in viral pathogenicity. Finally, the construction of a miRNA-regulated network also suggested that the complex regulatory mechanisms mediated by miRNAs might be involved in viral pathogenesis and virus-host interactions during CV-A10 infection. Furthermore, among these dysregulated miRNAs, miR-143-3p was demonstrated to be involved in the maintenance of blood-brain barrier (BBB) integrity.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Clinical Virology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Fengxian Cui
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Shenglan Wang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chen Liu
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shengxiong Zhang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ruiqi Wang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
2
|
Yajie H, Shenglan W, Wei Z, Rufang L, Tingting Y, Yunhui Z, Jie S. Global quantitative proteomic analysis profiles of host protein expression in response to Enterovirus A71 infection in bronchial epithelial cells based on tandem mass tag (TMT) peptide labeling coupled with LC-MS/MS uncovers the key role of proteasome in virus replication. Virus Res 2023; 330:199118. [PMID: 37072100 DOI: 10.1016/j.virusres.2023.199118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 04/20/2023]
Abstract
Enterovirus A71 (EV-A71) is a neurotropic human pathogen which mainly caused hand, foot and mouth disease (HFMD) mostly in children under 5 years-old. Generally, EV-A71-associated HFMD is a relatively self-limiting febrile disease, but there will still be a small percentage of patients with rapid disease progression and severe neurological complications. To date, the underlying mechanism of EV-A71 inducing pathological injury of central nervous system (CNS) remains largely unclear. It has been investigated and discussed the changes of mRNA, miRNA and circRNA expression profile during infection by EV-A71 in our previous studies. However, these studies were only analyzed at the RNA level, not at the protein level. It's the protein levels that ultimately do the work in the body. Here, to address this, we performed a tandem mass tag (TMT) peptide labeling coupled with LC-MS/MS approach to quantitatively identify cellular proteome changes at 24 h post-infection (hpi) in EV-A71-infected 16HBE cells. In total, 6615 proteins were identified by using TMT coupled with LC-MS/MS in this study. In the EV-A71- and mock-infected groups, 210 differentially expressed proteins were found, including 86 upregulated and 124 downregulated proteins, at 24 hpi. To ensure the validity and reliability of the proteomics data, 3 randomly selected proteins were verified by Western blot and Immunofluorescence analysis, and the results were consistent with the TMT results. Subsequently, functional enrichment analysis indicated that the up-regulated and down-regulated proteins were individually involved in various biological processes and signaling pathways, including metabolic process, AMPK signaling pathway, Neurotrophin signaling pathway, Viral myocarditis, GABAergic synapse, and so on. Moreover, among these enriched functional analysis, the "Proteasome" pathway was up-regulated, which has caught our attention. Inhibition of proteasome was found to obviously suppress the EV-A71 replication. Finally, further in-depth analysis revealed that these differentially expressed proteins contained distinct domains and localized in different subcellular components. Taken together, our data provided a comprehensive view of host cell response to EV-A71 and identified host proteins may lead to better understanding of the pathogenic mechanisms and host responses to EV-A71 infection, and also to the identification of new therapeutic targets for EV-A71 infection.
Collapse
Affiliation(s)
- Hu Yajie
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.; Yunnan Provincial Key Laboratory of Clinical Virology
| | - Wang Shenglan
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhao Wei
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Li Rufang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang Tingting
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhang Yunhui
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China..
| | - Song Jie
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.
