1
|
Shimagaki KS, Lynch RM, Barton JP. Parallel HIV-1 fitness landscapes shape viral dynamics in humans and macaques that develop broadly neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603090. [PMID: 39071321 PMCID: PMC11275900 DOI: 10.1101/2024.07.12.603090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Human immunodeficiency virus (HIV)-1 exhibits remarkable genetic diversity. For this reason, an effective HIV-1 vaccine must elicit antibodies that can neutralize many variants of the virus. While broadly neutralizing antibodies (bnAbs) have been isolated from HIV-1 infected individuals, a general understanding of the virus-antibody coevolutionary processes that lead to their development remains incomplete. We performed a quantitative study of HIV-1 evolution in two individuals who developed bnAbs. We observed strong selection early in infection for mutations affecting HIV-1 envelope glycosylation and escape from autologous strain-specific antibodies, followed by weaker selection for bnAb resistance later in infection. To confirm our findings, we analyzed data from rhesus macaques infected with viruses derived from the same two individuals. We inferred remarkably similar fitness effects of HIV-1 mutations in humans and macaques. Moreover, we observed a striking pattern of rapid HIV-1 evolution, consistent in both humans and macaques, that precedes the development of bnAbs. Our work highlights strong parallels between infection in rhesus macaques and humans, and it reveals a quantitative evolutionary signature of bnAb development.
Collapse
|
2
|
Felber BK, Lu Z, Hu X, Valentin A, Rosati M, Remmel CAL, Weiner JA, Carpenter MC, Faircloth K, Stanfield-Oakley S, Williams WB, Shen X, Tomaras GD, LaBranche CC, Montefiori D, Trinh HV, Rao M, Alam MS, Vandergrift NA, Saunders KO, Wang Y, Rountree W, Das J, Alter G, Reed SG, Aye PP, Schiro F, Pahar B, Dufour JP, Veazey RS, Marx PA, Venzon DJ, Shaw GM, Ferrari G, Ackerman ME, Haynes BF, Pavlakis GN. Co-immunization of DNA and Protein in the Same Anatomical Sites Induces Superior Protective Immune Responses against SHIV Challenge. Cell Rep 2021; 31:107624. [PMID: 32402293 DOI: 10.1016/j.celrep.2020.107624] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/10/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
We compare immunogenicity and protective efficacy of an HIV vaccine comprised of env and gag DNA and Env (Envelope) proteins by co-administration of the vaccine components in the same muscles or by separate administration of DNA + protein in contralateral sites in female rhesus macaques. The 6-valent vaccine includes gp145 Env DNAs, representing six sequentially isolated Envs from the HIV-infected individual CH505, and matching GLA-SE-adjuvanted gp120 Env proteins. Interestingly, only macaques in the co-administration vaccine group are protected against SHIV CH505 acquisition after repeated low-dose intravaginal challenge and show 67% risk reduction per exposure. Macaques in the co-administration group develop higher Env-specific humoral and cellular immune responses. Non-neutralizing Env antibodies, ADCC, and antibodies binding to FcγRIIIa are associated with decreased transmission risk. These data suggest that simultaneous recognition, processing, and presentation of DNA + Env protein in the same draining lymph nodes play a critical role in the development of protective immunity.
Collapse
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Zhongyan Lu
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Xintao Hu
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | | | - Katelyn Faircloth
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Sherry Stanfield-Oakley
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Wilton B Williams
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Celia C LaBranche
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Hung V Trinh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Munir S Alam
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | | | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Jishnu Das
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Steven G Reed
- Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Pyone P Aye
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Faith Schiro
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Jason P Dufour
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Ronald S Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Preston A Marx
- Tulane National Primate Research Center, and Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - David J Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | | | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
3
|
Fries CN, Curvino EJ, Chen JL, Permar SR, Fouda GG, Collier JH. Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. NATURE NANOTECHNOLOGY 2021; 16:1-14. [PMID: 32807876 DOI: 10.1038/s41565-020-0739-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 06/23/2020] [Indexed: 05/18/2023]
Abstract
Despite the overwhelming success of vaccines in preventing infectious diseases, there remain numerous globally devastating diseases without fully protective vaccines, particularly human immunodeficiency virus (HIV), malaria and tuberculosis. Nanotechnology approaches are being developed both to design new vaccines against these diseases as well as to facilitate their global implementation. The reasons why a given pathogen may present difficulties for vaccine design are unique and tied to the co-evolutionary history of the pathogen and humans, but there are common challenges that nanotechnology is beginning to help address. In each case, a successful vaccine will need to raise immune responses that differ from the immune responses raised by normal infection. Nanomaterials, with their defined compositions, commonly modular construction, and length scales allowing the engagement of key immune pathways, collectively facilitate the iterative design process necessary to identify such protective immune responses and achieve them reliably. Nanomaterials also provide strategies for engineering the trafficking and delivery of vaccine components to key immune cells and lymphoid tissues, and they can be highly multivalent, improving their engagement with the immune system. This Review will discuss these aspects along with recent nanomaterial advances towards vaccines against infectious disease, with a particular emphasis on HIV/AIDS, malaria and tuberculosis.