| |
Collapse
|
3
|
Hu Y, Wang L, Zhong M, Zhao W, Wang Y, Song J, Zhang Y. Comprehensive profiling and characterization of cellular microRNAs in response to coxsackievirus A10 infection in bronchial epithelial cells. Virol J 2022; 19:120. [PMID: 35864512 PMCID: PMC9302563 DOI: 10.1186/s12985-022-01852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Coxsackievirus A10 (CV-A10), the causative agent of hand, foot, and mouth disease (HFMD), caused a series of outbreaks in recent years and often leads to neurological impairment, but a clear understanding of the disease pathogenesis and host response remains elusive. Cellular microRNAs (miRNAs), a large family of non-coding RNA molecules, have been reported to be key regulators in viral pathogenesis and virus-host interactions. However, the role of host cellular miRNAs defensing against CV-A10 infection is still obscure. To address this issue, we systematically analyzed miRNA expression profiles in CV-A10-infected 16HBE cells by high-throughput sequencing methods in this study. It allowed us to successfully identify 312 and 278 miRNAs with differential expression at 12 h and 24 h post-CV-A10 infection, respectively. Among these, 4 miRNAs and their target genes were analyzed by RT-qPCR, which confirmed the sequencing data. Gene target prediction and enrichment analysis revealed that the predicted targets of these miRNAs were significantly enriched in numerous cellular processes, especially in regulation of basic physical process, host immune response and neurological impairment. And the integrated network was built to further indicate the regulatory roles of miRNAs in host-CV-A10 interactions. Consequently, our findings could provide a beneficial basis for further studies on the regulatory roles of miRNAs relevant to the host immune responses and neuropathogenesis caused by CV-A10 infection.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lan Wang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Mingmei Zhong
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wei Zhao
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yujue Wang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Song
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China. .,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
4
|
Asakiya C, Zhu L, Yuhan J, Zhu L, Huang K, Xu W. Current progress of miRNA-derivative nucleotide drugs: Modifications, delivery systems, applications. Expert Opin Drug Deliv 2022; 19:435-450. [PMID: 35387533 DOI: 10.1080/17425247.2022.2063835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION miRNA-derivative clinical nucleotide drugs (mdCNDs) effectively treat several diseases, with numerous undergoing clinical trials. In early-stage trials in disease therapeutics such as malignant pleural mesothelioma and hepatic virus C infection, mdCND's therapeutic potency is undeniably good for effectiveness and safety. AREAS COVERED 15 mdCNDs undergoing clinical trials are introduced in this review. MiRNA modifications methods have been summarized including phosphorothioate, cholesterol, locked nucleic acid, 2'-O-methyl, N,N-diethyl-4-(4-nitronaphthalen1-ylazo)-phenylamine modifications and many more. Moreover, delivery systems, including self-assembled, inorganic ions nanoparticles, exosomes, and lipid-based nanosystems for mdCNDs targeted delivery, are presented. Among that, EnGeneIC, N-Acetylgalactosamine, liposomal nanoparticles, and cholesterol-conjugated for mdCNDs delivery are currently undergoing clinical trials. The pH, light, temperature, redox-responsive, enzyme, and specific-substance modes to trigger the release of miRNAs to target sites on-demand and the prospects of mdCNDs are discussed in this review. EXPERT OPINION mdNCDs are one type of promising clinical drugs, however, it is still in the infancy. During the development process, it is imperative to advance in modifying miRNAs, especially at the 5'-end, to enhance targetability and stability against nucleases, develop a stimuli-responsive mode to control the release of mdCNDs to tissue cell-type-specific sites.
Collapse
Affiliation(s)
- Charles Asakiya
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jieyu Yuhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Longjiao Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
5
|
PmiRtarbase: a positive miRNA-target regulations database. Comput Biol Chem 2022; 98:107690. [DOI: 10.1016/j.compbiolchem.2022.107690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
|
6
|
Kupsco A, Prada D, Valvi D, Hu L, Petersen MS, Coull B, Grandjean P, Weihe P, Baccarelli AA. Human milk extracellular vesicle miRNA expression and associations with maternal characteristics in a population-based cohort from the Faroe Islands. Sci Rep 2021; 11:5840. [PMID: 33712635 PMCID: PMC7970999 DOI: 10.1038/s41598-021-84809-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Human milk plays a critical role in infant development and health, particularly in cognitive, immune, and cardiometabolic functions. Milk contains extracellular vesicles (EVs) that can transport biologically relevant cargo from mother to infant, including microRNAs (miRNAs). We aimed to characterize milk EV-miRNA profiles in a human population cohort, assess potential pathways and ontology, and investigate associations with maternal characteristics. We conducted the first study to describe the EV miRNA profile of human milk in 364 mothers from a population-based mother-infant cohort in the Faroe Islands using small RNA sequencing. We detected 1523 miRNAs with ≥ one read in 70% of samples. Using hierarchical clustering, we determined five EV-miRNA clusters, the top three consisting of 15, 27 and 67 miRNAs. Correlation coefficients indicated that the expression of many miRNAs within the top three clusters was highly correlated. Top-cluster human milk EV-miRNAs were involved in pathways enriched for the endocrine system, cellular community, neurodevelopment, and cancers. miRNA expression was associated with time to milk collection post-delivery, maternal body mass index, and maternal smoking, but not maternal parity. Future studies investigating determinants of human EV-miRNAs and associated health outcomes are needed to elucidate the role of human milk EV-miRNAs in health and disease.
Collapse
Affiliation(s)
- Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA.
| | - Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
- Unit for Biomedical Research in Cancer, Instituto Nacional de Cancerologia, Universidad Nacional Autonoma de Mexico, 14080, Mexico City, Mexico
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lisa Hu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
| | - Maria Skaalum Petersen
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands
- Center of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Brent Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Philippe Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Medicine, University of Southern Denmark, Odense C, Denmark
| | - Pal Weihe
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands
- Center of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
| |
Collapse
|
7
|
Zhu P, Chen S, Zhang W, Duan G, Jin Y. Essential Role of Non-Coding RNAs in Enterovirus Infection: From Basic Mechanisms to Clinical Prospects. Int J Mol Sci 2021; 22:2904. [PMID: 33809362 PMCID: PMC7999384 DOI: 10.3390/ijms22062904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/31/2022] Open
Abstract
Enteroviruses (EVs) are common RNA viruses that can cause various types of human diseases and conditions such as hand, foot, and mouth disease (HFMD), myocarditis, meningitis, sepsis, and respiratory disorders. Although EV infections in most patients are generally mild and self-limiting, a small number of young children can develop serious complications such as encephalitis, acute flaccid paralysis, myocarditis, and cardiorespiratory failure, resulting in fatalities. Established evidence has suggested that certain non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) are involved in the occurrence and progression of many human diseases. Recently, the involvement of ncRNAs in the course of EV infection has been reported. Herein, the authors focus on recent advances in the understanding of ncRNAs in EV infection from basic viral pathogenesis to clinical prospects, providing a reference basis and new ideas for disease prevention and research directions.
Collapse
Affiliation(s)
- Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| |
Collapse
|
8
|
Lin S, Yang L, Wang S, Weng B, Lin M. Bioinformatics Analysis of Key micro-RNAs and mRNAs under the Hand, Foot, and Mouth Disease Virus Infection. Pol J Microbiol 2021; 69:479-490. [PMID: 33574876 PMCID: PMC7812361 DOI: 10.33073/pjm-2020-052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 11/24/2022] Open
Abstract
To clarify crucial key micro-RNAs and mRNAs associated with hand, foot, and mouth disease (HFMD) virus infection, we conducted this bioinformatics analysis from four GEO datasets. The following datasets were used for the analysis: GSE85829, GSE94551, GSE52780, and GSE45589. Differentially expressed genes (DEGs) were acquired, and the analysis of functional and pathway enrichment and the relative regulatory network were conducted. After screening common differentially expressed miRNAs (DE-miRNAs), five key miRNAs were acquired: miR-100-3p, miR-125a-3p, miR-1273g-3p, miR-5585-3p, and miR-671-5p. There were three common enriched GO terms between miRNA-derived prediction and mRNA-derived analysis: biosynthetic process, cytosol, and nucleoplasm. There was one common KEGG pathway, i.e., cell cycle shared between miRNA-based and mRNA-based enrichment. Using TarBase V8 in DIANA tools, we acquired 1,520 potential targets (mRNA) from the five key DE-miRNAs, among which the159 DE-mRNAs also included 11 DEGs. These common DEGs showed a PPI network mainly connected by SMC1A, SMARCC1, SF3B3, LIG1, and BRMS1L. Together, changes in five key miRNAs and 11 key mRNAs may play crucial roles in HFMD progression. A combination of these roles may benefit the early diagnosis and treatment of HFMD.
Collapse
Affiliation(s)
- Sheng Lin
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Liu Yang
- Unimed Scientific Inc. Wuxi, Wuxi, China
| | - Shibiao Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Bin Weng
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Min Lin
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Hu Y, Yang Z, Wang S, Sun D, Zhong M, Wen M, Song J, Zhang Y. Comprehensive analysis of differential expression profiles via transcriptome sequencing in SH-SY5Y cells infected with CV-A16. PLoS One 2020; 15:e0241174. [PMID: 33156879 PMCID: PMC7647100 DOI: 10.1371/journal.pone.0241174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/02/2020] [Indexed: 11/17/2022] Open
Abstract