Collapse
Affiliation(s)
- Chelsea N Fries
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Jui-Lin Chen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sallie R Permar
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Genevieve G Fouda
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
Wei Q, Hargett AA, Knoppova B, Duverger A, Rawi R, Shen CH, Farney SK, Hall S, Brown R, Keele BF, Heath SL, Saag MS, Kutsch O, Chuang GY, Kwong PD, Moldoveanu Z, Raska M, Renfrow MB, Novak J. Glycan Positioning Impacts HIV-1 Env Glycan-Shield Density, Function, and Recognition by Antibodies. iScience 2020; 23:101711. [PMID: 33205023 PMCID: PMC7649354 DOI: 10.1016/j.isci.2020.101711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/12/2020] [Accepted: 10/16/2020] [Indexed: 11/24/2022] Open
Abstract
HIV-1 envelope (Env) N-glycosylation impact virus-cell entry and immune evasion. How each glycan interacts to shape the Env-protein-sugar complex and affects Env function is not well understood. Here, analysis of two Env variants from the same donor, with differing functional characteristics and N-glycosylation-site composition, revealed that changes to key N-glycosylation sites affected the Env structure at distant locations and had a ripple effect on Env-wide glycan processing, virus infectivity, antibody recognition, and virus neutralization. Specifically, the N262 glycan, although not in the CD4-binding site, modulated Env binding to the CD4 receptor, affected Env recognition by several glycan-dependent neutralizing antibodies, and altered site-specific glycosylation heterogeneity, with, for example, N448 displaying limited glycan processing. Molecular-dynamic simulations visualized differences in glycan density and how specific oligosaccharide positions can move to compensate for a glycan loss. This study demonstrates how changes in individual glycans can alter molecular dynamics, processing, and function of the Env-glycan shield.
Collapse
Affiliation(s)
- Qing Wei
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| | - Audra A. Hargett
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Barbora Knoppova
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| | - Alexandra Duverger
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - S. Katie Farney
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stacy Hall
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| | - Rhubell Brown
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sonya L. Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael S. Saag
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Olaf Kutsch
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
- Department of Immunology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Matthew B. Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Wilmschen S, Schmitz JE, Kimpel J. Viral Vectors for the Induction of Broadly Neutralizing Antibodies against HIV. Vaccines (Basel) 2019; 7:vaccines7030119. [PMID: 31546894 PMCID: PMC6789710 DOI: 10.3390/vaccines7030119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/10/2023] Open
Abstract
Extensive research on generating an efficient HIV vaccine is ongoing. A major aim of HIV vaccines is the induction of long-lasting, broadly neutralizing antibodies (bnAbs) that can confer sterile immunity for a prolonged period of time. Several strategies have been explored to reach this goal, i.e. protein immunization, DNA, or viral vectors, or a combination thereof. In this review, we give an overview of approaches using viral vectors for the induction of HIV-specific bnAbs. Many pre-clinical studies were performed using various replication-competent and -incompetent vectors. Amongst them, poxviral and adenoviral vectors were the most prevalent ones. In many studies, viral vectors were combined with a DNA prime or a protein boost. However, neutralizing antibodies were mainly induced against the homologous HIV-1 vaccine strain or tier 1 viruses, and in rare cases, against tier 2 viruses, indicating the need for improved antigens and vaccination strategies. Furthermore, we also review next generation Env antigens that are currently being used in protein vaccination approaches and point out how they could be utilized in viral vectors.
Collapse
Affiliation(s)
- Sarah Wilmschen
- Division of Virology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Joern E Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Janine Kimpel
- Division of Virology, Medical University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
6
|
Salvato MS, Domi A, Guzmán-Cardozo C, Medina-Moreno S, Zapata JC, Hsu H, McCurley N, Basu R, Hauser M, Hellerstein M, Guirakhoo F. A Single Dose of Modified Vaccinia Ankara Expressing Lassa Virus-like Particles Protects Mice from Lethal Intra-cerebral Virus Challenge. Pathogens 2019; 8:E133. [PMID: 31466243 PMCID: PMC6789566 DOI: 10.3390/pathogens8030133] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 12/13/2022] Open
Abstract
Lassa fever surpasses Ebola, Marburg, and all other hemorrhagic fevers except Dengue in its public health impact. Caused by Lassa virus (LASV), the disease is a scourge on populations in endemic areas of West Africa, where reported incidence is higher. Here, we report construction, characterization, and preclinical efficacy of a novel recombinant vaccine candidate GEO-LM01. Constructed in the Modified Vaccinia Ankara (MVA) vector, GEO-LM01 expresses the glycoprotein precursor (GPC) and zinc-binding matrix protein (Z) from the prototype Josiah strain lineage IV. When expressed together, GP and Z form Virus-Like Particles (VLPs) in cell culture. Immunogenicity and efficacy of GEO-LM01 was tested in a mouse challenge model. A single intramuscular dose of GEO-LM01 protected 100% of CBA/J mice challenged with a lethal dose of ML29, a Mopeia/Lassa reassortant virus, delivered directly into the brain. In contrast, all control animals died within one week. The vaccine induced low levels of antibodies but Lassa-specific CD4+ and CD8+ T cell responses. This is the first report showing that a single dose of a replication-deficient MVA vector can confer full protection against a lethal challenge with ML29 virus.