Coxsackievirus A16 (CV-A16) is one of the viruses that is most frequently associated with hand-foot-and-mouth disease (HFMD). Previous studies have shown that CV-A16 infections are mostly self-limiting, but in recent years, it has been gradually found that CV-A16 infections can also induce neurological complications and eventually cause death in children with HFMD. Moreover, no curative drugs or preventative vaccines have been developed for CV-A16 infection. Therefore, it is particularly important to investigate the mechanism of CV-A16 infection-induced neuropathy. In the current study, transcriptome sequencing technology was used to identify changes in the transcriptome of SH-SY5Y cells infected with CV-A16, which might hide the mechanism of CV-A16-induced neuropathology. The transcriptome profiling showed that 82,406,974, 108,652,260 and 97,753,565 clean reads were obtained in the Control, CV-A16-12 h and CV-A16-24 h groups, respectively. And it was further detected that a total of 136 and 161 differentially expressed genes in CV-A16-12 h and CV-A16-24 h groups, respectively, when compared with Control group. Then, to explore the mechanism of CV-A16 infection, we focused on the common differentially expressed genes at different time points of CV-A16 infection and found that there were 34 differentially expressed genes based on which clustering analysis and functional category enrichment analysis were performed. The results indicated that changes in oxidation levels were particularly evident in the GO term analysis, while only the “Gonadotropin-releasing hormone receptor pathway” was enriched in the KEGG pathway analysis, which might be closely related to the neurotoxicity caused by CV-A16 infection. Meanwhile, the ID2 closely related to nervous system has been demonstrated to be increased during CV-A16 infection. Additionally, the data on differentially expressed non-protein-coding genes of different types within the transcriptome sequencing results were analyzed, and it was speculated that these dysregulated non-protein-coding genes played a pivotal role in CV-A16 infection. Ultimately, qRT-PCR was utilized to validate the transcriptome sequencing findings, and the results of qRT-PCR were in agreement with the transcriptome sequencing data. In conclusion, transcriptome profiling was carried out to analyze response of SH-SY5Y cells to CV-A16 infection. And our findings provide important information to elucidate the possible molecular mechanisms which were linked to the neuropathogenesis of CV-A16 infection.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhen Yang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shenglan Wang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Danxiong Sun
- Department of Respiratory Medicine, The First People's Hospital of Yunnan province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Mingmei Zhong
- Department of Respiratory Medicine, The First People's Hospital of Yunnan province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Mudong Wen
- Department of Respiratory Medicine, The First People's Hospital of Yunnan province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Song
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yunhui Zhang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
10
|
Zhang M, Chen Y, Cheng X, Cai Z, Qiu S. GATA1/SP1 and miR-874 mediate enterovirus-71-induced apoptosis in a granzyme-B-dependent manner in Jurkat cells. Arch Virol 2020; 165:2531-2540. [PMID: 32851429 DOI: 10.1007/s00705-020-04783-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/21/2020] [Indexed: 01/20/2023]
Abstract
Enterovirus 71 (EV71)-induced T lymphocyte apoptosis plays an important role in hand, foot, and mouth disease (HFMD), and granzyme B (GZMB) has been shown to be critical for this process. However, the mechanisms underlying GZMB-mediated apoptosis of T lymphocytes remain unknown. In this study, we investigated whether transcription factors and microRNAs (miRNAs) are involved in GZMB-mediated apoptosis of T lymphocytes in response to EV71 infection. Our findings indicated that EV71 infection significantly induced apoptosis in Jurkat cells, a human T lymphocytes cell line, as revealed in flow cytometric analysis. Furthermore, EV71 increased the expression of pro-apoptosis Bcl-2-associated X (Bax) and cleaved caspase 3 but decreased the expression of anti-apoptosis B-cell lymphoma protein 2 (Bcl2). GZMB knockdown decreased cell apoptosis and prevented EV71-induced changes in the expression of Bax, cleaved caspase 3, and Bcl2 in Jurkat cells, highlighting the role of GZMB as a key factor in EV71-induced apoptosis. Our study also indicated that overexpression of the transcription factors GATA binding factor 1 (GATA1) and specificity protein 1 (SP1) significantly increased luciferase activity when this gene was inserted in the GZMB 3' untranslated region (3'UTR). GATA1/SP1 overexpression induced cell apoptosis, increased the expression of Bax and cleaved caspase 3, and decreased the expression of Bcl2. Finally, our results suggested that miR-874 plays an essential role in GZMB-mediated cell apoptosis, since an miR-874 mimic decreases the expression of GZMB by targeting its 3'UTR. Collectively, these data indicated that GATA1/SP1 and miR-874 mediate EV71-induced apoptosis in a granzyme B-dependent manner. This signaling pathway may provide a new pharmacological target for the prevention and treatment of HFMD.
Collapse
Affiliation(s)
- Meijuan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Ying Chen
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Xiangjun Cheng
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Zhenzhen Cai
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Shengfeng Qiu
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
11
|
Barral-Arca R, Gómez-Carballa A, Cebey-López M, Currás-Tuala MJ, Pischedda S, Viz-Lasheras S, Bello X, Martinón-Torres F, Salas A. RNA-Seq Data-Mining Allows the Discovery of Two Long Non-Coding RNA Biomarkers of Viral Infection in Humans. Int J Mol Sci 2020; 21:ijms21082748. [PMID: 32326627 PMCID: PMC7215422 DOI: 10.3390/ijms21082748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 12/15/2022] Open
Abstract
There is a growing interest in unraveling gene expression mechanisms leading to viral host invasion and infection progression. Current findings reveal that long non-coding RNAs (lncRNAs) are implicated in the regulation of the immune system by influencing gene expression through a wide range of mechanisms. By mining whole-transcriptome shotgun sequencing (RNA-seq) data using machine learning approaches, we detected two lncRNAs (ENSG00000254680 and ENSG00000273149) that are downregulated in a wide range of viral infections and different cell types, including blood monocluclear cells, umbilical vein endothelial cells, and dermal fibroblasts. The efficiency of these two lncRNAs was positively validated in different viral phenotypic scenarios. These two lncRNAs showed a strong downregulation in virus-infected patients when compared to healthy control transcriptomes, indicating that these biomarkers are promising targets for infection diagnosis. To the best of our knowledge, this is the very first study using host lncRNAs biomarkers for the diagnosis of human viral infections.
Collapse
Affiliation(s)
- Ruth Barral-Arca
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - Miriam Cebey-López
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - María José Currás-Tuala
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - Sara Pischedda
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - Sandra Viz-Lasheras
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - Xabier Bello
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - Federico Martinón-Torres
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (SERGAS), 15706 Galicia, Spain
| | - Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
- Correspondence:
| |
Collapse
|
12
|
Xu P, Wu Q, Yu J, Rao Y, Kou Z, Fang G, Shi X, Liu W, Han H. A Systematic Way to Infer the Regulation Relations of miRNAs on Target Genes and Critical miRNAs in Cancers. Front Genet 2020; 11:278. [PMID: 32296462 PMCID: PMC7136563 DOI: 10.3389/fgene.2020.00278] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of important non-coding RNAs, which play important roles in tumorigenesis and development by targeting oncogenes or tumor suppressor genes. One miRNA can regulate multiple genes, and one gene can be regulated by multiple miRNAs. To promote the clinical application of miRNAs, two fundamental questions should be answered: what's the regulatory mechanism of a miRNA to a gene, and which miRNAs are important for a specific type of cancer. In this study, we propose a miRNA influence capturing (miRNAInf) to decipher regulation relations of miRNAs on target genes and identify critical miRNAs in cancers in a systematic approach. With the pair-wise miRNA/gene expression profiles data, we consider the assigning problem of a miRNA on target genes and determine the regulatory mechanisms by computing the Pearson correlation coefficient between the expression changes of a miRNA and that of its target gene. Furthermore, we compute the relative local influence strength of a miRNA on its target gene. Finally, integrate the local influence strength and target gene's importance to determine the critical miRNAs involved in specific cancer. Results on breast, liver and prostate cancers show that positive regulations are as common as negative regulations. The top-ranked miRNAs show great potential as therapeutic targets driving cancer to a normal state, and they are demonstrated to be closely related to cancers based on biological functional analysis, drug sensitivity/resistance analysis and survival analysis. This study will be helpful for the discovery of critical miRNAs and development of miRNAs-based clinical therapeutics.
Collapse
Affiliation(s)
- Peng Xu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China.,School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, China
| | - Qian Wu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Jian Yu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Yongsheng Rao
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Zheng Kou
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Gang Fang
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Xiaolong Shi
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Wenbin Liu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Henry Han
- Department of Computer and Information Science, Fordham University, New York, NY, United States
| |
Collapse
|
13
|
Xu P, Xu H, Cheng HS, Chan HH, Wang RYL. MicroRNA 876-5p modulates EV-A71 replication through downregulation of host antiviral factors. Virol J 2020; 17:21. [PMID: 32024541 PMCID: PMC7003331 DOI: 10.1186/s12985-020-1284-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Human enterovirus 71 (EV-A71) is a non-enveloped virus that has a single stranded positive sense RNA genome. In a previous study, we showed that miR-876-5p upregulation was observed in the serum of patients with severe EV-A71 infection. Micro-876-5p (miR-876-5p) is a circulating miRNA that can be identified to modulate EV-A71 infections through both in vitro and in vivo studies. However, the regulatory mechanisms that involve miR-876-5p in the EV-A71 infection cycle remain unclear. METHODS We demonstrated that miR-876-5p facilitated EV-A71 replication and expression by overexpression and knocking-down of miR-876-5p through the transfection of miR-876-5p plasmid and miR-876-5p inhibitor. Although miR-876-5p suppressed CREB5 expression, luciferase reporter assay confirmed this. We also evaluated the role of miR-876-5p in the EV-A71 infection cycle by CREB5 mediated by transfection with an anti-miR-876-5P inhibitor or in combination with an si-CREB5 plasmid. RESULTS MicroR-876-5p was upregulated in EV-A71-infected neuroblastoma cells. Overexpression of miR-876-5p or knockdown of cyclic-AMP responsive element binding protein 5 (CREB5) promoted EV-A71 replication. The downregulation of miR-876-5p inhibited the accumulation of viral RNA and the production of viral proteins. Interestingly, CREB5 overexpression also suppressed EV-A71 replication. Our in vitro studies reveal that miR-876-5p directly targets CREB5. Finally, downregulation of CREB5 protein abated the inhibitory effect of anti-miR-876-5p and induced inhibitory effect of EV-A71 replication. CONCLUSIONS Our results suggest that intracellular miR-876-5p promotes EV-A71 replication indirectly by targeting the host CREB5 protein.