Collapse
Affiliation(s)
- Maria S Salvato
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | - Juan Carlos Zapata
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201, USA
| | - Haoting Hsu
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201, USA
| | - Nathanael McCurley
- Office of Technology Licensing and Commercialization, Georgia State University, Atlanta, GA 30303, USA
| | - Rahul Basu
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | | | | | | |
Collapse
|
7
|
van Schooten J, van Gils MJ. HIV-1 immunogens and strategies to drive antibody responses towards neutralization breadth. Retrovirology 2018; 15:74. [PMID: 30477581 PMCID: PMC6260891 DOI: 10.1186/s12977-018-0457-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
Despite enormous efforts no HIV-1 vaccine has been developed that elicits broadly neutralizing antibodies (bNAbs) to protect against infection to date. The high antigenic diversity and dense N-linked glycan armor, which covers nearly the entire HIV-1 envelope protein (Env), are major roadblocks for the development of bNAbs by vaccination. In addition, the naive human antibody repertoire features a low frequency of exceptionally long heavy chain complementary determining regions (CDRH3s), which is a typical characteristic that many HIV-1 bNAbs use to penetrate the glycan armor. Native-like Env trimer immunogens can induce potent but strain-specific neutralizing antibody responses in animal models but how to overcome the many obstacles towards the development of bNAbs remains a challenge. Here, we review recent HIV-1 Env immunization studies and discuss strategies to guide strain-specific antibody responses towards neutralization breadth.
Collapse
Affiliation(s)
- Jelle van Schooten
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Room K3-105, 1105AZ, Amsterdam, The Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Room K3-105, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Robinson HL. HIV/AIDS Vaccines: 2018. Clin Pharmacol Ther 2018; 104:1062-1073. [PMID: 30099743 PMCID: PMC6282490 DOI: 10.1002/cpt.1208] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/30/2018] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV) has infected 76 million people and killed an estimated 35 million. During its 40-year history, remarkable progress has been made on antiretroviral drugs. Progress toward a vaccine has also been made, although this has yet to deliver a licensed product. In 2007, I wrote a review, HIV AIDS Vaccines: 2007. This review, HIV AIDS Vaccines: 2018, focuses on the progress in the past 11 years. I begin with key challenges for the development of an AIDS vaccine and the lessons learned from the six completed efficacy trials, only one of which has met with some success.
Collapse
|
9
|
Gao Y, McKay PF, Mann JFS. Advances in HIV-1 Vaccine Development. Viruses 2018; 10:E167. [PMID: 29614779 PMCID: PMC5923461 DOI: 10.3390/v10040167] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 02/07/2023] Open
Abstract
An efficacious HIV-1 vaccine is regarded as the best way to halt the ongoing HIV-1 epidemic. However, despite significant efforts to develop a safe and effective vaccine, the modestly protective RV144 trial remains the only efficacy trial to provide some level of protection against HIV-1 acquisition. This review will outline the history of HIV vaccine development, novel technologies being applied to HIV vaccinology and immunogen design, as well as the studies that are ongoing to advance our understanding of vaccine-induced immune correlates of protection.
Collapse
Affiliation(s)
- Yong Gao
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, N6A 5C1, Canada.
| | - Paul F McKay
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London, W2 1PG, UK.
| | - Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
10
|
Gao Y, Wijewardhana C, Mann JFS. Virus-Like Particle, Liposome, and Polymeric Particle-Based Vaccines against HIV-1. Front Immunol 2018. [PMID: 29541072 PMCID: PMC5835502 DOI: 10.3389/fimmu.2018.00345] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is acknowledged that vaccines remain the best hope for eliminating the HIV-1 epidemic. However, the failure to produce effective vaccine immunogens and the inability of conventional delivery strategies to elicit the desired immune responses remains a central theme and has ultimately led to a significant roadblock in HIV vaccine development. Consequently, significant efforts have been applied to generate novel vaccine antigens and delivery agents, which mimic viral structures for optimal immune induction. Here, we review the latest developments that have occurred in the nanoparticle vaccine field, with special emphasis on strategies that are being utilized to attain highly immunogenic, systemic, and mucosal anti-HIV humoral and cellular immune responses. This includes the design of novel immunogens, the central role of antigen-presenting cells, delivery routes, and biodistribution of nanoparticles to lymph nodes. In particular, we will focus on virus-like-particle formulations and their preclinical uses within the HIV prophylactic vaccine setting.
Collapse
Affiliation(s)
- Yong Gao
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Chanuka Wijewardhana
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|