Collapse
Affiliation(s)
- Peng Xu
- Xiangyang No.1 People's Hospital and Hubei University of Medicine, Xiangyang, Hubei Province, China
| | - Hwa Xu
- College of Resources and Environment Qingdao Agricultural Unviersity, Qingdao, China
| | - Hsu Sheng Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Han-Hsiang Chan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Robert Y L Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan. .,Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial and Children's Hospital, Linkou, 33305, Taiwan.
| |
Collapse
|
14
|
Holmes AC, Semler BL. Picornaviruses and RNA Metabolism: Local and Global Effects of Infection. J Virol 2019; 93:e02088-17. [PMID: 31413128 PMCID: PMC6803262 DOI: 10.1128/jvi.02088-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022] Open
Abstract
Due to the limiting coding capacity for members of the Picornaviridae family of positive-strand RNA viruses, their successful replication cycles require complex interactions with host cell functions. These interactions span from the down-modulation of many aspects of cellular metabolism to the hijacking of specific host functions used during viral translation, RNA replication, and other steps of infection by picornaviruses, such as human rhinovirus, coxsackievirus, poliovirus, foot-and-mouth disease virus, enterovirus D-68, and a wide range of other human and nonhuman viruses. Although picornaviruses replicate exclusively in the cytoplasm of infected cells, they have extensive interactions with host cell nuclei and the proteins and RNAs that normally reside in this compartment of the cell. This review will highlight some of the more recent studies that have revealed how picornavirus infections impact the RNA metabolism of the host cell posttranscriptionally and how they usurp and modify host RNA binding proteins as well as microRNAs to potentiate viral replication.
Collapse
Affiliation(s)
- Autumn C Holmes
- Department of Microbiology & Molecular Genetics, University of California, Irvine, California, USA
- Center for Virus Research, University of California, Irvine, California, USA
| | - Bert L Semler
- Department of Microbiology & Molecular Genetics, University of California, Irvine, California, USA
- Center for Virus Research, University of California, Irvine, California, USA
| |
Collapse
|
15
|
Song J, Jiang X, Hu Y, Li H, Zhang X, Xu J, Li W, Zheng X, Dong S. High-Throughput Sequencing of Putative Novel microRNAs in Rhesus Monkey Peripheral Blood Mononuclear Cells following EV71 and CA16 Infection. Intervirology 2018; 61:133-142. [PMID: 30404089 DOI: 10.1159/000493798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/16/2018] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) remain the major pathogens in hand, foot, and mouth disease (HFMD) cases, but the mechanisms of the different pathogeneses that follow EV71 and CA16 infection remain largely unknown. METHODS Herein, we utilized microRNA (miRNA) deep sequencing to investigate the roles of novel differentially expressed miRNAs in peripheral blood mononuclear cells (PBMCs) infected with EV71 and CA16. RESULTS The results identified 13 novel differentially expressed miRNAs in each group. Additionally, the target genes were predicted by the miRanda and RNAhybrid programs, and a total of 2,501 targets were found in the two databases. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that these targets were mainly involved in cell development and were associated with nervous system development, system development, multicellular organism development, the Wnt signaling pathway, the PDGF signaling pathway, and the EGF receptor signaling pathway. Finally, a coexpression regulatory network was built with the key targets to further extrapolate the functional interactions of the targets and their coexpressed genes. CONCLUSION Our results not only revealed potential biomarkers or targets for the diagnosis and treatment of HFMD, but also provided new insights to explore the mechanisms of EV71 and CA16 pathogenesis.
Collapse
Affiliation(s)
- Jie Song
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xi Jiang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yajie Hu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Hui Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xuemei Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jingwen Xu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Weiyu Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xuelin Zheng
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Shaozhong Dong
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China,
| |
Collapse
|
16
|
Song J, Hu Y, Li H, Huang X, Zheng H, Hu Y, Wang J, Jiang X, Li J, Yang Z, Fan H, Guo L, Shi H, He Z, Yang F, Wang X, Dong S, Li Q, Liu L. miR-1303 regulates BBB permeability and promotes CNS lesions following CA16 infections by directly targeting MMP9. Emerg Microbes Infect 2018; 7:155. [PMID: 30228270 PMCID: PMC6143596 DOI: 10.1038/s41426-018-0157-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
Abstract
Coxsackievirus A16 (CA16) is a member of the Picornaviridae family and causes mild and self-limiting hand, foot, and mouth disease (HFMD) in infants and young children. CA16 infection can also progress to central nervous system (CNS) complications; however, the underlying mechanism by which CA16 penetrates the blood-brain barrier (BBB) and then causes CNS damage remains unclear. This study aimed to explore the mechanism of CA16 neurotropic tropism by establishing an in vitro BBB model with CA16 infection and an in vivo CA16 rhesus monkey infant infection model. The results showed that CA16 infection induced increased permeability of the BBB accompanied by upregulation of matrix metalloproteinase 9 (MMP9) expression. Subsequently, high-throughput miRNA sequencing technology and bioinformatics analysis revealed that miR-1303 may regulate BBB permeability by targeting MMP9. Next, we used dual-luciferase, qRT-PCR, and western blot assays to provide evidence of MMP9 targeting by miR-1303. Further experiments revealed that CA16 infection promoted the degradation of junctional complexes (Claudin4, Claudin5, VE-Cadherin, and ZO-1), likely by downregulating miR-1303 and upregulating MMP9. Finally, EGFP-CA16 infection could enter the CNS by facilitating the degradation of junctional complexes, eventually causing neuroinflammation and injury to the CNS, which was confirmed using the in vivo rhesus monkey model. Our results indicate that CA16 might penetrate the BBB and then enter the CNS by downregulating miR-1303, which disrupts junctional complexes by directly regulating MMP9 and ultimately causing pathological CNS changes. These results provide new therapeutic targets in HFMD patients following CA16 infection.
Collapse
Affiliation(s)
- Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Yajie Hu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Hongzhe Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Xing Huang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Huiwen Zheng
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Yunguang Hu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Jingjing Wang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Xi Jiang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Jiaqi Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Zening Yang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Haitao Fan
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Lei Guo
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Haijing Shi
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Xi Wang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Shaozhong Dong
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China. .,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China.
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China. .,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China.
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China. .,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China.
| |
Collapse
|
17
|
Li B, Zheng J. MicroR-9-5p suppresses EV71 replication through targeting NFκB of the RIG-I-mediated innate immune response. FEBS Open Bio 2018; 8:1457-1470. [PMID: 30186747 PMCID: PMC6120239 DOI: 10.1002/2211-5463.12490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence demonstrates that there is a causative link between hsa-microRNA-9-5p (miR-9) and pathophysiological processes. Enterovirus 71 (EV71) has been found to contribute to numerous severe clinical symptoms which result in death. The exact mechanism by which EV71 influences miR-9 expression is unknown, and the relationship between miR-9 and EV71 is still unclear. Here, miR-9 expression was found to be impaired upon EV71 infection in several cell lines and in an EV71 infection mouse model. Additionally, we confirmed that EV71 infection induces robust expression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1) and interferons (IFN-α and IFN-β). Overexpression of miR-9 attenuated EV71 proliferation and reduced protein and gene expressions of virion protein 1 (VP1) of EV71. Furthermore, we observed that the inflammation caused by EV71 infection was restored to a moderate level via miR-9 overexpression. Nuclear factor kappa B (NFκB) in the retinoic acid-induced gene 1 (RIG-I) signaling pathway, but not interferon regulating factor 3 (IRF3), was significantly decreased and inactivated by ectopic miR-9 expression. Moreover, in mouse infection experiments, administration of miR-9 agomirs caused a significant decrease in VP1 levels and pro-inflammatory cytokine production after viral inoculation. Taken together, the present data demonstrate that miR-9 exerts an anti-EV71 effect in cells and a mouse model via mediating NFκB activity of the RIG-I signal pathway, thereby suggesting a new candidate for antiviral drug development.
Collapse
Affiliation(s)
- Bing Li
- Department of Pediatrics Jinan Maternity and Child Care Hospital China
| | - Junqing Zheng
- Department of Pediatrics Jinan Maternity and Child Care Hospital China
| |
Collapse
|
18
|
Narayanan S, Loganathan G, Mokshagundam S, Hughes MG, Williams SK, Balamurugan AN. Endothelial cell regulation through epigenetic mechanisms: Depicting parallels and its clinical application within an intra-islet microenvironment. Diabetes Res Clin Pract 2018; 143:120-133. [PMID: 29953914 DOI: 10.1016/j.diabres.2018.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/31/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
The intra-islet endothelial cells (ECs), the building blocks of islet microvasculature, govern a number of cellular and pathophysiological processes associated with the pancreatic tissue. These cells are key to the angiogenic process and essential for islet revascularization after transplantation. Understanding fundamental mechanisms by which ECs regulate the angiogenic process is important as these cells maintain and regulate the intra-islet environment facilitated by a complex signaling crosstalk with the surrounding endocrine cells. In recent years, many studies have demonstrated the impact of epigenetic regulation on islet cell development and function. This review will present an overview of the reports involving endothelial epigenetic mechanisms particularly focusing on histone modifications which have been identified to play a critical role in governing EC functions by modifying the chromatin structure. A better understanding of epigenetic mechanisms by which these cells regulate gene expression and function to orchestrate cellular physiology and pathology is likely to offer improved insights on the functioning and regulation of an intra-islet endothelial microvascular environment.
Collapse
Affiliation(s)
- Siddharth Narayanan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | - Gopalakrishnan Loganathan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | | | - Michael G Hughes
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | - Stuart K Williams
- Department of Physiology, University of Louisville, Louisville, KY 40202, United States
| | - Appakalai N Balamurugan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States.
| |
Collapse
|
19
|
Abstract
During the last years, it has become evident that miRNAs are important players in almost all physiological and pathological processes, including viral infections. Enterovirus infections range from mild to severe acute infections concerning several organ systems and are also associated with chronic diseases. In this review, we summarize the findings on the impact of acute and persistent enterovirus infection on the expression of cellular miRNAs. Furthermore, the currently available data on the regulation of cellular or viral targets by the dysregulated miRNAs are reviewed. Finally, a translational perspective, namely the use of miRNAs as biomarkers of enterovirus infection and as antiviral strategy is discussed.
Collapse
Affiliation(s)
- Ilka Engelmann
- a Laboratoire de Virologie EA3610, Faculté de Médecine, CHU Lille, University of Lille , Lille , France
| | - Enagnon Kazali Alidjinou
- a Laboratoire de Virologie EA3610, Faculté de Médecine, CHU Lille, University of Lille , Lille , France
| | - Antoine Bertin
- a Laboratoire de Virologie EA3610, Faculté de Médecine, CHU Lille, University of Lille , Lille , France
| | - Famara Sane
- a Laboratoire de Virologie EA3610, Faculté de Médecine, CHU Lille, University of Lille , Lille , France
| | - Didier Hober
- a Laboratoire de Virologie EA3610, Faculté de Médecine, CHU Lille, University of Lille , Lille , France
| |
Collapse
|
20
|
Profiling of novel microRNAs elicited by EV71 and CA16 infection in human bronchial epithelial cells using high-throughput sequencing. Virus Res 2018; 247:111-119. [DOI: 10.1016/j.virusres.2018.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/01/2023]
|
21
|
Suppression of the toll-like receptor 7-dependent type I interferon production pathway by autophagy resulting from enterovirus 71 and coxsackievirus A16 infections facilitates their replication. Arch Virol 2017; 163:135-144. [PMID: 29052054 PMCID: PMC5756282 DOI: 10.1007/s00705-017-3592-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) act as molecular sentinels, detecting invading viral pathogens and triggering host innate immune responses, including autophagy. However, many viruses have evolved a series of strategies to manipulate autophagy for their own benefit. Enterovirus 71 (EV71) and coxsackievirus A16 (CA16), as the primary agents causing hand, foot and mouth disease (HFMD), can induce autophagy leading to their replication. Therefore, the objective of this study was to investigate whether enhanced viral replication caused by autophagy in EV71 and CA16 infections was associated with a TLR-related signaling pathway. Our results demonstrate that complete autophagy and incomplete autophagy were observed in human bronchial epithelial (16HBE) cells infected with EV71 and CA16. Moreover, suppression of autophagy by the pharmacological modulator 3-MA significantly and clearly decreased the survival rates and viral replication of EV71 and CA16 in 16HBE cells. Inhibition of autophagy also enhanced the expression of molecules related to the TLR7-dependent type I interferon (IFN-I) production pathway, such as TLR7, MyD88, IRF7 and IFN-α/β. Finally, immunofluorescence staining demonstrated that TLR7 endosome marker M6PR levels were clearly reduced in EV71- and CA16-infected cells, while they were markedly elevated in infected cells treated with 3-MA. These findings suggest that increased EV71 and CA16 replication meditated by autophagy in 16HBE cells might promote degradation of the endosome, leading to suppression of the TLR7-mediated IFN-I signaling pathway.
Collapse
|